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Abstract: Optimization problems are ubiquitous in engineering and scientific research, with a large
number of such problems requiring resolution. Meta-heuristics offer a promising approach to solving
optimization problems. The firefly algorithm (FA) is a swarm intelligence meta-heuristic that emulates
the flickering patterns and behaviour of fireflies. Although FA has been significantly enhanced to im-
prove its performance, it still exhibits certain deficiencies. To overcome these limitations, this study
presents the Q-learning based on the adaptive logarithmic spiral-Levy flight firefly algorithm (QL-
ADIFA). The Q-learning technique empowers the improved firefly algorithm to leverage the firefly’s
environmental awareness and memory while in flight, allowing further refinement of the enhanced fire-
fly. Numerical experiments demonstrate that QL-ADIFA outperforms existing methods on 15 bench-
mark optimization functions and twelve engineering problems: cantilever arm design, pressure vessel
design, three-bar truss design problem, and 9 constrained optimization problems in CEC2020.
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1. Introduction

Optimization problems are ubiquitous in engineering and scientific research, involving finding the
optimal parameter values that meet specific objective functions while satisfying constraints [1–3]. Tra-
ditional gradient-based optimization algorithms have limitations and may not be effective in practical
scenarios. In recent years, numerous meta-heuristic algorithms have been developed, showing bet-
ter performance in terms of target function values while reducing computation costs. Among them,
natural-inspired meta-heuristic algorithms have gained attention and have been applied to various op-
timization problems [4, 5].

In the field of meta-heuristic algorithms, there are four main categories: swarm intelligence
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optimization algorithms, evolution algorithms, physics-based algorithms, and human-based algo-
rithms [6,7]. The firefly algorithm (FA) [8], an example of a swarm intelligence optimization algorithm,
is inspired by the behaviour and flashing patterns of fireflies. It has been found to be more effective than
other algorithms such as particle swarm optimization in solving optimization problems. Consequently,
various versions of FA have been applied to a wide range of fields, including architectural material
design [9], travel itinerary design [10], tumour classification [11], and image segmentation [12]. To
further enhance the performance of FA, scholars have made improvements in various aspects.

The improvement of FA is mainly divided into two angles: algorithm modification and mixing
with other algorithms. The modified FA is chiefly based on two important factors: Light variation
and Attraction [13]. For example, [14] introduced Levy flights into FA to create the Levy-Flight Fire-
fly Algorithm (LF-FA), which increased its global searching capability. A cooperative hybrid firefly
algorithm is proposed by [1] with multiple firefly algorithm populations, where each FA maintains
population diversity by hybridization and communication with each other to prevent the proposed
algorithm from falling into local optimum. Many hybrid FAs are proposed when firefly algorithms
incorporate machine learning, heuristics, hybridization, and other techniques. A novel adaptive hybrid
evolutionary firefly algorithm (AHEFA) [15] mixes FA and the differential evolution (DE) algorithm,
and selects mutation operators according to the results of iterations, balancing exploration and ex-
ploitation. Elitist techniques are adopted in the selection phase to carry on the viable solutions of the
target individuals to the next generation. An example is the adaptive logarithmic Spiral-Levy FA (AD-
IFA) proposed by [16], which combines LF-FA with logarithmic spiral paths and an adaptive approach
to balance exploration and exploitation capabilities. [17] provided a novel chaotic sine-cosine firefly
(CSCF) algorithm with numerous variants, which integrates the chaotic form of the sine cosine algo-
rithm (SCA) and the firefly algorithm (FA). CSCF chooses the best chaos variant from various chaotic
forms, improving convergence speed and efficiency. To address FA’s weaknesses in exploration and
early convergence, [18] introduce an opposition-based method into FA and combine it with a symbi-
otic organisms search (SOS) algorithm, called IOFASOS. The impact of SOS algorithms on solutions
is large in the early stages of IOFASOS implementation and becomes smaller and smaller as iterations
progress.

While previous improvements to the firefly algorithm have been effective in improving the reliability
of the firefly positions, they do not fully utilize the information generated during the last path changes.
As a result, they do not make full use of the firefly’s knowledge and memory of the environment when
flying. Using this information as the basis for position changes could lead to faster discovery of the
global optimal solution.

Q-learning involves the agent selecting actions based on the current state of the environment, receiv-
ing rewards or penalties based on the outcomes of its actions, accumulating knowledge, and making
future predictions to maximize cumulative returns [19]. Many articles have mixed Q-learning with
other algorithms and achieved good results. [20] utilizes a Q-learning model for adaptive parameter
control in the differential evolution (DE) algorithm, where Q-learning uses information from its mem-
ory to select the best combination of parameters at the beginning of each iteration. Q-learning can also
be used in the local reinforcement stage [21], which is dedicated to selecting the optimal state-action
pair based on knowledge and completing the transition from one heuristic algorithm to another. Q-
learning is applied to the marine predators algorithm to help leverage historical iteration information
to balance exploration and development [19]. As a solution to the issue of not fully utilizing the infor-
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mation generated during previous path changes, this paper proposes the integration of Q-learning into
AD-IFA, resulting in a new algorithm named Q-learning based on an adaptive logarithmic Spiral-Levy
FA (QL-ADIFA). By incorporating Q-learning into AD-IFA, fireflies can choose the optimal strategy
from two operations, thereby achieving a more balanced exploration and exploitation capability. The
contributions of this paper are two-fold:

1) proposing the Q-learning based on the logarithmic Spiral-Levy firefly algorithm (QL-ADIFA) to
solve the global optimization problem with faster convergence and superior solutions compared
to the original improvement of firefly algorithms; and

2) testing QL-ADIFA on 15 benchmark functions and twelve engineering problems, demonstrating
its improved convergence performance over the improved firefly algorithm.

The structure of this paper is organized as follows: Section 2 presents an overview of the improved
firefly algorithm and the Q-learning algorithm. Section 3 provides a detailed description of the pro-
posed Q-learning based on the adaptive logarithmic spiral-Levy flight firefly algorithm (QL-ADIFA).
In Section 4, the performance of QL-ADIFA is evaluated using 15 benchmark functions. In Section 5,
the effectiveness of the proposed algorithm is demonstrated through its application to twelve engi-
neering problems. Finally, Section 6 provides a summary of the contributions and conclusions of this
paper.

2. Related work

2.1. Q-learning

Q-learning is an off-policy temporal-difference method proposed by Watkins, which estimates the
value of the Q-function for each state-action pair to determine the optimal action strategy [22]. The
state represents the movement of the agent currently being taken, and the action represents a change
from one state of the agent to another. Since the state and action spaces of the problem addressed
in this paper are finite and discrete, the value function can be recorded using a matrix. The Reward
table is used to store the reward or penalty for each state-action pair, while the Q-table records the
corresponding Q-value for each pair. At each decision point, the optimal action strategy is selected by
comparing the Q-values of each available action in the current state, and the Q-table is iteratively up-
dated using the Bellman equation to minimize the difference between Q-values for adjacent states [23].
The equation is as follows:

Q(sIter, aIter) = Q(sIter, aIter) + λ
{
rIter+1 + θmax

a
Q(sIter+1, a) − Q(sIter, aIter)

}
, (1)

where sIter and aIter represent the state and action in this iteration respectively, λ is the learning rate, θ
is the attenuation factor, and rIter+1 is the immediate return.

Set the maximum iteration number Max Iter = 100, s1 and s2 represent different states, and a1

and a2 represent different actions. Then the pseudo-code for the Q-learning algorithm is provided in
Algorithm 1.
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Algorithm 1: Q-learning algorithm pseudocode
1 Initialize Reward table ;
2 Set Q-table as a zero matrix of m × n, m = 2, n = 2;
3 Set Iter = 0, Max Iter = 100;
4 Set state si, i = 1, · · · ,m and action ai, i = 1, · · · , n;
5 State s0 is randomly selected from {s1, · · · , sm};
6 while Iter < Max Iter do
7 Select the best action aIter from sIter according to Q-table;
8 Execute action aIter and get immediate feedback rIter+1;
9 Get the latest status sIter+1;

10 Acquiring the corresponding maximum value sIter+1 of Q-table;
11 Update Q-table according to Bellman equation;
12 Update status sIter+1;
13 Iter = Iter + 1;

14 return Q-table;

The Q-learning algorithm diagram is shown in Figure 1.

Figure 1. The flowchart of Q-learning.

2.2. Improved firefly algorithm

2.2.1. The firefly algorithm

The firefly algorithm is a meta-heuristic algorithm proposed in [24] based on the characteristics of
firefly flashes, which is effective in dealing with nonlinear and multi-modal optimization problems. To
simplify the firefly algorithm, fireflies follow the following three rules [8]:

1) All fireflies are of the same gender, and each firefly can only be attracted to the brighter ones.
2) The attraction of fireflies increases with brightness, while their brightness decreases with distance.

Therefore, fireflies always move in the direction of the brighter ones, and the brightest firefly
moves randomly.

3) The brightness of a firefly is equivalent to the value of the objective function.

The Euclidean distance between fireflies in d-dimension space can be expressed as:

ri j =

√√√ d∑
p=1

(xi,p − x j,p)2, (2)
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where xi,p is the pth component of the space coordinate of the ith firefly.
Since light is absorbed by the medium during propagation, the brightness of fireflies decreases with

the increase of distance, so the attraction of fireflies can be expressed as:

βr = β0 · e−γ·r
2
, (3)

where β0 is the original attraction, γ is the light absorption coefficient, and r is the distance between
fireflies.

The updated position of the ith firefly after it is attracted to a brighter jth firefly can be expressed
as:

xi,t+1 = xi,t + β0 · e
−γ·r2

i j · (x j,t − xi,t) + α · (rand − 0.5), (4)

where xi,t represents the position of the ith firefly in time t, rand is a d-dimensional uniform random
vector between [0, 1]d, and α is a parameter in [0, 1].

2.2.2. The Levy-flight firefly algorithm

The firefly algorithm easily falls into the local minimum when dealing with global continuous op-
timization problems. To solve this problem, [25] proposed the Levy-flight firefly algorithm (LF-FA),
inspired by the sudden and large turn of insects in straight flight.

Levy flying firefly algorithm replaces uniform distribution with Levy distribution, and updates the
position of the u firefly after being attracted by brighter firefly j as follows:

xi,t+1 = xi,t + β0 · e−γ·ri j
2
· (x j,t − xi,t) + α · sign(rand − 0.5) ⊗ Levy, (5)

where ⊗ is the Hadamard product, and sign(·) is the sign function.

2.2.3. The logarithmic spiral path

Although the Levy flying firefly algorithm significantly enhances the exploration ability of the
global space, it ignores the local development ability of the algorithm and the balance between ex-
ploration and development.

[26] proposed a logarithmic spiral path (LS) which could improve the local development ability
of the algorithm by referring to the flight path taken by a peregrine falcon when looking for food.
Therefore, [16] considered introducing the logarithmic spiral path as the direction of the improved
firefly algorithm, and a new firefly position update mode can be designed as follows:

xi,t+1 = xi,t + β0 · e−γ·ri j
2
· (x j,t − xi,t) ⊗ eb·I ⊗ cos(2π · I), (6)

where I is a d-dimensional uniform random vector in [−1, 1]d and is a constant used to define the shape
of a logarithmic spiral.

2.2.4. An adaptive logarithmic spiral-Levy FA (AD-IFA)

The adaptive logarithmic spiral-Levy firefly algorithm (AD-IFA) proposed in [16] can solve the
imbalance between exploration (Levy flight) and development (logarithmic spiral). An adaptive switch
(ratio) method is proposed in AD-IFA, and the new position update formula is expressed as:

xi,t+1 =

{
xi,t + β0e−γ·ri j

2
(x j,t − xi,t) + α · sign(rand − 0.5) ⊗ Levy, if u > Rt

xi,t + β0e−γ·ri j
2
(x j,t − xi,t) ⊗ eb·I ⊗ cos(2π · I), if u ≤ Rt.

(7)
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where u is a uniform random number between [0,1] and Rt is calculated in the last iteration. The value
of Rt+1 ranges in [0.5, 1], whose initial value is set as 0.5. Its specific expression is as follows,

Rt+1 =



1

1+exp
(
−

ft
f ∗t−1

) , ⌊
lg

∣∣∣ f ∗t ∣∣∣⌋ , ⌊
lg

∣∣∣ f ∗t−1

∣∣∣⌋
1

1+exp

−
f ∗t −θ·

 f ∗f
f


f ∗t−1−θ·

⌊
ft−1
θ

⌋

, else, (8)

where, θ = 10⌊lg| f
∗
t − f ∗t−1|⌋+1. In Eq (8), f ∗t is the best fitness function value at the tth iteration, lg(·) =

log10(·), and ⌊·⌋ is the floor function.

3. The proposed algorithm

This paper proposes the Q-learning based on the adaptive logarithmic spiral-Levy flight firefly algo-
rithm (QL-ADIFA), which combines the strengths of the Q-learning algorithm and the adaptive loga-
rithmic spiral-Levy flight firefly algorithm. QL-ADIFA leverages Q-learning to enhance the efficiency
of the exploration and exploitation stages of the meta-heuristic algorithm. Additionally, it utilizes
the meta-heuristic algorithm to better retain the information of the search space obtained during the
iterative process. As a result, the QL-ADIFA algorithm achieves higher efficiency and effectiveness.

Table 1. Abbreviations used in this article.

Abbreviation Full name
FA Firefly Algorithm
LF-FA The Levy-Flight Firefly Algorithm
AD-FIA The adaptive logarithmic spiral-Levy flight firefly algorithm
QL-LSLFA The Q-learning based on the logarithmic spiral-Levy flight

firefly algorithm
QL-ADIFA The Q-learning based on the adaptive logarithmic spiral-

Levy flight firefly algorithm
NQL-ADIFA The removed Q-learning based on the adaptive logarithmic

spiral-Levy flight firefly algorithm

The proposed QL-ADIFA is divided into two parts. One is composed of the adaptive logarithmic
spiral-Levy flight firefly algorithm (AD-IFA), that is, an adaptive switching (proportional) method is
used to solve the problem of unbalanced exploration and exploitation. And the other part is composed
of the Q-learning based on the logarithmic spiral-Levy flight firefly algorithm (QL-LSLFA), that is, Q-
learning is used to solve the imbalance problem. During each iteration, one of the above two sections
will be randomly selected to update the position of the firefly. And this random probability is set to 0.7
for choosing AD-IFA and 0.3 for choosing to use QL-LSLFA after testing in this article. To improve
readability, abbreviations used in the article are recorded in Table 1.

Mathematical Biosciences and Engineering Volume 20, Issue 8, 13542–13561.



13548

Figure 2. The flowchart of QL-ADIFA.
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The QL-LSLFA algorithm takes fireflies as agents, where there are two states of the agent: the
exploration stage (the Levy-flight path) and the exploitation stage (the logarithmic spiral path) and
two actions, i.e., switching from one stage to another stage. The flow chart of QL-LSLFA is shown
in Figure 2. The Q-learning algorithm controls the action of fireflies by adapting to state transitions
based on the Q-table. The fireflies learn good or bad behaviour based on the Reward table, which also
rewards them for good behaviour (+1) and punishes them for bad behaviour (-1) to update the Reward
table. The Q-table can better represent the firefly’s performance in the process, allowing the firefly to
obtain more appropriate actions. In QL-LSLFA, the position of the i firefly in the moment t changes
based on:

xi,t+1 =

{
xi,t + β0e−γ·ri j

2
(x j,t − xi,t) + α · sign(rand − 0.5) ⊗ Levy, if Q(sIter, a1) is max

xi,t + β0e−γ·ri j
2
(x j,t − xi,t) ⊗ eb·I ⊗ cos(2π · I), if Q(sIter, a2) is max.

(9)

In Eq (9), a1 represented the switch from the exploitation stage to the exploration stage, and a2 repre-
sented the switch from the exploration stage to the exploitation stage.

In QL-LSLFA, fireflies are able to make adaptive judgments and choose the most appropriate actions
according to the Q-learning algorithm. The improved steps of Q-learning can be summarized into five
parts as follows:

1) The Q-table is initialized as a 2 × 2 zero matrix. The specific form of the Reward table is shown
in Eq (10): [

1 1
−1 1

]
. (10)

2) According to each value of the Q-table in the current state, the action with the highest score is
selected as the best action in the current stage.

3) Perform the selected action and calculate the new fitness value. The immediate reward is calcu-
lated as follows:

Reward =
{

Reward + 1, if the new function improves,
Reward − 1, otherwise.

(11)

4) Update the Q-table with Eq (1).
5) Update the location of the agent based on the new state.

Figure 2 shows the general flow chart of the proposed QL-ADIFA. From the initial phase of the QL-
ADIFA, each search agent is independent of the other and continuously improves its behaviour based
on Q-learning. The QL-ADIFA is executed iteratively until the termination condition is satisfied.

The feature of this algorithm is that it can effectively switch between different stages according to
its own needs, so it can find the global solution effectively, and improve the efficiency of local searches.

The pseudo-code of the proposed QL-ADIFA algorithm is shown in Algorithm 2.
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Algorithm 2: QL-ADIFA algorithm pseudo-code
1 Initialize Reward table ;
2 Set Q-table as a zero matrix of m × n, m = 2 and n = 2;
3 Set Iter = 0, Max Iter = 500, and N is the population size of fireflies;
4 Set state si, i = 1, · · · ,m and action ai, i = 1, · · · , n;
5 State s0 is randomly selected from si, i = 1, · · · ,m;
6 Construct fitness function f (x), x = (x1, · · · , xd)T ;
7 Initialize firefly population xi (i = 1, · · · ,N);
8 Set various initial rates and define the light absorption coefficient γ;
9 while Iter < Max Iter do

10 for i = 1 : N do
11 for j = 1 : N do
12 The light intensity Ii of xi is calculated by fitness function Ii = f (xi);
13 if I j > Ii then
14 Generate a random number p in [0,1];
15 if p < 0.3 then
16 if The value of Q(sIter, a1) is the max in Q-table then
17 According to Eq (5), enter the exploration stage and update the position

of ith firefly;
18 else
19 According to Eq (6), enter the exploitation stage and update the position

of ith firefly;

20 else
21 Use AD-IFA for the ith firefly’s position updates;

22 if The new function value has been improved then
23 Reward = Reward + 1;
24 else
25 Reward = Reward - 1;

26 The attractive force varies with the distance r according to exp(−γr2);
27 Evaluate new solutions and update light intensity;
28 Rank fireflies and find the fitness value fl

∗ of fireflies in the best position;
29 Iter = Iter + 1;

30 return Final result;

4. Numerical simulations

Numerical simulations based on 15 benchmark functions are performed to verify the performance
of the proposed method. Table 2 shows the details of these functions.
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Table 2. The description of 15 reference functions.

Function Description Dimension (d) Range fmin

f1 f (x) =
∑d

i=0 |xi| +
∏d

i=0 |xi| 30 [-10,10] 0

f2 f (x) =
∑d−1

i=1 [100(x2
i − xi+1)2 + (1 − xi)2] 30 [-30,30] 0

f3 f (x) =
∑d−1

i=1

[
i
(
2x2

i − xi−1

)2
]
+ (x1 − 1)2 50 [-10,10] 0

f4 f (x) =
∑d

i=0 ix4
i + random(0, 1) 50 [-1.28,1.28] 0

f5 f (x) =
∑d

i=1

(
−xi sin

(√
|xi|

))
50 [-500,500] −418.9828×

d

f6 f (x) = −20 exp
(
−0.2

√
1
d

∑d
i=1 x2

i

)
− exp

(
1
d

∑d
i=1 cos (2πxi)

)
+ 20 + e

50 [-32,32] 0

f7 f (x) = 1 + 1
4000

∑d
i=1 x2

i −
∏d

i=1 cos
(

xi√
i

)
50 [-600,600] 0

f8 f (x) =
∑d

i=1 ix2
i 50 [-5.12,5.12] 0

f9 f (x) =
(

1
500 +

∑25
j=1

1
j+

∑2
i=1(xi−ai j)

)−1
2 [-65,65] 0.9980

f10 f (x) =
∑11

i=1

[
ai −

x1(b2
i +bi x2)

b2
1+b1 x3+x4

]2
4 [-5,5] 0.0003

f11 f (x) = 4x2
1−2.1x4

1+
1
3 x6

1+ x1x2−4x2
2+4x4

2 2 [-5,5] -1.0316

f12 f(x) =
(
x2 −

5.1
4π2 x2

1 +
5
π
x1 − 6

)2
+

10
(
1 − 1

8π

)
cos x1 + 10

2 [-5,5] 0.398

f13 f (x) = [1+ (x1+ x2+1)2(19−14x1+3x2
1−

14x2 + 6x1x2 + 3x2
2)]

×[30 + (2x1 − 3x2)2(18 − 32xi + 12x2
1 +

48x2 − 36x1x2 + 27x2
2)]

2 [-2,2] 3

f14 f (x) = −
∑7

i=1

[
(X − ai) (X − ai)T + ci

]−1
4 [0,10] -10.4029

f15 f (x) = −
∑10

i=1

[
(X − ai) (X − ai)T + ci

]−1
4 [0,10] -10.5364

4.1. Parameter settings

This paper shows the results of the proposed QL-ADIFA and compares it with the original algorithm
in different test functions. 100 iterations and 25 search agents are used to execute the proposed algo-
rithm QL-ADIFA. To display the capabilities of the proposed method, the results of QL-LSLFA and the
algorithms below 1) AD-IFA [16]; 2) FA [24]; 3) LFFA [16]; 4) the removed Q-learning based on the
adaptive logarithmic spiral-Levy flight firefly algorithm (NQL-ADIFA); 5) A quasi-opposition learning
and Q-learning based marine predators algorithm (QQLMPA) [19]; 6) an innovative optimizer named
weighted mean of vectors (INFO) [27] carried out the comparison and analysis. The NQL-ADIFA here
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refers to eliminating the impact of Q-learning in QL-ADIFA, that is, in the QL-LSLFA part, the Q-
learning algorithm is no longer used for exploration and exploitation strategy selection, but a random
selection of strategies. The experiment was conducted in the Matlab R2017a environment, which has a
1.4 GHz quad-core Intel core i5 and 8 GB of RAM. The experimental settings for the parameters in all
firefly algorithms (FA, LF-FA, AD-IFA, our QL-ADIFA) are as follows: the randomization parameter
α = 0.2, the fixed light absorption coefficient γ = 1 and the attractiveness at r = 0 is β0 = 1.

To ensure the fairness of the experiment, this study obtained the average results with 25 runs. In
particular, considering that the study rate θ is usually set to a high value at the beginning and then
gradually decreases with time steps, it is set as follows:

θ(Iter) = 1 − (0.9 ×
Iter

Max Iter
), (12)

where Iter is the current iteration and Max Iter is the total number of iterations.

4.2. Result analysis

Tables 3 and 4 provide the performance details, where the mean (Avg) and standard deviation (Std)
values are used to evaluate the results of QL-ADIFA and other algorithms. The best results are pre-
sented in bold, and all algorithms are ranked from best to worst based on their average performance.
Additionally, the Wilcoxon rank sum test is conducted with a 95% confidence level to calculate the
p-values and h-values, which demonstrates that QL-ADIFA is significantly different from other algo-
rithms. ‘NaN’ represents ‘not available’. Moreover, Figure 3 illustrates the convergence curves of six
functions for all algorithms, which indicates that QL-ADIFA performs better than other algorithms in
terms of searching for prey and achieving better results during fewer iterations. And QL-ADIFA has
better exploration and development capabilities, making it easier to avoid local optima.

QL-ADIFA exhibits superior exploration capabilities that enable it to discover better solutions com-
pared to the original algorithm. The results presented in Tables 3 and 4 show that QL-ADIFA achieves
an Avg that is closer to the global optimal Avg when compared to other algorithms. However, com-
pared with the two excellent algorithms of QQLMPA and INFO, QL-ADIFA still has a lot of room for
improvement. Compared only to the FA series algorithms, QL-ADIFA performs the best in terms of
Avg except for f3. Furthermore, the Std value of QL-ADIFA is the lowest among 50% of the bench-
mark functions, indicating that its excellent performance is robust. The convergence curves of the six
functions shown in Figure 3 illustrate that QL-ADIFA outperforms other algorithms in terms of con-
vergence speed. Overall, the proposed algorithm achieves good performance in terms of accuracy and
speed after the improvements are made.

Tables 3 and 4 present the p-values and h-values obtained from the non-parametric Wilcoxon rank
sum statistical test. The test was conducted to determine whether QL-ADIFA performs significantly
better than other algorithms. The results show that in most benchmark functions, the p-value is less
than 0.05 and the h-value is 1 between QL-ADIFA and each of the other algorithms. This indicates
that the advantage of QL-ADIFA over the other algorithms is credible and significant. Specifically,
the h-value is 1 in 52% of functions, indicating a significant difference between QL-ADIFA and other
algorithms. Additionally, the p-value is less than 5% in 52% of benchmark functions, indicating that
QL-ADIFA is effective in solving most functions.
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Table 3. Results of QL-ADIFA and other algorithms on 15 benchmark functions ( f1– f9).
Function QL-ADIFA NQL-ADIFA AD-IFA FA LF-FA QQLMPA INFO fmin

f1

Avg 7.02E+01 8.89E+01 7.50E+01 8.42E+15 4.31E+14 2.15E-03 2.87E-07 0.00E+00
Best 5.15E+01 5.83E+01 4.06E+01 2.16E+07 1.72E+04 1.41E-25 2.53E-10
Std 1.72E+01 2.24E+01 2.06E+01 2.63E+16 1.28E+15 1.33E-03 8.89E-07
Rank 3 5 4 7 6 2 1
h − value - 1 1 1 1 0 0
p − value - 1.70E-06 4.10E-04 1.67E-31 1.94E-31 8.96E-02 8.96E-02

f2

Avg 1.67E+07 1.92E+07 1.86E+07 5.10E+08 4.05E+08 4.88E+01 4.82E+01 0.00E+00
Best 2.87E+06 1.12E+07 7.34E+06 4.42E+08 2.69E+08 4.87E+01 4.71E+01
Std 1.17E+07 7.84E+06 1.00E+07 4.68E+07 6.09E+07 5.51E-02 6.00E-01
Rank 3 5 4 7 6 2 1
h − value - 1 1 1 1 0 0
p − value - 3.39E-08 1.06E-04 1.05E-32 1.05E-32 8.96E-02 8.96E-02

f3

Avg 2.01E+05 2.51E+05 1.95E+05 5.78E+06 3.74E+06 7.70E-01 6.68E-01 0.00E+00
Best 6.72E+04 6.79E+04 8.39E+04 4.27E+06 3.02E+06 6.79E-01 6.67E-01
Std 1.00E+05 1.52E+05 1.03E+05 6.57E+05 5.46E+05 8.34E-02 7.88E-04
Rank 4 5 3 7 6 2 1
h − value 1 0 1 1 0 0
p − value 1.48E-07 7.37E-01 1.05E-32 1.05E-32 8.96E-02 8.96E-02

f4

Avg 1.39E+01 1.62E+01 1.78E+01 2.54E+02 1.93E+02 6.40E-03 8.26E-03 0.00E+00
Best 3.23E+00 3.37E+00 9.00E+00 1.80E+02 1.38E+02 1.92E-03 3.00E-03
Std 9.55E+00 1.14E+01 9.84E+00 3.23E+01 3.36E+01 4.08E-03 6.73E-03
Rank 3 5 4 7 6 2 1
h − value - 1 1 1 1 0 0
p − value - 3.61E-02 1.10E-03 1.04E-31 7.96E-32 8.96E-02 8.96E-02

f5

Avg -6.11E+03 -5.51E+03 -5.95E+03 -2.67E+03 -3.10E+03 -7.66E+03 -1.25E+04 -2.09E+04
Best -8.47E+03 -6.94E+03 -7.59E+03 -3.37E+03 -3.86E+03 -9.40E+03 -1.35E+04
Std 1.42E+03 7.98E+02 9.34E+02 5.53E+02 6.14E+02 1.41E+03 8.21E+02
Rank 3 5 4 7 6 2 1
h − value - 1 0 1 1 0 0
p − value - 1.33E-03 3.98E-01 1.05E-32 1.96E-29 8.96E-02 8.96E-02

f6

Avg 1.26E+01 1.42E+01 1.45E+01 2.05E+01 2.02E+01 9.78E-04 4.67E-07 0.00E+00
Best 6.75E+00 1.20E+01 1.27E+01 2.03E+01 2.00E+01 8.88E-16 8.49E-10
Std 3.39E-01 1.40E+00 1.08E+00 4.04E-01 1.01E-01 5.95E-04 9.18E-07
Rank 3 5 4 7 6 2 1
h − value - 1 1 1 1 0 0
p − value - 1.00E-05 6.62E-13 1.05E-32 1.05E-32 8.96E-02 8.96E-02

f7

Avg 1.47E+02 2.04E+02 1.56E+02 1.16E+03 1.14E+03 8.62E-05 1.58E-14 0.00E+00
Best 1.06E+02 1.26E+02 7.48E+01 1.02E+03 9.98E+02 5.81E-06 0.00E+00
Std 3.68E+01 6.95E+01 5.33E+01 9.38E+01 9.49E+01 5.00E-05 4.48E-14
Rank 3 5 4 7 6 2 1
h − value - 1 1 1 1 0 0
p − value - 3.61E-02 1.10E-03 1.04E-31 7.96E-32 8.96E-02 8.96E-02

f8

Avg 1.12E+03 1.39E+03 1.35E+03 7.60E+03 5.03E+03 3.36E-06 8.26E-17 0.00E+00
Best 5.56E+02 7.06E+02 9.69E+02 6.27E+03 3.89E+03 7.50E-07 6.03E-22
Std 4.17E+02 6.01E+02 4.59E+02 6.36E+02 5.21E+02 3.21E-06 1.61E-16
Rank 3 5 4 7 6 2 1
h − value - 1 1 1 1 0 0
p − value - 2.14E-11 3.62E-12 1.05E-32 1.05E-32 8.96E-02 8.96E-02

f9

Avg -6.11E+03 -5.51E+03 -5.95E+03 -2.67E+03 -3.10E+03 -7.66E+03 -1.25E+04 9.98E-01
Best -8.47E+03 -6.94E+03 -7.59E+03 -3.37E+03 -3.86E+03 -9.40E+03 -1.35E+04
Std 1.42E+03 7.98E+02 9.34E+02 5.53E+02 6.14E+02 1.41E+03 8.21E+02
Rank 3 5 4 7 6 2 1
h − value - 1 0 1 1 0 0
p − value - 1.33E-03 3.98E-01 1.05E-32 1.96E-29 8.96E-02 8.96E-02
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Table 4. Results of QL-ADIFA and other algorithms on 15 benchmark functions ( f10– f15).

Function QL-ADIFA NQL-ADIFA AD-IFA FA LF-FA QQLMPA INFO fmin

f10

Avg 1.11E-03 5.17E-03 1.15E-03 7.35E-02 1.18E-02 4.20E-04 8.50E-03 4.20E-04
Best 4.50E-04 7.77E-04 3.68E-04 8.29E-03 1.39E-03 3.08E-04 3.07E-04
Std 8.21E-03 8.11E-03 3.39E-04 7.28E-02 1.25E-02 1.27E-04 1.02E-02
Rank 2 4 3 7 6 1 5
h − value - 1 1 1 1 0 0
p − value - 9.30E-03 5.32E-12 1.07E-30 4.87E-16 8.96E-02 6.28E-01

f11

Avg -1.03E+00 -1.03E+00 -1.03E+00 -6.86E-03 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00
Best -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00
Std 2.52E-09 2.52E-09 1.13E-09 1.25E+00 3.84E-09 2.49E-08 2.22E-16
Rank 1 1 1 7 1 1 1
h − value - 0 0 1 0 0 0
p − value - 2.70E-01 1.86E-01 1.43E-29 5.39E-01 2.12E-01 8.96E-02

f12

Avg 3.98E-01 3.98E-01 3.98E-01 5.42E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01
Best 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01
Std 8.24E-10 1.97E-09 7.87E-10 2.68E-01 3.48E-09 2.45E-06 0.00E+00
Rank 1 1 1 7 1 1 1
h − value - 0 0 1 0 0 0
p − value - 7.31E-01 5.31E-01 8.11E-26 3.90E-01 7.03E-01 8.96E-02

f13

Avg 3.00E+00 3.00E+00 3.00E+00 2.06E+01 3.00E+00 3.00E+00 3.00E+00 3.00E+00
Best 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00
Std 2.61E-07 1.12E-07 1.19E-07 2.70E+01 6.12E-07 2.57E-07 3.56E-15
Rank 1 1 1 7 1 1 1
h − value - 0 0 1 0 0 0
p − value - 2.68E-01 2.12E-01 3.89E-27 5.01E-01 9.63E-02 8.96E-02

f14

Avg -7.34E+00 -7.20E+00 -7.17E+00 -9.37E-01 -5.92E+00 -1.03E+01 -7.35E+00 -1.04E+01
Best -1.04E+01 -1.04E+01 -1.04E+01 -2.31E+00 -1.04E+01 -1.04E+01 -1.04E+01
Std 3.10E+00 3.45E+00 3.94E+00 6.52E-01 3.37E+00 2.81E-01 3.96E+00
Rank 3 4 5 7 6 1 2
h − value - 0 1 1 1 0 0
p − value - 1.34E-01 1.41E-02 1.31E-30 1.85E-06 8.96E-02 8.96E-02

f15

Avg -8.49E+00 -6.30E+00 -5.92E+00 -1.72E+00 -4.76E+00 -1.05E+01 -8.41E+00 -1.05E+01
Best -1.05E+01 -1.05E+01 -1.05E+01 -3.30E+00 -1.05E+01 -1.05E+01 -1.05E+01
Std 3.07E+00 3.60E+00 3.37E+00 9.71E-01 3.18E+00 6.79E-02 3.49E+00
Rank 2 4 5 7 6 1 3
h − value - 1 1 1 1 0 0
p − value - 1.49E-12 2.55E-13 1.89E-26 9.33E-16 8.96E-02 1.88E-01
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Figure 3. Select the convergence curve of the comparison algorithm on the reference func-
tion.
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5. Engineering design problems

This section presents the practical application of QL-ADIFA in solving engineering design prob-
lems, specifically the cantilever beam design and pressure vessel design. Similar to the benchmark
function test, QL-ADIFA is evaluated using 100 iterations repeated 25 times for each problem.

5.1. The cantilever beam design

The first practical engineering problem involves the weight optimization of a square-section can-
tilever beam, specifically the design of a cantilever beam. The beam is made up of 5 hollow square
blocks of constant thickness, where the height of each block is a decision variable and the thickness
is fixed. One end of the beam is rigidly supported, and a vertical force acts on the free node of the
cantilever. The objective is to minimize the weight of the cantilever beam and can be expressed as
follows:

Minimize f (x) = 0.0624(x1 + x2 + x3 + x4 + x5).
Subject to:

g(x) =
61
x3

1

+
37
x3

2

+
19
x3

3

+
7
x3

4

+
1
x3

5

− 1 ≤ 0,

0.01 ≤ xi ≤ 100, i = 1, 2, 3, 4, 5.

Table 5 presents a comparison of the best results achieved by different algorithms. The best result
obtained by QL-ADIFA outperforms the best result of the other algorithms. The optimal value of QL-
ADIFA is 1.7505 when the decision variables x1 = 4.7861, x2 = 7.9613, x3 = 7.7762, x4 = 4.6585,
and x5 = 2.8702.

Table 5. Comparison of optimization design of cantilever beam by different algorithms.

QL-ADIFA NQL-ADIFA AD-IFA FA LF-FA QQLMPA INFO
x1 8.72 4.79 5.22 8.73 8.51 22.05 19.97
x2 9.56 5.85 10.20 16.70 8.80 4.55 55.09
x3 4.67 30.14 26.36 12.58 2.84 29.85 2.83
x4 2.25 3.81 3.11 41.58 31.59 9.91 19.81
x5 6.59 5.68 1.53 39.19 38.42 20.65 14.47
Optimal value 4.43 5.89 5.37 9.26 7.94 2.22 7.39

5.2. The pressure vessel design

The second example pertains to the design of a pressure vessel. The objective is to minimize the
total cost, which includes welding, material, and pressure vessel moulding costs. The problem involves
four design variables, namely, 1) x1, which is the thickness of the shell, 2) x2, which is the thickness of
the head, 3) x3, which is the inner radius of the head, and 4) x4, which is the length of the cylindrical
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section of the container. The problem can be mathematically expressed as:

Minimize f (x) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3.

Subject to:

g1(x) = −x1 + 0.0193x3 ≤ 0,
g2(x) = −x2 + 0.00954x3 ≤ 0,

g3(x) = −πx2
3x4 −

4
3
πx3

3 + 1296000 ≤ 0,

g4(x) = x4 − 240 ≤ 0,
1 ≤ x1 ≤ 99, 1 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200.

The table provided in Table 6 displays the best results achieved by various algorithms for the pres-
sure vessel design problem. QL-ADIFA outperforms all other algorithms with the best result. Specifi-
cally, when the design variables are x1 = 1, x2 = 1, x3 = 51.2031, and x4 = 89.0799, the optimal value
obtained by QL-ADIFA is 8798.52.

Table 6. Comparison of optimization design of pressure vessel by different algorithms.

QL-ADIFA NQL-ADIFA AD-IFA FA LF-FA QQLMPA INFO
x1 1 1 1 1 1 1 1
x2 1 1 1 1 1 1 1
x3 51.20 51.74 51.11 50.90 49.8389 47.39 49.15
x4 89.0799 85.22 89.7867 92.4038 99.8011 121.61 105.22
Optimal value 8798.52 8799.90 8799.79 8835.10 8817.23 8800.39 9084.11

5.3. The three-bar truss design problem

The three-bar truss design problem [28] is a classic engineering problem that involves determining
the optimal design of a simple truss structure made of three bars. The truss must resist a set of external
forces while minimizing the total weight of the structure. The problem involves two design variables,
namely, 1) x1, which is the area of bar 1 and the area of bar 3, and 2) x2, which is the area of bar 2. The
problem can be mathematically expressed as:

Minimize f (x) =
(
2
√

2x1 + x2

)
× L

Subject to:

g1(x) =

√
2x1 + x2

√
2x2

1 + 2x1x2

P − σ ≤ 0

g2(x) =
x2

√
2x2

1 + 2x1x2

P − σ ≤ 0

g3(x) =
1

√
2x2 + x1

P − σ ≤ 0

0.00 ≤ x1 ≤ 1.00, 0.00 ≤ x2 ≤ 1.00.

Here, the decision variables are the area of bars 1 and 3 (x1), and the area of bar 2 (x2). L = 100 cm,
P = 2 N/cm2, σ = 2 N/cm2.
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The table provided in Table 7 displays the best results achieved by various algorithms for the three-
bar truss design problem. QL-ADIFA outperforms all other algorithms with the best result. Specifi-
cally, when the design variables are x1 = 0.79, x2 = 0.41, the optimal value obtained by QL-ADIFA is
263.85.

Table 7. Comparison of optimization design of three-bar truss design by different algorithms.

QL-ADIFA NQL-ADIFA AD-IFA FA LF-FA QQLMPA INFO
x1 0.79 0.79 0.79 0.79 0.79 0.79 0.79
x2 0.41 0.41 0.41 0.41 0.41 0.41 0.40
Optimal value 263.85 265.75 263.85 264.08 263.97 263.86 263.85

5.4. The CEC2020 functions

Table 8. Results of QL-ADIFA and other algorithms on 9 constrained optimization problems.

Function QL-ADIFA NQL-ADIFA AD-IFA FA LF-FA QQLMPA INFO fmin

F1
Avg -3.53E-02 -2.07E-02 -7.10E-02 1.83E+02 2.53E+00 -1.38E-01 -3.05E-01 -3.88E-01
Best -3.28E-01 -1.73E-01 -3.70E-01 -3.15E-01 -3.67E-01 -3.88E-01 -3.69E-01
Std 1.03E-01 5.44E-02 1.49E-01 2.37E+02 4.03E+00 1.57E-01 1.00E-01

F2
Avg 7.82E+05 2.23E+06 8.65E+05 1.46E+10 1.49E+09 -1.38E-01 -3.05E-01 -4.00E+02
Best -1.87E-02 -2.78E+02 -1.57E-02 2.47E+08 6.17E+07 -3.88E-01 -3.69E-01
Std 2.43E+06 3.67E+06 1.85E+06 1.73E+10 2.45E+09 1.57E-01 1.00E-01

F3
Avg 9.98E-01 9.98E-01 9.98E-01 1.21E+00 1.13E+00 9.98E-01 9.98E-01 1.86E+00
Best 9.98E-01 9.98E-01 9.98E-01 1.06E+00 1.06E+00 9.98E-01 9.98E-01
Std 2.34E-16 2.34E-16 2.34E-16 1.29E-01 5.57E-02 2.34E-16 2.34E-16

F4
Avg 2.00E+00 2.00E+00 2.00E+00 2.00E+00 2.00E+00 2.00E+00 2.00E+00 2.00E+00
Best 2.00E+00 2.00E+00 2.00E+00 2.00E+00 2.00E+00 2.00E+00 2.00E+00
Std 4.94E-06 8.45E-07 4.08E-06 9.05E-07 1.81E-06 6.89E-06 3.75E-07

F5
Avg 2.69E+04 2.69E+04 2.69E+04 1.15E+06 6.94E+04 2.69E+04 2.69E+04 2.69E+04
Best 2.69E+04 2.69E+04 2.69E+04 3.01E+04 2.78E+04 2.69E+04 2.69E+04
Std 1.63E+01 8.75E+01 4.61E-07 1.70E+06 1.17E+05 1.22E-05 7.67E-12

F6
Avg 3.03E+03 3.03E+03 3.04E+03 4.26E+03 3.74E+03 2.69E+04 2.69E+04 2.99E+03
Best 3.00E+03 3.01E+03 3.01E+03 3.35E+03 3.08E+03 2.69E+04 2.69E+04
Std 1.03E+01 1.32E+01 4.60E+01 5.78E+02 7.55E+02 1.22E-05 7.67E-12

F7
Avg 7.39E+03 7.20E+03 8.74E+03 3.93E+04 3.36E+04 6.14E+03 6.73E+03 5.89E+03
Best 6.22E+03 6.17E+03 6.21E+03 1.96E+04 1.71E+04 6.06E+03 6.08E+03
Std 1.00E+03 1.17E+03 5.08E+03 1.28E+04 1.10E+04 7.43E+01 4.68E+02

F8
Avg 1.88E+00 1.87E+00 1.93E+00 3.29E+00 2.32E+00 1.70E+00 1.75E+00 1.67E+00
Best 1.73E+00 1.70E+00 1.74E+00 1.80E+00 1.77E+00 1.67E+00 1.67E+00
Std 1.60E-01 1.62E-01 1.71E-01 9.25E-01 4.04E-01 1.65E-02 1.61E-01

F9
Avg -7.26E+02 -7.24E+02 -7.25E+02 -6.74E+02 -7.16E+02 -7.34E+02 -7.39E+02 8.91E-02
Best -7.28E+02 -7.28E+02 -7.32E+02 -7.10E+02 -7.23E+02 -7.41E+02 -7.42E+02
Std 2.01E+00 2.53E+00 3.11E+00 6.55E+01 4.57E+00 5.95E+00 3.68E+00
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There are 57 constrained optimization problems in CEC2020 with varying dimensions, ranging
from 2 variables to 158 variables, and a range of equality and inequality constraints, ranging from
2 constraints to 148 constraints. Comprehensive information regarding these problems can be found
in [29]. To evaluate the performance of the QL-ADIFA algorithm proposed in this study, 9 constrained
optimization problems were selected for a series of experiments.

The detailed results of some CEC2020 functions obtained from the proposed QL-ADIFA and other
contrast algorithms are presented in Table 8, including the average (Avg), best (Best), the standard
deviation (Std) of each problem. As shown in Table 8, QL-ADIFA significantly improves average
values, stability, and convergence speed compared with AD-IFA.

6. Conclusions

The present study proposes a new optimization algorithm, called QL-ADIFA, which is a hybrid
of Q-learning based on the Logarithmic Spiral-Levy Firefly Algorithm (QL-LSLFA) and the adaptive
Logarithmic Spiral-Levy Firefly Algorithm (AD-IFA). The QL-LSLFA algorithm improves the effi-
ciency of the original FA by introducing Q-learning, which enables the fireflies to better adapt to state
transitions and use the information obtained from previous iterations. In addition, with the union with
AD-IFA, the QL-LSLFA can be avoided falling into local optimums as much as possible. In order
to evaluate the performance of QL-ADIFA, the algorithm was tested on 15 benchmark functions and
twelve engineering problems. The experimental results demonstrated that QL-ADIFA outperforms
other algorithms in terms of solution quality, stability, and convergence speed for most of the tested
functions and problems. The proposed hybrid algorithm thus represents an effective and promising
approach to solving global optimization problems.

In future work, combining Q-learning with other variants of the Firefly algorithm can be considered
to improve the convergence speed of the algorithm. In addition, we can also try adding pre-experiments
for parameter settings to optimize the performance of the algorithm.
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