Accepted manuscript. DOI:10.1016/j.ijcard.2019.07.079 Published under a Creative Commons license CC-BY-NC-ND http://creativecommons.org/licenses/by-nc-nd/4.0/

Journal Pre-proof

Rheumatic fever and rheumatic heart disease: Facts and research progress in Africa

Babu Muhamed, Daniel Mutithu, Olukayode Aremu, Liesl Zühlke, Karen Sliwa

PII:	80167-5273(19)33333-9
DOI:	https://doi.org/10.1016/j.ijcard.2019.07.079
Reference:	IJCA 27893
To appear in:	International Journal of Cardiology

Received date:15 July 2019Accepted date:24 July 2019

Please cite this article as: B. Muhamed, D. Mutithu, O. Aremu, et al., Rheumatic fever and rheumatic heart disease: Facts and research progress in Africa, *International Journal of Cardiology*(2019), https://doi.org/10.1016/j.ijcard.2019.07.079

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier.

RHEUMATIC FEVER AND RHEUMATIC HEART DISEASE: FACTS AND RESEARCH PROGRESS IN AFRICA

Babu Muhamed¹, Daniel Mutithu¹, Olukayode Aremu¹, Liesl Zühlke^{1,2} and Karen Sliwa¹

¹Hatter Institute for Cardiovascular Diseases Research in Africa, Department of Medicine,

University of Cape Town, Cape Town, South Africa.

²Division of Paediatric Cardiology, Department of Paediatrics and Child Health, University of

Cape Town, Cape Town, South Africa.

Conflict of Interest.

There are no conflicts of interest to disclose.

Corresponding author for this submissions is:

Prof. Karen Sliwa, MD, PhD Hatter Institute for Cardiovascular Research in Africa Chris Barnard Building Faculty of Health Sciences, University of Cape Town 3, Anzio Road, Observatory, 7935 E-mail: <u>Karen.Sliwa-Hahnle@uct.ac.za</u>

Author contributions:

All authors contributed in writing and have approved submission of the manuscript.

Key words : Rheumatic Fever, Rheumatic Heart Disease, Africa

KEY POINTS

- RHD remains a public health priority in Africa, despite being nearly eliminated in high-income countries.
- The prevalence of RHD in Africa has been estimated through screening of schoolaged children, retrospective and prospective assessment of hospital records and active surveillance among community members.
- Several approaches have been used to increase RHD awareness among the general public, school-going children, teachers and tertiary heath care givers.
- Basic science research remains critical in understanding the unexplained susceptibility seen in some individuals who proceed to develop RHD.
- Adherence to penicillin prophylaxis remains a major concern in Africa.
- Multidisciplinary cooperation, preconception and antenatal care have been proposed as the key measures to improve the pregnancy outcomes of RHD patients.
- Training of cardiac surgeons and other specialised care givers is recognised as one of the essential means of improving accessibility and availability of cardiac surgery in Africa.

Abstract

In recent years, the devastating effect of rheumatic fever (RF) and rheumatic heart disease (RHD) in Africa has been acknowledged by Institutions such as the Pan-African Society of Cardiology, the African Union Commission, and the World Health Organization. Key priorities set to eradicate RF and RHD include diagnosing and managing RF and RHD, building registries, improving adequate supplies of benzathine penicillin, reproductive health services, and cardiac surgery, developing multi-sectoral RHD awareness programmes, understanding RHD pathogenesis and fostering international partnership for resource mobilization. There were volumes of peer reviewed publications focusing on the key priorities to fight RHD in different parts to Africa; both individually as well as through international collaborations. This article analyzed findings and reports from 1961 to 2018 on efforts to eradicate RF and RHD in Africa.

Strand

Introduction

Rheumatic heart disease (RHD) is a chronic condition resulting from untreated beta-hemolytic streptococci. More than 33 millions individuals are affected globally; Africa is among endemic regions [1]. RHD remains a public health priority in Africa, despite being nearly eliminated in high-income countries [2, 3]. The effort to control the burden of RHD have gained momentum in recent years following the Drakensberg declaration which galvanised research interest in RHD [4]. Data on RHD remains scanty in some part of the African continent although interest in RHD research have increased in the last decade [5]. This review highlights studies that have been conducted in the African continent by reviewing published articles.

RHD observational registries

A registry of existing RHD cases is a critical step on identifying and assessing the disease burden. Multicenter registries help in tailored clinical care and contribute to understanding disease outcomes [6]. The Global RHD registry (REMEDY) is the largest international multicenter study to emerge in Africa [7]. Clinical outcomes of 3,343 RHD patients (IQR 15 to 52 years) from 14 low and middle-income countries, 12 in Africa were followed up for 24 months [7]. Some of the key highlights from the REMEDY study are the high mortality and morbidity rate among patients with clinical RHD. It is also noteworthy that individuals with post-primary education were associated with lower risk of death. In addition, higher levels of education were associated with RHD awareness and decline in RHD prevalence [7].

The VALVAFRIC study, registry in Western and Central Africa (2004 to 2008) provided prospective and retrospective data on the clinical characteristics and treatment of 3,441 RHD patients [8] Patients with higher education had lower NYHA class. Additionally, the study highlighted scarcity of cardiac surgery which was afforded to only 27 individuals out of 1,200 who required surgery [8].

The Uganda Rheumatic Heart Disease registry is an initiative of the Uganda Heart Institute (UHI) established in 2010 to facilitate a database of all patients diagnosed with RHD. By the

year 2013, over 900 patients were enrolled in the registry [9]. The registry identified 398 patients requiring invasive intervention, which was not easily accessible [9].

RHD patients have also featured in other cardiovascular disease registries. These include the Sub-Saharan Africa Survey of Heart Failure (THESUS-HF), Tanzanian Heart Failure (TaHef), Abeokuta Heart Failure registry, The RE-LY Atrial Fibrillation Registry, Registry of Pregnancy and Cardiac Disease (ROPAC), Pan African Pulmonary Hypertension Cohort (PAPUCO) Registry and Tunisian multicenter registry [10-14].

Prevalence of RHD in Africa

RHD prevalence in Africa has been estimated through screening of school-aged children, retrospective and prospective assessment of hospital records and active surveillance among community members. The Institute of Health Metrics (IHME) and the Global Burden of Disease (GBD) has used detailed modelling (DISMOD) to compare endemic regions of the world. Watkins and colleagues (2017) suggests that the Democratic Republic of Congo is the most affected African country with an estimated 805,000 RHD cases as at 2015 [1]. The Heart of Soweto study in Gauteng, South Africa showed incidence of new-onset RHD cases at 23.5/100,000 per annum among patients aged >14 years [15]. Echocardiographic screening in Ugandan, Ethiopian, and South African school-aged children have reported 40.2/1,000 (10.9/1,000 definite), 30.5/1,000 (16.5/1000 definite) and 20.2/1,000 (3.4/1,000 definite) RHD prevalence, respectively [16]. The prevalence of RHD among school children in other African countries ranges between 0.3 - 31/1,000 (Table 1).

RHD awareness in Africa

Awareness have been recognised as a critical step on combating and managing RHD [4]. A study conducted at Buea Regional hospital in Cameroon reported approximately 70 to 95% of respondents had little or no knowledge of RHD [17]. Lack of adequate knowledge on RHD could be a contributor to delayed seeking of medical care which heightens the risk of developing chronic RHD [18]. Previous studies have shown dismal levels of rheumatic fever (RF) and RHD awareness amongst primary healthcare givers in Cape Town, South Africa and Khartoum, Sudan [19, 20]. A meta-analysis of data from Tanzania and Uganda showed that lack of RF/RHD awareness among caregivers was one of the major impediments towards successful RHD control [21].

Several approaches have been used to increase RHD awareness among the general public, school-going children, teachers and tertiary heath care givers. Public medical camps and training [22], awareness to women of reproductive age [23] and empowering the general population on health risks of RHD [24] are some of the approaches employed. Other strategies include partnership with influential films stars and famous sports men and women to educate and create awareness within communities [25]. In addition, multimodal media approaches such as brochures, documentaries, short films and social media platforms have been used [26]. RHD awareness and health promotion programs have been underpinned to potentially help in RHD management [25]. Existing healthcare systems can be leveraged to access government resources and improve awareness of RHD, which can contribute to reducing RHD deaths [27]. A collective effort towards creating awareness should be created to control and reduce cases of RHD related mortality.

Basic science research in Africa

Basic science research remains critical in understanding the unexplained susceptibility seen in some individuals who proceed to develop RHD [28]. In Africa, several publications have investigated pathogenesis of RHD (Table 2).

Knowledge on the role of inflammatory response in RHD remains poorly understood. In Egypt, elevated levels of C-reactive proteins (CRP) confirming active inflammation in chronic RHD was correlated with mitral valve regurgitation [29]. High sensitivity C-reactive protein (hsCRP) have been associated with RHD pathogenesis and is a potential biomarker for RHD mitral stenosis (MS), mitral regurgitation (MR) and successful valvuloplasty [30]. The role of hsCRP and CRP in elevated inflammation in RHD remains elusive [30].

Aschoff nodules in RHD patients associated with macrophages and lymphocytes have shown variations in inflammation cytokines and lymphocytes expression levels at different stages of the nodules [31]. In addition, TNF-α and IL-1 cytokines were associated with macrophages while IL-2 were associated with lymphocytes [31]. CD4+ T cells are also highly expressed in RF valves with few CD8+ T cells involvement. Importantly, TNF-a and IL-1 cytokines were found in all aschoff nodules stages while IL-2 was only found in stage 3 or the lymphocytes rich lesions [31].

Expression of specific molecules have been used and proposed as biomarkers of RHD pathogenesis. B cells surface alloantigen D8/17 have been associated with cases of RHD susceptible patients. Despite D8/17 alloantigen being used as RHD infection biomarker in other countries, it's expression among South African population was not significant and was not considered as a potential biomarker [32]. Other molecules proposed as potential RHD biomarkers include Atrial Natriuretic peptide (ANP) [33], B-type Natriuretic peptides (BNP) [34], Amino-terminal pro-brain natriuretic peptides (NT-pro BNP) [35] and Cellular adhesion molecules (CAMs) [36].

Evidence of genetic susceptibility to RHD have been shown in genes located in the human leucocyte Antigens (HLA) and elsewhere in the genome [37]. In Africa, HLA typing studies conducted using serological methods revealed no differences in HLA-a, HLA-B, and HLA-DQ frequencies between RHD patients and controls [38-40]. However, a different study showed a significant association between RHD and HLA-B8 [41]. HLA-DR1 antigens have been predominantly observed in RHD cases signalling genetic susceptibility to chronic RHD [38].

Molecular HLA typing studies have shown significant association between HLA-DR molecules and RHD in Egypt (HLA-DR*04, HLA-DR*13 and HLA-DR*10) and Uganda (HLA-DR*11 and HLA-DR*1), respectfully [42, 43].

Genes located elsewhere in the genome that have been explored in the African population include, *TNF-a*, *IL-4*, *IL-10*, *IL-6*, *IL-1Ra*^{*VNTR*}, *ecNOS4*, *TGF-β1*, *ACE* and *MBL2* (Table 1) [44-49]. Associations were reported in the *TNF-a* ^(rs1800629), *IL-10* ^(rs1800896), *TGF-β1* ^(rs1800470 and rs4803457), *ACE* and *MBL2* ^(rs1800450) genes [46-49]. However, small sample sizes (n = ~ 100 cases) remain a major limitation. Reappraisal of candidate genes associations in RHD have not prevailed in large multicenter studies [50]. Current literature show that only Egypt have reported on non-HLA genes (Table 1). Future genetic studies in the African continent should tap on the richly diverse African population to understand the genetic susceptibility to RHD.

Solution

Penicillin prophylaxis

Primary and secondary prevention of recurrent streptococcal infection and RF through prophylactic penicillin is the preferred preventive medical intervention. Yet, adherence to penicillin prophylaxis remains a major concern in Africa. Prophylaxis remains the most cost effective means of treating suspected pharyngitis in children [51]. Factors that attribute to poor adherence include distance from health facility, pain associated with penicillin injection, waiting times, and level of education [52]. In Egypt, patients with advanced knowledge on RHD understood the consequences of missing their monthly penicillin and had improved adherence to RHD prophylaxis compared to the less informed patients [53]. Other motivations for adherence include fear of disease worsening associated with perceived missing injection, family support, and supportive health care providers [54].

Reproductive health care in RHD patients

RHD still constitutes a major cause of maternal and foetal morbidity and mortality [55-59]. Peripartum cardiomyopathy (PPCM) and complications of RHD are the most important causes of maternal mortality [60]. There is increased efforts to focus on RHD patients of childbearing age for better outcome and empowerment. Multidisciplinary cooperation, preconception and antenatal care have been proposed as the key measures to improve the pregnancy outcomes of RHD patients [55]. Factors such as infrastructural changes, use of appropriate referral algorithm and training of primary, secondary and tertiary staff in cardiovascular diseases are likely to improve patient care [60, 61].

Poor outcomes have been predicted following the maternal cardiovascular hemodynamic changes with more women suffering from stenotic lesions (mitral and aortic), pulmonary hypertension, previous heart failure, receiving cardiac medications and higher NYHA class (III and IV) (p<0.001) [62, 63]. Maternal age above 28 years, body mass index higher than 28, mean pulmonary artery pressure higher than 50 mmHg, NYHA class III-IV and development of heart failure or cyanosis are predictors of poor outcomes in pregnancy [62].

Cardiac Surgery

Cardiac surgery remains a challenge in Africa (Fig. 1) [64]. However, efforts to avail surgical services across the African continent have gained momentum in recent years [65]. The Cape Town Declaration proposed establishment of an international working group to evaluate and endorse development of cardiac surgical care [65]. Additionally, training of cardiac surgeons and other specialised care givers was recognised as one of the essential means of improving accessibility and availability of cardiac surgery in the continent [65].

Summary

RHD is a neglected disease in Africa. Early detection of RHD is vital in the successful management of the disease. Poor infrastructure and lack of RHD awareness among patients and health care workers have led to a significant portion of the population being deprived of the lifesaving diagnoses and management of the disease. There is a paucity of published literature on RHD in many African nations. The momentum built following the global resolution on RF and RHD at the 71st World Health Assembly in Geneva, needs to be sustained and should encourage more research on RHD in Africa.

Review Data

PubMed, Scopus, Web of Science and African Journals online were searched in November 2018 using combined key terms such as "rheumatic fever" or "rheumatic heart disease" AND "each of the African states (e.g. Angola)". The search was not restricted to full-text or language.

Reference

[1] Watkins DA, Johnson CO, Colquhoun SM, Karthikeyan G, Beaton A, Bukhman G, et al. Global, Regional, and National Burden of Rheumatic Heart Disease, 1990-2015. N Engl J Med. 2017;377:713-22.

[2] Gordis L. The virtual disappearance of rheumatic fever in the United States: lessons in the rise and fall of disease. T. Duckett Jones memorial lecture. Circulation. 1985;72:1155-62.

[3] Yusuf S, Narula J, Gamra H. Can We Eliminate Rheumatic Fever and Premature Deaths From RHD? Global heart. 2017;12:3-4.

[4] Mayosi B, Robertson K, Volmink J, Adebo W, Akinyore K, Amoah A, et al. The Drakensberg declaration on the control of rheumatic fever and rheumatic heart disease in Africa. S Afr Med J. 2006;96:246.

[5] Sliwa K, White A, Milan P, Olga Mocumbi A, Zilla P, Wood D. Momentum builds for a global response to rheumatic heart disease. Eur Heart J. 2018;39:4229-32.

[6] Prendergast EA, Perkins S, Engel ME, Cupido B, Francis V, Joachim A, et al. Participation in research improves overall patient management: insights from the Global Rheumatic Heart Disease registry (REMEDY). Cardiovasc J Afr. 2018;29:98-105.

[7] Zuhlke L, Karthikeyan G, Engel ME, Rangarajan S, Mackie P, Cupido-Katya Mauff B, et al. Clinical Outcomes in 3343 Children and Adults With Rheumatic Heart Disease From 14 Low- and Middle-Income Countries: Two-Year Follow-Up of the Global Rheumatic Heart Disease Registry (the REMEDY Study). Circulation. 2016;134:1456-66.

[8] Kingue S, Ba SA, Balde D, Diarra MB, Anzouan-Kacou JB, Anisubia B, et al. The VALVAFRIC study: A registry of rheumatic heart disease in Western and Central Africa. Arch Cardiovasc Dis. 2016;109:321-9.

[9] Zhang WZ, Okello E, Nyakoojo W, Lwabi P, Mondo CK. Proportion of patients in the Uganda rheumatic heart disease registry with advanced disease requiring urgent surgical interventions. African Health Sciences. 2015;15:1182-8.

[10] Damasceno A, Mayosi BM, Sani M, Ogah OS, Mondo C, Ojji D, et al. The causes, treatment, and outcome of acute heart failure in 1006 Africans from 9 countries. Arch Intern Med. 2012;172:1386-94.

[11] Makubi A, Hage C, Lwakatare J, Kisenge P, Makani J, Ryden L, et al. Contemporary aetiology, clinical characteristics and prognosis of adults with heart failure observed in a tertiary hospital in Tanzania: the prospective Tanzania Heart Failure (TaHeF) study. Heart. 2014;100:1235-41.

[12] Oldgren J, Healey JS, Ezekowitz M, Commerford P, Avezum A, Pais P, et al. Variations in cause and management of atrial fibrillation in a prospective registry of 15,400 emergency department patients in 46 countries: the RE-LY Atrial Fibrillation Registry. Circulation. 2014;129:1568-76.

[13] Sliwa K, van Hagen IM, Budts W, Swan L, Sinagra G, Caruana M, et al. Pulmonary hypertension and pregnancy outcomes: data from the Registry Of Pregnancy and Cardiac Disease (ROPAC) of the European Society of Cardiology. Eur J Heart Fail. 2016;18:1119-28.

[14] Jomaa W, Ben Ali I, Abid D, Hajri Ernez S, Abid L, Triki F, et al. Clinical features and prognosis of infective endocarditis in children: Insights from a Tunisian multicentre registry. Arch Cardiovasc Dis. 2017;110:676-81.

[15] Sliwa K, Carrington M, Mayosi BM, Zigiriadis E, Mvungi R, Stewart S. Incidence and characteristics of newly diagnosed rheumatic heart disease in urban African adults: insights from the heart of Soweto study. Eur Heart J. 2010;31:719-27.

[16] Weinberg J, Beaton A, Aliku T, Lwabi P, Sable C. Prevalence of rheumatic heart disease in African school-aged population: Extrapolation from echocardiography screening using the 2012 World Heart Federation Guidelines. Int J Cardiol. 2016;202:238-9.

[17] Nkoke C, Luchuo EB, Jingi AM, Makoge C, Hamadou B, Dzudie A. Rheumatic heart disease awareness in the South West region of Cameroon: A hospital based survey in a Sub-Saharan African setting. PLoS One. 2018;13:e0203864.

[18] Akintunde AA, Opadijo OG. Late presentation of rheumatic heart disease: a justification for renewal of preventive methods? Pan Afr Med J. 2009;3:22.

[19] Robertson KA, Volmink JA, Mayosi BM. Lack of adherence to the national guidelines on the prevention of rheumatic fever. S Afr Med J. 2005;95:52-6.

[20] Osman GM, Abdelrahman SM, Ali SK. Evaluation of physicians' knowledge about prevention of rheumatic fever and rheumatic heart disease before and after a teaching session. Sudan J Paediatr. 2015;15:37-42.

[21] Moloi AH, Mall S, Engel ME, Stafford R, Zhu ZW, Zuhlke LJ, et al. The Health Systems Barriers and Facilitators for RHD Prevalence: An Epidemiological Meta-Analysis From Uganda and Tanzania. Glob Heart. 2017;12:5-15 e3.

[22] Yuko-Jowi CA. African experiences of humanitarian cardiovascular medicine: a Kenyan perspective. Cardiovasc Diagn Ther. 2012;2:231-9.

[23] Mocumbi AO, Jamal KK, Mbakwem A, Shung-King M, Sliwa K. The Pan-African Society of Cardiology position paper on reproductive healthcare for women with rheumatic heart disease. Cardiovasc J Afr. 2018;29:1-10.

[24] Johnson TD, Grainger Gasser A, Boardman C, Remenyi B, Wyber R, Mayosi BM. The 5 x 5 path toward rheumatic heart disease control: outcomes from the Third Rheumatic Heart Disease forum. Glob Heart. 2015;10:75-8.

[25] Zuhlke LJ, Engel ME. The Importance of Awareness and Education in Prevention and Control of RHD. Glob Heart. 2013;8:235-9.

[26] Zuhlke LJ, Engel ME, Remenyi B, Wyber R, Carapetis J, Committee RHDFMRW. The second rheumatic heart disease forum report. Glob Heart. 2013;8:253-61.

[27] Longenecker CT, Kalra A, Okello E, Lwabi P, Omagino JO, Kityo C, et al. A Human-Centered Approach to CV Care: Infrastructure Development in Uganda. Glob Heart. 2018;13:347-54.

[28] Bryant PA, Robins-Browne R, Carapetis JR, Curtis N. Some of the people, some of the time: susceptibility to acute rheumatic fever. Circulation. 2009;119:742-53.

[29] Habeeb NMM, Al Hadidi IS. Ongoing inflammation in children with rheumatic heart disease. Cardiol Young. 2011;21:334-9.

[30] Abdel Rahman MA, Omar AMS, Amin M, Rifaie O. Inflammatory status in patients with rheumatic mitral stenosis: Guilty before and after balloon mitral valvuloplasty. Egypt Heart J. 2016;68:83-7.

[31] Fraser WJ, Haffejee Z, Jankelow D, Wadee A, Cooper K. Rheumatic Aschoff nodules revisited. II: Cytokine expression corroborates recently proposed sequential stages. Histopathology. 1997;31:460-4.

[32] Walker KG, Cooper M, McCabe K, Hughes J, Mathiassen W, Lawrenson J, et al. Markers of susceptibility to acute rheumatic fever: the B-cell antigen D8/17 is not robust as a marker in South Africa. Cardiol Young. 2011;21:328-33.

[33] Kotby AA, Taman KH, Sedky HTA, Habeeb NMM, El-Hadidi ES, Yosseif HS. Atrial natriuretic peptide as a marker of heart failure in children with left ventricular volume overload. Journal of Paediatrics and Child Health. 2013;49:43-7.

[34] Abdel Fattah EM, Girgis HY, El Khashab K, Ashour ZA, Ezzat GM. B-type Natriuretic Peptide as an Index of Symptoms and Severity of Chronic Rheumatic Mitral Regurgitation. Heart Views. 2016;17:7-12.

[35] Zachariah JP, Aliku T, Scheel A, Hasan BS, Lwabi P, Sable C, et al. Amino-terminal pro-brain natriuretic peptide in children with latent rheumatic heart disease. Ann Pediatr Cardiol. 2016;9:120-5.

[36] Hafez M, Yahia S, Eldars W, Eldegla H, Matter M, Attia G, et al. Prediction of residual valvular lesions in rheumatic heart disease: role of adhesion molecules. Pediatr Cardiol. 2013;34:583-90.

[37] Guilherme L, de Barros SF, Kohler KF, Santos SR, Ferreira FM, Silva WR, et al. Rheumatic Heart Disease: Pathogenesis and Vaccine. Curr Protein Pept Sci. 2018;19:900-8.

[38] Maharaj B, Hammond MG, Appadoo B, Leary WP, Pudifin DJ. HLA-A, HLA-B, HLA-DR, AND HLA-DQ ANTIGENS IN BLACK PATIENTS WITH SEVERE CHRONIC RHEUMATIC HEART-DISEASE. Circulation. 1987;76:259-61.

[39] Maharaj B, Khedun SM, Hammond MG, van der Byl K. HLA-A, B, DR, and DQ antigens in Indian patients with severe chronic rheumatic heart disease. Jpn Heart J. 1997;38:663-8.

[40] Haffejee IE, Hammond MG, Moosa A. HLA antigens in black South African children with rheumatic heart disease. Ann Trop Paediatr. 1982;2:17-22.

[41] Eissa AM, el-Tayeb S, Nour NM. HLA antigen frequencies in children with cardiac disease in Cairo. J Trop Pediatr. 1991;37:226-31.

[42] Okello E, Beaton A, Mondo CK, Kruszka P, Kiwanuka N, Odoi-Adome R, et al. Rheumatic heart disease in Uganda: the association between MHC class II HLA DR alleles and disease: a case control study. Bmc Cardiovascular Disorders. 2014;14:28 - 33.

[43] El-Hagrassy N, El-Chennawi F, Zaki Mel S, Fawzy H, Zaki A, Joseph N. HLA class I and class II HLA DRB profiles in Egyptian children with rheumatic valvular disease. Pediatr Cardiol. 2010;31:650-6.

[44] Morsy MMF, Abdelaziz NA, Boghdady AM, Ahmed H, Fadl EMA, Ismail MA. Lack of association between endothelial constitutive nitric oxide synthase (ecNOS 4 b/a) gene polymorphism and rheumatic heart disease. Modern Rheumatology. 2009;19:670-4.

[45] Yousry SM, Sedky Y, Sobieh A. Association of IL-4 (intron 3) and IL-10 (-1082) gene polymorphisms with risk of mitral valve disease in children with rheumatic heart disease. Cardiol Young. 2016;26:1290-6.

[46] Mohamed AA, Rashed LA, Shaker SM, Ammar RI. Association of tumor necrosis factor-alpha polymorphisms with susceptibility and clinical outcomes of rheumatic heart disease. Saudi Medical Journal. 2010;31:644-9.

[47] Settin A, Abdel-Hady, H., El-Baz, R., Saber I. Gene polymorphisms of TNF-alpha(-308), IL-10(-1082), IL-6(-174), and IL-1Ra(VNTR) related to susceptibility and severity of rheumatic heart disease. Pediatr Cardiol. 2007;28:363 - 71.

[48] Morsy MMF, Abdelaziz NAM, Boghdady AM, Ahmed H, Abu Elfadl EM, Ismail MA. Angiotensin converting enzyme DD genotype is associated with development of rheumatic heart disease in Egyptian children. Rheumatology International. 2011;31:17-21.

[49] Kamal H, Hussein G, Hassoba H, Mosaad N, Gad A, Ismail M. Transforming growth factor-beta1 gene C-509T and T869C polymorphisms as possible risk factors in rheumatic heart disease in Egypt. Acta Cardiol. 2010;65:177-83.

[50] Parks T, Mirabel MM, Kado J, Auckland K, Nowak J, Rautanen A, et al. Association between a common immunoglobulin heavy chain allele and rheumatic heart disease risk in Oceania. Nat Commun. 2017;8:14946.

[51] Mayosi BM. Protocols for antibiotic use in primary and secondary prevention of rheumatic fever. S Afr Med J. 2006;96:240.

[52] Musoke C, Mondo CK, Okello E, Zhang W, Kakande B, Nyakoojo W, et al. Benzathine penicillin adherence for secondary prophylaxis among patients affected with rheumatic heart disease attending Mulago Hospital. Cardiovascular Journal of Africa. 2013;24:124-9.

[53] Balbaa A, ElGuindy A, Pericak D, Yacoub MH, Schwalm JD. An evaluation of secondary prophylaxis for rheumatic heart disease in rural Egypt. Glob Cardiol Sci Pract. 2015;2015:40.

[54] Huck DM, Nalubwama H, Longenecker CT, Frank SH, Okello E, Webel AR. A qualitative examination of secondary prophylaxis in rheumatic heart disease: factors influencing adherence to secondary prophylaxis in Uganda. Glob Heart. 2015;10:63-9 e1.

[55] Rezk M, Gamal A. Maternal and fetal outcome in women with rheumatic heart disease: a 3-year observational study. Arch Gynecol Obstet. 2016;294:273-8.

[56] el Kady AA, Saleh S, Gadalla S, Fortney J, Bayoumi H. Obstetric deaths in Menoufia Governorate, Egypt. Br J Obstet Gynaecol. 1989;96:9-14.

[57] Watkins DA, Beaton AZ, Carapetis JR, Karthikeyan G, Mayosi BM, Wyber R, et al. Rheumatic Heart Disease Worldwide: JACC Scientific Expert Panel. J Am Coll Cardiol. 2018;72:1397-416.

[58] Beaton A, Okello E, Scheel A, DeWyer A, Ssembatya R, Baaka O, et al. Impact of heart disease on maternal, fetal and neonatal outcomes in a low-resource setting. Heart. 2019;105:755-60.

[59] Diao M, Kane A, Ndiaye MB, Mbaye A, Bodian M, Dia MM, et al. Pregnancy in women with heart disease in sub-Saharan Africa. Arch Cardiovasc Dis. 2011;104:370-4.

[60] Soma-Pillay P, Seabe J, Sliwa K. The importance of cardiovascular pathology contributing to maternal death: Confidential Enquiry into Maternal Deaths in South Africa, 2011-2013. Cardiovascular Journal of Africa. 2016;27:60-5.

[61] Mocumbi AO, Jamal KK, Mbakwem A, Shung-King M, Sliwa K. The Pan-African Society of Cardiology position paper on reproductive healthcare for women with rheumatic heart disease. Cardiovasc J Afr. 2018;29:394-403.

[62] Rezk M, Elkilani O, Shaheen A, Gamal A, Badr H. Maternal hemodynamic changes and predictors of poor obstetric outcome in women with rheumatic heart disease: a five-year observational study. J Matern-Fetal Neo M. 2018;31:1542-7.

[63] Benali Zel A, Ahmaidi H, Rachidi K, Omari D. Mitral stenosis with term pregnancy: how to manage this case? Pan Afr Med J. 2013;14:144.

[64] Zilla P, Yacoub M, Zuhlke L, Beyersdorf F, Sliwa K, Khubulava G, et al. Global Unmet Needs in Cardiac Surgery. Glob Heart. 2018;13:293-303.

[65] Zilla P, Bolman RM, Yacoub MH, Beyersdorf F, Sliwa K, Zuhlke L, et al. The Cape Town Declaration on access to cardiac surgery in the developing world. J Thorac Cardiovasc Surg. 2018;156:2206-9.

Table 1: Publications reporting on prevalence of RHD in Africa.

Sontal

Country	Prevale	Prevalen	Samp	Study	Study	Screening	Me	Study	Yea	Referen
	nce %	ce Per 1,000	le size (n)	setting	design	tool	an age (SD)	durati on	r	ce*
Botswan a	8.4	-	179	Hospital	Cross- sectional	Echocardiogr aphy	34 ± 14.7 32 ± 15.5	2007 - 2008	201 2	[1]
Camero on	3.1	-	669	Hospital	Prospectiv e	Echocardiogr aphy	47.8 ± 2 0.3	2016 - 2017	201 8	[2]
Camero on	6.7	-	239	Hospital	Cross- sectional	Echocardiogr aphy	-	2016 - 2017	201 7	[3]
Camero on	5.8	-	1,130	Hospital	Prospectiv e	-	11.8 year s	2003 - 2013	201 6	[4]
Camero on	48	-	1,666	Hospital	Cross- sectional	Echocardiogr aphy	-	2006 - 2014	201 6	[5]
Camero on	20.3	-	158	Hospital	Cross- sectional	-	-	2003 - 2013	201 5	[6]
Camero on	3.4		1,252	Hospital	Prospectiv e	Echocardiogr aphy		2008 - 2010	201 3	[7]
Camero on	14.6	-	462	Hospital	Prospectiv e	Echocardiogr aphy	-	2002 - 2008	201 1	[8]
Camero on	64.5	-	262	Hospital	Retrospec tive	Echocardiogr aphy	-	2005 - 2007	200 9	[9]
Congo	-	3.5	2,232	School	Screening	Echocardiogr aphy	-	2005	200 8	[10]
Democr atic Republic of Congo	-	14.03	4,848	School	Screening	Echocardiogr aphy	-	1996	199 8	[11]
Djibouti	6%	-	32	Hospital	Prospectiv e	Echocardiogr aphy	-	2009 - 2010	201 3	[12]
Egypt	-	19.6 (Definite) 11.4 (Borderli ne)	3,062	School	Screening	Echocardiogr aphy	10 ± 2.6	2009 - 2014	201 7	[13]
Egypt	0.37	-	5,609	School	Screening	Echocardiogr aphy	-	-	201 6	[14]
Egypt	-	6.2	5,465	School	Screening	-	-	-	199 8	[15]
Egypt		3.2	8,000	School	Screening	-	-	1990 - 1991	199 4	[16]
Eritrea	4	-	684	School	Screening	Echocardiogr aphy	-	-	201 4	[17]
Eritrea	2.3		348	Hospital	Prospectiv e	Echocardiogr aphy		2008	201 1	[18]
Ethiopia	5.6	56.7	987	Commu nity	Screening survey	Echocardiogr aphy	13.2 ± 4.7	-	201 7	[19]
Ethiopia	86		2,541	Hospital	Prospectiv e	Echocardiogr aphy	-	2015	201 7	[20]
Ethiopia	11.8		862	Hospital	Retrospec tive	Echocardiogr aphy		2010 - 2015	201 7	[21]
Ethiopia	-	19	3,238	School	Screening	Echocardiogr aphy	13.2 ± 3.2	2013 - 2014	201 6	[22]

Ethiopia	57	-	106	Hospital	Retrospec tive	-	-	2012 - 2015	201 6	[23]
Ethiopia	-	31	2,000	School	Screening	Echocardiogr aphy	10.7 ± 2.5	2008 - 2012	201 5	[24]
Ethiopia	32.8	-	781	Hospital	Prospectiv e	-	31.4 ± 13.2	2003 - 2008	201 0	[25]

*Supplementary reference

Table 1: Continued...

Prevale

nce %

Prevale

nce per

1,000

Samp

le

size

(n)

g

Country

Referenc

e*

Ethiopia	-	6.4	9,388	Schoo I	Screening	Echocardiogra phy	-	1999	199 9	[26]
Ethiopia	54.9	-	448	Hospit al	Retrospect ive	-	-	1989 - 1992	199 3	[27]
Ethiopia		4.6	3,235	Schoo I	Screening	Echocardiogra phy		1989 - 1990	199 2	[28]
Ethiopia	54.5	-	365	Hospit al	Retrospect ive	-	<18	1981 - 1988	199 0	[29]
Ethiopia	45		338	Hospit al	Prospectiv e	Auscultation		1995 - 1986	198 8	[30]
Ethiopia		0.49	1,212	Schoo I	Screening	Auscultation		-	197 8	[31]
Ghana	17.3	-	708	Hospit al	Prospectiv e	-	36.3 ± 1.6	1992 - 1995	200 0	[32]
Ghana	20.1	-	572	Hospit al	Retrospect ive	Echocardiogra phy	36.2 ± 1.7	1992 - 1995	200 0	[33]
lvory coast	1.1		126	Hospit al	Retrospect ive	Echocardiogra phy	15 ± 6.7	2000 - 2009	201 3	[34]
lvory Coast	28	-	217	Hospit al	Retrospect ive	Echocardiogra phy	58.9	1995 - 2005	201 0	[35]
lvory Coast	-	1,9	9,484	Schoo I	Screening	Auscultation	-	1977 - 1978	197 9	[36]
Kenya	0.32	-	8,011	Hospit al	Retrospect ive	Echocardiogra phy		2011 - 2014	201 7	[37]
Kenya	64	-	937	Hospit al	Retrospect ive	Echocardiogra phy	-	-	201 6	[38]
Kenya	6.7	-	134	Hospit al	Retrospect ive	Autopsy records	-	2005 - 2009	201 1	[39]
Kenya		27	1,115	Schoo I	Screening	Echocardiogra phy	-	-	199 6	[40]
Kenya	40.7	-	211	Hospit al	Retrospect ive	Echocardiogra phy	-	1992 - 1994	199 6	[41]
Libya	4	-	200	Hospit al	Prospectiv e	Echocardiogra phy	-	-	198 9	[42]

Madagas car	2.1	-	859	Schoo Is and hospit al	Observatio nal screening	Echocardiogra phy	20.1 ± 15.1	2014 - 2015	201 7	[43]
Malawi	10.1	-	71	Hospit al	Prospectiv e	Echocardiogra phy	3.1 ± 9	2017	201 8	[44]

*Supplementary reference

Table 1: continued..

Country	Prevale nce %	Per 1,00 0	Samp le size (n)	Study setting	Study design	Screening tool	Mean age (SD)	Study durati on	Yea r	Referen ce*
Malawi	3.4	-	1,450	School and commun ity	Cross- sectional	Echocardiogr aphy	-	2014	201 6	[45]
Malawi	22.4	-	250	Hospital	Prospectiv e	Echocardiogr aphy	137.8 ± 30.4 (mont hs)	2009 - 2011	201 3	[46]
Malawi	34	-	3,908	Hospital	Retrospec tive	Auscultation, Chest radiography, ECG, echocardiogr aphy	39.9 ± 32.4	2001 - 2005	200 8	[47]
Malawi	2	-	114	Hospital	Prospectiv e	Auscultation, Chest radiography, ECG	-	-	197 5	[48]
Morocco	-	-	359	School Hospital	Prospectiv e	-	-	1969 - 1970	197 4	[49]
Morocco	80	-	171	School	Screening	-	-	1965 - 1969	197 3	[50]
Mozambi que	0.69	-	2,170	School	Retrospec tive	Echocardiogr aphy	10.6	2005	201 2	[51]
Mozambi que	-	7.8 and 30.4	2,170	School	Screening	Echocardiogr aphy	11 ± 2.5 and 11.4 ± 2.0	2005	200 9	[52]
Mozambi que	-	2.3	2,170	Schools	Prospectiv e	Clinical examination	10.6 ± 2.5	2005	200 7	[53]
Mozambi que	-	30.4	2,170	School	Screening	Echocardiogr aphy	10.6 ± 2.5	2005	200 7	[53]

Nigeria	2.6	-	1,364	Hospital	Prospectiv e	Echocardiogr aphy	9.12 ± 2.75	2007 - 2016	201 8	[54]
Nigeria	25.6	-	125	Hospital	Prospectiv e	Echocardiogr aphy	9.49 ± 3.01	2007 - 2016	201 7	[55]
Nigeria	26.32	-	163	Hospital	Retrospec tive	Echocardiogr aphy	45.1 ± 18.6	-	201 5	[56]
Nigeria	42.7	-	3,810	Screenin g	Prospectiv e	Echocardiogr aphy	10.4 ± 3.4	2009 - 2014	201 5	[57]
Nigeria	42.7		110	Hospital	Prospectiv e	Echocardiogr aphy		2009 - 2014	201 5	[57]
Nigeria	1.3	-	159	Hospital	Retrospec tive	Review of post-mortem records	-	2001 - 2010	201 4	[58]
Nigeria	17.4	-	116	Hospital	Prospectiv e	Echocardiogr aphy	6.7 ± 5.7	2009- 2012	201 4	[59]
Nigeria		0.57	1,764	Screenin g	School	Echocardiogr aphy		2011 - 2012	201 3	[60]
Nigeria	57.7	-	580	Hospital	Retrospec tive	Echocardiogr aphy	-	1999 - 2009	201 3	[61]

				δ		apriy		2012	5			
Nigeria	57.7	-	580	Hospital	Retrospec tive	Echocardiogr aphy	-	1999 - 2009	201 3	[61]		
*Supplementary reference Fable 1: Continued Count Prevalen Prevalen Samp Study Study Screening tool Mea Study Yea Referenc												
Count ry	Prevalen ce %	Prevalen ce per 1000	Samp le size (n)	Study settin g	Study design	Screening tool	Mea n age (SD)	Study durati on	Yea r	Referenc e*		
Nigeri a	1.7	-	2501	Hospit al	Prospectiv e	2D colour Doppler echocardiogra phy	-	2002 - 2010	201 3	[62]		
Nigeri a	8.6	-	475	Hospit al	Prospectiv e	Echocardiogra phy 12-lead - ECG	-	2006 - 2010	201 3	[63]		
Nigeri a	-	0.16 and 1.2	9,423	Hospit al	Retrospect ive	Echocardiogra phy	25.6 4 ± 9.65	2003 - 2011	201 3	[64]		
Nigeri a	1.4	-	208	Hospit al	Retrospect ive	ECG and clinical investigation	-	2005 - 2008	201 2	[65]		
Nigeri a	6.7	-	120	Hospit al	Prospectiv e	Echocardiogra phy, baseline blood chemistry and full blood count	-	-	201 2	[66]		
Nigeri a	4	-	234	Hospit al	Prospectiv e	Echocardiogra phy	-	2009 - 2010	201 2	[67]		
Nigeri a	2.9	-	391	Hospit al	Retrospect ive	Echocardiogra phy and plain chest radiology	-	2007	201 0	[68]		

Nigeri a	3.1	-	913	Hospit al	Prospectiv e	Echocardiogra phy	-	2004 - 2007	200 9	[69]			
Nigeri a	4.3	-	423	Hospit al	Retrospect ive	Echocardiogra phy	-	2001 - 2005	200 9	[70]			
Nigeri a	59	-	2,527	Hospit al	Retrospect ive	Echocardiogra phy	-	1991 - 2001	200 8	[71]			
Nigeri a	8.3	-	277	Hospit al	Retrospect ive	Echocardiogra phy	-	2006 - 2007	200 8	[72]			
Nigeri a	3.7	-	1,441	Hospit al	Retrospect ive	Echocardiogra phy	54.4 ± 14.3	2005 - 2007	200 8	[73]			
Nigeri a	1	-	109	Hospit al	Prospectiv e	Echocardiogra phy	-	2002 - 2003	200 7	[74]			
Nigeri a	9.8	-	1,499	Hospit al	Retrospect ive	Echocardiogra phic	24 ± 12.7 5	2002 - 2006	200 7	[75]			
Nigeri a	11.2	-	594	Hospit al	Prospectiv e	Echocardiogra phy	-	2002 - 2004	200 7	[76]			
Nigeri a	9.2	-	141	Hospit al	Prospectiv e	Echocardiogra phy	-	2000 - 2003	200 6	[77]			
Nigeri a	14.4	-	4,456	Hospit al	Retrospect ive	Auscultation	-	1975 - 1976	197 9	[78]			
Nigeri a	0.03	-	12,75 5	School	Prospectiv e	Auscultation	-	1970 - 1974	197 8	[79]			
*Supple	a 10 al ive 1976 9 Nigeri 0.03 - 12,75 School Prospectiv Auscultation - 1970- 197 [79] a 5 - e - 1974 8 - *Supplementary reference -												

Table 1: Continued Count Prevalen Prevalen Samp Study Study Screening tool Mea Study Yea Reference												
Count ry	Prevalen ce %	Prevalen ce Per 1000	Samp le size (n)	Study settin g	Study design	Screening tool	Mea n age (SD)	Study durati on	Yea r	Referenc e*		
Rwan da	36 (Childre n) 27 (Adults)	-	259 Childr en 460 Adult	Hospit al	Retrospect ive	Echocardiograp hy	-	2006 - 2017	201 8	[80]		
Rwan da	-	6.8	2,501	School	Screening	Echocardiograp hy	12.2	-	201 7	[81]		
Rwan da	32	-	192	Hospit al	Retrospect ive	Echocardiograp hy	-	2006 - 2011	201 3	[82]		
Seneg al	-	4.95	2,019	School	Screening	Echocardiograp hy	-	2011	201 5	[83]		
Seneg	-	4.9	2019	School	Prospectiv	echocardiograp	9.7	2011	201	[84]		
al				S	e	hy	± 3.3		5			

Seneg al	25.6	-	18,81 5	Hospit al	Prospectiv e	echocardiograp hy	-	2009 - 2012	201 5	[85]
Seneg al		5.4 (5-15 years) 10.1 (16- 18 years)	1,116 (5-15 years) 888 (16- 18 years)	School	Screening	Echocardiograp hy	-	2010	201 3	[86]
South Africa	-	20.2	2,720	School	Screening	Echocardiograp hy	12.2 ± 4.2	2008 - 2012	201 5	[24]
South Africa	36	-	960	Hospit al	Prospectiv e	Echocardiograp hy	-	2006 - 2007	201 0	[87]
South Africa	63	-	493	Hospit al	Retrospect ive	-	-	1993 - 1995	200 6	[88]
South Africa	15.6	-	102	Hospit al	Prospectiv e	Echocardiograp hy	-	1986	198 9	[89]
South Africa		1	4,408	School	Prospectiv e	Auscultation		1884	198 7	[90]
South Africa	42.3	-	5,725	Hospit al	Retrospect ive	Electrocardiogr aphy Radiography ultrasonograph y	-	1963 - 1974	198 4	[91]
South Africa		6.9	12,05 0	School	Prospectiv e	Auscultation		1975	197 5	[92]
Sudan		2.3	2,129	School	Prospectiv e	Echocardiograp hy	-	2016 - 2018	201 8	[93]
Sudan		0,3	3,000	School	Prospectiv e	Echocardiograp hy		2015 - 2016	201 8	[94]
Sudan		19	1,515	School	Prospectiv e	Echocardiograp hy		2015 - 2016	201 8	
Sudan	17.89	-	123	Hospit al	Prospectiv e	Medical history questionnaire	-	2014	201 8	[95]
Sudan	-	2.3	2,302	School	Prospectiv e	Handheld echocardiograp	-	2016 - 2018	201 8	[93]

*Supplementary reference

Countr Y	Prevalence %	Prevalen ce Per 1000	Samp le size (n)	Study setting	Study design	Screening tool	Me an age (SD)	Study durati on	Yea r	Referen ce*
Sudan	39	-	179	Hospital	Prospecti ve	Auscultation		1991 - 1993	199 4	[96]
Sudan	-	11	13,32 2	School	Prospecti ve	Auscultation	-	1986 - 1989	199 2	[97]
Sudan	25.4	-	958	Hospital	Prospecti ve	-	-	1957 - 1960	196 1	[98]
Tanzani a	12	-	427	Hospital	Prospecti ve	Echocardiogr aphy	-	2012 - 2013	201 4	[99]
Uganda	1.5	-	993	Hospital	Prospecti ve	Echocardiogr aphy	-	2009 - 2010	201 9	[100]

Uganda	2.45 (Borderline) 1.26 (Definite)	-	2,453	Commu nity	Screening	Echocardiogr aphy	-	-	201 9	[101]
Uganda	-	18.3 (Definite) 35.2 (Borderli ne)	1,365	School	Screening	Echocardiogr aphy	-	-	201 8	[102]
Uganda	1.2 (Definite) 3.3(Borderl ine)	-	956	School	Screening	Echocardiogr aphy	-	2014	201 6	[103]
Uganda	1.1-2.6	-	4,773	School	Screening	Echocardiogr aphy	(5 - 15)	2018	201 4	[104]
Uganda	30	-	97	Hospital	Prospecti ve	Echocardiogr aphy	-	2009 - 2010	201 2	[105]
Uganda	55.4	-	130	School	Screening	Echocardiogr	-	2010	201 2	[106]
Uganda	35	-	58	Hospital	Prospecti ve	Echocardiogr aphy	-	2007	200 7	[107]
Uganda	12	-	500	Hospital	Prospecti ve	Echocardiogr aphy	-	1993 - 1994	199 6	[108]
Uganda	26	-	449	Hospital	Prospecti ve	Auscultation	-	1962 - 1963	196 6	[109]
Zambia	-	11.8	1,102	School	Screening	Echocardiogr aphy	15.3 ± 1.9	2015	201 8	[110]
Zambia	18.2	-	170	Hospital	Retrospec tive	-	-	1969	197 6	[111]
Zimbab we	16		236	Hospital	Retrospec tive	Echocardiogr aphy	52.1 ± 21.2	2012	201 5	[112]
Zimbab we	-	11.9	50	Hospital	Prospecti ve	Two- dimensional (2D) paediatric echocardiogr aphy	7.5 ± 10.5	2012 - 2013	201 5	[113]
Zimbab we	7	-	411	Hospital	Prospecti ve	-	-	-	199 1	[114]
Zimbab we	38.3	-	564	Hospital	Retrospec tive	Auscultation	-	1957 - 1960	196 3	[115]

Table 1: Continued...

*Supplementary reference

	Pathogenesis	Type of study	Clinical marker	Validated	Country	Year	Reference*
Inflammation	High sensitivity CRP (hsCRP)	Case study	Yes	No	Egypt	2016	[116]
	C-reactive proteins (CRP)	Case study	yes	Yes	Egypt	2011	[117]
	Aschoff nodules' cytokines and lymphocytes	Case study	No	No	South Africa	1997	[118]
	Oxidation associated IgM anti- PC & anti-MDA IgG Abs	Case control	No	No	Uganda	2016	[119]
Haemodynamic factors	Human urotensin II	Case control	Yes	No	Egypt	2017	[120]
Cell-surface and circulatory molecules	B-type natriuretic peptides (BNP)	Case control	Yes	Yes	Egypt	2016	[121]
	Cellular adhesion molecules (ICAM-1, VCAM-1, E-selectin	Case control	No	No	Egypt	2013	[122]
	Atrial natriuretic peptide (ANP)	Case control	Yes	Yes	Egypt	2013	[123]
	B cells surface alloantigen D8/17	Case control	No	No	South Africa	2011	[124]
	NT-pro BNP	Case study	No	No	Uganda	2016	[125]

 Table 2: Summary of RHD basic science studies in Africa.

IgM - immunoglobulin M, **IgG** - Immunoglobulin G, **Abs** - antibodies, **Anti-PC** - antibodies against phosphorylcholine, **anti-MDA** - antibodies against malondialdehyde, **ICAM-1** – intercellular adhesion molecule 1, **VCAM-1** – vascular cell adhesion molecule 1, ***Supplementary reference**

Table 3: HLA and Candidate gene studies emerging from African continent.

HLA Class/Ge nes	HLA Alleles/Var iant	Associati on	Phenoty pe	Cas es	Mea n age ± SD	Fema le	Mal e	Contr ols	Count ry	Yea r	Referen ce*
IL-4 IL-10	Intron 3	No No	RHD	140	12.2 ± 3.4	68	72	100	Egypt	201 6	[126]
Class II	DRB1*11	Yes	RHD	96	29.6 ± 10.2	46	50	103	Ugan da	201 4	[127]
ACE	DD	Yes	RHD	139	9.5 ± 2.2	91	48	70	Egypt	201 1	[128]
TNF-α	-308G/A (rs1800629) -238G/A (rs361525)	Yes Yes	RHD	80	11.8 ± 4.2	52	28	50	Egypt	201 0	[129]
TGF-β1	869T>C (rs1800470) -509C>T (rs4803457)	Yes Yes	RHD	73	31.7 ± 14.7	53	20	55	Egypt	201 0	[130]
TNF-α IL-10	-308G/A (rs1800629) -1080 (rs1800896)	Yes Yes	RHD	20	11.5 ± 2.6	7	13	10	Egypt	201 0	[131]
[‡] Class I Class II	B5 DRB1*04- 02 DRB1*1309	Yes Yes Yes	RHD	100	17.5 ± 5.6	41	59	71	Egypt	201 0	[132]
ecNOS4a	b/a	No	RHD	139	9.5 ± 2.2	91	48	79	Egypt	200 9	[133]
[‡] Class I [‡] Class II	A B DR DQ	No No Yes No	RHD	120	27.6 ± 14.5	80	40	1,416 (HLA A and B) 200 64	South Africa	198 7	[134]
TNF-α IL-10 IL-6 IL- 1Ra ^{VNTR}	-308G/A (rs1800629) -1080 (rs1800896) -174 (rs1800795) A1/A1	Yes Yes No Yes	RHD	50	12.2 ± 3.4	21	29	98	Egypt	200 7	[135]

[‡] Class II	DRB1*0701 DQA1*020 1	Yes Yes	RHD	88	14.3 ± 9 (n=53) 11.5 ± 4 (n=35)	52	36	59	Egypt	199 9	[136]
[‡] Class I [‡] Class II	A B DR1 DQ	No No No	RHD	59	32.9	33	26	1,416 (HLA A and B) 200	South Africa	199 7	[137]

[‡]HLA typed using two stage micro-lymphocytotoxicity method, *Supplementary reference

, method, "

Created with mapchart.net 0