
 

 

 
 
 

Research Bank
Journal article

Pacing and decision making in sport and exercise : The roles of 

perception and action in the regulation of exercise intensity

Smits, Benjamin L. M., Pepping, G. and Hettinga, Florentina J.

This version of the article has been accepted for publication, after peer review (when 

applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of 

Record and does not reflect post-acceptance improvements, or any corrections. The 

Version of Record is available online at: https://doi.org/10.1007/s40279-014-0163-0

https://doi.org/10.1007/s40279-014-0163-0


 

1 

 

 

Pacing and decision-making in sport and exercise: the roles of perception 

and action in the regulation of exercise intensity 

 

Benjamin L. M. Smits
1
, Gert-Jan Pepping

1,2
, Florentina J. Hettinga

1,3
 

 

1
University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, 

Groningen, the Netherlands 

2
Australian Catholic University, School of Exercise Sciences, Melbourne, Australia. 

3
University of Essex, School of Biological Sciences, Centre of Sport and Exercise Sciences, Colchester, UK 

 

Running title: Pacing and decision-making 

 

Corresponding author: 

Florentina J. Hettinga, Ph.D. 

University of Essex, School of Biological Sciences, Centre of Sport and Exercise Sciences 

Wivenhoe Park 

CO4 3SQ Colchester, UK 

Email: fjhett@essex.ac.uk; fhettinga@hotmail.com 

Tel: +441206876503 

Fax: +441206873885 

 

Word count (for text only, exclusive of title, abstract, references, tables, and figures legends): 6064.



 

2 

ABSTRACT 

 

In pursuit of optimal performance, athletes and physical exercisers alike have to make decisions about how and 

when to invest their energy. The process of pacing has been associated with the goal-directed regulation of 

exercise intensity across an exercise bout. The current review explores divergent views on understanding 

underlying mechanisms of decision-making in pacing. Current pacing literature provides a wide range of aspects 

that might be involved in the determination of an athlete’s pacing-strategy, but lack in explaining how perception 

and action are coupled in establishing behaviour. In contrast, decision-making literature rooted in the 

understanding that perception and action are coupled provides refreshing perspectives on explaining the 

mechanisms that underlie natural interactive behaviour. Contrary to the assumption of behaviour that is managed 

by a higher order governor that passively constructs internal representations of the world, an ecological approach 

is considered. According to this approach, knowledge is rooted in the direct experience of meaningful 

environmental objects and events in individual-environment processes. To assist a neuropsychological 

explanation of decision-making in exercise-regulation, the relevance of the affordance competition hypothesis is 

explored. By considering pacing as a behavioural expression of continuous decision-making, new insights on 

underlying mechanisms in pacing and optimal performance can be developed. 
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1. INTRODUCTION 

 

In pursuit of optimal performance, athletes and physical exercisers alike have to make decisions about how and 

when to invest their energy. In sport and exercise physiology this phenomenon is also known as pacing. In the 

performance-oriented sports context, pacing has been associated with the regulation of exercise intensity 

throughout an exercise bout based on circumstantial factors, in order to maintain internal homeostasis [1, 2] 

and/or avoiding early exhaustion [3, 4]. The circumstantial factors are a combination of interoceptive (i.e. 

physiological, psychological, and/or biomechanical) and exteroceptive (i.e. environmental) factors [5]. 

Additionally, the pacing-strategy athletes adopt throughout the exercise bout is related to personal goals and 

knowledge of the likely demands of the bout [6]. Many studies have shown how performance and pacing are 

related [7-10], how self-paced performances involve predetermined exercise templates [10-14], and how pacing 

strategies can be predicted based on theoretical modelling [10, 15-17]. It has been found that athletes tend to 

self-select strategies closely related to their natural disposition for exercise [18] and that forced adoption of an 

externally paced intensity is more physically demanding compared to self-pacing [14]. To identify underlying 

mechanisms that are relevant in the regulation of an athlete’s exercise intensity, the current review considered 

both pacing and decision-making literature in the context of the potential roles of perception and action in the 

regulation of exercise intensity. 

Decision-making has been defined as the capability of individuals to select functional actions to achieve 

a specific task goal from a number of action-possibilities [19]. Action-selection is an important component in the 

process of decision-making. Certainty about exercise duration, knowledge of the end point, and the physical 

sensations of effort and fatigue have all been associated with adequate pacing, and their integration seems 

guiding in appropriate action-selection [20]. In the following, we will first provide an overview of how 

perception and action are treated in the current literature on exercise-regulation and pacing. Next, we will review 

the literature on decision-making and note important similarities between certain approaches to decision-making 

and pacing. Based on these similarities and their associated short comings in integrating a coupling between 

perception and action in the regulation of exercise intensity, we will introduce and explore an ecological 

approach to understanding pacing and decision-making in the regulation of exercise intensity. To contribute to 

the neuropsychology of decision-making in exercise-regulation we end with introducing a novel hypothesis 

inspired by an ecological approach on the neural integration of information in the context of pacing and decision-

making. 

 

 

2. PERCEPTION AND ACTION IN PACING 

 

In pacing literature perception is generally investigated by focussing on processes generally accepted to be 

affiliated to perception, such as sensations accompanying prolonged exercise, and internal proxies for 

perception, such as afferent signals. In particular the sensations of effort, whole body exertion, and fatigue are 

phenomena that are much studied in relation to pacing. 

 

2.1 Perception in Pacing: Fatigue and its Quantification 
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Fatigue is an important aspect of pacing and performance, and has been associated with both an increase in the 

perceived effort necessary to exert a desired exercise intensity (also called sensation of fatigue or discomfort) 

and the eventual inability to produce that exercise intensity [21]. Adequate management of sensations of fatigue 

leads to optimal performance. Starting a race too fast risks early exhaustion, whereas starting too slow could 

conflict with performance goals [2]. In the case of developing physical exhaustion, sensations of fatigue are 

related to the interpretation of the effect of the current level of activity on future exercise capacity [22], while the 

regulation of a pace is associated with tolerating discomfort and knowledge of the likely task-demands [6]. 

Fatigue and accompanying perceptual processes might thus be important components for decision-making in 

pacing. 

A popular way of measuring perceptions of fatigue and affiliated sensations, such as whole-body 

exertion, is by means of the rating of perceived exertion (RPE) scale. This evaluation tool is mostly used in 

experimental settings [23-27]. RPE has been described to be related to the circumstantial factors (see Table 1) 

that provide afferent input for a mechanism that allows an athlete to complete an exercise task within certain 

metabolic and/or mechanical limits [25]. A number of studies have suggested the existence of a system in which 

the integration of sensory systems and previous experience takes place [28, 29]. According to Lambert and 

colleagues [28], for instance, the identification of significant changes in negative feedback controllers, the so 

called homeostats, suggests an active neural process aimed at prevention of exhaustion. It has been concluded 

that effort perception involves an integration of multiple afferent signals. Depending on the circumstances, a 

particular physiological signal may be markedly altered and become the dominant mediator of the overall RPE 

[25]. In contrast to the classic interpretation that RPE is a measure exclusively of exercise intensity [23], it is 

suggested that RPE is related to the duration of exercise that has been completed or that still remains [30]. 

 

Please insert Table 1 about here 

 

2.2 From Perception to Action 

Ulmer [2] proposed that exercise may be regulated by central calculations and efferent commands that attempt to 

couple metabolic and biomechanical limits of the body to the task demands in a process described as 

teleoanticipation. It is argued that a central programmer would function as an input/output black box to 

coordinate afferent and efferent pathways such that exercise intensity does not exceed exercise limits. However, 

no consensus on what constitutes these limiting factors of exercise exists [25]. 

In the 1920s, Hill and colleagues [63] proposed that human exercise was limited by a maximal cardiac 

output, which was reflected in lactic acid accumulation and/or myocardial ischemia. In the late 1990s, the Hill-

model was under debate, because it allowed no role for the brain in the regulation of exercise performance and 

protection of homeostasis [5, 64]. Noakes and colleagues proposed that homoeostasis is protected under all 

conditions through behaviour modification [5], and changes of speed stand in proportional relation to changes in 

the extent of skeletal muscle recruitment (e.g. allowing an end-spurt) [65]. Accordingly, the Central Governor 

model (CG-model) was introduced, in which the brain occupies a dominant control position [64]. The CG-model 

proposed that the development of physiological exhaustion is a relative rather than an absolute event, and 

sensations of fatigue are a symptom and not a physical state. Based on the integration of internal sensory signals 

and information from the environment, a subconscious governor brain region sets and regulates the exercise 
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intensity by determining the mass of skeletal muscle that is recruited throughout the bout [66] and project the 

symptom of fatigue to the conscious brain [27]. This symptom acts as an additional conscious limiter of the 

exercise intensity. Finally, anticipatory pacing as proposed by Ulmer [2, 5] was rediscovered [67, 68], and 

incorporated in the CG-model. For decision-making in pacing, this means that sensations of fatigue are 

important, as well as a teleoanticipatory planning of the race based on knowledge of the likely demands of the 

remaining exercise-bout. 

Several scientists have questioned the existence of a subconscious (dominant) control region in the 

brain regulating whole-body homeostasis and pacing, and alternative mechanisms have been proposed. Since 

physiological catastrophes can and do occur [1] and a variety of peripheral factors can impair muscle 

performance [69], it is suggested that the proposed dominant governor could at least be over-ridden. MacIntosh 

and Shahi [70] proposed a peripheral governor, working at the cellular level, which can reduce the muscle 

contraction by attenuating activation to avoid metabolic catastrophe. Marcora [71] suggested that deciding when 

to terminate exercise is done by the conscious brain without the need to include an additional subconscious 

entity. Task disengagement occurs when the effort required by the prolonged constant-power exercise is equal to 

the maximum effort the athlete is willing to exert, or when the athlete believes to have exerted a true maximal 

effort. Edwards and Polman [6, 72] regard a single control region in the subconscious brain as unlikely and 

subsequently proposed to consider the brain as a complex system of neural communications, regulated by 

consciousness. In a nutshell, they assumed that: 1) the conscious brain is the central governor, 2) 

subconsciousness can be considered as a state of subawareness within a conscious state, and 3) low levels of 

physical effort are regulated by the conscious brain but possibly at a level of automated subawareness. The 

bombarding of sensory negative cues, as a consequence of high intensity exercise, triggers the conscious 

awareness to control the performance [6, 72]. 

All these proposals suppose that in some way sensations of fatigue, and a willingness to tolerate 

discomfort (in anticipation to future rewards [73]), are important in the process of action-regulation. However, 

whereas the body of knowledge of pacing is associated with the proposal that a subconscious governor brain 

region sets and regulates the exercise intensity, the importance and dominance of (specific regions in) the brain 

in regulating actions is increasingly challenged. 

 

2.3 The Selection of an Appropriate Pacing-Strategy 

Four important aspects of pacing in the context of perception and action-regulation can be extracted: 1) the goal 

of pacing is to complete the exercise bout without the development of exhaustion/disturbed homeostasis [74]; 2) 

the development of exhaustion is a relative event and sensations of fatigue are a symptom which acts as an 

additional conscious restrainer or modulator of the exercise intensity [27]; 3) RPE is the overall conscious 

perception of integrated physiological activity [27]; and 4) both recognising significant changes in homeostats 

[28] and fatigue [66] are part of an active neural process, the function of which is to prevent the development of 

exhaustion. In short, the regulation of an athlete’s pace (action) seems to be associated with processes at the 

neural level, which are influenced by afferent signals (which influence perception). However, the literature does 

not address how perception and action merge [3, 72, 75] and which underlying action-regulation processes 

occur. A serial linking between perception and action is advocated, requiring the need of an additional 

mechanism that can bridge an apparent void between the two, a perception/action-gap. A black box control 
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system is suggested that secures homeostasis during exercise [2, 64]. However, the location of- and processes 

occurring associated with this controller are not understood yet. Different mechanisms are suggested at muscular 

level [70] as well as within the brain [64]. 

Recently, Roelands and colleagues [76] made a first attempt to determine underlying 

neurophysiological mechanisms involved in the complex skill of pacing. They linked fatigue to pacing and 

concluded that a complex interplay between different neurotransmitter systems potentially influences pacing 

during exercise. In pursuit of an understanding of the complex skill of pacing in a broad perspective, the current 

review now continuous the exploration of pacing from a more behavioural perspective, and considers the 

viewpoint that there is a more intimate link between perception and action than the serial links proposed so far. 

From this perspective, pacing is approached as a continuous process of decision-making. Before we set out this 

approach to pacing and decision-making however, we will provide a brief overview of the literature on decision-

making in intermittent sports and show some important similarities between the dominant approach in research 

in pacing and those in research on decision-making and the short-comings in failing to consider the coupling of 

perception and action that follow from them. 

 

 

3. DECISION-MAKING IN SPORT AND EXERCISE 

 

During exercise, athletes are continuously required to make decisions. While most pacing literature focuses on 

endurance sports, research in the decision-making domain is mainly conducted in intermittent sports (e.g. team 

ball sports and racket sports [77-79]). Whereas in endurance sports, decision-making in response to interoception 

is relatively more dominant, in intermittent sports, decision-making is commonly related to exteroceptive 

influences in a continuously changing environment [80]. 

 Research on the influence of physiological factors on decision-making during exercise has mainly been 

performed by looking at the effects of physical activity on cognitive decision-making performance measures. For 

instance, Tomporowski [81] reviewed the effects of acute bouts of exercise on adults cognitive performance and 

concluded that submaximal aerobic exercise performed for periods up to 60 minutes facilitated certain aspects of 

cognitive performance, whilst extended exercise leads to performance decrements. More recently, using meta-

analytical approaches McMoris and colleagues [82] investigated the effects of acute and intermediate intensity 

exercise on the speed and accuracy of performance of working memory tasks. Exercise was found to 

demonstrate a small yet significant effect on cognition [83], in particular during moderate intensity exercise. A 

common finding was that in particular the speed of decision-making was improved whilst the accuracy of 

decisions was left unaffected by exercise. Fatigue has also been related to cognitive performance. In general, 

higher intensity levels of a primary task require a stronger supraspinal drive to compensate the more enhanced 

peripheral fatigue [84]. This negatively affects cognitive performance in a second cognitive dual task, which 

becomes more pronounced with fatigue. 

 In defining self-efficacy – an athlete’s belief in the ability to perform a certain task – Bandura [85] 

included physiological states as a principal source of information. According to Bandura, people read their 

visceral arousal in stressful and taxing situations. In activities involving strength and stamina, sensations of 

fatigue and aches are indicators of physical inefficacy [85]. Processing visceral information is closely related to 
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emotional and motivational aspects of behaviour. Baron and colleagues [4] suggested that Affective Load (AL) 

may contribute to the regulation of exercise intensity. The AL-scale indicates how positive and negative 

affective responses are relative to each other during exercise. The more positive the affective responses are, the 

greater the desire to maintain or to increase the exercise intensity will be and vice versa. Affective load thus 

might play a role in decision-making in pacing. 

Whereas in pacing literature it is emphasized that the integration of knowledge of the likely demands of 

the remaining exercise-bout [6] and the physical sensations of effort and fatigue act as guiding in determining 

response-characteristics [20], descriptions of steps made during action-regulation/response-initiation in 

(intermittent) sports do not address the state of the body. For example, according to Tenenbaum [80], motor 

behaviour in competitive situations consists of encoding relevant environmental cues, processing the information 

through interactions between working- and long-term memory, making an action-related decision, and executing 

the action while leaving room for refinements and modifications. 

 

 

 

 In the context of the current review on decision-making in pacing, the usefulness of such a model of 

response-initiation in intermittent sports is questionable. For instance, it is important to consider the current 

physiological state, the consequences of possible actions on the future physiological state, and the likely 

demands of the remaining exercise-bout. Athletes may not always be able to refine their actions while perceiving 

significant discomfort [86]. 

 

 

4. DECISION-MAKING IN THE REGULATION OF EXERCISE INTENSITY 

 

4.1 Current Perspectives 

At every instant during exercise, the circumstances present athletes many opportunities and demands for action, 

which faces them with the problem of which action to select. The literature presented in this review thus far 

suggest that external information about objects in the world in combination with internal information about the 

current physiological state are used to select an appropriate action. Further, the literature suggests that athletes fit 

the actions they perform in anticipation to the behavioural needs (e.g. exhaustion avoidance or goal 

achievement). This involves specification of action-parameters, which requires information about the spatial 

relationships among objects and surfaces in the world, represented in a coordinate frame relative to the 

orientation, configuration, and state of the athlete’s body [87]. Athletes continuously decide ‘what to do’ (action-

selection) and ‘how to do it’ (action-specification) [88]. In order to accomplish this, the literature presented so 

far advocates a view of the brain as an information-processing system. In this view, by the time motor processing 

begins (action-specification), cognitive processes have decided what to do (action-selection), and a single motor 

program is prepared before movement execution [89, 90]. This traditional information processing approach fits 

with the concept of a central control system that is responsible for decision-making in pacing. The input 

(perception) and output (action) of the control system are known, but no clarity exists about how perception and 



 

8 

action are related to one another. Main explanations of how perception and action might be linked refer to an 

indecipherable entity (i.e. input/output black box), which is not further specified. 

From an information-processing approach, three processes can be seen to serially follow each other 

before movements are executed, namely: 1) perception: the construction of internal representations of the world 

which are used as the input to cognitive systems; 2) cognition: bringing salient context-dependent information 

together in a temporary working memory buffer, manipulate representations to build complex knowledge, store 

and retrieve information from long-term memory, perform deductive reasoning, and make decisions; and 3) 

action: the motor systems are tools that implement action-plans chosen by cognitive processes [88]. The 

information processing approach was originally proposed as an explanation of complex human abilities of 

abstract problem solving [91, 92]. Information about the world must be obtained, and a great deal of computation 

must take place, before taking any external actions. Nowadays, scientists studying sensorimotor control also 

have the tendency to analyse behaviour as one of transforming input representations to output representations 

through a series of intermediate processing stages [88], as also in the literature on pacing [27]. Attempts to 

interpret neural data from the information-processing approach encounter several still not invalidated anomalies 

[88]. Moreover, the information processing approach does not explain how perception and action come together 

in the on-going regulation of exercise intensity. 

 

4.2 An Alternative Approach 

While considering an information processing approach, the internal processes that are most useful for guiding 

behaviour (action) are those that first passively construct internal representations of the world (perception) and 

then reflect upon it with some introspective, intelligent circuits (cognition) [88]. The complex performance-

environment of athletes however, requires them to continuously modify on-going behaviour, evaluating 

alternative behaviour that may become available, and making trade-offs between choosing to persist in a given 

behaviour (e.g. current pace) and switching to a different one [88]. In addition, athletes’ action capabilities will 

be affected by fatigue [93]. These complex and dynamic necessities will have to be incorporated in an account of 

decision-making in the regulation of exercise intensity, but have no place in the information processing view as 

it currently stands. 

To accommodate for the complex demands on decision-making in the regulation of exercise intensity, 

in the current paper we put forward an alternative approach to studying decision-making in pacing, which is 

rooted in an ecological approach. In this approach the coupling of perception and action is seen as a process that 

mediates sensorimotor interaction in the here and now, on the basis of continuous streams of sensory information 

as well as prior knowledge and experiences [88, 94]. A central notion within this approach is the concept of 

affordances, which refer to properties of the environment which can be detected as information to support an 

action, and which are related to an individual’s ability to use it; action capabilities [94-96]. Instead of taking a 

Cartesian stance in which a higher order governor manages the behaviour of the body, it is assumed that internal 

processes in the mind are reciprocally linked to processes in the body and the environment in which the body 

acts. Decision-making is considered as a complex and temporally extended process, which does not characterise 

an individual as having made a decision prior to its behavioural expression [97, 98]. Instead, decision-making is 

considered as the actualization of affordances, the possibilities for action in the environment that athletes 

perceive and may act upon [94, 96, 99]. In dynamic situations, where on-going behaviour has to be continuously 
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modified, action possibilities arise and vanish as a result of changing action capabilities and environmental 

demands. Because of the dynamic character of situations like these, and the according emergent nature of 

decisions, this approach has also been referred to as the ecological dynamics approach [98, 100-102]. 

The use of environmental and bodily information specifying affordances should not be considered in 

isolation for a given moment, but also in anticipation to factors such as knowledge about the likely task-

demands, personal goals, and the rules that make up many competitive sport situations. These sources of 

information are commonly associated with knowledge structures and memory processes inside the head [103]. 

From an ecological perspective, however, information is not stored in the head, but granted by or made available 

in a particular situation, for instance, through a history of similar situations, and over longer periods of time [94, 

104-106]. With relevance to regulating exercise intensity, the perception of an affordance of the athlete’s bodily 

state/capacity during a particular exercise event, in particular in anticipation to prior knowledge, is not an 

isolated moment but an episode in a number of nested long-term events that make up the on-going dynamics of 

the athlete’s exercise-environment [104]. 

To conclude so far, the ecological approach presented provides a well-grounded alternative way of 

understanding decision-making in the regulation of exercise intensity [98, 107]. Further, if pacing could be 

approached as a behavioural expression of continuous decision-making, new insights in action-regulation and 

performance determinants in sports and exercise can be gained. 

 

4.3 Entering the Neuropsychology of Decision-Making: The Affordance Competition Hypothesis 

Traditional cognitive theories propose that in natural behaviour action-selection occurs before action-

specification. The theory of affordances proposes that during natural interactive behaviour action-selection and -

specification should be regarded as the same dynamic process [99, 108, 109]. The results of a number of studies 

in intermittent sports show that athletes are faced with situations where multiple actions are afforded 

simultaneously [102, 110-112]. To address how people deal with these situations, drawing on ideas from 

neuroscience and ecological psychology, Cisek and Kalaska proposed the affordance competition hypothesis 

(AC-hypothesis) [87, 88]. 

 

Please insert Fig. 1 about here 

 

The AC-hypothesis, summarized in Fig. 1 [88], incorporates multiple ideas, such as the proposals that 

neural processing is continuous and not organized in distinct serial stages, and the parallel preparation of several 

potential actions whilst collecting evidence for selection between them [88]. In general terms, the hypothesis is 

that behaving in a natural environment involves continuous and simultaneous processes of interactions between 

environmental stimuli and an individual’s action capabilities and needs. These interactional processes provide 

for the specification of potential actions, and the competition between potential actions while subjected to a 

variety of biasing influences such as rewards, costs, or risks. For action-specification, areas within, for instance, 

the dorsal visual systems have been shown to perform transformations that convert information about objects in 

sensory coordinates into the parameters of potential actions [87, 88]. Competition between potential actions is 

hypothesised to occur within the fronto-parietal cortex, while a variety of biasing influences are provided by 

prefrontal regions and the basal ganglia. The same brain areas that specified potential actions ultimately guide 
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the execution of those actions. Recent studies have supported these suggestions [87, 113]. For example, it was 

found that when a monkey was presented with two opposite potential reaching actions, neural activity in the 

premotor cortex specified both directions simultaneously ([87]; see also Cisek & Kalaska (2010) [88]). When 

information for selecting one action over the other became available, the activity of the chosen direction was 

strengthened while that of the unwanted direction was suppressed [87]. For an extensive overview of research 

that has examined the AC-hypothesis in neuropsychological and neurophysiological research the reader is 

referred to Cisek & Kalaska (2010) [88]. 

The AC-hypothesis suggests that the precise order in which decisions appear across the cerebral cortex 

are highly task dependent. In support of this, it was found that in tasks requiring stimulus salience, such as a pop-

out visual search task, parietal regions reflected the choice before prefrontal regions. Conversely, if a task 

involves biasing factors that require complex stimulus-rule conjunctions, such as conjunction search, prefrontal 

regions reflected the choice before propagating back to the parietal cortex [114]. In pacing it has been shown that 

sensory negative cues that accompany high intensity exercise can influence prefrontal regions and conscious 

awareness to influence performance. Regarding the existing literature on decision-making in pacing this is 

consistent with the idea proposed by Edwards and Polman that pacing control is distributed throughout the 

subconscious and conscious brain [6, 72]. 

 

 

5. DISCUSSION 

 

Over the last decades, studies from various approaches have contributed to the establishment of a wide range of 

aspects that might be involved in the determination of an athlete’s pacing-strategy. The present review aimed to 

bring these findings together in a transcending theoretical pacing-framework, and to further understand 

mechanisms involved in pacing in the context of decision-making in action-regulation. Literature revealed that 

pacing is closely related to various interoceptive and exteroceptive circumstantial factors (i.e. psychological, 

physiological, biomechanical and environmental; Table 1) that are integrated and act as guiding in appropriate 

action-regulation. More specific, the importance of both neurophysiology [76] and behavioural mechanisms 

involving perception and action are emphasised. Although the importance of the brain is stressed, and references 

are given to a computing governor, explanations about how integration of the various factors takes place are not 

fully clear yet. Furthermore, analysis based on an information processing approach does not explain how 

perception and action are integrated in the continuous regulation of exercise intensity. An ecological approach to 

decision-making in pacing was considered in which perception and action are intrinsically linked. A central 

notion in this approach is that of affordances. To contribute to the neuropsychology of decision-making in 

exercise-regulation the affordance competition hypothesis (AC-hypothesis) was explored in which neural 

processing of internal and external information is continuous and the brain begins to prepare several actions in 

parallel while collecting evidence for selection. 

Within the AC-hypothesis multiple potential actions compete through mutual excitation and inhibition. 

Relating this to pacing, the exciting and inhibiting cells which influence action-regulation should be involved in, 

or affected by, the process which is responsible for maximizing performance as well as preventing the 

development of exhaustion. The pacing-literature suggests that significant changes in homeostats and fatigue are 
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involved in such a process. Furthermore, it has been proposed that the development of exhaustion is a relative 

event in which the sensation of fatigue should be regarded as a symptom, acting as an additional exercise 

intensity modulator. Fatigue, then, could well be related to information that specifies the degree that homeostasis 

is disturbed. This is in line with the proposal that RPE relates to the overall conscious perception of all the 

physiological activity in the body [27]. Hence, the relativity of the sensation of fatigue may be part of an 

individual’s ability to cope with discomfort [4, 93], which, in turn, could be a bias-factor during affordance 

competition. 

In the pacing literature, several authors have stressed the importance of the brain, and numerous control-

mechanisms are suggested [64, 71, 72]. The black box approach of a central governor [64] leaves much room to 

speculate on behavioural, neurophysiological, and neuropsychological mechanisms involved. It seems that the 

proposed dominant governor model is not explaining all processes associated with fatigue and pacing that occur 

in daily life. As an alternative, it has been proposed that the regulation of physical effort is distributed across the 

conscious and subconscious brain [6, 72]. Task disengagement would occur when the effort required by the 

prolonged constant-power exercise is equal to the maximum effort the athlete is willing to exert; or when the 

athlete believes to have exerted a true maximal effort [71]. These arguments imply that there is no specific 

region in the brain that is most important in pacing. Rather, internal processes in the mind are directly and 

reciprocally linked to processes in the body. Subsequently, pacing could be considered as the mediation-process 

of sensorimotor interaction in the here and now, on the basis of a continuous flow of perceptual information as 

well as prior knowledge and experiences. Hence, the current assumption that afferent and efferent pathways are 

coordinated in such a way that exercise intensity does not exceed the limits of the body [2] could be consistent 

with ideas that follow from an ecological approach, with the remark that neural processing is based on reciprocal 

perception/action-coupling and not organized in distinct serial stages within a governor region. 

Recently, two RPE-based scores have been proposed which attempt to understand action-regulation 

based on perception and (conscious) decision-making. Although no conclusive evidence for reliability and 

validation are estimated yet, these scores are valuable attempts to relate conscious sensations of fatigue to 

information from the body and the environment as well as to cognitive factors such as motivation, and could 

serve as a catalyst in exploring the potential/usefulness of RPE-data in 'decision-making in pacing' research. The 

Hazard-score [48] is the product of the momentary RPE and the fraction of race distance remaining, 

incorporating both internal cues as well as external information. A high score means homeostatic disturbance, 

facing the choice of reducing intensity or not finishing. Swart and colleagues [20] proposed that physical 

sensations of effort act as the template regulating performance during exercise and that deviation from that 

template produces an increase in the sense of mental effort. The latter was measured with Task Effort and 

Awareness score (TEA-score). It was concluded that the conscious decision of whether to maintain or change the 

current workload could be the outcome of a balance between motivation, affect, and sense of mental effort [20]. 

Both the Hazard- and TEA-score (in which RPE is incorporated) could contribute to research on the influence of 

fatigue in pacing and decision-making, because of their attempt to understand action-regulation based on 

perception and (conscious) decision-making. 

In animal behaviour research, attention has been given to the role of energy expenditure in decision-

making/action-regulation. Whereas in predation risk insignificant situations animals choose where and how to 

forage, and what to eat, solely by measuring energy return from food per unit energy or time of searching [115-
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119], in more precarious situations they reduce their rate of food intake [120-122] or sacrifice foraging efficiency 

by raising their energy expenditure [123] in order to lower predation risk. Finally, some predator-species have 

longer chase-distances in successful than in unsuccessful hunts and any longer unsuccessful hunts are generally 

initiated by juveniles [124]. This indicates that they are able to gauge their chances of success, decide to give up 

early if failure is predicted to conserve energy for further hunts, and, as with pacing athletes, experience-based 

anticipation is a key factor in action-regulation [72]. These studies show that research in animal behaviour may 

also provide more insights in underlying neural action-regulation processes involved in pacing. It is, for instance, 

proposed that the anterior cingulate cortex (ACC) is involved in making decisions about the amount of effort to 

invest for rewards [125]; the orbitofrontal cortex affects decision-time to wait for rewards [125]; and activity in 

the ACC and mesolimbic dopamine pathways influence decision-making when facing easily obtainable small 

rewards and less accessible greater rewards [126]. So, with the suggestions made in neuropsychological and 

neurophysiological research in human and animal, brain regions can be identified that may contribute to the 

biasing process while making a trade-off between choosing to persist in a given activity or pace and switching to 

a different one. 

Thus far, the AC-hypothesis has mainly been engaged with an understanding of environmentally guided 

behaviour, with a focus on the role of perceptual information in the environment of the performer. Research on 

the role of the athlete’s action-capabilities in the coming about of decisions on the other hand is relatively sparse 

[127]. In order to provide a better understanding of both environmental and action-capabilities influences, 

current knowledge needs to be enriched with neurophysiological findings from neurotransmitter-studies and 

studies on interoceptive influences in action-regulation, such as exercise induced fatigue [76]. As an example, it 

has been suggested that during physical fatigue the motor output from the primary motor cortex is primarily 

based on the degree of balance between sensory input from the peripheral system (inhibition) and motivational 

input (facilitation) [128] and that the mid⁄anterior insular cortex - involved in the evaluation of homeostatic 

processes - might not only integrate and evaluate sensory information from the periphery, but also act in 

communication with the motor cortex [129]. These examples support the suggestion that there are relational 

body-environment (i.e. affordance-based) factors that influence action-regulation in order to maintain 

homeostasis and/or regulate sensations of fatigue, which is associated with pacing. 

Though controlled experimental studies have led to a large body of knowledge on pacing, fatigue and 

performance, we would like to stress the importance of research incorporating the interaction with the 

environment based on the present review. There are theoretical concerns over the representativeness of the 

design in studies of decision-making in sport and exercise [130-132]. This concern specifically refers to the 

arrangement of conditions in an experiment so that they represent the behavioural context to which the results 

are intended to apply. These concerns might also be relevant for pacing-research in which athletes are often 

removed from their natural exercise-environment, and are placed in a highly controlled and possibly 

impoverished laboratory setting. For instance, in many studies participants perform on stationary exercise-

equipment. Unlike in natural unconstrained behaviour, most features of the sensory input are deliberately made 

independent from the athlete’s actions; the response in a given moment usually does not determine the stimulus 

in the next moment. Although such settings are often designed based on strong methodological assumptions, 

they may have unintentionally altered the behavioural processes under investigation such that the results from a 

specific experiment are not representative of the functional behaviours in participants’ natural environments. For 
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instance, a recent study considered the effects of visual information on perceptual experience during exercise 

[133]. Results showed that variations in environmental stimuli’s speed, such as when accelerating or decelerating 

during races, influence both perception and action. The provision of a slower optic flow, that is, slower speed of 

the provided video footage in comparison to true cycled speed, was being associated with lower RPE together 

with higher power output as a behavioural response [133]. Ideas emanating from the approaches presented in this 

review might aid the understanding of the correspondence between experimental task constraints and individual, 

behavioural, and functional settings outside the laboratory. Another observation in this context is that athletes 

tend to self-select strategies closely related to their natural disposition for exercise [18]. Hence, the behavioural 

process of pacing can vary between athletes. The tendency to average data in statistical analyses can thus mask 

observations of functional levels of performance variability across individual participants [134], and a focus on 

individual data might provide different perspectives. 

Most of the literature reviewed has focused on pacing and decision-making in sports performance. In 

other performances however, such as those that can be found in daily life, physically active lifestyles, and 

medical and rehabilitation settings, the regulation of exercise intensity over a certain task is also important. 

Think, for instance, about patients with limited energy stores or complaints of fatigue, or about an individual that 

is starting to pick up a new exercise regime. For these individuals it is important to identify meaningful 

performer-environment relationships for pacing and how these relationships might change as a function of 

practice, training, or habituation. For example, research has shown that in repetitive endurance type activities 

self-selected, motivational, and stimulating music enhance affect, reduce ratings of perceived exertion, improve 

energy efficiency, leading to increased work output [135, 136]. Identifying affordances that can help participants 

overcome a strong urge (affordance) to stop continuation of their exercise program, especially in the early stages, 

can in this way be a very important application in health sciences. 

 

 

6. CONCLUSION 

 

The current review explored divergent views on understanding underlying mechanisms in the regulation of 

exercise intensity. Instead of assuming that a higher order governor manages behaviour by first passively 

construct internal representations of the world, an approach that assumes that decision-making is a behavioural 

expression of the perception of affordances was explored. Additionally, the AC-hypothesis was introduced 

which proposes that during natural interactive behaviour at a neuropsychological level action-selection and -

specification are one and the same dynamic process. The use of ecological principles as a background in research 

in the field of sport and exercise may offer additional theoretical means to address the interdependence of 

perception and action and individual differences in the regulation of exercise intensity. The examination of 

pacing from this perspective could serve as a catalyst for gaining knowledge about how the many described 

circumstantial factors influence exercise intensity regulation, as well as how to set appropriate pacing strategies 

for the achievement of demanding goals in sports and exercise, medical and rehabilitation contexts, as well as 

daily life. 
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CAPTIONS 

 

Table 1 Summary of research investigating factors that are related to RPE, divided into the four pacing factor 

related categories 

 

Fig. 1 Summary of the affordance competition hypothesis in the context of visually-guided movement. The filled 

dark blue arrows represent processes of action-specification. These are launched by the occipital cortex and go 

into the direction of the premotor cortex via the dorsal visual stream; suggesting that this stream mainly mediates 

visually guided actions, instead of building a unified representation of the world. Polygons represent three neural 

populations along the stream, which are depicted as maps where the lightest regions correspond to peaks of 

tuned activity. Peaks that appear simultaneously within a single cortical region compete for further processing. 

This is biased by input from the basal ganglia and prefrontal cortical regions (red double-line arrows) that collect 

information for action-selection. Cells with similar parameter preferences excite each other, while cells with 

different preferences inhibit each other. If activity associated with a given choice eventually becomes sufficiently 

strong by exceeding a certain threshold, it suppresses its opponents and conclusively wins the competition. The 

final selected action is released into execution and causes overt feedback through the environment (dotted blue 

arrow) as well as internal predictive feedback through the cerebellum [87, 88]. Reproduced from Cisek and 

Kalaska [88], with permission 
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