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Abstract

Background

Commercial electroencephalography (EEG) devices have become increasingly available

over the last decade. These devices have been used in a wide variety of fields ranging from

engineering to cognitive neuroscience.

Purpose

The aim of this study was to chart peer-review articles that used consumer-grade EEG

devices to collect neural data. We provide an overview of the research conducted with these

relatively more affordable and user-friendly devices. We also inform future research by

exploring the current and potential scope of consumer-grade EEG.

Methods

We followed a five-stage methodological framework for a scoping review that included a

systematic search using the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines. We searched the fol-

lowing online databases: PsycINFO, MEDLINE, Embase, Web of Science, and IEEE

Xplore. We charted study data according to application (BCI, experimental research, valida-

tion, signal processing, and clinical) and location of use as indexed by the first author’s

country.

Results

We identified 916 studies that used data recorded with consumer-grade EEG: 531 were

reported in journal articles and 385 in conference papers. Emotiv devices were used most,

followed by the NeuroSky MindWave, OpenBCI, interaXon Muse, and MyndPlay Mindband.

The most common usage was for brain-computer interfaces, followed by experimental

research, signal processing, validation, and clinical purposes.
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Conclusions

Consumer-grade EEG is a useful tool for neuroscientific research and will likely continue to

be used well into the future. Our study provides a comprehensive review of their application,

as well as future directions for researchers who plan to use these devices.

Introduction

Electroencephalography (EEG) is the continuous measurement of electrical activity generated

by neurons firing in the brain. This involves placing metal electrodes at multiple scalp sites to

record fluctuations in voltage at millisecond-level temporal resolution. Such recordings can

then be processed to produce spectral analyses of electrical activity or generate event-related

potentials (ERPs) that represent the averaged response to a task or stimulus. Today, EEG is

one of the most popular neuroscientific tools for academics and medical professionals due to

its non-invasiveness and ease-of-use [1]. More recently, several companies have developed

consumer-grade EEG devices. These devices are compact, wireless, and have a streamlined

setup, making them particularly attractive to novice researchers or those looking to collect

data outside the traditional laboratory setting [2]. More importantly, consumer-grade devices

are cheaper than research-grade devices, allowing those with limited funding an affordable

means to collect neurophysiological data.

Due to its accessibility, consumer-grade EEG has been used for a wide variety of purposes

across different fields. Software engineers and computer scientists use consumer-grade EEG to

collect high resolution time-series data. This data is then processed to create or optimise

machine learning and signal processing algorithms [3–5]. In turn, these algorithms can be

used in conjunction with the device to develop brain-computer interface (BCI) systems. Those

in engineering and robotics can train machines to respond in real time to patterns in neural

data [6]. Once synchronised, a human user can configure a BCI to control a multitude of elec-

tronic devices including wheelchairs [7], drones [8], smart homes [9–11], and web browsers

[12]. Clinicians report using the technology to administer neurofeedback therapy [13], facili-

tate learning [14], assess patient sleep quality [15, 16], and determine affective states [17–20].

Scientists increasingly use consumer-grade devices to collect neural data to address a variety of

theoretical and practical research questions [2, 21, 22].

The proliferation of research with consumer-grade EEG has inspired several non-system-

atic reviews (see Table 1). For instance, some reviews compared the performance of a single

consumer-grade EEG device to non-EEG biosensors in the domains of seizure detection [23],

BCI systems [24], and stress recognition [25]. Other reviews have compared multiple con-

sumer-grade EEG devices within a single domain [2, 21, 26–28]. For instance, Dadebayev et al.

[29] focused their review on emotion recognition; Asl et al. [30] focused on drowsiness detec-

tion and Khurana et al. [31] focused on neuromarketing. One of the most thorough reviews

considered around 100 “handpicked” [22] studies that used four consumer-grade devices–the

NeuroSky MindWave, Emotiv EPOC+, interaXon Muse, and OpenBCI neuroheadset–in the

domains of cognition, BCI, education research, and game development.

While these non-systematic reviews provide insights into the domain-specific functions of

certain EEG devices, the current literature on this topic is, at best, fragmented. Indeed, it is sur-

prising that, to date, there has been no systematic scoping review on the research-related use

of currently available and commonly used consumer-grade EEG devices. Thus, the aim of this

paper is to chart the large volume of studies that have used consumer-grade EEG to collect
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neural data. We categorise each of these studies by domain or category to provide a domain-

general snapshot of the work conducted with this emerging technology. Note that the purpose

of this scoping review is to detail the range of consumer-grade EEG usage in the current litera-

ture. We do not provide an exhaustive critical analysis of each device, as per the remit of a

scoping review in [32].

Method and results

We followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses Exten-

sion for Scoping Reviews (PRISMA-ScR) guidelines [32]. Scoping reviews report the “extent,

range, and nature of research activity” [p. 21] in five stages: (1) identify the research question;

(2) identify relevant studies; (3) select the studies; (4) chart the data; (5) collate, summarise,

and report the results.

Step 1: Identify the research question

We aimed to explore the extent to which consumer-grade EEG has been applied to research

domains in locations around the world. Regarding EEG devices, our goal was to identify the

EEG systems produced by companies that manufacture the most commonly used consumer-

grade devices. Regarding research domains, our goal was to identify the primary research fields

that these consumer-grade EEG systems have been applied to. Finally, regarding research loca-

tion, our goal was to answer the question of where the devices have been used globally.

Stage 2: Identifying relevant studies

We conducted a systematic literature search by retrieving records from five online databases:

(a) PsycINFO, (b) MEDLINE, (c) Embase, (d) Web of Science, and (e) IEEE Xplore. These

databases contain studies from multiple fields including neuroscience, psychology, medicine,

and engineering. Searches included studies published from 2010, as this is the year the first

studies examining consumer-grade EEG were published. Studies also had to be conducted

with human subjects and written in English. To find records in each database, we used search

strings to capture keyword variations (see Table 2). These were subsequently adjusted to fit the

search syntax of each database.

Table 1. List of literature reviews that include consumer-grade EEG devices.

First Author Year Domain Devices Reviewed

Rechy-Ramirez et al. 2018 BCI Emotiv

Xu et al. 2018 Educational research Emotiv; NeuroSky MindWave

Aldridge et al. 2019 P300 speller task OpenBCI

Kurada et al. 2019 Seizure detection Emotiv

Roy et al. 2019 Deep learning Emotiv; interaXon Muse; Myndplay Mindband; NeuroSky MindWave; OpenBCI

LaRocco et al. 2020 Drowsiness detection Emotiv; interaXon Muse; NeuroSky MindWave; OpenBCI

Vasiljevic et al. 2020 BCI gamification Emotiv; Myndplay Mindband; NeuroSky MindWave; OpenBCI

Shum et al. 2021 [33] Seizure detection Emotiv; NeuroSky MindWave

Castro-Garcia et al. 2022 Stress recognition OpenBCI

Khurana et al. 2021 Neuromarketing Emotiv; NeuroSky MindWave; MyndPlay Mindband; OpenBCI

Dadebayev et al. 2022 Emotion recognition Emotiv; OpenBCI; NeuroSky MindWave

Asl et al. 2022 Drowsiness detection MyndPlay Mindband; NeuroSky MindWave; Emotiv

Note. These reviews were excluded from the present review for reasons outlined in Method and Results.

https://doi.org/10.1371/journal.pone.0291186.t001
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Stage 3: Study selection

The initial search was conducted in April 2022, completed in May 2022, and yielded 1260 arti-

cles. We excluded 265 duplicates and screened the remaining using systematic review software,

SYRAS [34]. After screening, we excluded a further 79 studies as they met one or more of the

following exclusion criteria: no device was used, or no EEG was data collected (N = 53); not

written in English (N = 6); had inaccessible PDFs (N = 20). The final number included was

916, consisting of 531 journal articles and 385 conference proceedings. Fig 1 depicts the flow

chart of the screening process.

Stage 4: Charting the data

We charted 916 included articles by recording the following information: EEG device, research

domain, authors, first author’s country, year of publication. Country information was obtained

from the first author’s affiliation as listed in the article. If this could not be found, the first

author’s most recent affilation was used.

Stage 5: Collating, summarising, and reporting the results

Consumer-grade EEG devices. The devices used by articles included in this scoping

review were produced by five companies: Emotiv (67.69%), NeuroSky MindWave (24.56%),

and OpenBCI, interaXon, and MyndPlay (7.75% collectively for these three devices). Emotiv

has released three versions of a 14-channel EEG device: EPOC, EPOC+, and EPOC-X. For

simplicity, all three devices will hereon be referred to as “Emotiv.” The EPOC+ and EPOC-X

can capture data at both 128 and 256 Hz sampling rates, whereas EPOC captures data at 128

Hz. The EPOC-X includes an updated amplifier configuration, sensor housing, and rotating

headband. OpenBCI provides two highly customisable EEG systems: the four-electrode Gan-

glion board and the eight-electrode Cyton board. Again, for simplicity, both boards will

hereon be referred to as “OpenBCI.” Users can configure an assembly of eight electrodes

around an OpenBCI Cyton processing circuit board and daisy-chain it to another Cyton

board for a 16-channel system. The interaXon Muse is a headband-shaped device that records

at 256 Hz from four electrodes located above the eyes (AF7, AF8) and above the ears (TP9,

TP10). The MyndPlay MyndBand records at 512 Hz from three electrodes on the forehead.

The NeuroSky MindWave is shaped like a gaming headset, records at 512 Hz from a single

electrode on the forehead (FP1), and pairs with a mobile application that can detect power

spectra and other metrics such as meditation and attention using built-in signal processing

techniques.

Research and consumer-grade EEG devices typically differ in their electrode count.

Whereas research-grade EEG devices typically comprise dozens of electrodes fitted over the

Table 2. Search strings used for each device.

Device Device-specific Search String Domain-general Search String

Emotiv (“emotiv” or “epoc”) (“electroenceph*” or “electrophys*” or “eeg” or “event-related” or “event related” or “erp”)

interaXon Muse (“interaxon” or “muse”)

Myndplay Mindband (“myndplay” or “mindband”)

NeuroSky MindWave (“neurosky” or “mindwave”)

OpenBCI (“openbci” or “cyton” or “daisy”)

Note. Each device-specific search string was linked to the domain-general search string using the “AND” logical operator. Asterisks indicate truncation wildcards.

https://doi.org/10.1371/journal.pone.0291186.t002

PLOS ONE A scoping review on the use of consumer-grade EEG devices for research

PLOS ONE | https://doi.org/10.1371/journal.pone.0291186 March 6, 2024 4 / 22

https://doi.org/10.1371/journal.pone.0291186.t002
https://doi.org/10.1371/journal.pone.0291186


scalp with saline gel or solution, consumer-grade EEG devices have fewer electrodes and use

minimal or no conductive medium. However, despite their low electrode count, consumer-

grade EEG devices have been validated for scientific research in a broad range of paradigms.

Table 3 lists the technical specifications of currently available devices.

Research domains. The included articles fell into five categories of use: BCI, experimental
research, validation, signal processing, and clinical. Table 4 lists a description and an example

for each usage category, and Fig 2 provides a visual depiction of device usage by category and

over time. It should be noted that these categories are not mutually exclusive. For example, a

study that compared the performance of inexpensive, wireless, and dry EEG systems in classi-

fying common neural responses [35] would be “validation.” In cases where a device could be

classified under multiple categories, the authors made a joint decision about the most appro-

priate category.

Fig 1. PRISMA flowchart of the screening process.

https://doi.org/10.1371/journal.pone.0291186.g001
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Brain-computer interfaces. The majority (44.54%) of included studies used consumer-grade

EEG as an interface between a human user and computer. Through the application of machine

learning algorithms, users are given the ability to control computers (software) or computer-

based machines (hardware) and perform a variety of functions [27]. This is typically achieved

in two steps. Firstly, data from a user is collected to train a classifier to recognise and extract

features (i.e., spikes or longer pattern irregularities) from a continuous EEG signal, usually in

response to a target visual or auditory stimulus. These features can then be evoked by the user

to control a configured BCI system. How well the BCI system performs depends on multiple

factors that include the chosen algorithm, the quality of the signal, electrode location, and the

feature to be extracted [36–38].

The two earliest BCI-based studies were published in 2010. Using Emotiv, Ranky and Ada-

movich [39] trained subjects over three weeks to move a robotic arm in three dimensions and

grip certain objects using only facial movements. Likewise, Kwang-Ok et al. [40] used Emotiv

to collect data for a paraplegic subject’s use of an emergency call system. These early studies

speak to the functional and clinical applicability of portable BCI systems, particularly for com-

munication with and the motor improvement of paralysed patients.

One of the most common methods to configure a BCI system using consumer-grade EEG

is with the steady-state visual evoked potential (SSVEP). SSVEPs are the typical neural

response to visual stimuli that appear at matching frequencies [41]. In a recent study, Garcia

et al. [42] used the interaXon Muse and SSVEPs (along with other signal processing algo-

rithms) to decode and reconstruct stimuli in subjects’ visual field with remarkable accuracy. In

Table 3. Technical specifications of all currently available commercial EEG devices.

Manufacturer Model Release Year Channels Sample rate (Hz) Resolution

Emotiv EPOC+ 2013 14 128 or 256 14-bit

MyndPlay Mindband 2014 1 512 *
OpenBCI Ganglion board 2014 4 200 24-bit

OpenBCI Cyton board 2014 8 250 24-bit

OpenBCI Cyton-Daisy board 2014 16 125 24-bit

Emotiv Insight 2015 5 128 14-bit

InteraXon Muse 2 2016 4 256 12-bit

NeuroSky MindWave Mobile 2 2018 1 512 12-bit

Emotiv EPOC-X 2019 14 128 or 256 14-bit

Note. Emotiv also manufactures the EPOC Flex that contains 32 channels. This device is not included as it is explicitly marketed as a research device—not a commercial

or consumer-grade device.

https://doi.org/10.1371/journal.pone.0291186.t003

Table 4. Usage category descriptions and examples.

Usage Category Description Example

Brain-computer

Interface (BCI)

Studies that facilitated interaction between human

user and computer (or machine).

Realtime control of a wheelchair.

Experimental Research Studies that used the device as a theory

development tool

Examining EEG signatures in

cognitive tasks.

Validation Studies that aimed to validate use of the device Comparing consumer-grade to

research-grade EEG systems.

Signal Processing Studies that collected data to refine EEG signals. Creating a classification algorithm to

reduce artefacts.

Clinical Studies that used the device as a clinical tool Assessing drowsiness in drivers.

https://doi.org/10.1371/journal.pone.0291186.t004
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a similar study, Shi et al. [43] examined SSVEP image decoding applied to mobile phones.

Chumerin et al. [44] designed a maze-navigating game that used SSVEPs and Emotiv; and,

together with an eye-tracker, Brennan et al. [45] used Emotiv to control a smart home with

SSVEPs. Given the frequent use of SSVEPs, future researchers may also choose to take advan-

tage of this feature’s high signal-to-noise ratio when implementing consumer-grade EEG into

BCI systems.

Another easily identifiable ERP feature is the P300, a positive spike occurring roughly 300

ms after the presentation of an irregular, or “oddball”, stimulus in a stream of otherwise regu-

lar stimuli [46]. Due to its consistent latency, the P300 is commonly used as a target response

Fig 2. Charting the number of publications for each device and usage category. Note. For all plots, the y-axis

denotes the number of publications per category. (A) depicts a bar plot of the total number of publications categorised

by usage and subcategorised by device in a single bar. (B) charts the inverse: total number of publications categorised

by device and subcategorised by usage in a single bar. (C) and (D) are frequency plots that chart the number of

publications over time since 2010 by device and usage, respectively.

https://doi.org/10.1371/journal.pone.0291186.g002
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in BCI-based applications [47]. Jijun et al. [48] used an Emotiv to capture P300 components

and created a hands-free dialling system. Indeed, one of the most frequently observed applica-

tions of consumer-grade EEG is in P300 speller paradigms [49–53]. To illustrate, a matrix of

letters is shown to an observer. To spell out a word, the observer must sequentially focus their

attention on a single letter while each row and column in the matrix is rapidly highlighted. As

one can imagine, combined with a portable device, P300 spellers prove extremely useful for

those with verbal and motor difficulties.

Motor-imagery is a purely mental process that involves the imagined execution of motion

without explicit muscular or peripheral action [54]. There has been almost three decades of

research involving BCI systems and motor imagery [55, 56], with more recent implementa-

tions using consumer-grade EEG. By training an algorithm to detect specific EEG patterns

reflecting imagined motor functions, users can operate artificial limbs [39, 57–61] and wheel-

chairs [62–67]. Motor imagery with consumer-grade EEG has also been used to control elec-

tric vehicles [68] and aerial drones [8, 69, 70]. Parikh and George [71] designed a BCI system

that uses motor imagery to control a quadcopter, and Das et al. [72] designed a BCI system to

control a quadcopter with a user’s directional intentions.

Some of the most innovative BCI applications involved an interaction between a human

user and software, rather than hardware. Shankar and Rai [73] used Emotiv to facilitate 3D

computer-aided design (CAD) modelling, where user-evoked responses can activate various

commands. Consumer-grade EEG has also been used to control web browsers [12]. Yehia

et al. [74], for example, designed an SSVEP-based website interface that presents options that

can be selected with visual attention according to available functions on the current page.

More recent studies have explored the use of consumer-grade EEG in biometrics. Much like

a fingerprint or password, algorithms can identify individuals based on neural patterns: Mocte-

zuma et al. [75] identified subjects via their EEG responses using imagined speech; Do et al.

[76] identified subjects according to their responses to images; and Saini et al. [77] collected

responses while subjects handwrote signatures to generate unique individual biomarkers.

Experimental research. Studies classified under experimental research used consumer-grade

devices to collect EEG data outside of BCI applications. These studies comprised 31.22% of

included articles and spanned a wide range of paradigms. For instance, the Emotiv was used in

studies examining pilots’ reactions to unexpected events [78], reaction time [79], and mental

fatigue and alertness [80]. Similarly, many experimental studies aimed to detect drowsy states

[16, 81–85]. Such paradigms have been adopted to improve road safety with the creation of

early warning systems that alert drivers to their own fatigue before an accident can occur [86–

89]. These studies expand the application of EEG outside the laboratory for purely experimen-

tal purposes. Further studies have been conducted with consumer-grade EEG on students in

the classroom [90–92]. Dikker et al. [93] used the Emotiv to measure the synchronised neural

activity across students in a class, and found that this measure predicted overall classroom

engagement and social dynamics.

Consumer-grade EEG has also been used to augment experiments testing athletes’ perfor-

mance and mental states. Borisov et al. [94] used the Emotiv together with other biological

indicators to examine athletes’ attention and stress levels. Liu et al. [95] correlated rifle-shoot-

ing accuracy with EEG signatures to find optimal states for good shots. Using the NeuroSky

MindWave, Azunny et al. [96] found that meditation moderated athletes’ attention and work-

ing memory. Finally, Sultanov and Ismailova [97] determined power spectra during football

players’ training and resting states.

While these studies report the performance of consumer-grade EEG across different experi-

mental paradigms, we advise caution in applying consumer-grade devices to experiments that

require excessive motion. EEG signals are inherently noisy. In cognitive and perceptual
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studies, researchers must typically remove trials where a subject’s movements introduce arte-

facts. In extreme cases, to avoid spurious results, a large portion of subjects must be removed

from analyses due to such artefacts. There are many in-house tutorials for popular toolboxes

such as EEGLAB [98] and MNE [99], amongst other best-practice guidelines for cleaning EEG

data [100–103]. We refer the reader to these guidelines to ensure the collection of high-quality

neural signals for publication and replication.

Signal processing. Signal processing studies comprised 12.01% of included articles. These

were studies that used consumer-grade EEG to create or improve signal processing algorithms

or pipelines. Multiple studies have used an array of clustering and component analytic methods

to remove eyeblinks and clean the signal recorded with consumer-grade EEG [104–111]. For

instance, Szibbo et al. [112] proposed a novel algorithm to remove blink artefacts with logarith-

mic smoothing methods. Trigui et al. [113] used the Emotiv to accurately detect SSVEPs with

the multivariate synchronisation index, an algorithm that characterises the synchronisation

between recording and reference electrodes. Trigui et al. [114] also used the Emotiv to evaluate

classification accuracy using inter-battery factor analysis. While the authors did not test for sig-

nificance, this method produced numerically greater accuracy compared to two other methods:

canonical correlation analysis and multivariate synchronisation index. Finally, Elsawy et al.

[115] proposed a principal components analysis classifier to use with P300 spellers.

Given the relatively lower signal quality of consumer-grade compared to research-grade

EEG devices, future research aiming to improve signal processing methods may apply existing

algorithms to data collected with research-grade EEG devices. This can assist further experi-

mental EEG work by validating the algorithms’ robustness when applied to higher-quality data.

Clinical. Clinical experiments comprised 6.22% of included articles. These studies involved

the diagnosis and treatment of various physical and mental illnesses. Three recent clinical

studies show reliable applications in stroke patients. After observing good test-retest reliability

[116], Rogers et al. used the NeuroSky MindWave to determine distinct EEG profiles for

patients who have experienced transient ischemic attack, ischemic stroke, or neither [117];

Wilkinson et al. [118] used the interaXon Muse to accurately identify patients with large vessel

occlusions, a diagnostic predictor of acute stroke; and Ishaque et al. [119] used the interaXon

Muse to characterise neuronal function and clinical recovery of stroke patients post-treatment.

Recording abnormal neural responses to stimuli can further assist in creating clinical pro-

files. Terracciano et al. [120] designed smart glasses configured with an OpenBCI Cyton board

to generate a distinct visual checkerboard pattern that elicits the pattern-reversal visual-evoked

potential in neurotypical populations. The onset of this component is significantly delayed in

multiple sclerosis and traumatic brain injury [121]. Consumer-grade devices coupled with

diagnostic tools can facilitate more accurate diagnoses, evident from studies on insomnia

[122], attention-deficit hyperactivity disorder [123], and epilepsy [124].

Seizure detection is a particularly promising application for consumer-grade EEG [125–

127]. Signals collected by EEG devices can employ a variety of signal processing techniques and

provide convergent evidence of early seizure onset. While this application is in its early stages

(see [128]), seizure detection is possible by using algorithms that are trained on an epileptic

patient’s profile. In future, perhaps a portable alert system combined with an EEG headband or

headset can warn patients (and others nearby) to move to a safe place prior to seizure onset.

Lastly, a potential clinical application for consumer-grade EEG devices is in neurofeedback

therapy. Neurofeedback is a form of operant conditioning that involves showing a patient

their neural signals in real time to reinforce optimal and extinguish negative mental states

[129]. Using consumer-grade EEG devices, various neurofeedback systems have been designed

for the treatment of Parkinson’s disease [13], central neuropathic pain [130], attention-deficit

hyperactivity disorder [131, 132], dyslexia [133], and depression [134].
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Validation. Validation studies comprised 6.18% of included articles in this review. The

most informative of these involved comparing recordings between consumer and research-

grade EEG devices. Grummett et al. [35] report that the Emotiv could reliably demonstrate the

Berger effect (relative increase in alpha wave amplitude from electrodes placed above occipital

and parietal cortex) compared to other inexpensive, wireless, and dry EEG systems. They also

found that the Emotiv’s capacity to detect visual steady-state responses was comparable to a

research-grade g.Hlamp. However, the Emotiv displayed a significantly higher noise floor than

other systems, prompting the authors to caution its use in studies that examine lower fre-

quency spectra. Kotowski et al. [135] reported reliable measurement of the early-posterior neg-

ativity when subjects responded to different emotional stimuli. Multiple studies comparing the

Emotiv to a Neuroscan system provide evidence that the Emotiv performs remarkably well at

recording research-grade ERPs in multi-trial experiments. De Lissa et al. [136] observed reli-

able recordings of the face-sensitive N170 component. Badcock et al. [137] found that the

Emotiv can reliably record a series of late auditory ERP components: P100, N100, P200, N200

and P300. Barham et al. [138] found that N200 and P300 did not differ between the two sys-

tems—though, they also found that significantly more trials were rejected from the Emotiv

during preprocessing. Additionally, Ries et al. [139] found that the Emotiv was comparable to

a research-grade BioSemi ActiveTwo after correcting for low frequencies. In terms of event

timing, Hairston et al. [140] observed only slight jitter and delay in the Emotiv’s serially-ported

event timing, while Williams et al. [141] recorded comparable event timing between Emotiv

and Neuroscan.

Only a single study reported disparities between the waveforms of the Emotiv and a medi-

cal-grade Advanced Neuro Technology system: Duvinage et al. [142] found differences in

their recording of P300 responses. However, as might be expected, consumer-grade EEG

devices display considerably poorer signal-to-noise ratios than their research-grade counter-

parts. Mahdid et al. [143] found that the functional connectivity of both Emotiv and OpenBCI

systems compared poorly to research-grade EEG systems; Raduntz [144] found that the signal

reliability of the Emotiv was poor if the device did not exactly fit the subject’s head; and Ekan-

dem et al. [145] observed that the signal quality of an Emotiv, specifically the EPOC+, declines

over time as it uses a built-in rechargeable battery.

There were few validation studies for the remaining devices. Two studies compared the

NeuroSky MindWave’s performance to research-grade systems. Johnstone et al. [146] found

very minor differences in signal quality between a NeuroSky MindWave and a Neuroscan; and

Rogers et al. [116] found good test-retest reliability in eyes-closed paradigms, with slightly

lower reliability in eyes-open paradigms. Frey [147] compared the OpenBCI’s spectral and

temporal features to a medical-grade g.USBamp and found negligible differences. No valida-

tion studies were found for the MyndPlay Mindband or the interaXon Muse.

Research location. Fig 3 shows a geographical heatmap of the number of publications by

each country. In sum, the 916 studies that used consumer-grade EEG since 2010 were con-

ducted across 83 countries spread across six continents. The top ten countries accounted for

46.72% of included studies. In order, these were: India (9.72%), United States (8.73%), China

(4.48%), Malaysia (4.04%), Poland (3.82%), Indonesia (3.49%), United Kingdom (3.49%),

Pakistan (3.06%), Mexico (2.95%), and Turkey (2.95%).

Discussion

The aim of this scoping review was to explore the extent to which consumer-grade EEG

devices have been applied to research domains in locations around the world. We identified

916 peer-reviewed studies that used consumer-grade EEG to collect neural data from human
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subjects. We expand on device-specific information, location, and usage across research

domains in turn.

Regarding consumer-grade EEG devices, Emotiv devices were the most widely used. We

speculate that this was primarily due to its easy setup, relative comfort compared to other

devices, and capacity to record quality ERPs. Emotiv devices require no engineering or techni-

cal expertise and configuring event markers is relatively easy using a serial port cable. How-

ever, there are a few caveats researchers should be aware of when using Emotiv. Firstly, the

device has quite a low noise floor. We do not recommend using Emotiv for single-trial experi-

ments. We also advise against using Emotiv in studies that require localising activity (e.g.,

functional connectivity experiments), as the plastic arms do not accommodate every head

shape or size. Beyond these caveats, the Emotiv has proven useful in experiments that involve

multiple trials: psychophysical or cognitive tasks. Additionally, by applying task-appropriate

algorithms, users can compensate for the Emotiv’s low noise floor, and the device can be

implemented in BCI systems.

Despite only having a single electrode, the NeuroSky MindWave has also been widely used

for research. The NeuroSky MindWave was particularly popular in BCI systems, market

research, and gamification. However, there is conflicting evidence for its utility. Maskeliunas

et al. [148] found that the MindWave displays poor accuracy at recognising the meditative and

attentive states it claims to have built-in metrics for. Meanwhile, Rogers et al. [149] found that

the device can assist in predicting functional outcomes after stroke. Thus, the NeuroSky Mind-

Wave may be useful in experiments that strictly examine the time-course of recordings from

FP1 as its signal quality has been shown to be equal to or even greater than an Emotiv device.

Further, the MindWave is an affordable EEG device for clinicians to complement data from

other diagnostic metrics. These are rich avenues for future use of the MindWave as a research

tool.

As for the three remaining devices, it is evident that more research is required to explore

and perhaps validate their further experimental use. While OpenBCI has contributed to studies

in engineering and robotics, more experiments are needed for an informed evaluation of

OpenBCI’s applicability to cognitive neuroscience. Both the interaXon Muse and the

Fig 3. Geographical heatmap of publications that used consumer-grade EEG for research by country. Note. This heatmap shows the number of

consumer-grade EEG articles published in each country. We recommend viewing this paper online for the full colour version the Fig 3.

https://doi.org/10.1371/journal.pone.0291186.g003
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MyndPlay Mindband have been used in general experimental and clinical studies. Future

research may address this notable gap in the literature by comparing these under-utilised

devices to research-grade EEG devices. Validation studies, in particular, can present the advan-

tages and challenges associated with each device and pave the way for better-informed, special-

ised application of consumer-grade EEG devices. From our review, addressing the most

notable research gap would involve more well-powered within-subjects studies that compare

signal-noise indices for each device. Future researchers may find Table 5 useful, as it highlights

some general recommendations from our synthesis.

Focusing now on research domains, this review revealed that the primary research-related

use for consumer-grade EEG devices is for BCI systems. This may be due to the relatively low

cost of administering large-N studies with these devices. Additionally, given enough training

data, probabilistic models can now be configured for an individual output signal with impres-

sive accuracy [150, 151]. With more powerful computers and better classification algorithms,

we expect that this application will only continue to grow as neuroscientists increasingly use

machine learning to solve problems.

The second most frequent research-related use was for general experimental research, span-

ning from cognitive tasks and recording athletic performance to low-level auditory or visual

perception studies. This is further evidence that the scope of consumer-grade EEG includes a

wide range of fields. Perhaps future research may focus on adding to the relatively low number

of validation and signal processing studies, as these are crucial in informing users of the

devices’ performance across different contexts. We also highlight the potential for consumer-

grade EEG devices to be applied to clinical studies. We observe that BCI research has provided

evidence of the devices’ proficiency in creating biometric profiles for users, as well as proto-

types for artificial robotic limbs, drowsiness detection systems, and mobility aides. With the

advent of further clinical research, we may see more frequent use of the devices in hospitals

and clinics, where neural augmentation has the potential to improve patient identification,

diagnosis, and treatment outcomes.

As well as providing information about the scope of consumer-grade EEG devices, research

domains, and research location, we note that the studies included in this review revealed an

interesting trend in terms of date of publication: The number of publications using consumer-

grade EEG devices peaked in 2018, then dropped slightly in 2019 the year before the COVID-

19 pandemic. During the peak years of the pandemic in 2020 and 2021, this number dropped

Table 5. General recommendations for each device.

Device Key Advantages Disadvantages

Emotiv Useful in cognitive tasks involving multiple

trials; records quality ERPs.

Poor localisation; low noise floor; requires

rigorous preprocessing pipeline to yield clean

signal.

interaXon

Muse

Potential use in clinical/therapeutic

applications.

Requires further validation research.

Myndplay

Mindband

Comfortable–designed like a gaming headset. Requires further validation research.

NeuroSky

MindWave

Can record relatively accurate signals from

FP1; comfortable.

No reference electrodes for component analytic

preprocessing.

OpenBCI Up to 16 electrodes and flexible configuration;

documented effectiveness in BCI control.

Requires further validation research.

Note. These recommendations are overarching themes that became apparent through the present charting. A more

rigorous investigation regarding signal comparison and application to different paradigms is required for a detailed

understanding of each individual device’s capabilities.

https://doi.org/10.1371/journal.pone.0291186.t005
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substantially (see Fig 3C and 3D). This is unsurprising, as researchers’ ability to administer

EEG studies to human subjects was adversely affected by the imposition of lockdowns and

travel restrictions worldwide [152–154]. While the number of studies using consumer-grade

EEG devices was reduced during the pandemic, few EEG studies continued globally in diag-

nostic COVID-19 experiments [155–157]. If consumer-grade EEG devices were more well-

recognised by the wider scientific community, the devices may have found utility in large-scale

EEG experiments during a time when such neural data could augment epidemiological studies

[158]. They may also have proved useful to cutting costs associated with the usage and mainte-

nance of research-grade machines. This is particularly true for Emotiv systems as the company

provides a platform for the construction, deployment, and data collection of online EEG

experiments [159].

Regarding research location, it was encouraging to discover that the use of consumer-

grade EEG devices is not limited to Western, industrialised countries [160, 161]. We found

that studies were reasonably spread across multiple countries. The same consumer-grade EEG

device used across different locations can record with roughly equivalent quality, which

increases the reliability of replication EEG studies.

A core limitation of our review is the use of five databases: unlisted articles would have been

missed. As such, we may not have included the full scope of studies that used consumer-grade

EEG. We also only included articles published in English, and articles referring to their respec-

tive consumer-grade EEG device by a different name would also have been missed. Finally, we

acknowledge the limitations of a scoping review in general in not aiming to provide detailed

criticism nor inferences on charted articles. Given the high number of consumer-grade EEG

articles, this paper instead provides grounds for a future meta-analysis to subset from this wide

range, collect effect-sizes, and compare device signal quality within specific experimental

paradigms.

Conclusion

Despite being marketed for commercial purposes, we present evidence that consumer-grade

EEG devices have found considerable utility in scientific research. These devices have been

used in non-traditional research settings and applied in innovative ways. In this paper, we pro-

vide a structured review of the current state of the literature and provide some general guide-

lines for their scope of use, aggregated from a large subset of consumer-grade EEG studies.

Significant and impactful future research for consumer-grade EEG span multiple fields from

cognitive neuroscience to engineering. Consumer-grade EEG can be used for BCI research, as

well as multi-trial experimental, clinical, and validation paradigms that take advantage of the

devices’ relative portability and affordability.

From these observations, affordable and accessible neuroscientific solutions are becoming

more available to those outside of research spheres. The use of consumer-grade EEG devices is

a particularly salient issue given our increasingly technologically augmented lifestyles. Indeed,

it is not outside the realm of possibility to see EEG being used in everyday life within the next

few decades. Thus, to help inform scientists, practitioners, and the general public on the appro-

priate use of consumer-grade EEG devices, we encourage researchers to further explore the

capabilities of this technology.
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