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ABSTRACT 

 

The purpose of this research was to investigate some of the effects on teachers 

and students of positioning written calculation within a commitment to building students’ 

number sense. 

The focus on number sense took shape initially through explicit teaching of a 

strategies approach to mental computation, followed by an exploration of approaches to 

written calculation which made use of effective mental computation strategies. 

 The impetus for this research came from the following observations of many 

classrooms and a review of the available literature: 

 the dominant aspect of calculation in many schools in the primary and middle 

years of schooling (here deemed as up to Year 8 in schools in the Australian 

Capital Territory) is the teaching and using of formal written algorithms 

 for many students this emphasis works against overall facility with 

calculation and the development of number sense. 

This study investigated the following research question: 

What are some of the effects on teachers and students within a junior high school setting, 

of aligning written calculation with a strategies approach to teaching and using mental 

computation? 

Of specific interest, are there any effects related to: 

 conceptual understanding of number and operations with numbers? 

 facility with performing calculations? 

 This research used a mixed methods approach (Johnson & Onwuegbuzie, 2004) 

with the primary emphasis on case study methodology (Merriam, 1998).  The bulk of the 

data involved descriptions of comments and behaviours that occurred during classroom 

lessons, planning and review sessions, and semi-structured interviews.  This was 

augmented by a variety of student work samples, and student performance data on a 

range of calculation tasks, the analysis of which helped shape further elements of the 

case study.  Initially the aim was to document fully three separate cases, where each case 

involved a teacher and his/her Year 8 class in a program of regular weekly intervention 

lessons over one school term.  In the ACT students in Year 8 are typically 12 or 13 years 
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of age at the beginning of the school year.  At the end of the data collection phase, one 

case in particular (Class C) offered a substantially more robust context for analysis and 

became the major focus of this study. 

 Each of the three teachers and their Year 8 classes worked for approximately the 

first half of the term with weekly sessions of explicit teaching around a strategies 

approach to mental computation using the four operations and whole numbers.  Students 

were encouraged to explain, record and compare their strategies for calculating mentally.  

To varying degrees across the three cases, efficient and understood mental strategies 

were described visually and symbolically, with selected strategies extended to 

calculations which involved numbers just beyond the scope of reasonable mental 

computation.  Completion of these tasks was supported with examples of pen and paper 

strategies for recording a series of calculations done mentally.  This approach built on 

and extended earlier work by McIntosh (2002) which targeted students in Years 2 to 4 

(aged between 6 and 9 years at the beginning of the school year) and the operations of 

addition and subtraction. 

 Data were collected on: 

 teachers’ stated beliefs about and practices in this part of the mathematics 

curriculum 

 students’ performance on mental and written computational tasks 

 selected students’ approaches to choosing and using the three forms of 

calculation: mental, written and electronic 

 student and teacher behaviour during the weekly intervention sessions. 

Instruments for collecting this data included: 

 semi-structured and informal interviews with teachers and selected students 

 written tasks identifying students’ choice of computational approach and 

preferred method for doing a given calculation 

 records of lesson observations 

 written in-class tasks related to the focus of each weekly intervention. 

 Notes from the weekly intervention sessions with Class C, and the in-class tasks 

produced each week by the students from that class, became the primary sources of 

qualitative data used in this study. 
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 There were three main areas for which the data from this study provided 

demonstrable support: 

1. The importance of building conceptual understanding, illustrated most clearly 

in this study around understanding the operation of division. 

2. The value of representing mathematical concepts in multiple and meaningful 

ways; typically (but not limited to) words, objects or pictures, and 

mathematical symbols. 

3. The value of explicit teaching of mental computation for building number 

sense and improving performance with mental and written calculation. 

 This study has suggested that the teaching and use of number sense written 

methods, for a limited range of calculations with whole numbers, can contribute to 

strengthening conceptual understandings of place value and the four operations.  It has 

also demonstrated the value of further discussion about and research into the relevance, 

purpose and scope of written calculation in the school mathematics curriculum. 
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CHAPTER ONE: INTRODUCTION 

 
Few would argue against the idea that understanding numbers and reliably 

calculating with them are important outcomes for all students, certainly by the time they 

exit the compulsory years of schooling.  If not the full picture, then these things are at 

least core aspects of what we commonly understand as being numerate (Askew, 1999). 

It is a continuing national priority that all students should be numerate by the time 

they leave school (Ministerial Council on Education, Employment, Training and Youth 

Affairs, 1999; 2008).  Over ten years ago the National Numeracy Benchmarks 

(MCEETYA, 2000) were developed specifically to support schools in achieving this 

outcome. 

Along with other selected aspects of the school mathematics curriculum these 

numeracy benchmarks describe key markers of the minimum acceptable performance 

under the heading number sense for students in Years 3, 5 and 7.  As they move through 

their schooling all students in Australia are expected, among other things, to show 

progressive improvement in their understanding and application of numbers and the four 

operations of addition, subtraction, multiplication and division.  They are also expected, 

from Year 3 onwards, to become increasingly competent with mental, written and 

electronic forms of calculation. 

But how much classroom time and energy should be allocated to each form of 

calculation?  And what might the teaching and use of each form of calculation look like 

in practice at different stages of schooling? 

Number sense is not easily defined.  Nonetheless developing students’ number 

sense is becoming a priority in educational research and curriculum reform, and richer 

understandings of number sense have continued to evolve.  Teaching that emphasises the 

meaning of, and the relationships between, mathematical concepts is being recommended 

(McIntosh, Reys, Reys, Bana, & Farrell, 1997; National Council of Teachers of 

Mathematics, 2000).  There is a significant amount of literature which points to the value 

of improving students’ mental computation as a tangible way of doing this (Cockcroft, 

1982; McIntosh, 1990; McIntosh & Dole, 2004).  There is also widespread acceptance 
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that electronic forms of calculation are here to stay, with their use in schools and society 

almost certain to continue to increase (Cumming, 1999; Kalantzis & Cope, 2005). 

Some literature has highlighted that the approach to written calculation which is 

typically taught in schools does not require the same level of understanding of number or 

the four operations as does effective mental or electronic computation (McIntosh, 2002; 

Plunkett, 1979).  Others have levelled quite harsh criticism at the standard formal 

algorithms for written calculation commonly taught in schools, arguing that these formal 

written procedures actually undermine the development of number sense (Behrend, 2001; 

Kamii & Dominick, 1998). 

Over the last 15 years in Australia the various national documents influencing the 

development of school mathematics curriculum have all made reference to, and accepted 

as valid, the notion of using alternate methods to formal algorithms for written 

calculation (Australian Education Council, 1990, 1994; MCEETYA, 2000).  However 

there appears to have been little serious consideration of these frequently mentioned 

informal or non-standard written methods of computation as legitimate curriculum 

alternatives to formal algorithms (McIntosh, 2002).  The documentation that does exist 

seems to focus on the early to middle years of primary school (Behrend, 2001; Kamii & 

Dominick, 1998; McIntosh, 2002). 

 

THE RESEARCH PROBLEM 

 Plunkett (1979) gave one view of a balanced approach to calculation in schools: 

I think that the reasons for teaching the standard written algorithms are out of date, and 

that it is time we all took notice of this.  I believe there is a place for mental algorithms, 

for the use of calculators, and for ad hoc, non-standard written methods.  I think a large 

amount of time is at present wasted on attempts to teach and to learn the standard 

algorithms, and that the most common results are frustration, unhappiness and a 

deteriorating attitude to mathematics. (p.4) 

  

Since then there has been considerable evidence collected that supports this view: 

 mental computation is by far the most common approach to doing 

calculations in adult life (McIntosh & Northcote, 1999) 
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 mental computation and estimation are more important to success both in and 

beyond school than facility with formal pen and paper routines (Reys & Reys, 

2004) 

 using calculators in schools sensibly and effectively improves students’ 

confidence with mathematics and their performance with mathematical tasks 

(Groves, 2004; Sparrow & Swan, 2004) 

 formal written calculation still dominates classroom computation in the 

primary years of schooling (Sparrow & McIntosh, 2004). 

 Written methods of calculation which make use of number sense (referred to in 

this study as number sense written methods) may have several advantages for a 

mathematics curriculum that has developing students’ number sense as a priority.  These 

methods: 

 are more like how most people calculate mentally 

 make sense to the user, and so are easier to remember and review 

 use and reinforce place value and the meanings of the different operations 

 are more reliable, particularly for underperforming students (Carroll & Porter, 

1998). 

 In considering a balanced approach to teaching and using calculation in the 

classroom, several factors draw the focus of the discussion to the place and nature of 

written calculation in schools.  These factors include: 

 an apparent misalignment in nature, purpose and effect between the 

traditional formal methods of written calculation common in school 

mathematics, and effective mental and electronic calculation 

 in general a dominant emphasis on formal written computation in 

mathematics classrooms in the middle years of schooling
1
. 

 

                                                      
1 Deemed here to be years 5 to 8, with students typically between 9 and 13 years of age at the beginning of 

the school year 
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THE RESEARCH PURPOSE 

The purpose of this research was to describe some of the effects, on teachers and 

students within a junior secondary setting, of positioning written calculation within a 

commitment to improving students’ number sense. 

This focus was likely to challenge a range of cultural norms regarding the place 

of written calculation in the mathematics curriculum.  At the same time it was an 

opportunity to gain insights into ways of supporting teachers in describing and 

implementing a more balanced approach to this aspect of the curriculum. 

 

THE RESEARCH QUESTION 

This study investigated the following research question: 

What are some of the effects on teachers and students within a junior high school setting, 

of aligning written calculation with a strategies approach to teaching and using mental 

computation? 

Of specific interest, are there any effects related to: 

 conceptual understanding of number and operations with numbers? 

 facility with performing calculations? 

 

SIGNIFICANCE OF THE RESEARCH 

This research will contribute to understanding the issues around, and the impact 

of, aligning written methods of calculation with a focus on developing number sense 

through an emphasis on a strategies approach to mental computation.  It is an attempt to 

explore aspects of the coherence and balance required of a contemporary approach to 

calculation in the later part of the middle years of schooling. 

Here coherence means that the three approaches to calculation (mental, written 

and electronic) work together to reinforce key aspects of number sense, such as the 

relative size of numbers, part/whole relationships, and the nature and appropriate 

application of the four operations (McIntosh et al., 1997).  Balance refers to an 

appropriate amount of curriculum emphasis and class time allocated to each of the three 

approaches to calculation.  Ideally this balance would reflect what is now known about 

how people learn and use mathematics, and the demands and opportunities of the 
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knowledge society within which schools currently exist.  In this context balance does not 

necessarily imply equal amounts of class time and emphasis. 

 

SCOPE AND DELIMITATIONS 

There were several reasons for choosing Year 8, the second year of high school in 

the ACT, as the arena for this research: 

 Much of the literature dealing with alternative approaches to written 

calculation has focused on the early to middle primary years (Behrend, 2001; 

Clarke, 2005; McIntosh, 2002). 

 In the ACT, as in every Australian state and territory, Year 8 is bracketed by 

system assessment programs in Years 7 and 9.  This established the potential 

for additional school-initiated research with this cohort, such as differences in 

improvement rates on number assessments between students involved in this 

research and their peers currently in parallel classes.  It also removed any 

concerns from participating schools about altering the way this aspect of the 

mathematics curriculum is typically delivered. 

 Access to teachers who were willing to participate in this research was 

available. 

Chapter Two outlines a review of the available literature relevant to this research. 
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CHAPTER TWO: REVIEW OF THE LITERATURE 

 
This literature review is focused on computation: calculating with numbers.  The 

context for the review is the teaching and learning of mental, written and electronic 

approaches to computation in the middle years of schooling.  This review provides the 

context for interpreting the research that was undertaken in this study into the effects on 

teachers and students of aligning approaches to written calculation with a focus on 

developing number sense through explicit teaching of a strategies approach to mental 

computation. 

 

SETTING THE SCENE: THE COCKCROFT REPORT 

Mathematics Counts, also known as the Cockcroft Report (Cockcroft, 1982), 

documented the findings of a comprehensive three-year inquiry into the teaching of 

mathematics in primary and secondary schools in England and Wales.  The report 

addressed many things that were also relevant at that time to the teaching and learning of 

mathematics in other countries, including Australia (Stephens, 1984).  Aspects of the 

inquiry included the mathematics required for trade and tertiary education, employment 

and adult life in general, and recommendations for improving the contribution of school 

mathematics to the mathematical development of society. 

Particularly relevant to this literature review is the fact that the Cockcroft Report 

was written at a point in time that was a watershed in the use of electronic calculation, 

both in schools and in society generally.  In this regard it provides a close-to-baseline 

description of issues around, and perspectives on, teaching calculation in the electronic 

age. 

 Key themes, findings and recommendations included the following: 

 dealing effectively with the mathematical needs of adult life required “a 

feeling for number“ (p.10) that showed itself in facility with approximation, 

estimation and mental computation, and confidence in using whatever 

mathematical understandings and skills a person might have 
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 effective teaching and learning of mathematics involved understanding 

mathematical concepts and connections between them, and not just 

mechanical performance of mathematical processes 

 mental computation was central to effective calculation 

 in the workplace written calculation was rarely done the way it was taught in 

schools; longer processes that involved a series of short stages that could be 

used confidently were often preferred 

 although electronic calculators were viewed positively in those workplaces in 

which there was a lot of calculation or data analysis, the inquiry found that 

calculators were totally absent from many primary classrooms, and many 

secondary mathematics teachers actively discouraged or would not allow their 

use. 

 Collectively these points raise some fundamental questions about the school 

mathematics curriculum.  Firstly, what approaches to written computation should be 

taught in schools; and secondly, what might an appropriate balance between mental, 

electronic and written methods of computation look like in primary and secondary 

schools.  The report was adamant that changes in the mathematics curriculum were 

necessary and inevitable.  Suggested changes included: 

 explicit and extended instruction in the sensible and effective use of 

calculators 

 a reduction in the range of calculations expected to be performed by students 

with pen and paper 

 less class time spent practising and using written methods of computation. 

 Much of what the Cockcroft Report said regarding the relative emphases on 

mental, written and electronic forms of calculation in the mathematics curriculum is still 

relevant.  But what is painfully remarkable is how little impact the clear messages of that 

report appear to have had on the way calculation is taught and used in schools today 

(Sparrow & McIntosh, 2004). 
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NUMERACY AND THE MATHEMATICAL NEEDS OF ADULT LIFE 

The concept of numeracy has continued as a focus in educational, social and 

political circles, but interpretations vary.  Stephens (1984) criticised what he saw as the 

limited view of the mathematical needs of adult life in the Cockcroft Report (Cockcroft, 

1982) which led to a description of numeracy as mostly about being comfortable with 

using number in day to day contexts, and understanding information in charts, tables and 

graphs.  In reporting how the term numeracy was defined for the purposes of a specific 

research project, Askew (1999) propagated a similarly limited view by using numeracy 

to mean what others have described as elements of number sense (McIntosh et al., 1997). 

However more people are using more mathematics in more aspects of life, and 

some current understandings of numeracy reflect this.  In an attempt to capture a sense of 

the broad nature and expanding relevance of numeracy, both generally and with specific 

reference to schooling, the Australian Association of Mathematics Teachers defined 

numeracy this way: 

To be numerate is to use mathematics effectively to meet the general demands of life at 

home, in paid work, and for participation in community and civic life. 

In school education, numeracy is a fundamental component of learning, discourse and 

critique across all areas of the curriculum.  It involves the disposition to use, in context, a 

combination of: 

 underpinning mathematical concepts and skills from across the discipline (numerical, 

spatial, graphical, statistical and algebraic); 

 mathematical thinking and strategies; 

 general thinking skills; and 

 grounded appreciation of context. (AAMT, 1998) 

 

Related concepts include mathematical literacy or quantitative literacy.  Steen 

(2003) drew attention to the relatively recent impact of technology in creating a data-rich 

global society, and examples of efforts around the world to improve the contribution of 

mathematics curriculums to developing numerate citizens.  He quoted the Program for 

International Student Assessment (PISA) definition of mathematical literacy as 

the capacity to identify and understand the role that mathematics plays in the world, to 

make well-founded mathematical judgments, and to engage in mathematics in ways that 

meet the needs of an individual’s current and future life as a constructive, concerned and 

reflective citizen. (Organisation for Economic Co-operation and Development, as cited in 

Steen, 2003, p.211) 
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How this broader view of numeracy relates to the aims, content and delivery of the 

mathematics curriculum in schools is not straight-forward.  Hogan (2004) reported on 

research into connections between students’ performance on a range of mathematics 

assessments and their capacity to engage with the mathematical demands of other 

subjects across the curriculum.  This two-year project involved approximately 1100 

students in Years 5 and 7 across 18 schools in Western Australia.  He described 

components of a numeracy framework that attempts to identify the dimensions required 

to make judgments about numerate behaviour.  Such behaviour is seen as a mix of three 

types of knowledge (mathematical, contextual and strategic) and three roles (fluent 

operator, learner and critic).  Descriptions of numeracy moments from across the 

curriculum illustrated the interconnections between these dimensions and suggest that 

numeracy is far more complex than just skill with arithmetic.  Key findings included: 

 the importance of understanding contextual factors in choosing and using 

mathematics appropriately 

 the overriding significance of having the confidence to engage with 

mathematical tasks 

 the importance of teachers across all subject areas taking responsibility for 

supporting their students’ numeracy development (p.viii). 

 Richardson and McCallum (2003) discussed the place of quantitative literacy in 

the tertiary education sector, and as a corollary suggested two necessary emphases in the 

way mathematics as a subject should now be taught.  The first is a focus on developing 

conceptual understanding.  They described many students as “technically capable but 

unable to make reasonable decisions about which techniques to apply and how to apply 

them” and defined conceptual understanding as “an ability to recognize underlying 

(mathematical) concepts in a variety of different representations and applications” 

(p.101).  The second emphasis is that the teaching of mathematics must take place within 

a meaningful context within which the mathematics is significant. 

 This view resonates with that of Cumming (1999) who stressed the importance of 

learning mathematics in ways similar to how mathematics is now used in our world.  

That is, critically applying mathematics with understanding, to firstly describe and shape 

problems and then solve them using whatever helpful technology is available.  Some of 
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the required shifts in classroom practice include more opportunities for oral language, a 

focus on mathematical modelling, and an expanding use of technology.  These shifts 

align with the stated objectives for schooling in Australia in the Melbourne Declaration 

(MCEETYA, 1999). 

 The view of numeracy briefly outlined in the Cockcroft report (1982) drew 

attention to the importance of mathematics for effectively engaging with day to day life.  

More recent views of numeracy (AAMT, 1998; Hogan, 2004) reflect the increased 

complexity of day to day life, and the depth and breadth of mathematical thinking 

demanded by this complexity.  Such conceptualisations of numeracy also raise questions 

about the contribution the school mathematics curriculum could and should make 

towards developing a numerate society. 

 

TEACHING AND LEARNING MATHEMATICS 

 Many aspects of teaching and learning mathematics identified by the Cockcroft 

report (1982) are still significant.  The following sections illustrate this, with particular 

emphasis on those aspects that appear directly relevant to developing a balanced 

approach to computation in the school curriculum.  These include: 

 an evolving understanding of the nature and importance of number sense 

 the relationship between formal written calculation and number sense 

development 

 student performance with applied calculation. 

 

A move towards valuing conceptual understanding and number sense 

There has been a strong shift in stated curriculum emphases towards teaching and 

learning mathematics with understanding.  This focus on sense-making in mathematics is 

clearly articulated in the Principles and standards for school mathematics (2000) 

published by the National Council of Teachers of Mathematics in the US: 

Research has solidly established the importance of conceptual understanding in 

becoming proficient in a subject.  When students understand mathematics, they are able 

to use their knowledge flexibly.  They combine factual knowledge, procedural facility, 

and conceptual understanding in powerful ways. 

Learning the "basics" is important; however, students who memorize facts or procedures 

without understanding often are not sure when or how to use what they know.  In 

contrast, conceptual understanding enables students to deal with novel problems and 
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settings.  They can solve problems that they have not encountered before. (NCTM, 2000, 

The Learning Principle, para. 1 & 2) 

 

Contrasting recall of factual knowledge and facility with mathematical 

procedures on the one hand, with conceptual understanding on the other, brings to mind 

the seminal work of Richard Skemp (1976).  Skemp has become associated with the 

terms instrumental understanding and relational understanding, which were coined by 

one of his colleagues in an attempt to distinguish between two quite different 

interpretations of the word ‘understanding’ as it was being used in the practice and 

discussion of mathematics education at the time: 

It was brought to my attention some years ago … that there are in current use two 

meanings of this word (understanding).  These he distinguishes by calling them 

‘relational understanding’ and ‘instrumental understanding’.  By the former is meant 

what I have always meant by understanding … knowing both what to do and why.  

Instrumental understanding I would until recently not have regarded as understanding at 

all.  It is what I have in the past described as ‘rules without reasons’, without realising 

that for many pupils and their teachers the possession of such a rule, and ability to use it, 

was what they meant by ‘understanding’. (Skemp, 1976, p.2) 

 

In terms of teaching and learning about number, an emphasis on building 

conceptual understanding from Kindergarten to Year 12 would manifest itself in the 

curriculum as a foundational commitment to developing students’ number sense: 

Students with number sense naturally decompose numbers, use particular numbers as 

referents, solve problems using the relationships among operations and knowledge about 

the base-ten system, estimate a reasonable result for a problem, and have a disposition to 

make sense of numbers, problems, and results. (NCTM, 2000, Number and Operations, 

para. 3) 

 

The concept of number sense is often referred to in the literature (Markovits & 

Sowder, 1994; McIntosh, 1990).  McIntosh, Reys, Reys, Bana and Farrell (1997) defined 

number sense as: 

a propensity for and an ability to use numbers and quantitative methods as a means of 

communicating, processing and interpreting information.  It results in an expectation that 

numbers are useful and that mathematics has a certain regularity (makes sense).  (p.61) 

  

They described a number sense framework with three core dimensions: knowledge of 

and facility with numbers, knowledge of and facility with operations, and applying these 

to computational settings.  Aspects of these dimensions included: 
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 multiple representations of numbers, such as equivalences based on 

part/whole relationships 

 understanding mathematical properties (such as associativity and 

commutativity) and the relationships between the basic operations 

 interpreting a context to decide on levels of accuracy possible or required, and 

appropriate approaches to calculating an answer 

 facility with using and interpreting the results of mental, written and 

electronic methods of calculating. (McIntosh et al., 1997) 

 

Number sense and formal written calculation 

There is evidence that number sense and facility with formal written calculation 

are not the same thing.  McIntosh et al. (1997) reported on a project that involved three 

separate studies which attempted to assess the number sense of school students in 

Australia, Sweden, Taiwan and the United States.  Two studies targeted student 

performance.  One involved approximately 1100 students (in cohorts 8, 10, 12 and 14 

years old) in eight schools from Australia and the US; the other, reported separately in 

Reys and Yang (1998) involved a total of 234 students in grades 6 and 8 in Taiwan.  The 

number sense framework referred to earlier (McIntosh et al., 1997) was used to develop 

items for a written test of number sense at each age level.  A mental computation test was 

also given to students participating in the US and Australian number sense study. 

A key limitation of these studies was using pen and paper testing to assess 

students’ number sense, and the project recommended further research into the value of 

assessing number sense this way.  However a significant finding consistent across the 

age groups and countries represented was that core aspects of number sense did not 

develop as a result of facility with pen and paper calculation: 

The emphasis on developing standard written algorithms for dealing with whole 

numbers, decimals and fractions, which still pervades almost all schools at the ages 

tested, does not appear to bring with it a practical understanding of place value, an ability 

to estimate quantity or an instinctive or true feeling for the nature of decimals. (McIntosh 

et al., 1997, p.53) 

 

This was most evident in the Taiwanese study (Reys & Yang, 1998) where there 

was consistently higher performance on tasks involving written computation than on 
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parallel tasks that approached the same context from a number sense perspective.  

Detailed interviews were conducted with 17 of these students, with the group almost 

equally divided between high and medium performance on the previous written tasks.  

All students attempted to use formal written calculation as their opening strategy for 

solving number sense tasks.  Interestingly only the students with high performance on the 

written tasks had alternate solution strategies that involved aspects of number sense, but 

these were only used when prompted by the interviewer.  This suggested that the 

emphasis in the curriculum in Taiwan strongly affected students’ choice of computation 

method, leading to mechanical performance as a default, and in so doing perhaps limited 

the development of number sense for the majority of students. 

Gillies (2004) compared two methods for teaching calculating drug dosages to 

students in their first year of their nursing degree.  The author took the distinction 

between relational and instrumental understanding developed by Skemp (1976) and 

applied it to teaching calculation strategies for use in a professional setting.  Performance 

data on calculation tasks as well as interview responses were collected from 19 students.  

Seven students were taught to calculate using a problem-solving approach, the remaining 

students were taught using formula-based methods.  The aim was to compare students’ 

performance with and attitudes towards these tasks immediately at the end of, and then 

again sometime after, the teaching intervention on this topic.  The author recognised that 

the short duration of the teaching intervention (four weeks) and the small number of 

participants (n=19) limited the strength of any conclusions.  The procedural, formula-

based approach led to greater gains on short-term performance measures, but contrasts in 

affective measures (such as participants’ confidence and capacity to apply their learning 

in unfamiliar situations) raise serious questions about the long-term efficacy of teaching 

with a procedural emphasis.  Given the high-stakes nature of the workplace decisions that 

will be affected by nurses’ facility with calculation under duress this certainly warrants 

further research (Gillies, 2004). 

These studies suggest that although students might rely on formal written 

approaches to calculation (and in fact demonstrate reasonable short-term performance 

with them) these methods do not appear to contribute to developing students’ number 
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sense, central components of which are an understanding of numbers and of operations 

with them. 

 

Skill without understanding 

It is reasonable to question the relevance of conceptual understanding to the 

effective development and application of mathematical skills such as calculating with 

numbers.  Under the heading Over-explanation of processes to duller pupils, Schonell 

(1937) described one perspective on this issue: 

… what they need to know is how to get the sum right, and when they have learned the 

method so thoroughly that the possibilities of getting the particular type of sum wrong 

are only the ordinary ones due to chance, then explanations might be attempted … why 

should we burden children with unnecessary explanations in arithmetic? (p.73, quoted in 

Anghileri, 2001) 

 

Pesek and Kirshner (2002) also drew on the model of understanding described by 

Skemp (1976) when they investigated the relative effects of emphasising teaching for 

meaning (relational understanding) or for skill development (instrumental 

understanding).  The study involved two separate groups, each with three classes of Year 

5 students.  One group received five days of instrumental instruction on finding the area 

and perimeter of selected plane shapes.  Then both groups were given three days each of 

relational instruction on the same material.  The authors used performance data on 

written tasks (pre-test, post-test and a retention test given two weeks after the completion 

of instruction) in tandem with student interview data.  They found evidence that initial 

rote learning of a concept can actually interfere with later meaningful learning and 

performance.  It is worth considering the possibility of finding similar interference 

effects in other areas of the mathematics curriculum. 

Behrend (2001) provided examples of several grade 3 students misapplying 

algorithmic procedures when attempting to solve addition and subtraction tasks.  The 

rule-based strategies appeared to derail students’ previously demonstrated number sense 

and generated answers that could not possibly be correct.  A major concern was that 

these answers went unquestioned by the students.  The author cautioned against teaching 

calculation through repetition of rules.  She noted that such an emphasis interferes with 
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students’ ability to see relationships between mathematical facts and ideas, and is 

particularly disadvantageous for students with learning disabilities. 

Kamii and Dominick (1998) were even more outspoken in their criticism of 

focusing on written calculation in grades 1 to 4.  They stated that formal written 

algorithms actively undermine number sense by suspending place value and by 

promoting an unthinking approach to doing and learning mathematics.  This refers to the 

way that formal algorithms make use of the column value of the digits that compose a 

number, and not the quantity value more common to estimation and mental calculation 

(Thompson, 2004).  For example the number 237 is made up of the digits 2, 3 and 7.  The 

column value of each digit is given by their position: 2 hundreds, 3 tens, and 7 ones.  

However the quantity value of each digit is 200, 30 and 7 respectively. 

The examples above offer some support for the points made in the Cockcroft 

report (Cockcroft, 1982) on teaching and learning mathematics.  In particular they 

suggest how important understanding is to the reliable and effective performance on 

computational tasks.  They also illustrate the all too common disjunction between 

students’ facility with procedures and their understanding of mathematical concepts.  

However, Star (2005) warned against the vilification of procedural understanding, as 

some have done in attempting to align themselves with Skemp’s work on relational and 

instrumental understanding (Pimm, 2002; Skemp, 1976).  He suggested there has not 

been sufficient focus on developing an appropriate concept of procedural knowledge, and 

that this is worthy of more attention. 

As this debate goes back and forth, schools, teachers and students will continue to 

engage in various ways with teaching, learning and using three forms of calculation: 

mental, electronic, and written (AEC, 1990; MCEETYA, 2000).  It is within this context 

that tangible steps forward towards the goal of developing students’ number sense are 

most likely to occur. 

 

Mental computation and estimation 

McIntosh and Dole (2004) defined mental computation as calculating exact 

answers without using calculating devices or any recording of results.  Effective mental 

computation requires a good understanding of numbers and operations, and the ways 
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numbers can be connected through those operations; in essence, competence with mental 

calculation requires good number sense. 

 Other reasons why mental computation is important include the following: 

 it is the most common form of calculation 

 it is used when working out estimates (including when checking the 

reasonableness of answers produced by electronic calculation) 

 it is often the simplest and easiest way to do a given calculation 

 it involves active problem-solving 

 it helps develop number sense (McIntosh, 2005). 

 Research by McIntosh and Northcote (1999) involved documenting the number 

and nature of calculations done in the day to day lives of a broad cross-section of 200 

people in a 24-hour period.  The authors found that almost 85% of all calculations were 

processed mentally, and that almost 60% of all calculations only demanded an estimate 

as opposed to an exact answer. 

 Mental computation has been an explicit focus in national and local curriculum 

documents since the national statement, as have applications of mental computation to 

calculating approximations and estimates (AEC, 1990; AEC, 1994; MCEETYA, 2000).  

Sowder (1994) stated these three things (mental computation, approximation and 

estimation) “have the power to increase number sense when students are encouraged to 

seek out alternative strategies and reflect on them” (p.141).  There was evidence of this 

in the Australian and US study by McIntosh et al. (1997) where they found a connection 

between students’ performance on written number sense tasks and measures of their 

ability with mental computation, particularly with students over 12 years of age.  They 

concluded that mental computation should be part of any assessment of students’ 

mathematical ability (a point directed largely at the national testing agenda topical at that 

time) and that improving mental computation would contribute significantly to 

developing number sense. 

 To this end in 2001 to 2003, education departments in Tasmania and the ACT 

collaborated with the University of Tasmania in a project to develop a framework for 

describing and assessing students’ abilities with mental computation, along with 

resources for teachers to support the coordinated and explicit teaching of a strategies 
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approach to mental computation (McIntosh & Dole, 2004). This produced the first 

teaching resource that comprehensively addressed a strategies approach to teaching and 

assessing mental computation in schools. 

 Sowder (1994) described computational estimation as mental computation with 

approximations, with the ability to round numbers to reasonable approximations 

indicative of a good understanding of place value.  She drew attention to the 

interconnections and mutual reinforcement of aspects of number sense in the estimation 

process.  These included confidence in structuring and processing a calculation, and 

making sense of the result of a calculation. 

 Reys and Reys (2004) stated that despite curriculum references to the importance 

of estimation it is a much neglected focus in classrooms.  One reason given was that 

classroom culture typically values exact answers; this is particularly true in Asian 

countries (McIntosh et al., 1997).  The authors made clear connections between 

estimation and aspects of number sense, in particular the need to understand the relative 

magnitude of numbers and the nature of operations.  They identified the importance of 

providing improved opportunities for valuing and developing skill in estimation, and 

framed doing this as a critical challenge for contemporary curriculum: 

As use of technology such as calculators and spreadsheets continues to proliferate at 

home, in school and in the workplace, the need to estimate and recognise the 

reasonableness of results will continue to grow.  If the mathematics curriculum is to 

reflect these needs, then significant improvement in how we help students develop 

estimation is needed. (Reys & Reys, 2004, p. 110) 

  

Calculating estimates mentally, using workable approximations to exact values, 

both applies and exercises number sense.  This process reflects contemporary social 

practices, in particular the role of electronic calculation. 

 

Electronic calculators 

Electronic calculation is a widespread social reality.  It represents a distinct stage 

in the constant evolution and application of technology to the task of processing 

calculations, and has reduced the amount of time and energy that people have to put into 

this procedural aspect of doing mathematical tasks (Brinkworth, 1985).  Previous, more 

primitive technologies include the soroban, the abacus, and pen and paper (McIntosh, 



 28 

1990).  Change in the sophistication and capacity of electronic calculation appears to be 

happening at an ever increasing rate; spreadsheets such as Excel which now typically 

come with any home computer are more powerful than software used by professional 

accountants only two decades ago (Hogan, 2004). 

The sophistication of electronic technology for calculation in the classroom has 

also increased over the past twenty years.  Students now have access to simple four-

function calculators that observe the conventions for order of operations, through to 

graphics calculators and computer packages that can display their results on interactive 

whiteboards.  Cumming (1999) asserted that the “(u)se of computer technology allows a 

refocus of the emphasis in mathematics education, away from repetitious practice of the 

mundane, to application with understanding and eventually a stronger development of 

domain knowledge” (p.28). 

This sentiment has been reflected repeatedly in curriculum documents in 

Australia.  In Western Australia, the section of the curriculum framework for 

mathematics (Curriculum Council of Western Australia, 1998) around calculating with 

numbers reads very much like the national statement: 

(Students) use written approaches as a back-up for calculations they cannot store 

completely ‘in the head’ … They understand that calculators or computers are the 

sensible choice for repetitive, complex or lengthy calculations and use them efficiently, 

correctly interpreting calculator displays. (p.187) 

 

The most recent curriculum framework for ACT schools, Every chance to learn 

stated: 

Using electronic calculators is an essential aspect of understanding and applying number.  

In all bands of development, the sensible and effective use of calculators can develop 

students’ understanding of the meaning of numbers and operations and enable them to 

calculate efficiently when solving problems with real data. (ACT Department of 

Education and Training, 2007) 

 

However, there seems to be a continuing reluctance to embrace the potential of 

electronic calculators to support the development of foundational concepts in number and 

to facilitate the use of real data in problem solving, at least in middle years’ classrooms.  

White (1998, cited in Swan, 2007) referred to research in New South Wales into the 

beliefs of teachers in Years 5 and 6 towards students’ use of calculators which revealed 

significant negative attitudes towards their use.  On one item, 15% of surveyed teachers 
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stated they believed that “using calculators in class would promote laziness and 

dependence” (p.79).  On another item, 27% of respondents stated they believed that 

“using a calculator would result in students just accepting answers and not thinking” 

(p.79).  Such stated beliefs stand in stark contrast to substantial evidence to the contrary 

(Groves, 2004).  Ellington (2003) reported on a meta-analysis of 54 research studies that 

targeted the effects of calculators on students’ attitudes and achievement.  Key findings 

included that when calculators were integrated into instruction and testing, students’ 

operational and problem solving skills improved, and students who used calculators had 

better attitudes to mathematics than students who did not use calculators. 

A further example of similar positive effects from the use of calculators is 

reported by Ruthven (1998) who looked at the calculation strategies of a total of 56 year 

6 students.  One group of students had completed their primary schooling in schools that 

had participated in a several-year project where calculators were integral to learning and 

doing mathematics (post-project schools).  In these schools, students had been supported 

in developing a range of effective mental computation strategies, and were expected to 

complement their mental computation with the responsible use of calculators.  In the 

other group (non-project schools) students were in schools with a more traditional 

approach to teaching number.  This showed itself in a focus on written methods for 

calculation, and little self-regulated use of calculators by students.  Overall students in 

post-project schools made more use of mental calculation, which was hardly surprising.  

But they also made less use of calculators than students from non-project schools.  The 

author suggested this may relate to the way mental computation in post-project schools 

was seen as a necessary foundation for sensible and effective calculator use. 

There has been a huge increase in the availability, capacity and use of electronic 

calculation in society since the Cockcroft report (Cockcroft, 1982) was written.  Yet it 

appears that there has not been a commensurate change in the use of calculators in the 

classroom.  Reasons for this may relate to the traditional place of written calculation in 

the curriculum. 
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Written calculation 

 Written calculation has long had an explicit focus in the mathematics curriculum, 

and this focus has centred on the use of formal written algorithms. 

 

Algorithms in mathematics 

One definition of an algorithm is “a step-by-step method for calculating a result” 

(Bana, Marshall, & Swan, 2005, p.2).  A fuller definition has been given by Maurer 

(1998): 

An algorithm is a precise, systematic method for solving a class of problems.  An 

algorithm takes input, follows a determinate set of rules, and in a finite number of steps 

gives output that provides a conclusive answer. Determinate means that for each allowed 

input, the first action is precisely specified and, more generally, that after each action in 

the sequence the next action is precisely specified. Conclusive usually means that the 

output correctly solves the problem, but it can mean that the algorithm either solves the 

problem correctly or announces that it cannot solve it. (p.21) 

 

Algorithmic processes are a significant aspect of the broader discipline of 

mathematics, and are not limited to calculating with the four basic operations.  

Applications in discrete mathematics include graph theory, game theory, combinatorics 

and recursion (Hart, 1998).  Several examples are still visible in the senior secondary 

mathematics curriculum.  These include differential and integral calculus (developed in 

the latter part of the seventeenth century) and the fields of logic and computability, which 

underpin the expanding application of computers in society (Struik, 1987). 

But when applied inappropriately, the positive aspects of algorithms, such as their 

reliability and the written record of the specific step-by-step process that was used, can 

be lost.  Usiskin (1998) illustrated this with direct reference to the formal written 

methods commonly taught in schools for calculating with whole numbers.  Two dangers 

that are particularly relevant are that answers tend to be accepted uncritically (even if 

they do not make sense), and that written algorithms can become a default for 

calculations that are more easily and efficiently done mentally. 

 

Algorithms in school mathematics 

In Australia over the past twenty years, written calculation has continued to be 

mentioned in national mathematics curriculum documents (AEC, 1990; MCEETYA, 
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2000).  Suggested approaches to pen and paper calculation in these documents have 

included “informal written methods” (AEC, 1990, p.109; McIntosh, 2002), but in 

practice the curriculum has been dominated by an emphasis on the teaching and learning 

of standard written algorithms, particularly in primary schools (Clarke, 2005; McIntosh, 

2005). 

Plunkett (1976) identified features of the formal written algorithms still 

commonly found in the school mathematics curriculum, which made them suited to the 

cultural demands and available technology of the pre-electronic age.  These algorithms 

use symbol manipulation with relatively few steps and do not require context or an 

understanding of the process that is actually happening; they work for all numbers with 

no further choices required once the method is decided upon; and they provide a written 

record that can be easily checked and corrected.  These features of formal written 

algorithms resonate with aspects of the traditional approach to curriculum, which has 

been shaped by the cultural characteristics of early industrial societies: specified content, 

often committed to memory; a focus on transmission, with the teacher as the centre of 

classroom discourse; and standardised delivery and testing (Kalantzis & Cope, 2005).  

Issues around what is easy to test in large-scale assessments still influence the emphases 

placed on different aspects of the mathematics curriculum in Australia (Sparrow & 

McIntosh, 2004). 

The typical formal or standard written algorithms for calculating with whole 

numbers have several disadvantages which are not unrelated to those identified in the 

Cockcroft report (Cockcroft, 1982).  These include the fact that formal written algorithms 

do not reflect the way people typically think about numbers, nor are they used very often 

beyond the classroom (Clarke, 2005; Plunkett, 1979).  The latter point increases in its 

significance as more and more calculation in all areas of society is done electronically 

(Brinkworth, 1985).  That the written methods for calculation commonly used in schools 

also tolerate a suspension of understanding about numbers and operations suggests their 

place in the curriculum might be in conflict with the contemporary curriculum imperative 

of developing students’ number sense (NCTM, 2000).  The inflexibility of these formal 

approaches to written calculation clashes with the nature and demands of our 

increasingly technological society, where effective calculation across a range of 
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situations typically requires understanding and strategic thinking in crafting solutions 

appropriate to the context (Anghileri, 2006; Sparrow & Swan, 2004). 

The issue with the formal written algorithms commonly taught in schools is not 

that they are algorithms.  The issue is that these written methods may not be the best 

choice for a 21
st
 century mathematics curriculum which aims to support all students in 

developing number sense and applying it effectively beyond the mathematics classroom. 

 

Two perspectives: the process of long division 

The standard pen and paper algorithm for processing long division calculations 

has been used as evidence of the correctness of quite contrasting points of view. 

Klein and Milgram (2000) described and analysed the written algorithm for long 

division with whole numbers and stated that it was “an essential tool for understanding 

what a real number is” (p. 4).  They proposed an even stronger claim to curriculum 

relevance for all, saying that “the (long division) algorithm itself contains the initial 

exposure of topics which become crucial in the core applications of mathematics in our 

society today” (p. 1).  The authors acknowledged the call from many for electronic 

calculators to be embedded in the Kindergarten to Year12 curriculum, but argued against 

any dismissal of formal written calculation.  They claimed to represent the views of, 

among others, a growing number of mathematicians and scientists concerned about a 

perceived decline in mathematical standards in schools.  But despite the link to school 

mathematics in the title, the bulk of their paper addressed topics more in line with 

studying mathematics at university level, such as Laplace transforms and eigenvectors, 

with no discussion of the many and complex issues surrounding the mathematical 

development of all school students, not just those who will engage with mathematics at 

the tertiary level. 

Anghileri (2006) investigated the impact of five years’ implementation of the 

National Numeracy Strategy in England by analysing students’ performance on ten 

division tasks.  The National Numeracy Strategy was implemented in 1998.  One of its 

aims had been to ‘open up’ the primary mathematics curriculum to value a broader range 

of calculation strategies, including mental computation and more flexible approaches to 

written calculation.  Data on 275 Year 5 students from 1998 was compared with data on 
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substantially parallel division tasks from 308 Year 5 students in 2003.  The purpose was 

to judge the degree to which the principles promoted by the National Numeracy Strategy 

were visible in students’ solutions, and to identify any changes in students’ solutions 

over the five years of the strategy’s implementation. 

In terms of performance there was some improvement on the eight directly 

comparable tasks: in 1998 the mean = 3.14, standard deviation = 2.1; in 2003 mean = 

3.85, standard deviation = 2.2.  However a further focus of this study was the 

documentation and analysis of the division strategies used by the students.  Categories 

for written strategies for division included low level inefficient strategies, informal 

methods recorded in an unstructured way, and the traditional formal algorithm and the 

chunking algorithm.  The chunking strategy for division was explicitly listed in the 

support materials offered with the English National Numeracy Strategy where it was 

classified as an informal written method for division.  Although labelled ‘informal’ it is a 

standardized algorithm based on repeated subtraction and the quantity value of flexible 

multiples of the divisor.  It is an efficient but less used written form of calculation for 

division that builds on more intuitive notions of that operation and the quantity value of 

component calculations.   

This aspect of the study showed that there had been a shift away from the 

dominance of the traditional algorithm that was evident in 1998 towards a mix of 

traditional and informal methods, but with only marginal improvements in overall 

performance.  On its own this might appear to suggest that an emphasis on informal 

methods leads to no better performance than the traditional division algorithm.  However 

the ‘chunking’ strategy for division is the standard method for pen and paper division 

taught in the Netherlands.  At the time of the original 1998 English study, comparable 

data was gathered on 256 Dutch students from ten schools, with results significantly 

superior to those of the English students.  Anghileri (2001) suggested this difference was 

related to the nature of the written process used in each country.  The formal written 

algorithm commonly used in England requires the greatest multiple of the divisor to be 

identified for each step.  An advantage of the ‘chunking’ strategy is that it tolerates a 

range of choices of multiples of the divisor.  This allows students over time to make 

more sophisticated choices and so calculate more efficiently (by taking greater multiples 
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of the divisor and therefore fewer written steps) without changing the structure of the 

recording process (Angheliri, 2001). 

Treffers and Beishuizen (1999) placed the use of the ‘chunking’ algorithm in 

Dutch schools in context.  They described the approach to teaching mathematics in the 

Netherlands which is called Realistic Mathematics Education or RME.  The seeds of this 

approach go back to the 1970s and the work of Hans Freudenthal.  Central tenets of RME 

include starting with students’ informal strategies, structuring class activities that support 

“progressive mathematisation” (p. 33) where students move towards more sophisticated 

solution strategies but maintain understanding, and a strong emphasis on mental 

computation.  A significant advantage of this approach to developing written 

computation is its inclusivity: 

There are, of course, some pupils who will not progress beyond intermediate levels (of 

abbreviated written strategies).  However, every pupil learns to solve the long division 

problems at her/his own level, depending on personal abilities like knowledge of times 

tables and task-span capacity. (p.28) 

 

The authors also reported that although there was evidence that RME supports 

improved performance for more students, a large number of teachers still use RME 

materials, such as specially designed texts, in a more traditional manner.  This 

disjuncture between the teacher’s underlying beliefs and progressive aspects of their 

classroom practice may explain the limited gains in performance on division tasks of the 

samples of English students between 1998 and 2003 that were reported by Anghileri 

(2006). 

The differing perspectives on long division described above give shape to two 

distinct orientations towards the teaching and learning of mathematics.  One focuses on 

the perceived analytical coherence of the subject matter.  This is something typically 

perceived by people who are already to some degree expert in the field.  The other 

focuses on how to support all people in their learning of mathematics.  Both orientations 

take the subject of mathematics seriously.  But not all students in the compulsory years 

of schooling think the same way as professors of mathematics.  It is important to find 

ways of constructing the curriculum that maximise the learning of all students. 
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Connectionist teachers: the importance of making links 

Askew (1999) reported on a study into factors driving effective teaching of 

numeracy in primary schools as measured by demonstrable gains in student learning.  In 

this study, numeracy focused on aspects of understanding and using number and was 

similar to the notion of number sense as described by McIntosh et al. (1997).  Effective 

teaching in this context appeared more strongly connected to the way teaching practices 

related to and enacted teachers’ beliefs about teaching, learning and mathematics, than to 

any specific classroom practices. 

 There were three interviews and three observation sessions with each of the 18 

case study teachers, with two interviews with and observations of each of the 15 teachers 

in the validation group. Analysis of observational and interview data suggested three 

distinct but not mutually exclusive orientations towards teaching numeracy which were 

labelled: 

 transmissionist, which focused on teaching and the procedural aspects of 

mathematics 

 discovery, which focused on learning and students’ invention of their own 

understandings of mathematics 

 connectionist, where students’ methods for doing mathematics were valued, 

as were connections within and beyond the mathematics. 

 The connectionist orientation was more consistently linked with greater gains in 

student learning.  Teachers with this orientation stressed connections in the mathematics 

they taught such as between equivalent forms of numbers (for example fractions and 

percentages) and alternate representations of mathematical concepts (in symbols, words, 

pictures or concrete objects).  They also connected with their students’ approaches to 

doing mathematics.  These teachers promoted efficient and effective use of a range of 

strategies, with the choice of strategy in a particular situation being influenced by both 

the operation and the numbers involved.  The Dutch approach to teaching long division 

(Treffers & Beishuizen, 1999) is one example of developing an effective method for 

written calculation within a connectionist orientation. 

 Several aspects of the transmissionist/discovery/connectionist model make it 

relevant to the research conducted in this study, which looks at some of the effects of 
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using written methods for calculation which mirror or make use of effective mental 

computation strategies.  These written methods are labelled in the description and 

discussion of this research as number sense written methods.  Fundamental to both 

mental computation and number sense written methods is the exploitation of connections 

within and between numbers, and between operations.  The findings reported by Askew 

(1999) suggest that connecting different forms of calculation, specifically here mental 

and number-sense written forms (which themselves are about connections between 

numbers and operations) might lead to improved student performance in written 

calculation with whole numbers. 

 Adding weight to this view are corollaries involving the relatively less effective 

teaching orientations.  Transmissionist approaches frequently involved an over-emphasis 

on formal written algorithms, while discovery approaches may unreasonably subjugate 

the guided development of meaningful and efficient methods for calculation to an over-

emphasis on working everything out for one’s self (Sparrow & McIntosh, 2004). 

 

CALCULATION: LINKING WRITTEN TO MENTAL 

McIntosh (2002) reported on a Tasmanian project that focused on linking 

students’ development of written computation to competence with a strategies approach 

to mental calculation.  The rationale for the project was to explore teaching written 

calculation in a way that might promote number sense.  The project involved nine 

schools and 34 teachers over 18 months.  It was limited to students in Years 2 to 4 and 

the operations of addition and subtraction (McIntosh, 2005). 

To move students from mental computation through to understood written 

calculation the study progressed through planned stages of focused activity.  In sequence 

these stages: 

1. Strengthened students’ mental calculation for addition and subtraction with 

two-digit numbers 

2. Encouraged students to explain in writing their method for calculating (but 

only after students were comfortable and fluent in explaining their strategies 

orally; explanations needed to relate to the steps in the calculation, be 

intelligible without speculation to an outsider, and complete) 
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3. Compared, discussed and refined these written explanations (the written 

explanation of the mental method was shaped into a method for which pen 

and paper became necessary, for those numbers that were ‘too much’ for 

calculating mentally; the range of these written methods was limited, and the 

challenge was to draw out and build on the child’s thinking while helping to 

refine the recording format through suggestions or models) 

4. Used further calculations of similar difficulty to consolidate this method 

(students exercised their method over the full scope of calculations within the 

nominated range of complexity) 

5. Extended the method to more difficult calculations 

6. Consolidated the method as an understood, secure written method (McIntosh, 

2005). 

 Numerous student work samples highlighted the tension between student 

ownership of the calculation process and the practical value of their approach as a 

method of calculation.  For example, the student who attempted to calculate 53 times 24 

by first drawing 53 circles, then putting 24 tally marks in each circle, appeared to 

understand the task, but used an approach that was quite rightly considered to be 

inappropriate (McIntosh, 2005). 

 The project used criteria outlined in Campbell, Rowan and Suarez (1998) to make 

judgments about which student explanations were able to be shaped into an understood, 

secure and practical written method for calculation.  The three criteria were: 

 efficiency (is the method reasonably concise and time effective?) 

 mathematical validity (does the method yield the correct answer for the right 

reason?) 

 generalisability (could the method work across a wide range of calculations?). 

 McIntosh (2005) listed a selection of informal written approaches for addition 

and subtraction developed from students’ explanations, all of which meet the three 

criteria listed above and reflected effective mental computation strategies.  At the 

completion of the project, participating teachers were unanimous in supporting the 

teaching of a strategies approach to teaching mental computation in primary schools, and 

developing informal written calculation with children.  Reasons given for this included: 
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 the way both mental and informal written calculation exposed students’ 

mathematical thinking (and so their levels of understanding) of key number 

concepts 

 students’ improved confidence and willingness to take risks with learning 

 students’ improved understanding of place value and performance on 

arithmetic tasks. 

 However, all project teachers also stated that they believed formal written 

algorithms still needed to be taught from grade 4 onwards because of perceived 

expectations of later years of schooling (McIntosh, 2005). 

 This last point highlights the cultural inertia around the teaching of formal written 

calculation in schools.  The Cockcroft Report (Cockcroft, 1982) drew attention to the 

contrast between informal methods for written calculation commonly used in the 

workplace with understanding and confidence, and the formal written methods taught in 

schools which were rarely used in the workplace.  Despite a range of practical and 

educational concerns, formal written algorithms still occupy a substantial amount of class 

time in the primary and early secondary years of schooling. 

 The research reported in this study used a similar methodology to the study 

reported by McIntosh (2002) but extended the focus into Year 8 and across the four 

operations with whole numbers. 

 

IMPLICATIONS FOR THE SCHOOL MATHEMATICS CURRICULUM 

Times have changed 

The implications for developing a balanced approach to teaching computation as 

outlined in Cockcroft (1982) had been articulated several years earlier: 

I think that the reasons for teaching the standard written algorithms are out of date, and 

that it is time we all took notice of this.  I believe there is a place for mental algorithms, 

for the use of calculators, and for ad hoc, non-standard written methods. 

I think a large amount of time is at present wasted on attempts to teach and to learn the 

standard algorithms, and that the most common results are frustration, unhappiness and a 

deteriorating attitude to mathematics. (Plunkett, 1979, p.4) 

 

These sentiments were echoed by McIntosh et al. (1997): 

If learning these methods (standard written algorithms) does indeed cause a devaluing of 

understanding and sense-making on the part of the learner and results in only mediocre 
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levels of proficiency, one must question the use of instructional time for such limited and 

counterproductive results. (p.5) 

 

Some researchers (Thompson, 2004) and teachers (McIntosh, 2005) have 

advocated what appears to be a moderate position, suggesting the teaching of formal 

written calculation should come only after a strong platform of understanding of number 

and operations has been developed.  However others have suggested a more radical 

approach.  Regarding the teaching of formal written algorithms, Van de Walle (2005) 

stated “we no longer can afford the time required for teaching, re-teaching, and 

remediation of outmoded skills” (p.7) and cited research that showed no drop in 

performance on standardized assessments by students in the US who have not been 

taught formal written calculation methods.  Ralston (1999) suggested the extreme view 

that pencil and paper arithmetic should be completely dropped out of the school 

curriculum as it is not only redundant but actively unhelpful in a calculator age. 

The development and practice of a balanced approach to computation in primary 

and lower secondary schooling is being inhibited by an over-emphasis on formal written 

calculation, typically visible through an excessive amount of class time and assessment 

space given to the standard algorithms for performing the operations of addition, 

subtraction, multiplication and division with whole numbers.  To improve the balance, 

Sparrow and McIntosh (2004) suggested a strong focus on mental computation, a 

reframing of the nature and role of written calculation, and more emphasis on supporting 

students in making sensible computational choices. 

 

Reframing written computation 

Reframing the role of written calculation in the curriculum requires the drawing 

out of some deep-seated and largely invisible beliefs and values.  The laudable criteria 

for ‘good’ written algorithms of efficiency, validity and generalisability (Campbell et al., 

1998) need themselves to be framed within the current social, and specifically 

technological, context.  Any method for calculation should be mathematically valid.  But 

regarding generalisability, it is fair to ask the question How much is enough?  And with 

efficiency, How much is too much? 
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As Klein and Milgram (2000) stated, the long division algorithm is a concise 

process for performing this calculation with massively large whole numbers.  But who 

really needs this, now that electronic forms of calculation are so pervasive in school, 

employment and day to day life?  If written computation is limited to those calculations 

that are just outside the scope of reasonable mental computation, what does it matter if it 

takes a bit more paper to work out an answer?  People rarely use written calculation 

outside the classroom, and when they do confidence and understanding seem to matter 

much more than compactness or mathematical elegance (Cockcroft, 1982).  Even if this 

were not the case, the diminished frequency with which written computation is applied 

outside of school raises the question whether, once they leave school, people get enough 

practice with formal algorithms to keep whatever level of skill they might have had. 

Some question the continuing investment of class time and teacher energy into the 

teaching of formal written calculation (Sparrow & McIntosh, 2004). 

Number sense written methods is a label for those methods that require an 

understanding of the numbers and operations involved in a calculation.  These methods 

might grow out of approaches to solving problems that are invented or discovered by the 

student (Baek, 1998; McIntosh, 2005), but this is not a necessary requirement.  Methods 

for written calculation that require number sense are frequently non-standard or alternate 

approaches when compared to what is typically taught in schools (Carroll & Porter, 

1998; Thompson, 1999).  But despite being referred to by some as informal methods 

(Anghileri, 2006), number sense written methods typically have a recognizable and 

mathematically sound structure and are, therefore, in a different sense, quite ‘formal’ 

(Thompson, 1999; Treffers & Beishuizen, 1999). 

 As part of the evolution of the contemporary mathematics curriculum to better 

meet the needs of citizens in the 21
st
 century, the standard or formal written algorithms 

could be replaced by number sense written methods which: 

 emphasise the quantity value of the digits in the number 

 maintain the sense of the operation being processed 

 use pen and paper to record the results of calculations of partial quantity value 

that are done mentally 
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 more readily make sense to the user (Carroll & Porter, 1998; Plunkett, 1979; 

Thompson, 1999). 

 

SUMMARY AND CONCLUSION 

A workable reframing of written calculation for current times positions the use of 

number sense written methods for a limited range of calculations, namely those that are 

just outside the scope of reasonable mental computation, alongside a strong emphasis on 

mental computation and the sensible and effective use of electronic forms of calculation 

(Plunkett, 1979).  Linking the three modes of computation (mental, electronic and 

written) by the common thread of number sense increases the connectedness that appears 

to underpin better performance for more students (Askew, 1999).  The central argument 

of this chapter has been that using number sense written methods within a balanced 

approach to computation is likely to produce positive outcomes for more students by 

contributing more effectively to building and strengthening students’ number sense. 

A reframing of written computation along the lines suggested above would 

involve a major shift in many teachers’, students’ and parents’ perspectives and values.  

The research project described in the next chapter has been an attempt to gather evidence 

from the middle years of schooling that such a shift is worthwhile.  The research took a 

similar approach to that reported by McIntosh (2002) and investigated the following 

questions: 

What are some of the effects on teachers and students within a junior high school 

setting, of aligning written calculation with a strategies approach to teaching and 

using mental computation? 

Of specific interest, are there any effects related to: 

 conceptual understanding of number and operations with numbers? 

 facility with performing calculations? 

Chapter Three describes the methodology that was used in this study. 
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CHAPTER THREE: METHODOLOGY 

 
INTRODUCTION 

This chapter outlines the theoretical perspective behind the research and describes 

the methodology within which the collecting of data took place. 

This study planned to use a mixed methods approach, with the dominant 

emphasis on the qualitative methodology of case study using multiple cases.  Each case 

was to involve the teaching and learning activity within a Year 8 mathematics class 

(where typically students are 12 or 13 years old at the beginning of the school year) as 

they engaged with a series of weekly lessons that targeted mental and written calculation 

with whole numbers.  The description of each of the three cases was to be augmented by 

comparisons of quantitative measures of selected students’ performance on calculation 

tasks with whole numbers. 

Data collection and analysis would focus on: 

 records of observations of a series of weekly lessons with three Year 8 classes 

 records of discussions with the teachers of the Year 8 classes 

 student work samples produced in the observed lessons 

 student performance and choice of calculation method on a set of 11 

calculations that was administered with each class at the beginning and at the 

end of the series of weekly lessons 

 semi-structured interviews with selected students. 

 

THEORETICAL PERSPECTIVE 

The choice of methodology used in this study was influenced by the discourse 

around the characteristics and philosophical platforms underpinning quantitative and 

qualitative orientations to research in the social sciences. 

 
Traditional approaches to educational research 

The discourse around educational research commonly draws on understandings of 

quantitative and qualitative research methods (Creswell, 2005).  The differences in the 

historical orientations of these two approaches to research have led some to believe that 
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quantitative and qualitative methods are incompatible (Howe, 1985; Johnson & 

Onwuegbuzie, 2004). 

Quantitative methods purists tend to align social research with a particular 

construction of scientific research known as positivism.  Characteristics of a positivist 

perspective include: 

 a belief that science is objective in its descriptions and conclusions 

 a focus on cause and effect and generalizations about these 

 a separation of the observer and that which is being observed 

 discourses involving notions of reliability and validity (Johnson & 

Onwuegbuzie, 2004). 

With quantitative research in education the influence of this view of science shows itself 

through a strong emphasis on the collection and statistical analysis of numerical data 

(Creswell, 2005). 

Qualitative research methods reflect different perspectives and priorities to those 

outlined above: 

The key philosophical assumption … upon which all types of qualitative research are 

based is the view that reality is constructed by individuals interacting with their social 

worlds.  Qualitative researchers are interested in understanding the meaning people have 

constructed, that is, how they make sense of their world and the experiences they have in 

the world. (Merriam, 1998) 

 

Purists within this research tradition accept value judgments as inherent parts of 

the research process and see reality as a situated construct, rejecting the idea of 

generalisations without context.  They see the observer and observed as intimately 

connected, and strive for trustworthiness and usefulness in research findings.  Qualitative 

research usually involves rich and detailed descriptive accounts (Johnson & 

Onwuegbuzie, 2004; Merriam, 1998; Robson, 2002). 

Extreme expressions of both approaches to research have their critics.  Though 

popular, the positivist construction of science is contestable.  Chalmers (1982) noted the 

trend throughout the 20
th

 century for proponents of various bodies of knowledge to 

describe themselves as ‘scientific’ in an attempt to gain some sense of elevated status.  

The motivation for doing this is related to how people commonly, but mistakenly, 

perceive the physical sciences as dealing solely with objective, proven knowledge, 
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gained through rigorous experimental processes using only testable sensory perception 

(p.1).  Chalmers refuted this common view of science, drawing attention to the theory 

laden-ness of observation, whereby the description of all observation inherently involves 

some theory.  This imbues all observation with an essential subjectivity that the positivist 

view of science seeks to, but cannot possibly, avoid.  Howe (1985) discussed the 

continuing impact of positivist values on the perceived superior status of quantitative 

methods in educational research.  He argued that the implied sense of objectivity and 

value-free observation, present in some versions of quantitative research in education that 

allegedly leads to proven ‘facts’, is as untenable in that setting as it is in strict positivist 

views of science.  He added this warning: “… employing the fact-value distinction to 

avoid value bias instead exacerbates the danger of bias by cloaking value judgments with 

names such as ‘objectivity’, ‘truth’ and ‘science’” (p.10). 

Extreme relativism has its own difficulties.  Accepting that a person’s beliefs, 

values and interpretations shape what that person takes to be real does not imply that 

their construction is an equally valid representation of the world as any other.  It is hard 

to argue against the notion of a common base of existence which is independent of our 

perceptions and constructions of reality (Robson, 2002). 

 

Mixed methods research and critical realism 

Strict representations of qualitative and quantitative methodologies do not seem 

adequate as tools for representing the social and tangible worlds we deal with on a daily 

basis.  Johnson and Onwuegbuzie (2004) questioned the theoretical perspectives that 

underpin this rigid dichotomisation of research methodologies.  They suggested that 

combining those aspects from both traditions which appear likely to address specific 

contexts to best effect, facilitates better quality research than either quantitative or 

qualitative approaches on their own.  They labelled this approach mixed methods 

research, and defined it as “the class of research where the researcher mixes or combines 

quantitative and qualitative research techniques, methods, approaches, concepts or 

language into a single study” (p.17). 

This weaving together of quantitative and qualitative research contrasts with the 

false opposition between the two traditions that was described and rejected by Howe 
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(1985), who claimed the two paradigms have more in common in practice than their 

theoretical positions might suggest.  However, this philosophical antagonism continues 

to influence the focus and approach of contemporary educational research.  There still 

exists a sense, in some influential quarters, that quantitative methods are superior to other 

research approaches.  This situation is lamented by Meier (2007): 

The (US) federal government defines research only as the experimental design …  

(But) what makes for an educated and successful citizen is not always easily 

quantifiable, and definitions vary.  Therefore, the narrow type of research the 

government allows also restricts what types of questions even get asked by the 

research. (p.3) 

 

Robson (2002) provided an alternate construction of scientific inquiry that 

diffuses the traditional criticisms of qualitative research as being ‘unscientific’.  He 

described a scientific approach to conducting social research as research that is done 

“systematically, sceptically and ethically” (p.18).  This reframing of what makes research 

scientific underpins what Robson described as real world research, for which he argued 

a realist perspective provides an adequate philosophical basis for meaningful and 

productive research (p.29).  In a realist explanation of social phenomena, the outcome of 

an action is produced by a mechanism which is nested within a context.  The work of a 

researcher is to craft opportunities to activate, engage with and describe such 

mechanisms, and identify and reduce the effect of factors that interfere with the operation 

of the mechanism being studied.  This requires the researcher to be familiar with the 

context within which the research takes place, and that he or she cautiously but actively 

engages with the context and the operation of the mechanism. 

 

Case study methodology 

 Merriam (1998) stated that “(a) case study design is employed to gain an in-depth 

understanding of the situation and meaning for those involved” (p.19).   When 

considering what constitutes a case for the purposes of research she suggested that it is 

essential to be able to define boundaries that effectively demarcate the case to be studied: 

I can “fence in” what I am going to study.  The case then, could be a person such as a 

student, a teacher, a principal; a program; a group such as a class, a school, a community; 

a specific policy; and so on. (p.27) 
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Creswell (2005) identifies several types of case study: 

 the intrinsic case is something that is interesting in its own right, perhaps 

because it is unusual 

 the instrumental case is an instance that may serve to illustrate a particular 

issue 

 a collective case study involves the description of several cases, aspects of 

which can then be compared. 

 Regardless of the category of case study it is likely that a range of data sources 

will be used to provide a rich picture of the case(s) in question.  The researcher acts as 

the primary medium for data collection, either in the selection or the recording of the 

various aspects of the descriptions that aim to capture the specifics of the case(s).  These 

descriptions are distilled into themes from which the researcher makes interpretations 

about what was learned from the case(s).  The researcher is necessarily embedded in the 

research to a greater or lesser degree, which presents both challenges and opportunities 

(Creswell, 2005; Merriam, 1998; Robson, 2002). 

 

Validity, reliability and the trustworthiness of results 

Robson (2002) stated that validity in research relates to conceptualisations of 

being accurate, correct or true (p.170) , while reliability in research relates to the degree 

to which “the [research] tool or instrument produces consistent results” (p.176).  He 

acknowledged that notions of validity and reliability have often been interpreted and 

expressed differently in quantitative and qualitative methodologies.  This situation is 

explained, at least in part, by the disparity in the fundamental ontological assumptions in 

each camp: 

One of the assumptions underlying qualitative research is that reality is holistic, 

multidimensional, and ever-changing; it is not a single, fixed, objective phenomenon 

waiting to be discovered, observed and measured as in quantitative research.  Assessing 

the isomorphism between data collected and the ‘reality’ from which they were derived 

is thus an inappropriate determinate of validity. (Merriam, 1998; p.202) 

However, Robson urged qualitative researchers not to replace these terms, which 

are well-established in the culture and discourse around research methodology, with 

others like ‘credibility’ or ‘dependability’: 

The problem is not so much with the apple-pie desirability of doing reliable and valid 

research, but the fact that these terms have been operationalised so rigidly in fixed design 
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quantitative research.  An answer is to find alternative ways of operationalising them that 

are appropriate to the conditions and circumstances of flexible, qualitative enquiry. 

(p.170) 

 

Robson (2002) described some of the characteristics of rigorous research conducted by 

case study: 

 the specific case that is the focus of the research is clearly defined 

 it involves empirical research, often using multiple sources of evidence with 

an emphasis on qualitative data 

 an understanding of the context within which the case is situated is seen as 

vital. 

 

Role of the researcher 

 In this study the role of the researcher was intended to be somewhere between an 

observer/participant and a participant/observer.  Merriam (1998) described the nature of 

the first of these roles as “(t)he researcher’s observer activities are known to the group; 

participation in the group is definitely secondary to the role of information gatherer” 

(p.101).  This description is a reasonable fit for the researcher’s relationship to the 

students in this study, whereas his relationship to the teachers included additional 

elements of direction and coaching that were in line with the researcher’s professional 

context within which the research took place. 

 

Mixed methods research and this study 

 The use of a mixed methods design for this study was prompted by the seminal 

discussion by Skemp (1976) who popularised the terms instrumental understanding and 

relational understanding in mathematics education.  He paraphrased instrumental 

understanding as “rules without reasons”, which involves learning what to do without 

necessarily knowing what is happening or why it works.  This may at times appear to 

support acceptable performance on mathematical tasks.  However, Skemp suggested that 

it is vital, for the genuine learning and effective application of mathematics, to also 

include an adequate emphasis on the conceptual basis of the mathematics being learned 

or used (relational understanding). 
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 The mix of qualitative and quantitative approaches used in this study was crafted 

to provide, in a manageable way, a basis for understanding the different layers of the 

classroom context that related to the research question.  These aspects were deemed to 

include the teachers’ and students’ levels of conceptual understanding of whole numbers 

and operations with numbers, which were taken as indicators of participants’ relational 

understanding, and students’ facility with calculations done mentally and with pen and 

paper.  Reliably performing calculations correctly does matter, but levels of conceptual 

understanding may not be directly evident in the correctness or otherwise of the answers 

to computational tasks.  The correct answer to a calculation may only indicate a 

satisfactory level of instrumental understanding.  Some indication of a student’s 

conceptual development is more likely to be evident in a description of the process he or 

she used to calculate a response (McIntosh, 2005).   Targeting descriptions of how 

calculations were performed was considered to be an appropriate orientation for 

exploring any effects on learning and performance of promoting curriculum approaches 

that required greater amounts of relational understanding than are usually evident in this 

topic (Clarke, 2005). 

 

DATA COLLECTION: STRATEGIES AND PURPOSES 

It was planned that multiple sources of data would be explored.  For teachers, the 

planned sources of data included: 

 semi-structured interviews 

 records of interactions with the researcher 

 records of classroom observations. 

For students, the planned sources of data included: 

 an initial and repeat aural assessment of mental computation performance 

 an initial and repeat written task 

 semi-structured interviews with up to six selected students (two from each 

class) 

 records of classroom observations 

 selected samples of students’ work. 
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 It was anticipated that the repeat assessments for the mental computation and 

written tasks would use the same instrument as for the initial assessment in each case.  

This was to facilitate direct comparison of the results of the respective initial and repeat 

assessments. 

 

PURPOSE AND NATURE OF THE WEEKLY INTERVENTION SESSIONS  

Overview of the intervention 

 The initial intention around the purpose and nature of the program of weekly 

interventions was that teachers would collaborate with the researcher to: 

 use the data from the initial mental computation assessment to identify 

strengths and likely gaps in students’ understandings of number 

 identify priorities for explicit teaching of mental computation strategies to 

build on these strengths and target identified gaps 

 spend at least 30 minutes class time per week for eight weeks on explicitly 

sharing and developing mental computation strategies with their students 

 in weeks five to eight of this mental computation focus, explore number-sense 

written methods for extending or applying the mental computation strategies 

that had been used in class. 

 

Number sense written methods 

 In this context, number sense written methods were written methods for 

calculation which included the following characteristics: 

 the digits within a multi-digit number maintained their quantity value 

(Thompson, 1999) 

 pen (or pencil) and paper were used to keep track of the stages of multi-staged 

applications of effective and efficient mental computation strategies (as 

described in McIntosh & Dole, 2004) 

 the person using the method could explain what was happening at each stage 

of the calculation in terms of the original numbers and operation. 

All students would be explicitly taught some number-sense written methods.  Alternate 

effective and efficient written approaches that might be suggested by students would be 
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shared within the class and promoted as valid and worthwhile examples of this approach 

to written calculation. 

 

Coverage and depth of treatment 

The focus of the intervention was limited to the four operations (addition, 

subtraction, multiplication and division) with whole numbers.  The degree of 

computational complexity that was to be targeted and some suggested strategies are 

outlined in Appendix A.  Teachers would be free to extend these methods to numbers 

with more digits than described in the tables. 

 

Mental computation assessment instrument 

 The instrument that was chosen to collect data on students’ performance with 

mental computation tasks is in Appendix B.  This instrument had been developed by the 

researcher several years earlier in collaboration with several teachers at School C.  At the 

time of this study, the instrument had been in use for three years as a way of grouping 

students in Years 7 and 8 for targeted number sense sessions each week, and was deemed 

useful for that purpose. 

 

Developing the items for the student written task 

Plunkett (1979) described one view of an appropriate and reasonable set of 

expectations for calculating with the four basic operations [addition, subtraction, 

multiplication and division] at a time when electronic calculators had started to become 

readily available. 

Table 3.1 is adapted from Plunkett’s “spectrum of calculations” (Plunkett, 1979) 

and represents the platform from which the items used in the student written task in this 

study were developed. 
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Table 3.1. “Spectrum of calculations” adapted from Plunkett (1979). 

 

Red Orange Yellow Green Blue 

 

Basic addition 

and 

multiplication 

facts and 

inverses, up to 

10 + 10 and 10 

x 10 

 

One-step mental 

processing, using 

basic facts 

combined with 

powers of 10 

 

Two step mental 

processing; 

aim is for all 

students to have 

this facility by 

exit Year 10 

 

 

Not expected to be 

done mentally but 

do-able by 

extending mental 

computation 

strategies with 

some, perhaps 

idiosyncratic, 

written support 

 

 

In the past usually 

done with standard 

written algorithms; 

now most people 

would use some 

form of electronic 

calculation 

Basic number 

facts 

Mental 

computation 

(1 step) 

Mental 

computation 

(2 step) 

Written or 

electronic 

calculation 

 

Electronic 

calculation 

5 + 9 

13 – 8 

4 x 7 

35 ÷ 5 

135 + 100 

85 – 20 

5 x 30 

90 ÷ 3 

139 + 28 

83 – 26 

17 x 3 

72 ÷ 4 

592 + 276 

592 – 276 

931 x 8 

693 ÷ 7 

3964 + 7123 + 4918       

+ 5960 

931 x 768 

8391 ÷ 57 

 

 

Table 3.2 contains the 20 items that were in the initial draft of the written task.  

Some items had been selected from the mental computation assessment tool (Appendix 

B).  This was to allow for the possibility of comparisons in performance on the same 

item between encountering it as a mental calculation only (as on the mental computation 

assessment) and when written support was available (as on the written task in this study). 

The column headed MC link gives the reference of the item on the mental computation 

assessment tool. 

All items were indicative of either the yellow or green columns in Table 3.1.  
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Table 3.2. Items in the initial draft of the written task. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Several repeat items were considered.  These items had a similar structure but 

with different numbers (such as 26 x 7 and 43 x 5) and were designed to provide 

opportunities for confirmatory results within an individual student’s response.  However 

having a total of 20 items was eventually considered unwieldy and likely to work against 

getting a reliable attempt from students on all items.  Table 3.3 gives the final 11 items 

that were selected from the initial draft. 

item answer MC link spectrum 

27 + 25 52 B.1./D4 yellow 

92 – 34 58 B.1./D3 yellow 

105 – 26 79 B.1./D5 yellow 

107 + 51 158  yellow 

264 – 99 165 B.1./D6 yellow 

68 + 44 112  yellow 

700 + 283 983  yellow 

26 x 7 182 B.2./D4 yellow 

43 x 5 215  yellow 

92 ÷ 4 23 B.2./D5 yellow 

256 + 68 324  green 

585 + 337 922  green 

631 – 54  577  green 

620 – 466  154  green 

143 x 6 858  green 

4 x 729 2916  green 

34 x 31 1054  green 

53 x 28 1484  green 

378 ÷ 7 54  green 

1062 ÷ 9 118  green 
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Table 3.3. Items in the final draft of the written task. 

number item answer MC link spectrum 

1 68 + 44 112  yellow 

2 92 – 34 58 B.1/D3 yellow 

3 264 – 99 165 B.1/D6 yellow 

4 700 + 283 983  yellow 

5 26 x 7 182 B.2/D4 yellow 

6 92 ÷ 4 23 B.2/D5 yellow 

7 256 + 68 324  green 

8 631 – 54 577  green 

9 143 x 6 858  green 

10 1062 ÷ 9 118  green 

11 53 x 28 1484  green 

 

The student written task, which contained the same items and format in the initial and 

repeat administrations of the instrument, is in Appendix C. 

 On the written task students would be asked to indicate several things: 

 their answer to the calculation 

 how they worked out their answer 

 whether they calculated an answer mentally, using pen (or pencil) and paper, 

or if they would need to use a calculator. 

An ‘explanation’ was some written description or indication of the strategy or method 

that the student used to calculate the answer.  For example, when mentally adding 68 and 

44, an explanation might be given: 

 as if explaining the process verbally: 

“I knew that 60 + 40 was 100 so then I just had to add 4 and 8 which 

is 12 and added both answers together” 

 in arithmetic notation: 

60 + 40 = 100 

8 + 4 = 12 

100 + 12 = 112 
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In order to familiarise students with what was being asked of them on the 11-item 

written task, students in all classes were given a brief task with three items (different to 

any of those on the 11-item task) and talked through the response process by the 

researcher.  Once the students in each class had clarified the expectations around the task 

they were given the 11-item written task. 

 

CONTEXT FOR THE RESEARCH 

The schools 

The three schools involved in this study are all government high schools in the 

ACT.  In the ACT system ‘high school’ typically caters for Years 7 through to 10, with 

Year 11 and 12 students attending separate senior colleges.  Some ACT government high 

schools have nominal connections to a neighbouring primary school and together see 

themselves as Kindergarten to Year 10 (or Preschool to Year 10) schools. 

School A had been classified as a P to 10 school for several years, with separate 

primary and high school campuses which were separated physically by a school oval.  At 

the time of this study the student population in Years 7 to 10 was 374.  The high school 

was structured around a middle years program for Years 7 and 8, and a separate senior 

school program for Years 9 and 10. 

There were separate staff rooms for the bulk of the teachers in the respective 

programs.  Teachers typically had a subject-specific connection to their classes; that is a 

teacher was seen as a mathematics teacher, or an English teacher and so on.  Because of 

shortages in the availability of trained and qualified teaching personnel it had become 

increasingly the case that teachers at this school taught classes in both the middle years 

and senior programs, and at times classes outside of their area of formal training. 

At the time of this study School B was in the process of becoming a P to 10 

school with a combined population of 718 students.  The high school component 

formally amalgamated with the adjacent primary school campus.  It was anticipated that 

the Year 6 cohort would in future be housed on the high school campus as part of a 

middle years program involving Years 6 to 8.  This would be a major shift in the culture 

on the high school campus which had previously been structured around four discrete 
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sub-schools, one for each year group in Years 7 to 10.  On this sub-school model a group 

of teachers stayed with a given cohort as those students progressed through their four 

years at high school.  These teachers had the continuing responsibility for providing the 

academic and social programs for their year group, and for meeting their students’ 

welfare and behaviour management needs. 

School C was a 7 to 10 high school with a student population of 626.  The junior 

program (Years 7 and 8) and senior program (Years 9 and 10) ran on separate timetables, 

such that breaks for recess and lunch were staggered.  Teachers were typically attached 

to one of three curriculum banks, each of which had responsibility for several learning 

areas.  The curriculum bank responsible for the teaching of mathematics was also 

responsible for the teaching of science and health/physical education. 

There were three staff rooms for teachers, one for each of the three curriculum 

banks.  These staff rooms housed the teachers from that curriculum bank for both the 

junior and senior programs. 

 

The teaching of mathematics 

The three schools all had a history of poor performance on the numeracy 

instruments used for collecting population performance data in Years 7 and 9.  Culturally 

‘poor performance’ is seen as having numeracy results that are significantly below the 

system mean on the ACT Assessment Program (ACTAP).  ACTAP was superseded by 

the National Assessment Program in Literacy and Numeracy (NAPLAN) in 2008. 

All schools had few if any teachers who had mathematics as the focus of their 

teacher training.  Of these some teachers were in the first few years of their teaching 

careers.  It was not uncommon for the teaching of mathematics to be assigned to teachers 

with training in science.  However School C had a high proportion of teachers of 

mathematics who had physical education as the focus of their pre-service teacher 

education. 

These two factors (chronic underperformance on population tests, and the need 

for building expertise in the teaching of mathematics in high schools) were the impetus 

for the initiative which established the context for the researcher’s professional 

connection with the three schools.  The researcher had been employed by a consortium of 
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government high schools (which included Schools A, B and C) to work with teachers to 

improve the teaching and learning of mathematics in each school.  This initiative was 

self-funded by the participating schools and had started two years before the research in 

this study. 

At the time this study was conducted the ACT school system had just completed 

a curriculum renewal process and was in its first year of implementing the new 

curriculum framework Every chance to learn (ACT DET, 2008).  In this document the 

development of number sense (through mental computation in particular) is listed as an 

explicit curriculum priority in the middle years of schooling.  At that time the three 

schools in this study were at different points of engagement with this agenda around 

developing number sense. 

Of the three schools, School C had the most cultural and curriculum capital 

targeting number sense development.  It was into its third year of using the results of a 

mental computation assessment of all junior classes as the basis for flexible groupings of 

students for weekly targeted support to address gaps in foundational understandings in 

number.  A strategies approach to mental computation had been embedded in the Year 7 

and 8 curriculum and although it was a long way from being fully developed and totally 

consistent, it was a recognisable aspect of classroom practice in the middle years 

program.  This model for supporting students with gaps in their understanding 

intentionally served a concurrent purpose.  Through regular weekly collaborative 

planning and debriefing sessions it connected the more experienced support teachers with 

the many classroom teachers who had limited experience of teaching mathematics.  

These sessions provided a focused and on-going arena for expanding content-

pedagogical knowledge in mathematics and improving general classroom practices. 

School B had a commitment to an on-line program called Mathletics.  This 

program provides a range of mathematical tasks with which students can engage, 

including calculation tasks.  The program was used to varying degrees in mathematics 

classes throughout the school but not linked to any articulated program of explicit 

teaching of a strategies approach to mental computation. 

School A had previously made some attempts to learn about and adapt the 

approach being developed at School C.  However efforts were generally confined to a 
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couple of teachers who had a stronger interest in this approach, and the implementation 

of an adapted model had been sporadic.  Some teachers in School A had been involved in 

trailing Mathletics but appeared to do so somewhat independently of any classroom 

instruction on mental computation. 

 

The classes 

All classes were in Year 8 which is the second year of high school in ACT 

schools.  Classes A (n = 29) and C (n = 25) had not been streamed; that is, allocated 

according to results or perceived ability.  Both had roughly equal proportions of male and 

female students although there was some variation in the nominal composition of each 

class over the term.  Class C had less session to session variation in student attendance 

than Class A.  Class B (n = 15) was streamed and was comprised of students considered 

as typically underperforming in mathematics.  It nominally had almost three times as 

many male students as female but attendance varied considerably from lesson to lesson.  

A high proportion of students appeared to have significant difficulties in maintaining 

compliant and on-task behaviour. 

 

The teachers 

Prior to this study the researcher had an established professional connection with 

each school around the teaching and learning of mathematics.  The principals of the three 

schools saw the participation of one of their teachers in this research as useful 

professional development for those teachers.  The involvement in the research was seen 

to align with the aims of the researcher’s professional context as a curriculum deputy in 

each school. 

Each of the three teachers in this study participated in the research voluntarily.  

They saw their involvement as both purposeful in terms of a teaching focus for their 

respective classes and valuable as a professional learning opportunity for themselves as 

teachers of mathematics.  Teacher A was trained as a high school mathematics teacher.  

He was in his first year of teaching.  Teacher B was an experienced teacher whose 

training had been in teaching science.  She had been at the school for more than five 
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years and had regularly taught mathematics classes during that time.  Teacher C was 

trained in physical education and was in her third year of teaching. 

The bulk of the data collection for the study took place during term two 2008, 

with most of the data relating to a structured weekly intervention of up to eight weeks 

with each class.  The weekly intervention focused initially on strengthening students’ 

mental computation, then on approaches to written calculation that are structurally 

parallel to, and make use of, efficient strategies for mental computation.  Examples of 

these written strategies have been documented by Thompson (1999) and Carroll and 

Porter (1998).  Workable written strategies that arose from students’ explanations of their 

own approaches were valued as in the study by McIntosh (2002).  The specific nature of 

the implementation of the intervention varied across the three schools.  In each case it 

was planned collaboratively by the teacher and the researcher week to week, and 

reflected the opportunities available with each group of students. 

 

 

IMPLEMENTATION OF THE INTERVENTION PROGRAM 

Preliminary sessions 

In Term One, 2008, the researcher had discussed with each teacher the purpose of 

the research, the nature and structure of the planned intervention sessions, and their likely 

levels of involvement.  Each teacher had been given a brief outline of the intervention 

and some background material on number sense in general, and written calculation from 

a number sense perspective. 

 

Planning sessions 

The series of intervention sessions took place in Term Two, 2008.  Each 

intervention session was preceded by a planning session involving the classroom teacher 

and the researcher.  On a few occasions this was done through email, but mostly the 

planning sessions were face to face. 

The duration of these planning sessions varied from ten to fifteen minutes to over 

an hour, depending on the time available to, and the interest of, the participating teacher.  

As well as planning related to the next classroom intervention session there was frequent 
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discussion around related ideas and issues, such as other aspects of the mathematics 

curriculum, the role of conceptual understanding in learning mathematics in general, and 

managing student behaviour. 

 

Classroom sessions 

The duration of the weekly classroom intervention varied.  At times the 

intervention was as brief as 15 minutes of effective time, due on occasion to interruptions 

from outside the classroom (such as visits by teachers or students to complete an 

administrative task) or as a result of chronic off-task behaviour from students within the 

class.  Other intervention sessions occupied the bulk of the class time (up to 50 minutes) 

as the teacher ran with the students’ engagement with the intervention material. 

 

Differences between schools 

The three schools varied in their depth of engagement with the intended 

intervention. Class C followed the intended sequence more closely than Classes A and B.  

However, all three teachers provided the researcher with valuable insights into their 

beliefs about teaching mathematics, and in particular their thinking about the practice and 

the teaching of calculation.  Collectively the three teachers gave the researcher the range 

of professional backgrounds and dispositions towards being a teacher (and a learner) of 

mathematics that had been hoped for. 

The characteristics of each class impacted on their capacity to engage with the 

intervention.  Throughout the intervention the behaviour of students in Class A was 

typically unsettled.  The regular disruptive behaviour of several students prevented 

extended presentations by the teacher.  Some quieter passive students would regularly go 

through a lesson with what appeared to be little time on task.  These students were not 

used to explaining their thinking around solving a mathematical task.  They had limited 

experience with mental computation. 

Class B was a group of students with high needs.  Attendance, staying seated and 

maintaining time on classroom tasks were all a challenge for the majority of this class.  

This impacted negatively on the capacity of less disruptive students to engage with the 

intended learning experiences. 
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Class C was a very settled group of students.  There were few disruptions from 

within the class.  These students were used to explaining their thinking around solving a 

mathematical task.  They had experience with mental computation in particular and were 

comfortable with explaining the strategies they used for processing calculations. 

 

SUMMARY 

 In crafting the approaches to collecting data in this study it was believed that 

quantitative data on student performance with a range of computational tasks typical of 

the Year 8 mathematics curriculum would provide pivot points for discussions with 

participants, and serve as doorways into teachers’ and selected students’ thinking about 

this aspect of the curriculum.  Complementary qualitative data sources which Burns 

(2000) identified with case study methodology included: 

 teacher surveys and interviews 

 student work samples which illustrated choice and explanation of 

computational approach 

 audio recordings of interviews with selected students 

 records of observations of teachers and students. 

It was expected that together, these approaches would provide complementary vantage 

points from which to derive answers to the fundamental research questions for this study. 

 Chapter Four contains descriptions of aspects of the series of eight intervention 

sessions with Class C, based on the researcher’s field notes, records of discussions with 

Teacher C, and the in-class tasks that were completed by students in these sessions. 
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CHAPTER FOUR: CLASSROOM OBSERVATIONS AND STUDENT 

WORK SAMPLES 

 

This chapter contains descriptions of aspects of the series of eight intervention 

sessions with Class C.  Field notes of observations from these eight sessions, together 

with records of the discussions with Teacher C and the in-class tasks that were completed 

by students in these sessions, all constituted important sources of data in this study. 

 These sources of data were always intended to be part of the overall data 

collection, but as this study progressed their position changed from being incidental to 

pivotal.  This shift reflected several aspects of qualitative research, in particular case 

study methodology, described by Merriam (1998), and reflects the following: 

 the design of a qualitative study is somewhat flexible; it can respond to 

changing or emerging conditions to best capture the relevant parts of a 

situation 

 the sample in the study may well be small and its selection purposeful 

 the object of the study, the case, is an involved but bounded system. 

 The research question for this study was: 

What are some of the effects on teachers and students within a junior high school setting, 

of aligning written calculation with a strategies approach to teaching and using mental 

computation? 

Of specific interest, are there any effects related to: 

 conceptual understanding of number and operations with numbers? 

 facility with performing calculations? 

Extended discussions of selected elements of the descriptions of the intervention sessions 

which are relevant to addressing this research question occur in several places throughout 

this chapter. 

 

WORKING WITH TEACHER C 

Background 

 The intention in this study was to implement a program of eight weekly 

interventions, during which Teacher C would collaborate with the researcher to: 
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 identify priorities for the explicit teaching of mental computation strategies 

which built on students’ strengths and targeted identified gaps 

 spend at least 30 minutes class time per week for eight weeks on explicitly 

teaching, sharing and developing mental computation strategies with their 

students 

 in weeks five to eight of this mental computation focus explore number-sense 

written methods for extending or applying the mental computation strategies 

that had been used in class. 

 Prior to the program of intervention sessions there had been some discussion 

between the researcher and Teacher C about the mental computation performance of 

students in this class, based on existing data generated by the school’s use of the mental 

computation assessment instrument (Appendix B).  The researcher also visited Class C in 

the term before the research intervention to observe the class informally and establish a 

connection with the group.  Such class observations and discussions were a natural part 

of the researcher’s professional context in that school. 

 Over the course of the classroom interventions several planning discussions with 

Teacher C drew on existing data on students’ mental computation performance as 

determined by responses to the mental computation assessment instrument.  Assessing 

students’ performance with the items in this instrument was routine practice with all Year 

7 and Year 8 classes at this school. The data were typically put to several purposes which 

included establishing flexible groupings for weekly targeted support sessions for students 

identified on this instrument as having gaps in their understandings of foundational 

aspects of number.  A Learning Assistance (LA) teacher was assigned to each class to 

develop and implement 30 minute support sessions each week to address the needs of 

selected students as identified from the mental computation data.  The LA teacher would 

gather further evidence of learning through selected work samples from, or recorded 

anecdotes about, students in their group.  The constitution of the weekly groups varied 

according to the relative strengths and areas of concern in the various aspects of mental 

computation (such as addition and subtraction of whole numbers, or benchmark 

fractions) assessed by the instrument, and in response to the complementary sources of 

evidence of learning collected each week by the LA teacher. 
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 A concurrent purpose of the weekly LA intervention was to support the many 

classroom teachers who were teaching mathematics without a strong background in the 

subject.  At this school most junior mathematics classes (Years 7 and 8) had teachers 

whose major teaching area was not mathematics.  Some teachers had undertaken no 

study of mathematics or mathematics teaching in their tertiary education. 

 Teacher C had experience as a LA teacher on this model.  She was chosen for that 

role because she was committed to building students’ number sense.  Despite having 

only a couple of years of teaching experience and limited training in teaching 

mathematics, Teacher C was a relaxed, confident and effective classroom teacher who 

saw the value to students’ learning of targeting mental computation as a curriculum area.  

One consistent priority in her mathematics classes was an expectation that, as well as 

giving the answer to a question, students would also explain how they arrived at their 

answer.  This included but was certainly not limited to questions requiring calculating 

with numbers. 

 

In-class tasks 

Teacher C decided to develop and give students a one-page activity as the final 

phase of each intervention session.  Typically this involved no more than four tasks, plus 

a request to illustrate and/or explain the strategy the student used to complete each task.  

These tasks were intended to consolidate the learning from that session, and provide 

Teacher C and the researcher with evidence of students’ conceptual understanding of the 

material and their performance on tasks of the type provided.  Teacher C and the 

researcher would usually review the samples of student work from the week before prior 

to meeting to plan the focus of the next intervention session. 

 

Framework for developing multiplicative thinking 

In the first two intervention sessions, Class C had shown facility with using 

efficient mental strategies for processing addition and subtraction tasks involving two 

two-digit numbers.  The researcher prepared a framework for Teacher C around aspects 

and indicators of multiplicative thinking specifically geared towards the purposes of the 

intervention sessions.  The aims of providing this material were to scaffold Teacher C’s 
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planning around teaching mental strategies for multiplication and division, and to build 

her content-pedagogical knowledge, and confidence, in this area of the curriculum. 

The content of the framework drew on material common to programs such as 

Counting On (NSW DET, 2004) and resources such as Mental computation: a strategies 

approach (McIntosh & Dole, 2004).  The focus of the material was firstly on how to 

establish strong conceptual understanding of multiplication and division as operations, 

and then on how to connect this understanding to number sense written calculation 

methods for tasks within the identified scope of difficulty. 

The framework described a progression of key phases of development and a 

primary visual strategy to scaffold understanding and performance at each phase.  The 

phases and primary strategies are listed in Table 4.1. 

 

Table 4.1. Contents of support materials for teaching multiplication and division. 

 

Phase Focus Main strategy 

1 Establish multiplication as repeated 

equal groups 

rectangular arrays 

2 Explore visual representations of 

multiplicative part/whole relationships 

split arrays 

3 Consolidate symbolic representations of 

multiplicative part/whole relationships 

empty rectangle 

4 Develop language and notation for 

extended multiplication tasks 

empty rectangle 

5 Use an abridged version of the same 

sequence to establish meaningful 

connections between multiplication and 

division 

empty rectangle and reverse 

multiplication facts 

6 Introduce the chunking algorithm for 

division 

building with multiples of 

powers of ten 

 

Substantial detail was developed initially for phases one, two and three.  This 

gave Teacher C enough support and direction for her lesson planning.  Detail for phases 
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four, five and six was developed during the planning of later interventions in the series 

and used in class, but was documented during the term following the intervention.  The 

finished version of the framework was titled Support notes for scaffolding number-sense 

written methods for multiplication and division.  This material is reproduced in Appendix 

E in a form similar to that in which it was developed. 

 

DETAILED DESCRIPTIONS OF THE CLASSROOM INTERVENTIONS WITH 

CLASS C 

Background 

There were eight teaching sessions with Class C.  These were bracketed by the 

two sessions during which the initial and repeat written tasks were administered.  The ten 

sessions that made up the planned intervention that is the focus of this study all took 

place within the second school term of 2008. 

The researcher was a passive observer for the majority of the teaching sessions, 

during which he took notes on a range of behaviours of Teacher C and the members of 

her class.  On a few occasions the researcher was invited by Teacher C to contribute his 

point of view on an idea that had been raised, or a comment from a student, or to add 

something within an explanatory phase of a session.  These actions were in keeping with 

the researcher’s role in the school. 

The text that makes up the remainder of this chapter is distilled from the 

researcher’s field notes from observations of Class C and planning and debriefing 

sessions with Teacher C, and the researcher’s own reflections as the data-collection 

phase of this study unfolded.  In several cases particular points have been illustrated with 

samples of student responses to the in-class tasks that became a regular feature of the 

intervention sessions, and which have become a rich and significant source of data for 

this study. 

A description of the mental computation strategies for addition and subtraction 

that are referred to in this chapter is in Appendix D. 
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Initial planning 

 Teacher C and the researcher initially reviewed students’ results on the initial 

student written task (Appendix D).  Observations included that out of the 23 initial 

responses to the written task: 

 21 students solved Item 1 (68 + 44) mentally and correctly but only 13 solved 

Item 2 (92 – 23) mentally and correctly; several students appeared to 

misapply the split strategy with the subtraction task 

 relatively few students solved Item 6 (92 ÷ 4) correctly (mentally n =7; 

written n = 3). 

 As a result it was decided to start with explicit teaching on using the empty 

number line to visually represent strategies for mentally solving 2-digit from 2-digit 

subtraction tasks, and to represent each task as “take away” (starting at the larger number 

and stepping back a total of the lower number) and as “difference” (marking the lower 

number on the number line and stepping up to the larger number).  The intention was to 

connect with some aspects of mental calculation with which students appeared 

reasonably familiar but also in need of further development (here strategies for addition 

and subtraction) and through this establish a level of comfort and familiarity with a 

strategies-based approach to calculating mentally that would support later work with 

multiplication and division tasks. 

 

Session One 

 The focus for this session was to: 

 use the empty number line (ENL) to represent addition and subtraction of two 

two-digit numbers 

 provide explicit language around the jump strategy and around subtraction as 

both take away and as difference. 

 Students were already familiar with the jump, split and compensation strategies 

for the addition tasks.  Some students applied the split strategy incorrectly to subtraction 

tasks that required regrouping such as 52 – 17.   Several students processed this task by 
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calculating 5 – 1 (40) and 7 – 2 (5), giving an answer of 45 (the larger number minus the 

smaller number error). 

 Teacher C explored this through questions such as: is 3 + 5 = 5 + 3? [yes] … is 3 

– 5 = 5 – 3? [no] …  

 The in-class task required students to solve two subtraction calculations (63 – 18 

and 74 – 26).  Each calculation was shown on separate ENLs; once as take away and then 

as difference, along with a written explanation of the way the student processed each 

calculation. 

 There was some discussion about what constituted the answer to the subtraction 

task on each of the two models.  With 63 – 18 for example: 

 using the jump strategy to represent take away,  students would mark 63 on an 

ENL, then move back in steps a total of 18 and mark the answer 45 as a point 

on the ENL 

 using the jump strategy to represent difference, students would mark 18 on the 

left and 63 on the right of an ENL, and then move in steps from one to the 

other, with 45 being the total of these steps between the two given numbers 

and not a point on the ENL. 

 In representing the jump strategy on the ENL with both interpretations of 

subtraction students showed a range of part/whole strategies.  These included: 

 jumping in single tens: for 63 – 18 … 18, 28, 38, 48, 58, 63 (45) 

 jumping in multiples of ten: for 74 – 26 … 26, 46, 66, 74 (48) 

 compensation: for 63 – 18 … 63, 53, 43 then +2 (45). 

 Some misconceptions or points warranting discussion emerged.  Examples of this 

included: 

 sometimes placing the larger of the two numbers to the left on the ENL 

 limited language for explanations in words 

 representing steps on the ENL in numerals: for 74 – 26 a student wrote the 

following string on top of an ENL … 70 – 20 = 50 + 4 – 6 – 2 = 48. 
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Discussion 

The choice to start with representing addition and subtraction on the ENL proved 

to be appropriate for several purposes.  Students were mostly competent with addition 

tasks, which gave them a foothold with connecting the processing of symbolic 

calculations with their visual representation on the ENL and oral language for describing 

in words the processes they used.  This requirement for multiple representations also 

helped expose several conceptual weaknesses in some students.  These included the 

relatively minor issue of placing larger numbers to the right on an ENL, and the major 

concern of using a larger number minus the smaller number strategy for processing 

multi-digit subtraction tasks.  The use of this flawed strategy was noted by Behrend 

(2001) as present in her group of Year 3 students, and it is likely that the students in 

Class C who demonstrated this misconception in Session One had similarly adopted this 

strategy much earlier in their schooling, as their way of making sense of what was being 

asked of them to do.  That this misconception had remained such that it was 

demonstrable in Year 8 was a concern. 

Insisting that students represented each subtraction task as both take away and as 

difference meant that the learning demands on students were greater than what was 

needed to simply process each calculation to get a numerical answer.  Students were 

scaffolded and pushed to understand what the three numbers in each task meant on each 

of the two interpretations of the operation of subtraction, and how to represent these 

visually and with language.  Attacking the issue of improved performance on arithmetic 

tasks through improving students’ understandings of foundational concepts (in this case a 

deep understanding of the operation of subtraction) was an attempt to promote relational 

understanding as described in Skemp (1976) where students know what to do (in this 

case complete a subtraction task) and why (that they are finding what is left after taking 

one number away from another, or the difference between the two numbers). 

 

Session Two 

 The focus of this session was to: 

 consolidate representing subtraction tasks on the empty number line (ENL) as 

both take away and as difference 
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 use negative numbers with the split strategy on subtraction tasks. 

 Some home-grown terminology developed: 

 difference was described as how far apart? 

 take away was described as what’s left (that is, what amount or quantity is 

remaining)? 

 the split strategy was described as break up/make up (a phrase introduced the 

year before by another teacher at School C and remembered and used by 

Teacher C). 

 For example 74 – 38 was calculated using the split strategy by first doing 70 – 30 

(40), then 4 – 8 (-4), then 40 – 4 (36).  Although the symbolic representation of the 

calculations seemed to make sense to most students they struggled to find language for 

what was happening. 

 Teacher C used the ENL to represent the steps used with the jump strategy to 

process mentally a subtraction task.  She introduced a shorthand notation for visually 

representing the steps in using the split strategy (labelled “V notation”, taken from the 

shape of the two lines connecting pairs of tens and ones).  Almost all students used this 

notation to correctly represent their strategies for solving the two subtraction tasks (73 – 

28 and 54 – 36) using the split method. 

 The examples in Figure 4.1 are from responses to that session’s in-class task. 

 

Figure 4.1. Examples of students’ written explanations of using the jump and split methods for calculating 

54 – 36 mentally. 
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Subtraction can be represented as take away or as difference, but the first of these 

interpretations seemed more intuitively obvious to students.  During discussions between 

Teacher C and the researcher it was decided that it was important for students’ 

conceptual development of the operation of subtraction to understand both 

interpretations.  It was agreed that both within and beyond their further learning of 

mathematics in school, students would be expected to interpret contexts and to deal with 

tasks requiring both interpretations, and that by working with both models of subtraction 

students were likely to develop a more robust concept of this operation.  This emphasis 

on conceptual development was in line with the position taken by Richardson and 

McCallum (2003) on how the teaching and learning of mathematics can contribute to the 

development of quantitative literacy in university students.  They suggested that 

improved performance with using mathematics in other contexts was linked to a greater 

emphasis on building understanding of the underlying mathematical concepts.  They had 

found that too many students were technically proficient with a range of mathematical 

processes but were often unable recognise which process was relevant within a given 

context. 

A similar rationale was behind exploring ways of representing the split strategy 

when applied to subtraction tasks that required regrouping.  Students seemed quite 

comfortable with the concept of a negative value to a component calculation.  What they 

needed was oral language and mathematical symbols to communicate and keep track of 

their thinking. 
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In Figure 4.1 the two examples of the jump strategy show its flexibility in 

representing different processing preferences, such as first subtracting a bit to get to a 

round number (multiple of ten), or first subtracting the multiple of tens.  The V notation 

developed by Teacher C for representing the split method for processing these tasks 

seemed to more than adequately expose students’ thinking, with the adjacent written text 

suggesting that these students clearly understood what was happening in the calculation. 

 

Discussion 

The empty number line and the V notation are not tools for processing 

calculations in the same way as the traditional formal written algorithms typically 

associated with addition and subtraction with two two-digit numbers.  Rather they are 

ways of visually representing, recording and communicating effective and efficient 

mental strategies for performing these tasks.  This visual representation, augmented by 

the oral or written language that is used to explain what is happening during a 

calculation, helps add meaning to the symbols that are used in our number system.  

Combining these three modes of representation of a mathematical concept (visual or 

concrete, verbal and symbolic) is a central tenet of some sense-making approaches to 

teaching mathematics (McIntosh & Dole, 2004; NCTM, 2000). 

The empty number line is convenient for representing the jump strategy with 

addition and both interpretations of subtraction, and for representing compensation 

strategies.  The V notation blends obvious applications to addition tasks with intuitive 

notions of negative numbers to provide a comprehensive approach to representing the 

split strategy for both addition and subtraction tasks.  Taken together the empty number 

line and the V notation provided useful visual representations of the three main efficient 

mental strategies for calculating addition and subtraction with two two-digit numbers.  

Such visual representations align with similar approaches described by Trafton and 

Thiessen (2004) in their attempts to position learning about and developing facility with 

computation within a sense-making approach to learning and doing mathematics.  Their 

work with student-invented computational strategies suggested, among other things, that 

students develop a stronger and more connected concept of place value by engaging with 

calculations in ways that make sense to them. 
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The empty number line and the V notation expose the quantity value of the digits 

making up the numbers in a calculation, maintain the sense of the operation being 

processed, and use pen and paper only to record the results of calculations of partial 

quantity value done mentally.  This helps the user and others to make sense of what is 

happening, both in terms of quantities and operations with them, thereby contributing to 

building number sense.  Students’ responses to Item 7 (256 +68) and Item 8 (631 -54) in 

the repeat written task both showed greater use of these strategies and improved 

performance compared to the initial written task. 

Session Six in this series introduced procedural representations of these 

strategies through the number-sense written methods used for addition and subtraction 

with larger numbers.  The expectation was that the investment in developing students’ 

capacity with using, explaining and communicating efficient strategies for mental 

calculation would have a visible return in facilitating their use of the planned number 

sense written methods for addition and subtraction. 

 

Session Three 

 The focus of this session was to: 

 introduce split arrays as a direct representation of quantity showing the total 

of a rectangular array as the sum of component products 

 build visual/symbolic representations of multiplication tasks as splits using 

the empty rectangle (ER) and sums of component products. 

 The mental computation data for this class suggested that students were likely to 

cope with representing two-digit by one-digit whole number products on the empty 

rectangle.  Also students were familiar with representing products as rectangular arrays.  

It was decided to orientate planning for this session around the material in section three 

of the framework for multiplication and division that the researcher had developed for 

Teacher C (Appendix E). 

 Students used a 7 x 9 array of dots (7 rows with 9 dots in each row) to represent 7 

x 9 as the sum of component calculations.  There were several instances of both the 

teacher and students clearly identifying the number of dots in the group being repeated, 

and the number of groups.  One student used the column as the group when explaining 
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his compensation strategy of 7 x 10 – 7 for calculating 7 x 9.  This student’s explanation 

of his approach suggested he was clear that the 7 being subtracted was because one more 

group of 7 than was actually required had been included in calculating 7 x 10. 

 Teacher C represented several calculations using a split ER as a visual organiser 

for keeping track of component products.  Here pen and paper were used to record the 

totals of component calculations, each of which calculated mentally, and for which the 

sum was also calculated mentally.  Several ways to split the numbers in the example 

products were suggested by students: 

 one student split 15 x 7 into 10 x 7 (70) and 5 x 7 (35) and calculated these 

separately 

 another student recognized 5 as half of 10 and halved the answer of 10 x 7 to 

get the answer of 5 x 7 

 a third student recognized 15 as 5 x 3 and multiplied the product of 5 x 7 by 3. 

 Towards the end of the session Teacher C asked the class if they might use this 

approach to calculate 24 x 15.  One student asked if it was 10 x 20 plus 5 x 4.  Teacher C 

hinted that 5 x 24 is half of 10 x 24 so the original calculation (24 x 15) is probably 

possible to calculate mentally. 

 

Discussion 

 The three examples of how students reworked the calculation 15 x 7 described 

above illustrated the sort of facility with numbers and operations that indicated and 

consolidated number sense.  In contrast, the splitting of 24 x 15 only into tens and ones 

suggests a naive generalisation of the split strategy for addition or subtraction into a 

multiplicative structure.  Here number sense, or an understanding of how additive and 

multiplicative thinking are different, or both, appeared to be lacking.  If this incorrect 

split were followed through, the value of the tens/ones only split is 220; just 10 lots of 24 

is greater than this, and there are more than 10 lots of 24 in the full product. 

The capacity for accommodating variation in the way numbers might be split 

when using the ER is an advantage of this approach.  Students are given a structure for an 

efficient process for splitting a larger multiplication task into smaller, more manageable 

pieces, and then keeping track of those pieces, but are free to make the connections 
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between numbers as they choose or are able.  The three responses above to the task 7 x 

26 illustrate this.  This goes some way to catering for individual differences when 

calculating, and prompts discussion of alternate and perhaps more efficient strategies 

when reviewed by the group, increasing students’ exposure to a richer repertoire of 

strategies. 

 Figure 4.2 shows three examples that are representative of students’ responses to 

the in-class task for this session.  Points to note include: 

 the variation in the ways numbers were partitioned or split (26 as 20 + 6, 10 + 

10 + 6, and 20 + 5 + 1) 

 the inclusion of full number sentences for partial products (such as 7 x 20 = 

140) inside the ER on one response but not others 

 differences in the positioning of numbers in and around the ER. 

 

Figure 4.2. Examples of students’ use of the empty rectangle to describe strategies for calculating 26 x 7 

mentally. 
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The way the various elements of a calculation are represented visually on the ER 

seemed important; also that each element carried meaning relative to the whole process.  

A minimalist representation with no record within the cells of the factors being 

multiplied perhaps prompts the calculation of these products mentally.  In the first 

example in Figure 2 the top number (26) is split into manageable parts (20 and 6) which 

are written below the opposite long side of the ER, providing a visual connection 

between the whole factor and its parts.  Here a vertical line separates the ER into two 

cells which contain their respective products, and is extended by this student to separate 

the lower long side of the ER into two intervals, representing the partitioning of the 

larger factor.  Explicitly establishing this or a variation as a convention to be followed 

may provide some stability with using the ER structure through keeping the locations of 

the various parts of the visual organiser consistent. 
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Session Four 

 Division, like subtraction, can have two interpretations.  Subtraction can be 

interpreted as take away and as difference, and division can be interpreted using either 

the quotative or partitive models.  Consider the task 56 ÷ 4: 

 on a quotative model the 4 represents the number in each group, while the 

answer to 56 ÷ 4 (14) represents how many groups of 4 are in 56 

 on a partitive model the 4 represents the number of groups into which 56 is to 

be equally shared, and the answer (14) represents the number in each of the 

four equal shares. 

 The focus of this session was to use the ER to find the missing factor in additive 

splits of numbers as a way of answering the question: how many groups (of a set size) 

are in (a given number)?  This is the quotative model of division, and to scaffold 

students’ engagement with this approach to division the emphasis in this session was on 

framing division as the reverse of multiplication, and linking this to earlier work with 

modelling multiplication on the ER. 

 Warm-up activities involved multiplication tasks where a factor was split and 

component products calculated then combined.  For example 6 x 14 was described as 6 x 

10 (60) and 6 x 4 (24) to give 84.  After a brief discussion about the meaning of the 

division sign (÷) within the quotative model, students were asked to calculate 39 ÷ 3.  

Responses included: 

 split 39 into 30 and 9 and divide each by 3 

 12 x 3 = 36 as a known fact, and add on one more 3 to get 13 lots of 3 

 3 into 15 (5), another 5 (makes 30) then 3 more (5 + 5 + 3 = 13). 

 The ER was introduced as a way of representing visually what was happening 

when division calculations were done mentally.  Known values were: 

 the components of the additive split(s) of the number being divided (the 

dividend); these were written inside the cells of the ER 

 the number being divided by (the divisor); this was written on the left just 

outside of the ER. 

 The quotients for each of the component division tasks were written on top of the 

ER, centred on the respective cells.  The answer to the original division task was the sum 



 77 

of these numbers.  This was written to the right of the ER.  Teacher C emphasised that 

the way we were using the ER for division was the reverse of the multiplication tasks 

that were the focus of the previous week.  Students were given two division calculations 

for their in-class task (64 ÷ 4 and 119 ÷ 7) and were asked to calculate the answers using 

the ER method they had been shown during this session. 

 

Discussion 

Many students in this session could give the correct answer to division tasks that 

were the reverse of familiar multiplication facts up to 10 x 10.  However when pushed 

further most students seemed to struggle with dealing with division as an operation.  The 

extent of this difficulty would become more apparent in the next session. 

 Of the 23 responses to the in-class task that were collected in Session Four: 

 five students seemed to struggle with one or more of the following: 

 splitting numbers into parts that each facilitated division mentally 

 reliably reversing their multiplication table facts 

 misrepresenting the division tasks as multiplication 

 ten students solved both calculations correctly by first taking out ten groups 

of the divisor and linking the remainder directly to a table fact 

 eight students solved both tasks correctly but used at least one alternative 

split. 

 For 119 ÷ 7 alternative splits to ten lots (70) and the remainder (49) included: 

 12 and 5  

 15 and 2  

 10 and 5 and 2. 
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Figure 4.3. Examples of students’ use of the empty rectangle for calculating 119 ÷ 7as a reverse 

multiplication task. 
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 Using the empty rectangle (ER) as a visual scaffold for documenting mental 

strategies for calculating division tasks was an attempt to make connections to models for 

representing the more familiar operation of multiplication and mental strategies for doing 

such calculations.  The intent here was to connect to the known (multiplication) as the 

base from which to start a path of ‘progressive mathematisation’ with division similar to 

that which has been used in Realistic Mathematics Education (RME) approaches in the 

Netherlands (Treffers and Beishuizen, 1999).  The aim was for students to develop a 

strong concept of the operation of division and its relationship to other operations, and 
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progressively more efficient mental and written strategies for processing an appropriate 

range of division calculations. 

A scaffolding strategy that was used was related to lamentations by Reys and 

Reys (2004) about the perceived lack of emphasis on estimation in contemporary 

mathematics classrooms, and the positive value such an emphasis is likely to have for 

building aspects of number sense such as the relative magnitude of numbers and sound 

conceptual understanding of the four operations. 

 The scaffolding strategy used here was to start m ÷ n tasks by asking the question: 

would it be more or less than ten lots (or groups) of n?  This would prompt students to 

draw on their knowledge of multiplication facts (up to 10 x 10) and support them to 

make a productive start on the task: 

 if fewer than ten groups, then the division task is either directly or indirectly 

related to a basic multiplication fact (for 56 ÷ 7: ten 7s is 70, so it’s less than 

ten times … 7 eights are 56, so the answer is 8) 

(In this example if the 56 had been, say, 59, then the process would be similar 

except that the division by 7 leaves a remainder.  This was beyond the 

targeted scope of this study but, at face value, not structurally different.) 

 if exactly ten groups the answer should be clear; if the answer is not clear then 

the issue may well relate more to understanding how ten times as many is 

represented in our number system 

 if more than ten groups, then split the original number into parts where one 

has ten as a factor, and the other is the remainder. 

An example of using this strategy to calculate 144 ÷ 9: 

 there are more than ten 9s in 144 because 10 x 9 is 90 

 144 is 90 + 54 (90 and 54 go inside the cells of an ER) 

 ten 9s go into 90, and six 9s go into 54 … so the answer is 10 + 6 = 16. 

 It was considered important that students be asked and able to interpret the result 

of their calculation.  An acceptable interpretation to 144 ÷ 9 would be something like: 9 

goes into 144 16 times or if I had 144 things I could get 16 groups, with 9 things in each 

group.  This approach works in the same way as number sense written methods for 

division with larger numbers such as the chunking algorithm.  The approach, however, 
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emphasises only one of the two possible interpretations of division as an operation (the 

quotative model).  A lack of deep conceptual understanding of how the quotative and 

partitive models for division are related but not the same showed itself in Session Five.  

Possible issues arising from failing to understand or clearly articulate both models of 

division are discussed in Chapter Six. 

 

Session Five 

The focus of this session was to establish meaning for calculations of the form m 

÷ n with particular emphasis on the quotative model. 

Teacher C used various representations with dots, including rectangular arrays, to 

link language and symbols to the quotative interpretation of division tasks such as 12 ÷ 3.   

Most of the discussion involved the question how many groups of …?  There was only 

occasional reference to division as equal shares, which is the partitive model.  She made 

explicit reference to the total number of objects, the number in each group, and the 

number of equal groups, and linked this to multiplication tasks. 

Although demonstrating reasonable competence with reverse multiplication facts, 

several students misinterpreted division tasks like 64 ÷ 4 as how many times does 64 fit 

into 4?  Teacher C probed this language /symbol connection by asking 64 ÷ 4 and 4 ÷ 64 

… are they the same or not?  Explain … 

In their explanations some students started their explanation with one model for 

division (either quotative or partitive) and shifted mid-explanation into the other model.  

Students’ explanations for calculating 56 ÷ 4 that drew on the partitive model included 

half and half again, and knowing that dividing by four is the same as finding one quarter.  

The ER was used again to model quotative division as the reverse of split multiplication.  

Several connections between numbers were exploited to facilitate the creation of 

component calculations that could be easily processed mentally.  For example when 

asked to calculate 168 ÷ 7 a student ‘took out’ ten lots of 7 (70), doubled that (140) and 

added four more lots of 7 giving the correct answer of 24. 

The in-class task required students to solve 23 x 6 and 136 ÷ 8 and show their 

thinking on separate ERs. 
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All of the 20 student responses had both tasks answered correctly with an 

appropriate explanation.  Again the way each of the tasks was split varied. 

 

Discussion 

The lack of understanding of the concept of division that was exposed in Session 

Four came as a surprise to Teacher C and the researcher, as students appeared to have 

reasonable facility with calculating the answer to simple division tasks.  In Session Five 

the emphasis on correctly explaining what was happening in simple division tasks (such 

as 12 ÷ 3) and then in tasks that go just beyond direct application of basic multiplication 

facts (such as 64 ÷ 4) confirmed to Teacher C and the researcher just how weak students’ 

conceptual understanding of division was.  Students’ responses during these two sessions 

suggested that the interpretation of division as the reverse of multiplication was not as 

apparent or as meaningful to this class as might be expected. 

‘Cross-modelling’ was the term the researcher coined to describe mixing aspects 

of different interpretations of a mathematical concept (in this case the quotative and 

partitive models for the operation of division) into the one explanation.  Attempting to 

clarify what is happening by describing the mathematics in a different way is an 

understandable and perhaps in some contexts a useful teaching strategy; but cross-

modelling with division clearly created or further fuelled genuine confusion.  In this 

session Teacher C, by her own admission, was confused by her cross-modelling, and was 

deeply concerned about this being the case.  This, and a review of the in-class tasks from 

this session, confirmed a belief that the operation of division was not well understood by 

most students, even though many students could correctly answer division tasks that 

were the reverse of their basic table facts (up to 10 x 10).  With respect to knowing their 

reverse multiplication facts most of the students demonstrated a desirable level of 

computational fluency, which is described by Cumming (2000) as a necessary pre-

requisite for success with the further learning of mathematics, and for effective 

applications of mathematics beyond school.  But the students’ shaky conceptual 

foundations raised doubts about their capacities to recognise contexts in which division 

was relevant.  This was deemed to be a concern on the basis of what was known of 

pedagogical approaches which emphasised the importance of linking the learning 
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mathematics to realistic or meaningful contexts, such as has been the case for decades in 

the Netherlands (Treffers & Beishuizen, 1999). 

Teacher C’s concerns about the cross-modelling that occurred during her 

explanatory phase of the lesson prompted an in-depth discussion with the researcher after 

class.  The discussion pivoted around clarifying the three corners of multiplicative 

thinking: the number of things in a group, the number of equal groups, and the total 

number of things across all equal groups.  It was during this discussion that the 

remaining parts of the framework that was eventually titled Support notes for scaffolding 

number-sense written methods for multiplication and division (Appendix E) were 

identified. 

 

Session Six 

The focus of this session was to introduce number sense written methods for 

addition and subtraction involving three-digit numbers which worked from left to right, 

and maintained the quantity value of component digits. 

 The opening comments by Teacher C to the whole class framed this session as 

about ways of using pen and paper to ‘keep track of things you work out in your head’ 

for calculations that are too big to do mentally. 

 Two calculations were written horizontally on the board: 383 + 276 and 463 – 

185.  Students were asked how they might calculate the answers.  Different students (two 

for each calculation) came to the front of the class and explained their approach: 

 the first student did the addition task as a formal vertical algorithm 

 the second student used a number sense explanation: 300 + 200 is 500 … 80 

+ 70 is 150 … 6 + 3 is 9 … so 659 

 the third student did the subtraction task as a formal vertical algorithm using 

the decomposition method 

 the fourth student used a number sense approach, first incorrectly but then she 

self-corrected: 463 – 100 is 363 … 363 + 15 is 378 … no, wait … 463 – 200 

… then 263 + 15 is 278. 

 Teacher C then described how in her first year of teaching she had tried to do a 

similar task in front of a class but had performed the formal vertical addition algorithm 
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from left to right and calculated an incorrect answer: I was following a process with no 

meaning … I hadn’t used it for a while, but I realized I’d done it wrong … 

She asked: What’s the 6 in 463? (60) and What’s the 3 (on the left) in 383? (300) 

She then explained that the written methods that she was about to show would 

hold the value of what those digits represent.  Also that this approach to written 

calculation was using the same ways of thinking about and working with numbers that 

they had learned and used to calculate mentally. 

383 + 276 was written vertically with the component sums (500, 150 and 9) 

written underneath.  These were then totalled mentally.  Teacher C then asked the class if 

the same thing could be done with the subtraction task. 

 The calculation 463 – 185 was written vertically.  Teacher C led the class through 

the following steps: 

 What’s 400 take away 100? (300 written underneath) 

 What’s 60 take 80?  A student responded that it was – 20.  Teacher C said: 

That’s right, I still have 20 more to take .. like ‘break up/make up’ (a phrase 

used by Teacher C in Session Two) … - 20 was written under the 300 

 What’s 3 – 5? (-2)  This was written under the -20 

 Teacher C aggregated these components: So that’s 300, minus 20 … that’s 

280 … minus another 2 … that’s 278. 

 The class was given five similar calculations (368 + 293, 624 + 194, 862 – 387, 

412 – 256, 926 – 468) and asked to try the approach they had just been shown.  Students 

were asked if they had ever seen this approach to written calculation before.  All students 

said that they had never been taught this approach, but that they had been taught other 

written methods for subtraction in primary school. 

 Five different students were then asked to share with the class their calculation 

process for one of the tasks.  All of these students performed the number sense written 

approaches correctly to get the correct answer in each case.  Four of the five students 

showed strong mental computation with the component calculations.  However the 

remaining student repeatedly made the error of describing the component calculations in 

reverse.  For example when explaining how he calculated 412 – 256 he said 200 take 400 



 85 

and so on.  Each of the three subtraction tasks above had negative answers to the 

component calculations of both the tens and ones. 

 Two further subtraction tasks were given to the class: 457 – 382 and 362 – 148.  

Some students inappropriately subtracted the answers to the component calculations of 

both the tens and ones.  However when challenged to explain their thinking the students 

immediately self-corrected. 

 The in-class task had two addition and two subtraction tasks similar to the ones 

used earlier in the session.  Students were asked to again try the number sense written 

methods they had been shown that day.  Most students used the number sense methods 

for both addition and subtraction, although a few students did up to two tasks using a 

formal written algorithm.  There was some variation in the amount of working out 

written for each task.  However most responses tended to have only what was needed.  

Examples of students’ responses are shown in Figure 4.4. 

 

Figure 4.4. Examples of students’ use of the written strategy of subtracting from the left while maintaining 

quantity value. 
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Discussion 

Students had fewer problems than expected with making sense of component 

subtractions that gave a negative result.  Teacher C took time to connect such sections of 

a written subtraction task to language that made the process meaningful.  For example if 

the component calculation was 40 – 70 the language would be there’s still 30 to take, or I 

can take 40 but I still need to take another 30.  This language mirrored the language used 

with V notation in Session Two.  Although the students in Class C had previously 

engaged with more formal treatments of negative numbers, such formal work with 

integers was not necessary for correctly and meaningfully using negative numbers to 

represent the answers to component calculations in these subtraction tasks.  Carroll and 

Porter (1998) had found that many primary students were similarly comfortable with 

using the negative sign informally, where appropriate, to represent “‘being in the hole’ or 

having a deficit of that quantity” (p.110).  

Initially some students automatically subtracted any residuals with tens or ones.  

However this was addressed explicitly with a continued focus on language that supported 

making sense of what was happening with each stage of the overall calculation, and how 
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the mathematical symbols (in this case a number with a negative sign) represented what 

was happening. 

 

Session Seven 

The focus of this session was to use the empty rectangle (ER) to represent the 

product of two two-digit numbers. 

Teacher C opened the session by asking the class about what they had done in the 

previous week’s intervention.  She combined responses from students by saying that the 

methods for written calculation that were introduced last week are ways of “keep(ing) 

track of numbers that hold their (quantity) value.  Today we are doing something similar 

with multiplication …”. 

Teacher C wrote 16 x 36 on the board.  One student said this could be calculated 

as 10 x 30 plus 6 x 6 (336).  Another student concurred.  A third student said that 336 

could not be the correct answer as 10 x 36 is 360.  A fourth student said that there was 

still 6 x 36 to go.  Teacher C (about the calculation so far) said “We’ve only done a 

partial answer.”  She then modelled the formal written algorithm for long multiplication.  

At least seven students said they had seen this before in primary school.  Teacher C 

remarked: “Sometimes I forgot to put the zero”. 

She then asked the class how they would calculate 6 x 36.  One student said he’d 

do 6 x 30 (180) and 6 x 6 (36) and add them (216).  Teacher C modelled this on the 

board with an ER.  She then showed 16 x 36 on an ER split as 10 and 6 vertically on the 

left, and 30 and 6 split horizontally on top.  Component products were calculated 

mentally and then added to give the final answer.  This was compared to the formal 

written algorithm which was still on the board.  A second example (26 x 47) was worked 

through on the board in a similar way.  Some students struggled to total the component 

products mentally.  In unpacking this, students described a variety of addition sequences 

exploiting different connections between the numbers. 

Another task (35 x 43) was put on the board.  Teacher C asked “About how big 

should the answer be?” Students discussed various aspects of approximation and 

estimation such as the answer needs to be more than 1200 because 30 x 40 is 1200 and 

both original factors had been rounded down to get the estimate. 
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Teacher C probed the strategies used to calculate 30 x 40.  Several students talked 

of calculating 3 x 4 and adding zeros.  Teacher C asked what was happening when zeros 

were added.  This led to discussing the concept of ten times more.  Using this context 3 x 

4 is 12, but 40 is ten times 4, so 3 x 40 will be ten times 12 (120).  Since 30 is ten times 3 

then 30 x 40 likewise will be ten times 120 (1200). 

Students were asked to calculate 39 x 52 using the earlier two-by-two ERs as 

models.  The students who shared their strategies showed a range of effective addition 

strategies for summing the answers to the four component products.  However the 

strategy of adding zeros when multiplying by a multiple of ten was referred to several 

times.  Teacher C again asked what was happening when zeros were added, and how one 

would know if they had added the correct number of zeros.  She concluded the discussion 

by saying that adding a zero in this situation is about multiplying by ten. 

 Students’ in-class task involved four two-digit by two-digit products to be 

calculated using the ER.  All items in all of the 18 student responses had been attempted 

using the ER.  Eight responses had all four tasks calculated correctly and adequately 

explained.  A further eight responses had one error only.  These errors included: 

 a component product that was out by a power of ten (such as 8 x 50 = 40) 

 an error with a basic multiplication fact (such as 3 x 6 = 24 or 20 x 3 = 90) 

 not totalling the component products correctly. 

 Two responses showed more than three errors involving basic table facts, place 

value or the final tallying process.  However all tasks on these two responses used the ER 

correctly to set up the calculation process. 

 An example of this from the student responses is shown in Figure 4.5. 
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Figure 4.5. Example of students’ use of the empty rectangle as a written strategy for calculating 26 x 63 

which contains several errors in component calculations. 

 

 

 

 

Discussion 

Teacher C had already established a culture in this class of valuing number sense.  

This was evident in this session as Teacher C made repeated demands on students’ 

number sense.  She asked them to provide estimates of the answers to exact calculations.  

She also insisted that students could explain how they calculated their estimates, and 

interpret their estimate as either higher or lower than the exact answer.  Teacher C also 

picked up on the add zeros shortcut used by some students several times in the session 

and pushed the class to understand and explain what was actually happening when zeros 

were added in this process. 

It seems likely that the students who had a single error in their in-class task made 

a concentration error, as their complementary items showed they understood the process 

and could perform it correctly.  However the two students whose responses each had 

more than three errors may have had deeper conceptual problems; if not with using the 

ER form of written multiplication then perhaps with mentally managing products with 

multiples of ten.  McIntosh (1998) pointed out that when working with multiples of ten, 

shortcuts that involve taking off or adding on zeros do not work the same way across all 
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of the four different operations, and this makes a “rules without reasons” (Skemp, 1976) 

approach to dealing with multiplying or dividing by powers of ten prone to error. 

 

Session Eight 

The focus of this session was to introduce the chunking algorithm for division. 

 Teacher C opened the session by showing a 4 x 3 rectangular array of counters 

with an overhead projector and asking questions about the group size, the number of 

groups and the total, and how the relationships between these could be described using 

mathematical symbols.  She then asked for ways of working out how many groups of 

five are in 40.  Student responses included: 

 there are two fives in ten and four tens in 40, so 8 

 there are four fives in 20 so double that. 

 The task was written as 40 ÷ 5.  Teacher C explained that this could represent 

how many fives in 40, or that it could represent sharing 40 into five equal parts.  This 

distinction between models for the operation of division was explicitly discussed and 

illustrated using a 3 x 2 array (3 rows, each row with 2 dots) to explore interpretations of 

the calculation 6 ÷ 2.  On a sharing (partitive) model the two columns represented the 

two shares, with the three counters in each column giving the size of the equal shares.  

On a groups of (quotative) model the rows represented the groups of two, with the 

number of rows giving the number (3) of these same-sized groups that can be formed 

from the total (6). 

 Teacher C said that the rest of the activity in this session would involve the 

‘groups of’ model for division.  She wrote 42 ÷ 3 on the board and asked how this might 

be interpreted.  A student responded: how many groups of 3 are in 42?  Teacher C then 

asked how this might be calculated.  One student said 3 x 10 is 30, and 12 left over, so 

14.  Teacher C modelled this on the board using an ER.  Another student said that 21 is 

half of 42, there are seven 3s in 21, so 14.  Teacher C modelled this on the board using 

another ER.  A third student said that 3 into 15 is 5, so 5 and 5 and 4 giving 14.  Teacher 

C modelled this on the board using a third ER, commenting on the link between 

representing multiplication on the ER, and on the concept of splitting numbers (like 42) 

so that (in this case) 3 could easily divide into the components of the split. 
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 The meaning of 78 ÷ 3 was explored in a similar manner, as were various ways of 

calculating the result mentally and showing these on an ER.  Teacher C then commented 

that in the previous two intervention sessions the focus had been on using pen and paper 

to keep track of what was being processed mentally when dealing with larger numbers, 

and that this session was going to target something similar. 

 She wrote 492 ÷ 6 on the board.  A student offered the interpretation how many 

times does 6 fit into 492?  Another student said that there could not be more than 100.  A 

third student said there would be more than 80.  This student then explained that 80 x 6 is 

480, which leaves 12, so two more (sixes) makes 82. 

 Teacher C asked if anyone had been shown ways of using pen and paper to 

calculate something like 492 ÷ 6.  She modelled the formal written algorithm for short 

division and also showed how this could be represented on the ER.  She then walked 

through the steps of the chunking algorithm for division. 

 The class was asked to try the chunking algorithm to calculate 520 ÷ 8.  Two 

students explained their respective approaches.  The first said she thought of 100 lots of 

eight (800) but that was too much, so she took half that (50 lots) which she knew was 

400.  That left 120 to go.  She took out another ten lots of eight (80) which left 40, which 

she knew was 5 x 8.  She totalled the 50, 10 and 5 to give 65. 

 The other student recalled that 60 x 8 was 480.  This left her with 40 which she 

also knew contained five 8s.  She correctly completed and interpreted the process. 

 The in-class task had four items, each with a three-digit number divided by a 

single-digit number.  Students were asked to calculate the answers using any method 

(mental or written) they were comfortable with.  Examples of student responses to these 

items are shown in Figure 4.6. 
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Figure 4.6. Examples of students’ responses to division tasks. 
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Discussion 

 Table 4.2 gives a summary of several aspects of the responses to each item on the 

in-class task from this session. 

 

Table 4.2. Summary of student performance and strategy use on in-class division tasks. 
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  574 ÷ 7 13 3 1 5 - 2 2 6 1 

621 ÷ 9 14 2 1 5 - 3 1 5 2 

336 ÷ 3 16 - 1 3 - 5 - 6 2 

252 ÷ 4 13 3 1 3 - 5 - 5 3 
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The first example in Figure 4.6 illustrates the setting out of the chunking 

algorithm.  Informal chunking refers to responses that showed evidence that the student 

used the chunking process but did not set it out formally as in the second example in 

figure 4.6.  A similar type of response to the task 621 ÷ 9 had three lines of text:  9 x 60 = 

540, 81 left over, 9 x 9 = 81.  Other number sense approaches included responses like 

the third example in Figure 4.6, or calculating the answer to 621 ÷ 9 by counting on by 

90 seven times to 630 then taking off nine.  

The 17 responses to the in-class task for this session were the most disparate over 

the whole intervention in terms of the range of strategies demonstrated across the class, 

and even within an individual student’s responses to each of the four items on the task.  

Despite many students’ earlier struggles with the concept of division as an operation 

during Sessions Four and Five of the intervention, on this in-class activity 56 out of 68 

items (17 students x 4 items each) or 82% were answered correctly. 

It was surprising that no student tried to represent any calculation on an empty 

rectangle.  Almost half of the item responses used a number-sense approach (chunking, 

informal chunking or other).  About one third of the item responses used the formal 

written algorithm for division.  This suggests the division algorithm is still part of some 

mathematics programs in the primary or middle years of schooling, or possibly 

something valued by adults at home, as students had not been taught the formal division 

algorithm during this intervention or anytime earlier that year. 

The chunking algorithm was introduced during the last session and warranted 

more time than it received.  In spite of this, the work done with division tasks during the 

intervention sessions may have had an effect on students’ confidence with this sort of 

task.  It is worth comparing the initial and repeat performances on Item 10 of the student 

written task (1062 ÷ 9) in this regard.  Of the 13 matched responses to this item only one 

attempt was made initially to do this task without a calculator. This was a written 

response that was incorrect.  On the repeat task the same item drew six written responses.  

Only two were correct, but more students had attempted the task.  The two correct 

responses used chunking and informal chunking.  Two others attempted number-sense 

methods, with the remaining two responses attempting the formal division algorithm. 
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On the repeat written task one of the two students who had been interviewed 

(student C17) had used informal chunking to correctly answer Item 6 (92 ÷ 4) but had 

left Item 10 (1062 ÷ 9) blank.  When questioned about solving 1062 ÷ 9 in a similar way 

to 92 ÷ 4, student C17 correctly applied an informal chunking approach to get the 

answer.  The other student who was interviewed (student C21) had not attempted this 

item on the initial task but correctly used informal chunking on the repeat task. 

It is reasonable to speculate that with some further consolidation of the chunking 

algorithm and similar number-sense approaches more students would have improved 

their understanding of and facility with written division tasks at this level. 

 

SUMMARY 

The series of eight weekly in-class interventions with Class C followed closely 

the intended allocation of equal emphases on explicit teaching of strategies for mental 

computation and number-sense written methods.  Teacher C had embraced the 

intervention and contributed a great deal to its successful implementation with her class. 

The students in Class C appeared to respond well to the explicit teaching of 

written calculation methods which built on the mental computation strategies that the 

class had practised.  Almost all students, almost  all of the time, attempted the somewhat 

novel approaches to written calculation, even if they did not feel a need to vary from 

more traditional methods that they had been taught earlier in their schooling. 

The discussion generated, and the in-class activities given throughout this 

intervention repeatedly challenged, exercised or exposed aspects of students’ number 

sense.  The need to explain one’s calculation strategy, or represent it in a visual as well as 

verbal way, or find a different strategy for a given calculation, was consistent across the 

work with mental and written calculation.  Likewise the approaches to doing mental and 

written calculation were also much the same, with pen and paper used to keep track of 

the component calculations being done using efficient mental strategies when the 

numbers in the calculation meant that this was a sensible thing to do. 

This emphasis on number sense drew out many examples of a disconnect 

between students’ competence with recall or procedural tasks (such as working out that 

18 ÷ 3 = 6 through a connection to known multiplication facts) and their understanding 
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of the concepts which underpinned the tasks they were doing (such as knowing what 

division is as an operation).  This was particularly apparent with, but by no means limited 

to, the operation of division. 

 Chapter Five explores in more detail the responses to the initial and repeat written 

tasks which were given just before and immediately after the series of classroom 

intervention sessions that have been described in this chapter.  Included in this 

exploration are selected elements from interviews with two particular students from 

Class C. 
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CHAPTER FIVE: THE STUDENT WRITTEN TASKS AND 

STUDENT INTERVIEWS 

 

 This chapter is focused on the performance of students from Class C on the 11-

item written task (see Appendix D).  The same task was given just prior to and 

immediately after the series of eight weekly intervention sessions.  Five items showed 

noticeable variation between initial and repeat responses in terms of: 

 the number of correct responses to the item 

 the number of students who required a calculator to do the item 

 the number of responses that contained an explanation of the process used to 

calculate the answer. 

 Aspects of these five items will be explored in more detail, with selected elements 

of interviews with two students from class C adding further to an understanding of some 

of the influences of building number sense through mental computation and number 

sense written methods that are suggested by this study. 

 

OVERVIEW OF THE RESULTS 

 Table 5.1 describes the assumptions that were made about the degree of difficulty 

of each of the individual items in the student written task for students in Year 8 which in 

the ACT is the second year of high school.  Students in Year 8 are typically 12 or 13 

years of age at the beginning of the school year.  These assumptions have been expressed 

in terms of the level of computational strategy that students might reasonably be 

expected to have capacity to use successfully at this stage of schooling (Appendix A). 
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Table 5.1. Description of degree of difficulty of items in student written task. 

 

Assumption (Question)      Item 

 

Direct application of place value using only a single 

basic number fact 

 

  

(4) 700 + 283 

Mental computation using compensation 

 

 (3) 264 – 99  

Mental computation using an efficient strategy with 

more than one step or stage in processing the calculation 

 

 

 

 (1) 68 + 44  

(2) 92 – 34  

(5) 26 x 7 

(6) 92 ÷ 4 

Written calculation using number sense methods  (7) 256 + 68 

(8) 631 – 54  

(9) 143 x 6 

(10) 1062 ÷ 9 

(11) 53 x 28 

 

 On the written task students were asked to indicate several things in their 

response to each of the items: 

 the correct answer to the calculation 

 whether they calculated an answer mentally, used pen (or pencil) and paper, 

or if they needed to use a calculator 

 an explanation of how they worked out their answer. 

 An explanation was some written description or indication of the strategy or 

method that the student used to calculate the answer.  Students were given what Teacher 

C considered to be ample time to complete the 11 items. 
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Not all students completed both the initial and the repeat written tasks.  Table 5.2 

describes the numbers of paired responses in each Class C, which had the highest 

proportion of paired responses.  There were equal numbers of paired responses from 

male and female students in this sample. 

 

 

Table 5.2. Breakdown by gender of responses to the initial and repeat written tasks in Class C (n = 

25). 

 Male Female  

      7      7 Paired responses    

(14) 

(initial and repeat) 

Initial 5 7 4 4 Discounted               

(11) 

(initial only, repeat 

only, non- or invalid 

attempts) 

Repeat 2 - 

    14     11  

 

 

There were 14 students who attempted both the initial and repeat written tasks.  Table 

5.3 gives a summary by item of the responses to the initial task (in normal font) and the 

repeat task (in italics).



 

Table 5.3. Summary of paired responses from the student written task from Class C (n = 14). 

 item 

circled 

mentally 

and 

correct 

circled 

mentally 

and 

incorrect 

circled 

written and 

correct 

circled 

written and 

incorrect 

no 

approach 

listed and 

correct 

no 

approach 

listed and 

incorrect 

circled 

calculator 

explanation 

given 

total 

correct 

 

1 68 + 44 12       1     13 13 

  11 1 1         13 12 

           

2 92 - 34  9 3     1     13 10 

  9 3 1   1     13 11 

           

3 264 - 99  7 3 3         12 10 

  9 4 1         13 10 

           

4 700 + 283  11             12 11 

  13             13 13 

           

5 26 x 7  10 1 2       1 13 12 

  8 2 3       1 13 11 

           

6 92 ÷ 4  5   2       6 7 7  

  9   3       2 12 12 
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Table 5.3 continued 

 item 

circled 

mentally 

and 

correct 

circled 

mentally 

and 

incorrect 

circled 

written and 

correct 

circled 

written and 

incorrect 

no 

approach 

listed and 

correct 

no 

approach 

listed and 

incorrect 

circled 

calculator 

explanation 

given 

total 

correct 

 

7 256 + 68  6 1 3   1 1   12 10 

  9   4   1     12 14 

           

8 631 - 54  3 6 1 1 1 1   13 5 

  6 2 3   2   1 13 11 

           

9 143 x 6  4   2 1 1   3 8 7 

  4 3 2 3     2 10 6 

           

10 1062 ÷ 9        1     12   1 

      2 4     8 4 2 

           

11 53 x 28    2 1 4   3 2 9 1 

   4 6 2       13 6 



 Table 5.4 compares the number of correct responses to each item between the 

initial and repeat written tasks. 

 

Table 5.4. Comparison between initial and repeat tasks of numbers of correct responses by item (n = 

14). 

item 

number 

item mentally correct written correct other correct 

  initial repeat initial repeat initial repeat 

1 68 + 44 12 11 0 1 1 0 

2 92 – 34 9 9 0 1 1 1 

3 264 – 99 7 9 3 1 0 0 

4 700 + 283 11 13 0 0 0 0 

5 26 x 7 10 8 2 3 0 0 

6 92 ÷ 4 5 9 2 3 0 0 

7 256 + 68 6 9 3 4 1 1 

8 631 – 54 3 6 1 3 1 2 

9 143 x 6 4 4 2 2 1 0 

10 1062 ÷ 9 0 0 0 2 0 0 

11 53 x 28 0 0 1 6 0 0 

 totals 67 78 14 26 5 4 

 

Total of correct responses to items on the student written task: 

Initial    86 

Repeat  108 

 

There was a 26% increase in the overall number of correct responses between the 

initial and repeat written tasks.  It would be unreasonable to attribute this solely to the 

number sense focus of the intervention sessions as it could be argued that any regular 

weekly focus on number (say using formal written algorithms) might also increase 

overall performance on these tasks in a similar way.  Nevertheless at face value the fact 

that about half the increase in correct responses is from greater use of mental calculation 

(as attributed by the students) suggests that there was an impact on performance related 

to building number sense in this way. 
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 At the individual item level the limited number of paired responses makes 

expressing differences and proportions as percentages inappropriate.  It also makes 

extended quantitative analysis of limited if any real value.  Nonetheless some 

observations about the results as a whole are worth noting: 

 Only one item (Item 7 on the repeat task) was answered correctly by the 14 

students in this group.  The item that was assumed to be almost trivial to 

calculate (Item 4: 700 + 283) was incorrectly read as subtraction by at least 

one student on both the initial and the repeat tasks.  This error would be better 

characterized as a concentration error than as an error in a particular approach 

to calculating the answer, or as an indicator of a lack of capacity to calculate 

items of this difficulty.  Errors of this type do not seem strongly related to the 

choice and use of specific strategies for computation, although perhaps 

different computational strategies may help minimize the occurrence of these 

or other concentration errors.  In this study the criterion chosen for selecting 

items for deeper analysis attempted to reduce the influence of this class of 

error on discussions of variations in student performance that can fairly be 

attributed to the number sense intervention. 

 The number of responses that indicated a need for a calculator suggests that, 

particularly on the initial task, students were much less comfortable with the 

two items that involved the operation of division (Items 6 and 10). 

 The criterion for selecting items for further exploration related to the purposes of 

this study was a variation of more than two between initial and repeat responses in: 

 the number of correct responses for an item (Items 6, 7, 8 and 11) 

 the number of students who required a calculator to do the item (Items 6 and 

10) 

 the number of responses that contained an explanation of the process used to 

calculate the answer (Items 6, 10 and 11). 

 This criterion (a variation of more than two) was deemed by the researcher as 

suggesting the possibility of an effect resulting from the number sense intervention and 

not just a somewhat random variation related to confounding factors like concentration 

errors when recalling basic number facts.  If there were any evidence for an intervention 
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effect it might be found by interrogating the characteristics of the student responses to 

those items more closely.  These characteristics could include changes in the proportions 

of calculations using written methods, or changes in the nature of the written methods 

used by students towards more frequent use of approaches that make use of efficient 

mental computation strategies and number sense. 

 

ANALYSIS OF SELECTED ITEMS 

Tables 5.6 to 5.10 contain descriptions of selected characteristics of the 14 paired 

responses to each of the five items that were deemed to have enough variation between 

the initial and repeat responses to be considered priorities for further exploration.  Each 

table is followed by a discussion of the characteristics which relate to the research 

question in this study.  Later in this chapter several insights from interviews with two 

students from Class C (students C17 and C21) will be described which add to the 

understanding of the analysis of the five selected items. 

Table 5.5 defines the headings and abbreviations used in Tables 5.6 to 5.10. 

 

Table 5.5. Headings and abbreviations used in Tables 5.6 to 5.10. 

M√ circled mentally and gave the correct answer 

Mx circled mentally and gave an incorrect answer 

W√ circled written and gave a correct answer 

Wx circled written and gave an incorrect answer 

?√ no approach listed but the correct answer given 

?x no approach listed and an incorrect answer given 

C circled calculator 

exp explanation given 

FWA formal written algorithm 

ENL empty number line 

ER empty rectangle 



Analysis of Item 6: 92 ÷ 4 

 

Table 5.6. Detailed comparison of responses to Item 6 (92 ÷ 4). 

Student  M√ Mx W√ Wx ?√ ?x C exp Observations 

           

C11 initial       1   

 repeat 1       1 used 'half of a half' strategy 

           

C12 initial 1       1 listed as written but explains '4 

fits into 80 twenty times … 

which leaves 12 …' 

 repeat 1       1 evidence of FWA 

           

C13 initial 1       1 knew 25 into 100 and 20 into 

100, then combined 3 x 4 = 12 

and 20 x 4 = 80 

 repeat 1       1 used 'half of a half' strategy 

           

C14 initial 1       1 reverse multiplication in parts: 

10 x 4 = 40 and 13 x 4 = 52 

 repeat 1       1 knew 4 x 20 = 80 and 4 x 3 = 

12 

           

C16 initial   1     1 FWA 

 repeat   1     1 FWA 

           

C17 initial       1   

 repeat 1       1 knew 4 x 20 = 80 and 4 x 3 = 

12 

           

C19 initial         crossed out/no response 

 repeat   1     1 5 lots of 4 per 20, built up by 

20s to 80 

           

C21 initial       1   

 repeat 1       1 wrote 4 ÷ 80 = 20, 4 ÷ 12 = 3, 

20 + 3 = 23 
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Table 5.6 continued 

Student  M√ Mx W√ Wx ?√ ?x C exp Observations 

           

C22 initial       1   

 repeat   1     1 4 x 10 (40), 4 x 10 (40), 4 x 3 

(12) 

           

C23 initial 1       1 used 'half of a half' strategy 

 repeat       1   

           

C24 initial       1   

 repeat 1       1 used 'half of a half' strategy 

           

C25 initial       1   

 repeat       1   

           

C27 initial   1     1 used 'half of a half' strategy 

 repeat 1       1 guess and check back from 4 

into 100 

           

C28 initial 1       1 5 fours in 20, 4 lots of that to 

get 80, then 3 more fours (23) 

 repeat 1       1 knew 4 x 20 = 80 and 4 x 3 = 

12 

 

This item showed a shift from seven to 12 correct responses. 

Some students showed no evidence of any impact of the number sense 

intervention in the way they responded to the item.  Student C16 correctly performed the 

traditional short division algorithm both times, while student C25 circled calculator on 

both tasks. 

Several students used what have been described in this study as number sense 

methods on both tasks (students C13, C14, C27 and C28).  Students C14 and C28 used a 

quotative strategy (finding the number of fours in 92) both times, while students C13 and 

C27 used a partitioning strategy (split or share 92 into four equal parts) on one occasion 

and a quotative strategy on the other. 
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Two students had paired responses that were somewhat anomalous and are 

perhaps best viewed as challenges to tendencies to read too much into any single 

response.  Student C12 initially used a number sense strategy successfully on this item 

but on the repeat task used the formal written algorithm, possibly suggesting that s/he 

was comfortable with either strategy and used whichever approach felt right at the time.  

Student C23 initially used the ‘half of a half’ strategy but then circled calculator on the 

repeat task.  The initial response was reasonable evidence that s/he was capable of 

calculating this item mentally but for some reason on the repeat task either forgot how to 

do this or chose not to.  It might be reasonable to infer that this student needs more 

consolidation of the ‘half of a half’ strategy but it would be inaccurate, on the basis of the 

response to the repeat task alone, to infer that s/he did not have any effective strategies to 

do this calculation mentally. 

 Of particular interest was the number of students who either did not attempt or 

circled calculator on the initial task, but then successfully calculated the answer on the 

repeat task (students C11, C17, C19, C21, C22 and C24).  Two students used the ‘half of 

a half’ strategy (C11 and C24).  Between the remaining four students there were three 

slightly different ways of using part/whole equivalences for 92 to construct convenient 

multiples of four: 

 knew 4 x 20 = 80 and 4 x 3 = 12 

 5 lots of 4 per 20, built up by 20s to 80 

 4 x 10 (40), 4 x 10 (40), 4 x 3 (12). 

 The greater number of responses that used a number sense approach for this item 

and the coincident improved performance suggest a positive impact from the 

intervention. 
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Analysis of Item 7: 256 + 68 

 

Table 5.7. Detailed comparison of responses to Item 7 (256 + 68). 

Student  M√ Mx W√ Wx ?√ ?x C exp Observations 

           

C11 initial         blank 

 repeat 1       1 250 + 60, 6 + 8 

           

C12 initial      1  1 subtracted instead of added 

 repeat   1     1 FWA for vertical addition 

           

C13 initial 1       1 added 250 and 68 (318) then 

added 6 

 repeat 1       1 250 + 60, 6 + 8 

           

C14 initial 1       1 250 + 50 = 300 + 10 = 310 then 

6 + 8 = 14 (324) 

 repeat 1       1 250 + 60, 6 + 8 

           

C16 initial  1      1 250 + 60 = 310, 6 + 68 = 74, 

310 + 74 = 384 (double counted 

the 60) 

 repeat 1       1 250 + 60, 310 +(6+8) 

           

C17 initial   1     1 FWA for vertical addition 

 repeat 1        6+8, 50+60, +200 

           

C19 initial   1     1 FWA for vertical addition 

 repeat   1     1 FWA 

           

C21 initial 1       1 200 + 68 = 268 (then) 268 + 50 

= 318 … 318 + 6 = 324 

 repeat 1       1 250 + 60, 6 + 8 
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Table 5.7 continued 

Student  M√ Mx W√ Wx ?√ ?x C exp Observations 

           

C22 initial 1       1 compensation: 256 + 70 (326) 

minus 2 (324) 

 repeat   1     1 FWA 

           

C23 initial     1   1 stated they used FWA but did 

not show this on the response 

sheet 

 repeat   1     1 on ENL add 60 to 256 (316) 

then +8 (324) 

           

C24 initial 1       1 250 + 60 = 310, 310 + 8 + 6 = 

324 

 repeat 1       1 200 + 68 (268), + 50 (318) + 6 

(324) 

           

C25 initial 1       1 ‘I did 200 + 56 + 68 and got 

324' 

 repeat 1       1 200 + 60 (260), 56 + 8 (64) 

then 260 + 64 (324) 

           

C27 initial   1     1 250 + 60 (310) then 6 + 8 (14) 

then added 

 repeat 1       1 compensation: 256 + 70 - 2 

           

C28 initial         subtracted correctly (188) 

 repeat     1    confused explanation: added 

60 and 60 (120) then added 8 

and 5 (13) 'and added both 

numbers together and it 

equeled (sic) up to 324' 

  

This item showed a shift from 10 to 14 correct responses.  This becomes less 

impressive when one considers the three incorrect responses on the initial task that were 
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probably due to concentration errors.  Students C12 and C28 subtracted instead of adding 

the two numbers and student C11 left the initial response blank. 

Addition is probably the most intuitively obvious, and perhaps most practiced, of 

the four basic operations with number, and the number of incorrect responses to this item 

(effectively nil) supports this point of view.  Of particular interest with this item is the 

number of initial responses that attempted number sense methods to calculate the answer 

mentally (students C13, C14, C16 incorrectly, C21, C22, C24 and C25) or with some pen 

and paper support (C27).  Note that this was prior to the series of eight regular weekly 

intervention sessions.  This is likely to have been the result of earlier work with this class 

stemming from Teacher C’s interest in mental computation.  Strangely there was almost 

just as much use of the traditional written algorithm (where the addition proceeds from 

the right) on the repeat task as there was on the initial task, with no apparent evidence of 

the number sense written method for addition modelled in the intervention sessions 

(where the addition proceeds from the left).  One possible reason for this is that many of 

the students in Class C tended to be capable of genuinely doing this task mentally, and 

others (such as  student C19) were already comfortable with the formal written addition 

algorithm and felt no reason to change. 
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Analysis of Item 8: 631 – 54  

 

Table 5.8. Detailed comparison of responses to Item 8 (631 – 54). 

Student  M√ Mx W√ Wx ?√ ?x C exp Observations 

           

C11 initial         blank 

 repeat     1   1 630 - 50, took 3 

           

C12 initial      1  1 4 – 1 = 3, 50 – 3 0= 20 then 600 

- 23 but wrote 588 

 repeat 1       1 631 - 50 (581) then take 4 

           

C13 initial 1       1 took 50 from 600 (550) then 

added 31 (581) and 'minused' 4 

 repeat 1       1 600 - 50, 31 - 4, 550 + 27 

           

C14 initial 1       1 630 - 30 = 300 - 20 = 580 - 3 

 repeat 1       1 631 - 30 (601), take 20 (581) - 4 

(jump back strategy) 

           

C16 initial  1      1 631 - 50 = 579, 579 - 54 = 525 

(double counted the 50) 

 repeat   1     1 FWA 

           

C17 initial 1       1 ‘I minused the 4 away from 1 

and got 627 then I minused the 

50 away from 627 to get 577' 

 repeat       1  misread the calculation as 

division 

           

C19 initial  1      1 ‘630 - 50 =580 plus 5 which = 

585' 

 repeat  1      1 630 - 50 = 580 - 5 (575) 
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Table 5.8 continued 

Student  M√ Mx W√ Wx ?√ ?x C exp Observations 

           

C21 initial  1      1 600 - 50 + 550, 550 - 55 = 495 

 repeat 1       1 631 - 50 (581), 581 - 4 

           

C22 initial  1      1 attempt at compensation: take 

54 to 50 (and) 631 to 630 … 

630 - 50 = 580 + 4 + 1 = 585 

 repeat   1     1 vertical but used negative 

numbers to record 'how much 

more to take':  components 6 -

20 -3 interpreted as 600 - 23 

(577) 

           

C23 initial  1      1 possible minor concentration 

error: "I took 31 from 54 than 

(sic) I took 24 from 600 (576)' 

 repeat   1     1 jump back on ENL: take 1 

(630), take 50 (580) then - 4 

(576) then add 1 

           

C24 initial  1      1 630 - 30 = 600, 600 - 20 = 580, 

580 - 4 - 1 = 175 

 repeat 1       1 630 - 50 = 580 + 1 - 4 

           

C25 initial   1     1 FWA with tally marks 

suggesting decomposition 

 repeat  1      1 600 - 54 (546), then take 31 to 

get 515 

           

C27 initial    1    1 630 - 50 (580) then took 5 (575) 

 repeat 1       1 jump back: 631 - 50 (581) - 4 

(577) 
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Table 5.8 continued 

Student  M√ Mx W√ Wx ?√ ?x C exp Observations 

           

C28 initial     1   1 confusing explanation: 'take 30 

from 631 = 601 then take 5 = 96 

then 20' 

 repeat     1   1 confusing explanation: took 31 

from 631 (600) 'then just took 

the rest off …' 

 

This item showed a shift from 5 to 11 correct responses. 

Evidence from the written responses to this item strongly suggests that some 

errors were highly likely to be the result of lapses in concentration.  Student C17 misread 

the item as division, and student C12 wrote the answer to 600 – 23 as 588.  In some 

responses it is not possible to discern whether an incorrect response was due to a 

concentration error or a conceptual error (such as both responses from student C19 which 

may indicate a lack of understanding of compensation within subtraction tasks). 

 Two students (C13 and C14) showed evidence of having used extended mental 

computation to correctly calculate the answer to this item on both tasks.  Of particular 

interest was the number of students who initially answered this item incorrectly but on 

the repeat task answered it correctly with evidence of using number sense approaches: 

 Students C21 and C24 initially had stumbled through a string of sometimes 

erroneous mental calculations leading to incorrect answers.  On the repeat 

task they used efficient mental strategies to calculate the correct answer and 

represented these compactly and clearly on paper. 

 Student C22 used the written approach modelled in the intervention sessions 

where a negative number is used to represent how much more to subtract in a 

component calculation, and C23 used the empty number line to represent 

efficient thinking. 

 Student C27 initially used an informal written strategy incorrectly, but on the 

repeat task used the jump strategy to correctly calculate the answer mentally. 

This appears to be evidence of a greater use of efficient number sense methods 

supporting a positive shift in performance on this item. 
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Analysis of Item 10: 1062 ÷ 9  

 

Table 5.9. Detailed comparison of responses to Item 10 (1062 ÷ 9). 

Student  M√ Mx W√ Wx ?√ ?x C exp Observations 

           

C11 initial       1   

 repeat       1   

           

C12 initial       1   

 repeat    1    1 FWA with minor error 

           

C13 initial       1   

 repeat       1  crossed out/no response 

           

C14 initial         crossed out/no response 

 repeat    1    1 attempted FWA 

           

C16 initial    1   1  used estimate: 9 x 12 = 108 then 

divided 1062 by 108 to get an 

estimate of 'around 10' 

 repeat   1     1 chunking algorithm 

           

C17 initial       1   

 repeat       1   

           

C19 initial         crossed out/no response 

 repeat       1   

           

C21 initial       1   

 repeat   1     1 informal progressive 

chunking: 900 ÷ 9 = 100, 162 ÷ 

9 = 18, 100 + 18 
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Table 5.9 continued 

Student  M√ Mx W√ Wx ?√ ?x C exp Observations 

           

C22 initial       1   

 repeat    1   1  attempted informal chunking: 

9 x 100 (900), 9 x 9 (81), 9 x 1 

(9), 9 x 1 (9) … 111 

           

C23 initial       1   

 repeat       1   

           

C24 initial       1   

 repeat       1   

           

C25 initial       1   

 repeat         blank 

           

C27 initial       1   

 repeat    1   1  attempted informal chunking 

with minor arithmetic error 

           

C28 initial       1  crossed out/no response 

 repeat         crossed out/no response 

 

 This item showed an encouraging shift from 12 to 8 responses that indicated a 

need for a calculator to perform the calculation. 

On both the initial and repeat tasks, eight students (C11, C13, C17, C19, C23, 

C24, C25 and C28) indicated that they required a calculator for this task, or left a blank 

response.  However five of the remaining six students attempted some form of written 

calculation for this item on the repeat task after having made no attempt to do so on the 

initial task.  Strategies evident in the repeat responses included the formal long division 

algorithm (students C12 and C14) and informal chunking (students C21, C22 and C27).  

Student C16 had attempted to estimate the answer to this item on the initial task, but 

correctly used the chunking algorithm on the repeat tasks.  Student C21 was the only 

other student to correctly calculate the answer to this item on the repeat task. 
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The interesting difference between the initial and repeat responses to this item 

was the number of attempts at a written approach to the calculation on the repeat task.  

As described previously in Chapter Four it became apparent during the latter intervention 

sessions that the students in Class C had a very limited understanding of division as a 

concept.  This is consistent with the results for this item from the initial task where 13 

out of the 14 paired responses either circled calculator or were a non-attempt.  Although 

less time than was intended was spent during the second half of the series of intervention 

sessions on written methods for long division tasks, the repeat responses to this item 

suggest that students had developed greater confidence and capacity to engage with 

division tasks of this type.  The nature of the strategies they used on the repeat task also 

suggests that the chunking method for these tasks resonated with quite a few students.  

This was surprising given that there had been very limited explicit teaching of the 

chunking algorithm.  There had been, however, substantial explicit teaching around using 

the empty rectangle as a visual organiser for reframing division as reverse multiplication, 

and then completing division tasks in steps by the strategic partitioning of the divisor.  

Interestingly there was no written evidence in the repeat task of students using the empty 

rectangle this way with the items that involved division. 
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Analysis of Item 11: 53 x 28 

 

Table 5.10. Detailed comparison of responses to Item 11 (53 x 28). 

Student  M√ Mx W√ Wx ?√ ?x C exp Observations 

           

C11 initial    1    1 wrote 50 x 20 = 2000 but 

multiplied in parts maintaining 

quantity value in component 

calculations 

 repeat    1    1 used ER correctly but wrote 

20 x 3 as 600 to get 2024 

           

C12 initial  1      1 wrote 3 x 8 = 24 then 50 x 20 = 

100 (giving) 124 

 repeat    1    1 appears to have done 3 x 8 

(24) and 5 x 20 or 2 x 50 to get 

100, then added to 124; used a 

cross notation that was shown 

for 'break up/make up' with 

addition/subtraction tasks 

           

C13 initial    1    1 multiplied in parts maintaining 

quantity value but missed 3 x 8 

 repeat  1      1 53 x 20 = 1300, 8 x 53 = 64, 

1364 (wrong answers to 

components but correct split) 

           

C14 initial         crossed out/no response 

 repeat   1     1 ER 

           

C16 initial   1     1 FWA for long multiplication 

 repeat   1     1 ER 
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Table 5.10 continued 

Student  M√ Mx W√ Wx ?√ ?x C exp Observations 

           

C17 initial      1   in parts with quantity value but 

only did 3 x 8 and 50 x 20 

(1024) 

 repeat   1     1 listed then correctly totalled 

the four component products 

maintaining quantity value 

           

C19 initial         crossed out/no response 

 repeat  1      1 50 x 20, 3 x 8 (1024) 

           

C21 initial      1  1 in parts with quantity value but 

only did 50 x 20 then 3 x 8 

(1024) 

 repeat   1     1 20 x 53 (1060), 10 x 53 (530), 

530 - 106 (424) 1060 + 424 

           

C22 initial    1    1 50 x 20 = 100 (sic), 3 x 8 = 24, 

20 x 3 = 60, 50 x 8 = 400, 100 + 

60 = 160, 400 + 24 = 424, 424 + 

160 = 584 

 repeat  1      1 50 x 20 = 100 (sic) and  3 x 8 

(124) 

           

C23 initial  1      1 only calculated 50 x 20 and 3 x 

8 then added (1024) 

 repeat   1     1 correctly calculated 58 x 23 

using ER 

           

C24 initial       1   

 repeat  1      1 5 x 20 and add a zero, 3 x 8 

(1024) 
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Table 5.10 continued 

Student  M√ Mx W√ Wx ?√ ?x C exp Observations 

           

C25 initial    1    1 partial FWA giving 144 

 repeat  1      1 3 x 8 (24) the 50 x 20 to get 

100 (sic) 

           

C27 initial      1  1 50 x 20 = 1000 ad 3 x 8 = 24 

(1024) 

 repeat   1     1 ER 

           

C28 initial       1  crossed out/no response 

 repeat         crossed out/no response 

  

 This item showed a shift from one to six correct responses. 

 Eight of the 14 repeat responses to this item showed evidence of some sort of 

number sense strategy: 

 four students (C14, C16, C23 and C27) used the empty rectangle (ER) 

correctly 

 one student (C17) listed all four component products and added them 

correctly but without the visual organiser of the ER 

 one student (C11) used the ER correctly but made an arithmetic error on one 

of the component products (20 x 3 = 600) which was carried through correctly 

 two students (C13 and C21) used ways of reframing the calculation which 

strongly suggested that they each understood the operation of multiplication 

and how to interpret the numbers in the product. 

 Five of the remaining responses (C12, C19, C22, C24 and C25) indicated a 

fundamental conceptual error that had surfaced during the intervention session targeting 

long multiplication with two, two-digit numbers.  This error involved processing only 

two of the four component products:  the tens components were multiplied together (in 

this item 50 x 20), the ones components also multiplied together (here 3 x 8) with the 

sum of only these two products being offered as the overall result (here 1000 + 24 = 

1024). 
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 The empty rectangle (ER) had been modelled explicitly in the intervention 

sessions for mental computation and written methods.  It was chosen for its likely value 

as a visual organiser that would help students identify and keep track of all the 

component products generated by a split and recombine strategy for multiplication tasks.  

When compared to the responses to the in-class activity from Session Seven where the 

explicit teaching about this application of the ER occurred (as described in Chapter Four) 

the number of attempts at using the ER and the number of correct responses were both 

much less than anticipated. 

 However, it is worth remembering that on the initial written task there was only 

one correct response to this item (student C16 used the formal written algorithm for long 

multiplication) and only three other responses (students C11, C13 and C22) which 

showed any evidence of some underlying correct strategy.   This was despite the fact that 

it was clear from students’ verbal interactions in Session Seven that many if not all of 

them had seen and practised written approaches to long multiplication in primary school.  

The relatively poor performance on this item on the initial written task may be the result 

of a lack of consolidation and ongoing use of the formal algorithm since that time.  But if 

students are unable to perform these tasks correctly a couple of years after having been 

shown and (at the time) practiced in the formal algorithm, what value should that earlier 

effort be credited from a cost/benefit point of view? 

 The positive shift in performance on the repeat item was encouraging.  It may be 

that this group needed more consolidation with using the ER in this way, and for 

exploring and understanding multiplicative relationships. The errors on the repeat task 

where only two of the four component products were captured in the calculation seem 

less likely to be the result of limited consolidation with the ER, and more to do with 

conceptual flaws related to understanding multiplicative thinking.  It is still worth 

considering that the use of the empty rectangle to represent the long multiplication 

process might help both conceptual development and performance with these 

calculations (Siemon et al, 2005).  Research by Seah and Booker (2005) highlighted just 

how poor students’ understanding of and facility with using multiplicative thinking can 

be, and suggested that poor performance on calculation tasks was related to inadequate 

conceptual understanding. 
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Further research that offered more consolidation at the point of learning the 

empty rectangle as a visual organiser for multiplication tasks, and a longer gap than was 

available in this study between learning this method and having to do related tasks, 

would be valuable. 

 

STUDENT INTERVIEWS 

Two students from Class C were interviewed by the researcher with the aim of 

adding some further detail around their choice of response to selected items on the initial 

and repeat written tasks, and any observations or reflections they might have had about 

participation in the number sense intervention. 

 The interviews were conducted within a few days of the students completing the 

repeat written task.  The researcher had compared the responses to the initial and repeat 

written tasks and selected students C17 and C21 as having differences in their paired 

responses that appeared potentially useful to explore.  These differences included: 

 a greater use of number sense methods in the repeat task 

 variation in the amount and nature of the explanations the accompanied the 

responses to the items on the written tasks. 

 Each interview was conducted in a relatively private space in School C where 

there were few if any visual or auditory distractions for the students.  The interviews 

were recorded on a digital audio recording device. 

 Tables 5.11 and 5.12 describe in detail selected aspects of the initial and repeat 

responses from both interviewed students to each item on the written task.  The 

comments were derived from the comparison of written responses to the items, 

augmented at times with details furnished by the students during the one to one 

interviews. 



 

 

 

Student C17 

Table 5.11. Description of responses by student C17 to the initial and repeat written tasks 

 

 item  initial   repeat  comments 

  √/x stated 

strategy 

evidence of strategy √/x stated 

strategy 

evidence of strategy  

1 68 + 44 √ mental split method: started with 

8 + 4 (12) then 60 + 40 

(100) then added 12 to 100 

(112) 

√ mental split method: added 60 

and 40 (100) then added 

8 and 4 (12) then added 

12 to 100 (112) 

The initial response was 

processed in the order 

associated with formal written 

algorithms for addition (units 

then tens).  The repeat 

response works from the left 

with the tens first then the 

ones. 

Both responses were correct 

but the repeat response is 

consistent with the emphasis 

in the classroom intervention 

on first working from the left 

to foreground the order of 

magnitude of the answer.  
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Table 5.11 continued 

 

 item  initial   repeat  comments 

  √/x stated 

strategy 

evidence of strategy √/x stated 

strategy 

evidence of strategy  

2 92 – 34 √ mental took 4 from 92 (88) then 

took 30 (58) 

√ mental took 4 from 2 (-2) then 

took 30 from 90 (60) 

then took 2 (58) 

The repeat response appears to 

use the split method for 

subtraction with regrouping 

which was explicitly taught 

during the teaching 

intervention. 

3 264 – 99 √ mental rounded 99 to 100, took 

100 from 264 (164) then 

added 1 (165) 

√ mental rounded 99 to 100, took 

100 from 264 (164) then 

added 1 (165) 

The correct use of a 

compensation strategy is 

identical on both tasks. 

4 700 + 283 √ mental split method: 200 + 700 

(900) then 80 + 0 (80) then 

3 + 0 (3) 

√ mental knew 700 + 200 (900) 

then added 83 

The explanation for the repeat 

response appears to exhibit 

better number sense in that 

with only the number of 

hundreds changing, any 

processing of the tens and 

ones, as in the initial 

explanation, is redundant. 
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Table 5.11 continued 

 

 item  initial   repeat  comments 

  √/x stated 

strategy 

evidence of strategy √/x stated 

strategy 

evidence of strategy  

5 26 x 7 √ blank (text 

suggests 

mental) 

6 x 7 (42) then 7 x 20 

(140) then added 42 and 

140 (182) 

x mental 20 x 7 (140) then 6 x 7 

incorrectly (41) then 

added (181) 

The repeat response used the 

correct strategy with what 

appears a concentration error 

with the table fact 6 x 7.  No 

apparent connection to the 

principle that any multiple of 

an even number must be even. 

The repeat response again 

differs from the initial 

response in that the tens are 

treated first then the ones. 
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Table 5.11 continued 

 

 item  initial   repeat  comments 

  √/x stated 

strategy 

evidence of strategy √/x stated 

strategy 

evidence of strategy  

6 92 ÷ 4 NA calculator blank response √ mental estimated the answer to 

be more than 20 as 4 into 

80 goes 20 times leaving 

12; three 4s are 12; then 

added 20 and 3 (23) 

When interviewed it was clear 

that this student understood 

division as ‘how many lots or 

groups of’ and the informal 

chunking strategy he used 

here.  The initial estimation 

became an exact answer to a 

component division (80 ÷ 4) 

which made the remaining 

component division (12 ÷ 4) 

obvious.  The correct 

aggregation of 20 and 3 as 

component responses to ‘how 

many lots or groups of’ is 

further evidence that the 

response to the repeat task was 

based on a full understanding 

of the relationships between 

the numbers involved and this 

interpretation of the operation 

of division. 
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Table 5.11 continued 

 
 item  initial   repeat  comments 

  √/x stated 

strategy 

evidence of strategy √/x stated 

strategy 

evidence of strategy  

7 256 + 68 √ written formal written algorithm: 

right justified vertical 

setting with carry marks 

√ blank (text 

suggests 

mental or 

number 

sense 

written 

method) 

added 6 and 8 (14), then 

added 50 ad 60 (110), 

then added 200 (310) 

then added 14 (324) 

The initial response suggests 

this student was competent 

with the traditional vertical 

algorithm for addition. 

The repeat response differs 

from the initial response in 

that each of the component 

products maintains its full 

quantity value.  The brevity of 

the initial response suggests 

that the explanation of the 

repeat response is for a mental 

calculation. 
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Table 5.11 continued 

 
 item  initial   repeat  comments 

  √/x stated 

strategy 

evidence of strategy √/x stated 

strategy 

evidence of strategy  

8 631 – 54  √ mental took 4 away from 1 (sic) 

(627) then took 50 away 

from 627 (577) 

NA calculator blank on the repeat 

response 

interview response: take 

50 from 630 (580) then 

took 4 from 1 (-3) then 

took 3 from 580 

When interviewed, this student 

said he had misread the 

operation as division. 

When asked how he would 

have done the correct task he 

calculated the correct answer 

using the strategy taught as a 

number sense written method 

for subtraction. 

All component calculations 

were done mentally with the 

recording of his explanation 

appearing to also act as a way 

of keeping track of the 

component calculations.  The 

pulling together of the 

component calculations to give 

the final answer was done 

mentally. 
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Table 5.11 continued 

 

 item  initial   repeat  comments 

  √/x stated 

strategy 

evidence of strategy √/x stated 

strategy 

evidence of strategy  

9 143 x 6 √ written formal written algorithm: 

right justified vertical 

setting with carry marks 

√ mentally multiplied 100 by 6 (600) 

then 40 x 6 (240) then 3 

x 6 (18) then added 18 

onto 840 (858) 

The repeat response reflects 

the mental strategy for 

multiplication that was 

modelled during the 

intervention. 

It differs from the initial 

response in that each of the 

component products maintains 

its full quantity value. 

10 1062 ÷ 9 NA calculator blank response NA calculator blank In the interview this student 

was questioned about his 

repeat responses to this task 

and to Item 6 (92 ÷ 4). 

When prompted to consider 

using the same informal 

chunking strategy he used 

successfully with the repeat 

Item 6 he was able to correctly 

complete this task. 
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Table 5.11 continued 

 

 item  initial   repeat  comments 

  √/x stated 

strategy 

evidence of strategy √/x stated 

strategy 

evidence of strategy  

11 53 x 28 x blank 

(text 

suggests 

mental) 

multiplied 3 by 8 (24) then 

multiplied 50 by 20 (1000) 

then added to get 1024 

√ written 50 x 20 (1000), 3 x 20 

(60), 50 x 8 (400), 3 x 8 

(24) then added 1060 and 

424 (1484) 

The repeat response identifies 

all of the component products 

which are then aggregated in 

two steps (apparently firstly by 

proximity) to give the correct 

total. 

The initial response perhaps 

suggests he inappropriately 

applied an additive strategy 

(tens with tens, ones with 

ones) to perform a 

multiplication task. 

 



Discussion 

The interview with student C17 was particularly enlightening around the impact 

of the number sense intervention on his understanding of and performance with division 

tasks. 

During the interview with student C17 the researcher asked about the responses 

to Item 6 (92 ÷ 4).  The specific question was: what changed so that you could answer 

this question the second time?  Student C17 said that he had previously used “breaking 

up” but had never really understood it.  When asked what he meant by “breaking up” he 

referred to working with the tens in the number.  When asked if this change in his 

understanding had been related to the number sense intervention student C17 was 

positive and definite that it had. 

The researcher then asked about the responses to Item 10 (1062 ÷ 9) which had 

been marked by student C17 as a calculator item on both tasks.  His responses to Item 6 

and his explanations strongly suggested that he clearly understood the strategy of 

separating a number into manageable components that had the divisor as a factor, and 

how this strategy could be used to complete the initial calculation.  He also had been part 

of the lesson where the chunking algorithm for division with larger numbers was 

explicitly taught.  Student C17 said that he did try to do the task in his head, but he did 

not really understand what was going on (with the chunking algorithm) when the teacher 

was showing what to do in class.  He mentioned that at the time he did not fully 

appreciate what questions like would there be more or less than 10 (or 100) lots of (the 

divisor) in (part of the dividend)? were aiming to achieve. 

 The researcher suggested that the same strategy which student C17 used 

successfully on the repeat response to Item 6 could be used here with Item 10.  The 

researcher then invited student C17 to work through Item 10 using that strategy and 

provided a series of prompts to this effect: 

 Would there be more or less than 100 nines in 1062? (more)  How do you 

know? (100 nines is 900) 

 If we took them (the 100 nines) out, what would be left? (162) 

 How do you know? (I take the 900 away from 1062) 
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 Would there be more or less than 10 nines in 162? (more …10 nines is 90 … 

that leaves 72) 

Student C17 completed the calculation this way and said that it made sense to him now. 

 Although this example is limited in its focus it encapsulates the rationale behind 

this study and offers modest support for the belief that number sense written methods 

warrant consideration in a balanced approach to computation in a calculator age.  Student 

C17 initially showed no facility for mental or written calculation with the two division 

items on the written task.  The number sense intervention appeared to contribute to 

genuine conceptual growth and improved performance on a task that could reasonably be 

expected to be calculated mentally (Item 6: 92 ÷ 4).  The interview suggested that it 

would be possible to build a similar level of performance using conceptually aligned 

number sense methods such as the chunking algorithm to deal with division tasks 

deemed to be just outside the reasonable scope of mental computation (such as Item 10: 

1062 ÷ 9), if more time were available for initial explicit teaching and adequate 

consolidation. 

 This student was also asked about his repeat response to Item 8 (631 – 54).  

Initially he had done the calculation correctly, but in his second response he had 

indicated the need for a calculator.  Student C17 stated that he misread the repeat item as 

division.  When invited by the researcher to attempt the item correctly, he used the 

integer approach to subtraction that had been modelled in one of the intervention 

sessions.  He said that representing (in this case) 1 take 4 as -3, using the interpretation 

“3 more to take”, made sense.  These comments, together with the greater number of 

repeat responses that exhibit aspects of number sense (such as Item 7 where the 

explanation on the repeat task uses full quantity value in the component sums) suggest 

that aligning written calculation with number sense is at least workable and may lead to 

improved overall student performance with calculations of this level. 

 



 

 

 

Student C21 

Table 5.12. Description of responses by student C21 to the initial and repeat written tasks 

 

 item  initial   repeat  comments 

  √/x stated 

strategy 

evidence of strategy √/x stated 

strategy 

evidence of strategy  

1 68 + 44 x mental incorrectly read the 

operation as subtraction 

but calculated the correct 

difference: 8 – 4 (4) then 

60 – 40 (20) then 20 + 4 

(24) 

√ mental 

‘written’ 

circled but 

scribbled 

over 

60 + 40 (100) then 8 + 4 

(12) then 10 + 12 (112) 

Although different 

calculations, the initial 

response worked with the 

ones first (8 – 4) then the 

tens ( 60 – 40) while the 

repeat response worked first 

with the tens (60 + 40) then 

the ones (8 + 4) 

2 92 – 34 √ mental wrote 92 = (sic) 4 = 88 and 

88 = (sic) 30 = 58 

√ mental 90 – 30 (60) then 2 – 2 (-2) 

then 60 – 2 (58) 

The repeat response uses the 

split strategy for subtraction 

involving regrouping which 

was shown during the 

intervention sessions. 
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Table 5.12 continued 

 

 item  initial   repeat  comments 

  √/x stated 

strategy 

evidence of strategy √/x stated 

strategy 

evidence of strategy  

3 264 – 99 √ mental wrote 264 = 100 = 164 

+ 1 = 165 (incorrectly 

circled 265 as his final 

answer distinctly to the 

left of his other written 

record which shows the 

correct answer of 165) 

√ mental 264 – 100 (164) then 164 

+ 1 (165) 

Strategy use in both responses 

seems identical. 

4 700 + 283 x mentally incorrectly read the 

operation as subtraction 

but calculated the 

correct difference: 

wrote 700 – 200 = 500 

then 500 – 83 = 417 

√ mental 700 + 200 (900) then 900 

+ 83 (983) 

 

5 26 x 7 √ mentally 

‘calculator’ 

had been 

circled but 

then 

scribbled 

over 

7 x 20 (140) then 7 x 6 

(42) then 140 + 42 

(182) 

√ mental 5 x 26 (130) then 2 x 26 

(52) then 130 + 52 (182) 

In the initial response 26 was 

split as 20 and 6. 

In the repeat response the 7 

was split as 5 and 2. 

When interviewed this student 

said he had calculated 5 x 26 

as ‘half (of 26) then add zero’. 
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Table 5.12 continued 

 

 item  initial   repeat  comments 

  √/x stated 

strategy 

evidence of strategy √/x stated 

strategy 

evidence of strategy  

6 92 ÷ 4 NA calculator blank √ mentally 4 ÷ 80 (20) then 4 ÷ 12 

(3) then 20 + 3 (23) 

Although the numbers in the 

division calculations on the 

repeat task were reversed (4 ÷ 

80 instead of 80 ÷ 4) when 

interview this student showed 

that that he understood what 

he was working towards 

7 256 + 68 √ mentally 200 + 68 (268) then 

268 + 50 (318) and 318 

+ 6 (324) 

√ mentally 250 + 60 (310) then 6 + 8 

(14) then 310 + 14 (324) 

The explanation of the repeat 

task shows a more efficient 

mental strategy. 

8 631 – 54  x mentally 600 – 50 (550) then 

550 – 55 (495) 

√ mentally 631 – 50 (581) then 581 

– 4 (577) 

 

9 143 x 6 √ mentally 

‘calculator’ 

had been 

circled but 

then 

scribbled 

over 

100 x 6 (600) then 40 x 

6 (240) then 3 x 6 (18) 

the correct total of 858 

is circled and appears 

to the right of the three 

component calculations 

√ written 143 x 3 (429) then 429 x 

2 (858) 

no written evidence of 

how this student 

calculated 143 x 3  

When interviewed this student 

was asked how to work out 

143 times 7 and 143 times 9: 

x7 was x3, double then plus 

one 

x9 was x3 three times then add 

these, or x10 minus 143 

 



 135 

 

 

Table 5.12 continued 

 

 item  initial   repeat  comments 

  √/x stated 

strategy 

evidence of strategy √/x stated 

strategy 

evidence of strategy  

10 1062 ÷ 9 NA  calculator blank √ written 900 ÷ 9 (100) then 162 ÷ 

9 (18) then 100 + 18 

(118) 

When interviewed this student 

was asked how he calculated 

162 ÷ 9.  He said he split 162 

into 90 and 72 and divided 

each by 9 mentally 

11 53 x 28 x ‘calculator’ 

had been 

circled but 

then 

scribbled 

over 

50 x 20 (1000) then 3 x 

8 (24) 

1024 circled and to the 

right 

√ written 20 x 53 (1060) then 10 x 

53 (530) then 530 – 106 

(424) then 1060 + 424 

(1484) 

The initial response showed an 

error shared by several 

students.  However the repeat 

response exploits an 

equivalence of 28 as 20 + 10 – 

2. 
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Discussion 

Student C21 was less descriptive in his comments than student C17.  Similarly, 

student C21 did not use any words in his descriptions or explanations of his calculation 

strategies on his written tasks.  His notation in the repeat response was more accurate and 

mathematically correct.   He showed evidence of competence with basic addition and 

multiplication facts but also a variety of well-developed number sense strategies. 

When asked to explain his thinking around his repeat response to Item 6 (92 ÷ 4) 

it was evident that he now understood exactly what he was doing in this calculation 

(“how many fours are in 92”) even though he had reversed the order of the numbers in 

his explanation.  When asked what had helped him do this he answered “dunno … 

(Teacher C) showing us”.  Similarly the initial response to Item 10 (1062 ÷ 9) was blank, 

with the repeat response showed thinking perfectly consistent with the chunking 

algorithm.  However, the written response was not set out the way it had been shown 

during the number sense intervention.  Getting detail from this student was difficult, and 

the researcher offered too many leading questions.  Despite this, student C21 did make it 

clear that he understood what he was doing in answering this item, what each component 

calculation meant, and how the component calculations related to the answer to the 

overall calculation.  For example when asked how he calculated 162 ÷ 9 he talked 

through the correct partitioning of 162 into 90 and 72 and competently explained how 

this led to a quotient of 18. 

 The repeat responses from student C21 to the items that involved multiplication 

warrant further discussion.  The initial responses to the first two of the multiplication 

items involved what could reasonably be deemed as conventional splits: 

 Item 5: 26 x 7 7 x 20 (140) then 7 x 6 (42) then 140 + 42 (182) 

 Item 9: 143 x 6 100 x 6 (600) then 40 x 6 (240) then 3 x 6 (18). 

 The larger (and in both of these cases, the first) of the two numbers was split into 

manageable parts, each of which was multiplied by the second number.  Such 

partitioning was explicitly taught during the intervention sessions that focused on 

multiplication and division.  The initial responses from student C21 showed that he was 

confident and competent with this approach prior to the intervention sessions, at least 

when multiplying by a single digit number.  His initial response to the third 
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multiplication item (53 x 28) incorrectly split the product into only 50 x 20 (1000) and 3 

x 8 (24). 

 The three repeat responses used strategies that were different from the initial 

responses, and also different from each other.  On the repeat items student C21 used 

unconventional manipulations of the second number in each product, in each case 

exploiting connections within and between the given numbers which demonstrated an 

enviable level of number sense: 

 26 x 7 was calculated mentally as “half of (26) then add a zero” plus double 

26 

 143 x 6 was calculated mentally as double 143 x 3 

 53 x 28 was calculated with pen and paper support as 20 x 53, then another 10 

x 53 minus 106 (double 53). 

 When questioned by the researcher about the strategies used with the repeat 

responses to these items student C21 clearly and correctly explained what he did and 

why.  But when asked why his approaches to the repeat tasks differed from his initial 

responses he shrugged his shoulders and said “dunno”.  What was strongly apparent from 

his written and verbal explanations was a sound conceptual platform around the 

operations of multiplication and division, and considerable fluency with using part/whole 

relationships and place value. 

 

SUMMARY 

 The comparison of the paired responses from selected students in Class C to the 

items on the written task showed: 

 a reduction in the number of items that were deemed by students to require a 

calculator (from 24 to 14) 

 an increase in the number of items that had an adequate explanatory 

component (from 112 to 129) 

 an increase in the number of correct responses calculated mentally (from 67 to 

78) 

 an increase in the number of correct responses calculated with written support 

(from 14 to 26) 
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 an increase in the overall number of correct responses (from 86 to 108). 

 It would be unreasonable to suggest that the variations between the initial and 

repeat responses described above were solely due to having a number sense orientation, 

as it could be argued that a sustained and regular focus on number using more traditional 

emphases such as formal written algorithms might achieve the same result.  However the 

emphasis on building number sense through mental computation during the regular 

weekly intervention, and the exploration of number sense written methods, certainly did 

not hinder students’ performance on the repeat written task.  At the very least this would 

suggest that there is no reason not to reconsider the traditional place and expression of 

written calculation in the mathematics curriculum in the middle years of schooling. 

 Chapter Six describes selected aspects of the implementation of this study, and its 

findings and conclusions. 
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CHAPTER SIX: CONCLUSIONS, LIMITATIONS AND 

IMPLICATIONS FOR FURTHER RESEARCH 

 

SUMMARY OF THE STUDY 

Three teachers and their respective Year 8 classes were included in the initial 

stages of this project during term two of the 2008 school year.  Students in Year 8 are 

typically 12 or 13 years of age at the beginning of the school year.  However, the major 

focus of this study was Teacher C and her students, as this case provided substantially 

more robust data for further analysis. 

 The study used a mixed methods approach, emphasising case study 

methodology.  The rationale for doing this related to the importance for addressing the 

research questions of engaging with the participants’ understandings of and attitudes 

towards what they knew about, and could do within, this part of the mathematics 

curriculum.  This emphasis was however tethered to a quantitative measure of the more 

demonstrable issue of performance on tasks.  

Students initially were given a written task made up of 11 calculations of varying 

complexity.  The students were asked to state how they could do the calculation 

(mentally if possible, using pen and paper if unable to calculate mentally, or a calculator 

if necessary), provide the correct answer to the calculation where possible, and describe 

the strategy they used to calculate their answers. 

The written task preceded a series of eight regular weekly classroom intervention 

sessions, each between 30 and 50 minutes long.  These sessions focused on the explicit 

teaching of strategies for mental computation and number sense methods for written 

calculation.  Written responses from students to weekly in-class activities which related 

to the focus of each session were collected by the researcher, who also observed every 

intervention session and recorded aspects of the behaviour of, and interactions between, 

the participants in the study.  Aspects of the planning and review sessions involving 

Teacher C and the researcher were also documented. 
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The same written task was given to the students at the end of the series of weekly 

intervention sessions.  Students’ performance on each item and the evidence of their 

strategy use were compared.  Two students were interviewed by the researcher, with an 

audio record made of both of the interviews. 

The sources of data that have been the primary focus of further analysis are: 

 paired responses to the initial and repeat written tasks from students in Class 

C 

 interview responses from two students from Class C 

 summaries of the researcher’s observations of the eight classroom 

intervention sessions with Class C with reference to the in-class tasks that 

accompanied these sessions and related discussions between the researcher 

and Teacher C when planning and debriefing these sessions. 

 

ISSUES RELATED TO COLLECTING THE DATA  

Mental computation assessment 

During the preliminary planning discussions all teachers stated that they already 

had a reasonable sense of where to start the planned interventions with their classes.  

Therefore it was decided, for different reasons in the case of each class, not to administer 

the initial or repeat assessments of mental computation performance.   

Teacher A was familiar with the instrument for assessing mental computation 

performance and had some of this data on his class from School A’s use of the 

instrument for its own purposes.  This was also the case with Teacher C as the mental 

computation data is pivotal to the functioning of the Learning Assistance (LA) program 

in her school.  Teacher B felt that the assessment process would be disturbing to her 

students and that she already had enough of an idea of their capacities to plan appropriate 

activities for the first intervention session. 

Within the first two weeks of the research period it became clear to the researcher 

that the student written task in particular, and the weekly student work samples and 

lesson observations, would generate the data required to investigate the research question 

in this context. 
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Student written task 

 There were several issues regarding the structure of, and students’ engagement 

with, this instrument. 

 Classes varied considerably in their familiarity with mental calculation, and in 

their capacity to communicate strategies used for calculation.  This appeared 

to have an impact on both the amount and quality of explanation or 

description they provided as a written record of their thinking. 

 The degree of difficulty of the calculations seemed to alienate some students 

from attempting a response to some or almost all of the 11 items. 

 Several students in Class B received help from Special Teaching Assistants 

(STAs) who were assigned to them to explain the items or to transcribe the 

student’s verbal responses. 

 The length of the task (11 items) seemed too long for some students.  Some 

students appeared to get tired or bored and stopped trying.  There was no 

capacity within the instrument to determine if and when students were 

capable of responding to an item but had simply left it out as a non-attempt. 

 Some students covertly used a calculator to work out some answers.  Some 

students plagiarised other students’ work. 

 Responses to some items were only partial, others were ambiguous.  For 

example some responses had an answer and explanation, but no word circled.  

Others had an answer and no explanation.  Some had two words circled. 

 At times there was an apparent clash between a student’s stated strategy 

(indicated by circling one of the words mentally, written or calculator which 

were above each item) and the written response by the student to an item. For 

example some students circled mentally as the stated strategy for calculating 

143 x 6.  However it is highly unlikely that they could have done this if they 

had not written out the answers to the component products 100 x 6, 40 x 6 and 

3 x 6 as part of the explanation of their calculation approach.  Such a response 

would have been more appropriately designated as written, since although the 

component calculations may well have been done mentally, the use of pen 
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and paper was necessary to hold the components together to calculate the final 

answer. 

Some of these things, such as the level of difficulty of the calculations in the 

written task, and partial or ambiguous responses, were visible in the responses from all 

classes and, to varying degree, eroded the data from the student written task.  Class C 

was the group that was least affected by these factors.  Things such as the influence of 

adult help, plagiarism or the use of calculators to find answers were not observed at all in 

Class C.  This class also had the most developed and established culture of valuing and 

explaining the strategies that individuals used to solve mathematical problems in general, 

and calculations with numbers in particular.  The work samples generated each week by 

the students in Class C became a significant complementary source of data; this data has 

been explored in depth in Chapter Four. 

 

Student interviews 

It was anticipated that students from each of the three classes would be 

interviewed.  The intended purpose of these interviews was to draw out from selected 

students further detail about their approaches to calculation and how they felt about the 

work they had done on number sense methods for written calculation. 

Due to time and availability constraints, only three students were interviewed.   

Two were from Class C and one was from Class A.  They were selected because their 

responses to the initial and repeat written tasks showed some evidence of a shift in 

performance (number of tasks answered correctly) as well as a shift towards the use of 

number sense written methods.  All three students were male. 

 

Other sources of data 

The researcher took notes during all classroom sessions that were observed, as 

well as during and immediately after all discussions with teachers.  All teachers in this 

study collected samples of student responses to tasks that focused on the material 

targeted in the number sense intervention.  These tasks came out of discussions between 

the teachers and researcher as the practicalities of the classroom interventions were being 
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decided.  The work samples contributed to effective planning of ensuing sessions and 

gave many insights into aspects of students’ strategy development. 

 

CHANGES IN FOCUS OF ANALYSIS 

 Several factors had driven a change in the number and type of data collecting 

instruments and approaches from what originally had been proposed for this study.  

These factors included: 

 the mental computation assessment was not used with all classes 

 concerns about the quality of the data from the student written tasks from 

Classes A and B 

 the large collection of in-class activities and notes on lesson observations 

from Class C 

 practical limitations around exploring connections within and across the 

various sources of data. 

 

ADDRESSING THE RESEARCH QUESTIONS 

In Chapter Two, it was argued that using number sense written methods within a 

balanced approach to computation would contribute more effectively to building and 

strengthening students’ number sense, and that this was likely to produce positive 

learning and performance outcomes for more students.  This led to the investigation in 

this study of the following research question: 

What are some of the effects on teachers and students within a junior high school 

setting, of aligning written calculation with a strategies approach to teaching and 

using mental computation? 

Of specific interest, this study investigated any effects related to: 

 conceptual understanding of number and operations with numbers 

 facility with performing calculations. 
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Effects on the teacher 

There was evidence in this study that aligning written calculation with a strategies 

approach to teaching and using mental computation had substantial positive effects on 

Teacher C.  These effects included the following: 

 By the end of the data collection phase of this study, Teacher C had increased 

her capacity for planning explicit teaching across several aspects of the core 

curriculum related to building students’ number sense.  She had increased her 

repertoire of strategies for mental and written calculation, and these were 

connected and mutually reinforcing.  Using these strategies had given her a 

natural context for addressing other aspects of number sense, including the 

use of approximations to mentally calculate estimates to exact calculations 

that were carried out using pen and paper or electronic calculators.  All of this 

work was in keeping with her expectation in teaching mathematics, that she 

and her students should understand and be able to communicate what was 

happening in what they were doing. 

 The depth of treatment afforded by this coherent approach, coupled with the 

emphasis on making sense of numbers and the processes for calculating with 

them, built her confidence and competence with teaching this aspect of the 

curriculum.  During the weekly intervention sessions, as well as during 

planning and review meetings with the researcher, Teacher C made references 

repeatedly to the fact that she now understood so much more about numbers, 

and was much more confident working with them.  Previously she had never 

really felt comfortable with them.  Some of this was the result of having to 

confront her lack of deep understanding of the operation of division.  This 

confrontation was directly related to the commitment Teacher C had made to 

building students’ number sense, and the imperative that she believed this 

placed on her to do likewise. 

 Teacher C developed better conceptual understanding of, and facility with using, 

the four operations with whole numbers.  Her existing interest in mental computation 

was augmented by a coherent and related set of pedagogical strategies, practices and 
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resources for working with students in the middle years of schooling around developing a 

balanced approach to computation. 

 

Effects on students 

 There was evidence in this study that aligning written calculation with a strategies 

approach to teaching and using mental computation also had substantial positive effects 

on students in Class C.  These effects included the following: 

 Students improved their performance with mental and written calculation with 

tasks within the range of complexity targeted in this study 

 Students were more confident and able to attempt these calculations mentally 

or with written strategies.  This was suggested by the reduced need for using a 

calculator to complete the calculations. 

 The focus on developing students’ number sense meant that a variety of 

misconceptions with foundational aspects of number were exposed and 

therefore able to be addressed.  Additionally this focus prompted considerable 

discussion of alternative but valid perspectives on the targeted content that 

added richness and depth to this part of the curriculum. 

 For the students in Class C, aligning mental and written computation added to 

their development of conceptual understanding of some of the big ideas in number.  This 

was especially evident with the operations of multiplication and division.  The group also 

showed improved performance with mental and written calculation, and a reduced need 

for using a calculator to do tasks in this range. 

 

FORMING CONCLUSIONS: THE LITERATURE REVISITED 

 The process of distilling the various sources of data into a set of general 

conclusions suggested three main themes for which the data from this study provided 

demonstrable support: 

 The importance of building conceptual understanding, illustrated most clearly 

in this study around understanding the operation of division. 
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 The value of representing mathematical concepts in multiple and meaningful 

ways; typically (but not limited to) words, objects or pictures, and 

mathematical symbols. 

 The value of explicit teaching of mental computation for building number 

sense and improving performance with mental and written calculation. 

 The identification of these themes prompted the researcher to return to the 

literature, but this time looking particularly through these lenses.  Several additions to the 

literature described in Chapter Two are worth mentioning in this context, in that they 

provide a backdrop to considering the trustworthiness of the conclusions drawn by the 

researcher.   

 The three conclusions stated above are interrelated: a principle (building 

conceptual understanding); a useful strategy for achieving this (multiple representation); 

and a workable action (explicit teaching around mental computation).  Despite the 

emphasis implied in their respective titles, the following discussions contribute in 

different ways to engaging holistically with the set of conclusions from this study. 

 Seah and Booker (2005) reported on a study of 143 students in their first year of 

high school (Year 8) in a socially disadvantaged area of Brisbane.  The study focused on 

the students’ knowledge of number concepts (such as place value and regrouping) and 

multiplication, and applications of these to solving problems.  Overall the study found 

that most of the students’ limited discernible knowledge related to performing procedural 

tasks, and there was considerable evidence that students had very little conceptual 

understanding of the targeted number concepts or the operation of multiplication: 

A lack of conceptual understanding of numeration and other previously learned 

mathematical ideas, together with little understanding of the interconnections among 

them, are the source of students' difficulties with multiplication. This can be seen by the 

way many students mixed addition and subtraction strategies when completing the 

multiplication algorithm and their inability to use place value knowledge to rename the 

numbers that resulted from multiplication of the partial products involved in the 

algorithm. 

Word problems posed the greatest difficulties, with a majority of students not able to use 

any appropriate strategy to come to terms with the problems let alone provide an 

appropriate answer. (p.95) 

 

The authors had initially stated their beliefs around the importance of a sense-

making approach to teaching and learning mathematics.  This flavour was clearly evident 
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in their description of the implications of their study for teaching approaches which were 

limited to recalling facts and applying routine procedures: 

The data collected and analysed in this study shows the consequences of such an 

approach. A lack of understanding of the conceptual knowledge underpinning 

mathematics and the interconnectedness among this knowledge causes major difficulties 

at the initial level of applying elementary ideas to straightforward problems and also fails 

to provide a basis for further learning. (p.96) 

 

Siemon, Breed and Virgona (2005) drew attention to the importance of 

multiplicative thinking, and cited the transition from additive thinking to a capacity for 

multiplicative thinking as “one of the major barriers to learning mathematics in the 

middle years” (p.1).  They gave several examples of responses to tasks where additive 

thinking had been applied to solving a problem which was fundamentally multiplicative 

in its structure.  Not only could this result in relatively inefficient solution strategies, but 

more importantly it may imply that a student has not developed the capacity for 

multiplicative thinking. 

They suggested a range of strategies and pedagogical approaches, from early 

primary school through to the middle years of schooling, to support this transition from 

additive to multiplicative thinking.  These included developing the groups of concept by 

counting collections by a fixed number (such as in twos, threes, fives or tens) and 

exploring systematic sharing (such as, how many ways can 18 lollies by shared 

equally?).  Developing appropriate language that helps students engage with the concepts 

is important, as are concrete and visual representations of the concepts.  In this regard 

they noted that in Victoria the emphasis in practice in primary schools is with the 

quotative model of division (that is, how many groups of …?) rather than with the 

suggested approach in system curriculum documents of emphasising the sharing 

(partitive) model. 

Array models using discrete materials such as counters show totals structured as 

repeated equal groups, and readily link to area models such as the empty rectangle (ER).  

The ER provides an abstracted symbolic representation of how multiplication distributes 

over addition, and can be used conveniently with some larger whole numbers and 

decimals to model the relationship between factors and products.  Other aspects of 

multiplicative thinking described were the concepts of for each (the Cartesian product) 
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and the notion of division as finding a missing factor.  Interestingly it was suggested that 

limiting the teaching and interpretation of multiplication and division to just a groups of 

model would leave students under-resourced to deal with the many incarnations of 

multiplicative thinking elsewhere in the curriculum. 

By contrast, when describing some of the issues in teaching multiplication and 

division, Anghileri (1999) acknowledged the interpretation of division as sharing, but 

warned of the limitations of this model for understanding number patterns involving 

multiples, and their role in developing facility with the more powerful (in her view) 

model of division as using grouping strategies: 

Procedures for grouping and sharing will help identify the concepts of multiplication and 

division but these will remain impotent unless the related number patterns are an early 

focus.  In later schooling pupils who can use number facts and relationships will have a 

considerable advantage over those who continue to ‘share’ and ‘group’ with objects or 

with visual imagery. (p.185) 

When pupils limit their understanding to a sharing model it can hamper progress … The 

notion of division as ‘sharing’ is difficult to reconcile with a grouping procedure, but 

‘grouping’ and the use of multiplication facts will provide the key to success in most 

division calculations as this way of ‘breaking down’ numbers can be related to the 

‘building up’ of multiplication. (p.186) 

 

Her later work with the chunking algorithm (Anghileri, 2001; 2006) suggests that the 

comments quoted here about the advantages, in that context, of grouping strategies over a 

sharing model are likely to be correct. 

 Discussion about which conceptualisation of the operation of division (partitive 

or quotative) is more relevant than the other is valuable in that it perhaps suggests that a 

sound understanding of both models is important for developing the full concept of 

division and its connections to the other three main arithmetic operations.  Expedient 

tricks such as treating division as reverse multiplication are obviously useful in practice; 

but limiting students’ conceptual development by only engaging with division at this 

arguably shallow level means they may be hindered from grasping the fuller concept 

adequately.  This was certainly evident in this study, particularly in the lack of 

understanding of the similarities and differences between the partitive and quotative 

models for division that was initially shown by Teacher C, and frequently visible in 

students’ written work and verbal explanations. 
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CONCLUSIONS 

Building conceptual understanding: division as an operation 

Weaving mental computation and written calculation together in this study helped 

Teacher C and her students to develop a much better understanding of multiplication and 

division as concepts.  This conceptual development supported improved performance by 

students on calculations that involved multiplication and division. 

Neither the majority of the students in Class C, nor Teacher C herself, appeared 

initially to understand the concept of division as an operation.  This fact was exposed in 

Sessions Four and Five of the intervention where students struggled with performing 

division tasks that went beyond reverse multiplication facts, and where Teacher C, on her 

own admission, muddled her explanation, cross-modelling the quotative and partitive 

models for division. 

Prior to the intervention sessions that were part of this study, students’ work with 

division had almost certainly been limited to reverse table facts and, for some at least, 

use of the formal written algorithm.  By describing division as the reverse of 

multiplication, students may (quite sensibly) use known multiplication facts (such as 6 x 

4) to calculate the answer to related division tasks (such as 24 ÷ 6).  They could also 

perform the division algorithm with pen and paper, without needing to understand 

division as an operation.  The expectation that one should be able to explain one’s 

strategy for doing a calculation accompanied the strategies approach to teaching and 

using mental computation, and it was this expectation that brought this particular 

conceptual weakness into the open.  Whatever success students had previously achieved 

with interpreting division as reverse multiplication may well have masked their lack of 

understanding of division as an operation. 

If developing sound conceptual understanding is as important to learning and 

using mathematics as has been suggested in Chapter Two, then leaving the concept of 

division as just the reverse of multiplication may be a cause for concern inasmuch as it 

can camouflage a failure to understand division as a concept in its own right.  One could 

speculate on the impact of this conceptual deficit on learning other topics in the school 

mathematics curriculum, such as developing sound fraction concepts, or procedural 

facility with algebraic expressions that involve division. 
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From the point of view of authenticity of assessment it is important to separate 

skill with the recall of reverse-multiplication facts from genuine understandings and 

applications of the operation of division.  This is particularly significant now, as most 

involved and complex calculations outside school are processed electronically 

(Brinkworth, 1985).  Here the real work is in understanding the relationships between the 

components of the calculation and setting the correct sequence of operations to represent 

those relationships, so that the electronic tool will process the intended calculation. 

The quotative model of division seems strongly linked to understanding and using 

the chunking algorithm, and applications to interpreting calculations with benchmark 

fractions (such as 3 ÷ ½) as in the support materials for teachers developed by McIntosh 

and Dole (2004).  However the partitive model of division appears common in initial 

explanations of division as equal shares, and in establishing foundational fraction 

concepts, such as marking a given length into four equal lengths, with three of those end 

to end representing ¾ of the original length.  It is hardly surprising that what has been 

labelled in this study as cross-modelling occurs, and that working simultaneously across 

both models promotes confusion. 

 The concept of division as equal shares (the partitive model) warrants an adequate 

level of exposure for several reasons: 

 Sharing tasks can reasonably occur in day to day living, such as sharing $70 

in tips between five wait staff at the end of a shift. 

 It has been described in national and state and territory curriculum documents 

as a suggested teaching strategy in the primary years (ACT DET, 2007; AEC, 

1990) and has therefore almost certainly been seen (if not understood) by 

most teachers and high school students. 

 It underpins aspects of a number of contemporary approaches to establishing 

foundational fraction concepts, and teaching mental computation with 

fractions (as in module five in McIntosh & Dole, 2004). 

 One further reason, related more to the teaching than the learning of mathematics, 

stands out as somewhat different to those listed above.  When debriefing Teacher C after 

her cross-modelling episode in Session Five, it seemed necessary to describe clearly both 

division as equal shares, and division as groups of, to unpack her misconceptions and to 
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help her develop a robust concept of division as an operation.  Teacher C had earlier 

accepted the importance of understanding subtraction as take away and as difference, and 

wanted a similar level of understanding with the equivalent situation with division.  To 

not go into the similarities and differences between the partitive and quotative models for 

the operation of division would have been to avoid supporting Teacher C’s development 

of deep understanding of that operation, as suggested as important in the framework for 

number sense used by McIntosh et al. (1997).  It would also have avoided an opportunity 

to build the sort of connections within Teacher C’s content-pedagogical knowledge that 

Askew (1999) described as the mark of effective teachers of numeracy. 

 

Multiple representations: words, pictures, symbols 

In this study there was a commitment to linking words, objects or pictures, and 

mathematical symbols, on the belief that this would help students make meaning around 

the mathematics they were using.  There were several examples from this study of 

approaches that appeared to be effective in doing this in the context of improving 

students’ facility with mental computation.  They included: 

 using the empty number line (ENL) to represent subtraction tasks as both take 

away and as difference 

 using V notation to visually illustrate the split strategy with addition or 

subtraction, intuitive notions of negative numbers, and catch phrases such as 

‘break up/make up’ to represent a split strategy for subtraction tasks with two 

two-digit numbers which required regrouping 

 using the empty rectangle (ER) to model a split strategy for multiplication of 

a two-digit number by a one-digit number 

 using the ER to model division tasks as finding the missing factor, and as a 

way of organising sensible splits of the dividend to facilitate efficient 

applications of the chunking strategy. 

In terms of this study, there were at least two main purposes for improving 

students’ mental computation.  Firstly, that mental computation is useful in practical 

terms and for building number sense.  Secondly, sound mental computation is integral to 

using the number sense methods for written calculation that were explored.  The ER 
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worked very well in representing calculations that were done mentally, and as a visual 

organiser for keeping track of the component calculations when using pen and paper to 

process long multiplication tasks.  The difficulties that students in this stage of schooling 

have in moving from additive to multiplicative thinking and the significance of sound 

conceptual development in achieving improved performance with calculation, both 

suggest that the ER in particular should have a higher profile in the mathematics 

classroom. 

Building robust conceptual understanding of division is but one instance of a 

commitment to valuing conceptual understanding within a sense-making approach to 

teaching, learning and using mathematics.  This is a commitment shared by many 

(McIntosh et al., 1997; NCTM, 2000; Seah & Booker, 2005; Trafton, 2004).  However, 

within the typical period allocated to K – 12 schooling the nature of the concepts may 

change. This is evident when one compares simple arithmetic tasks with division (such 

as 24 ÷ 3), which can be modelled physically or visually, to division with algebraic 

fractions, which very quickly becomes something that defies any similar instructive 

physical or visual representation.  This shift in the nature of the concepts to be 

understood in the school mathematics curriculum is pertinent to the discussions by Star 

(2005) around reconceptualising our view of procedural knowledge, and Pierce and 

Stacey (2001) in their explorations of a framework for algebraic insight. 

That we cannot create physical or visual representations which complement 

verbal and symbolic representations for all topics in the school mathematics curriculum 

(such as division with algebraic fractions) is no reason not to do so when we can.  The 

lack of a robust understanding of division that was identified in the participants in this 

study was indicative of a concept that can be modelled both physically and visually.  It 

was precisely this modelling, augmented by descriptive language and the appropriate 

mathematical symbols that helped Teacher C improve her understanding of this aspect of 

the curriculum.  This modelling contributed to students’ improved performance with 

calculation, as identified in the improved performance on division tasks overall, and 

confirmed in the student interviews.  Other work by the researcher (separate to this 

study) into the use of physical and visual models to support the development of initial 
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understandings of symbolic algebra with Year 7 students, suggests that more research 

into the use of these models would be valuable.  

 

Mental and written calculation: student performance 

Any reform to the way calculation is taught and used in school must consider the 

efficacy of the proposed changes on students’ ability to perform calculations correctly 

and get the right answers.  Unless discussion of the importance of conceptual 

understanding also relates to improvements in learning and performance it is more 

philosophical than useful.  However, it is important in this regard to articulate explicitly 

the performance standards against which any judgments are made, and to frame these 

standards sensibly within the social and developmental contexts in which they are to be 

applied. 

 In this study the repeated written task gave some indication of students’ 

performance with a range of calculations prior to and immediately after the eight week 

series of intervention sessions.  The comparison of the paired responses to the 11 items 

on the written task showed: 

 a reduction in the number of items that were deemed by students to required a 

calculator (from 24 to 14) 

 an increase in the number of items that had an adequate explanatory 

component (from 112 to 129) 

 an increase in the number of correct responses calculated mentally (from 67 to 

78) 

 an increase in the number of correct responses calculated with written support 

(from 14 to 26) 

 an increase in the total number of correct responses (from 86 to 108). 

The 26% increase in the number of correct answers suggests that the emphasis on mental 

computation, in its own right and as a basis for using alternate number sense written 

methods of calculation, enhanced students’ facility with performing calculations 

correctly.  The concurrent increases in the number of calculations done mentally, and 

with written support of any kind, imply students’ number sense and capacity to do 

calculations in the range targeted by this study improved. 
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 This conclusion is also supported by the reduction in the number of repeat 

responses which nominated that a calculator was needed to perform a calculation.  Of the 

total of 38 responses that required the use of a calculator over both administrations of the 

written task, only one response was for an additive task.  The remainder all related to the 

items that involved multiplication and division.  This is hardly surprising, and is in 

keeping with the difficulties that students have with growing into multiplicative thinking 

(Siemon et al., 2005). 

 The reduction in nominated calculator use here is commensurate with an 

increased engagement with mental or written methods for these calculations.  This 

suggests that valuing and using mental computation and number sense written methods 

does lead to less reliance on electronic calculation, particularly for those calculations for 

which it is reasonable to expect students not to need a calculator to perform.  The 

complementary data from the lesson observations, described in detail in Chapter Four, 

suggest that a focus on improving number sense can improve performance on this type of 

task, and improve students’ understandings of foundational number concepts.  This 

concurrent benefit, of performance on a limited but reasonable range of calculations, and 

richer conceptual development, is the main reason to consider reframing the treatment of 

written calculation with whole numbers around the use of the number sense written 

methods described in this study. 

 

LIMITATIONS OF THIS STUDY 

Number of participants and sources of data 

 Initially a study comparing three classes in different schools was planned.  

Several factors, including a large amount of rich data from School C, prompted a 

variation from the number and the type of data collecting instruments and approaches 

originally proposed for this study.  

 As a result the remainder of this study focused mostly on the teacher and the 25 

students in Class C.  The sources of data that became the primary focus of analysis were: 

 14 paired responses to the initial and repeat written tasks from students in 

Class C 

 interview responses from two students from Class C 
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 summaries of the researcher’s observations of the eight classroom 

intervention sessions with Class C 

 the written responses from students to the in-class tasks from each 

intervention session  

 discussions between the researcher and Teacher C when planning and 

debriefing the intervention sessions. 

 The unforeseen development of weekly in-class tasks related to the intervention 

topics provided a rich source of data which, although initially unplanned, provided 

greater depth to this study than originally anticipated.  The inherent flexibility of case 

study methodology allowed the data collection process to exploit the dynamic 

opportunities in the interactions between the various participants, many of which could 

not have been foreseen.  Video recording of the classroom sessions, the discussions 

between the researcher and Teacher C, and the student interviews would have been 

extremely valuable, but were beyond the practical scope of this study. 

 

Coding the items on the written task 

 For each of the 11 items on the written task used in this study, students were 

asked: 

 if possible, to calculate the answer mentally and explain the strategy they 

used, then circle ‘mentally’ 

 to use pen and paper to work out the answer only if they could not calculate 

the answer mentally, and then circle ‘written’ 

 to circle ‘calculator’ only when they had no other option for calculating the 

answer. 

 Interpreting and applying this coding protocol consistently became difficult.  For 

example, on the initial task student C12 nominated a written strategy for question 3, but 

gave this explanation: “I took 99 off 200, which leaves me with 101, then plus 64 = 165”.  

In the absence of any record of a written process (such as answers to component 

calculations) this suggests she quite likely calculated this answer mentally.  In the initial 

response to question 9 (143 x 6) she circled ‘mentally’ but lists the three component 

products which are then totalled.  This is unlikely to have been possible without using 
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pen and paper to keep a record of the answers to the component calculations, suggesting 

that this response might more appropriately be seen as involving a written strategy, albeit 

a number sense one.  However this is speculative.  A one-to-one interview would have 

been useful for clarifying this issue but due to time constraints student C12 was not one 

of the students interviewed. 

 Similarly student C21 added 256 and 68 this way on the initial instrument: 200 + 

68 = 268, 268 + 50 = 318, 318 + 6 = 324.  He circled ‘mentally’ which might accurately 

reflect that he did all those calculations in his head.  However it seems at least plausible 

that he was only able to do this because the process of writing down his explanation 

served the concurrent purpose of carrying his running total through several stages.  

Hence for this student, and perhaps in the thinking of others, circling the term ‘mentally’ 

might not exclude using pen and paper as an aide memoir.  The original intent of the 

researcher was to classify such use of pen and paper as a written strategy, but one that 

was of a different nature to formal algorithmic processes. On her initial response to 

question 5 (26 x 7) and question 9 (143 x 6) student C22 circled ‘written’ but gave the 

same explanation as many students who had circled ‘mentally’.  While each situation 

might have in fact been categorised correctly by the students, this does seem unlikely.  In 

future this problem may be reduced by investing more time into explaining what the 

terms ‘mentally’ and ‘written’ were to signify, but that possibility would need to be 

balanced against providing so much guidance that the students get caught up in doing 

what they were shown, rather than showing how they think and can perform with the 

given tasks. 

 Another difficulty with the scoring protocol was how to code the correct 

calculation of an alternate question.  For example student C21 correctly mentally 

calculated 68 – 44, using the split method, and explained this adequately.  However he 

should have added the two numbers.  Although he provided evidence of several key 

indicators of number sense (such as correctly separating tens and ones, processing 

subtraction correctly then recombining the parts to give his answer) he did not answer the 

same question as most of the other students.   
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IMPLICATIONS FOR FURTHER RESEARCH 

 This study generated a raft of further questions related to this area.  These 

included the following: 

 Would leaving out formal written algorithms for whole numbers adversely 

impact on contemporary needs for operating with fractions, and procedural 

aspects of operating with algebra?  Or are the contexts for using fractions now 

different, with operating tasks now dominated by using equivalent decimals, 

and framing answers to calculations using them as approximations?  Is 

providing whatever students need for algebra simply a matter of re-working 

how we teach algebra?  How then could the teaching of introductory concepts 

of algebra be reframed from a sense-making perspective? 

 Does a focus on multiple representations of mathematics in the early years of 

schooling (using words, objects or pictures, and mathematical symbols) help 

when learning more abstracted but related concepts that are not readily 

modelled in this way? 

 Are students up to and including the middle years of schooling better served 

by number sense written calculation, or would a serious and sustained 

program of mental computation provide a platform for more effective 

application of formal written algorithms? 

 Work done by the researcher outside of this study, on a multi-representational 

approach to introducing algebra to students in their first year of high school, probed a 

sense-making approach in this area of the curriculum.  This involved using words, and 

objects or pictures, to augment symbols as a way of making sense of foundational 

algebraic conventions.  An approach of this type to learning introductory concepts in 

algebra seemed more than feasible.  This, plus the capacity for scientific and other 

calculators to both perform fraction calculations and illustrate some of the conceptual 

underpinnings of the processes used, suggest that reframing the teaching of algebra and 

fractions to complement number sense written calculation would be workable and of 

benefit to students. 
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AND SO …? 

The range of calculations for which mental computation and number sense 

written methods are appropriate is outlined in Appendix A, and does not differ 

significantly from that described by Plunkett (1979). 

The rationale behind this study was that number sense methods for written 

calculation, with whole numbers at least, appear to have much more to offer in terms of 

developing number sense in students in the middle years of schooling than the formal 

written algorithms typically seen in the delivered curriculum.  The advent and 

widespread adoption over the last forty years or so of electronic calculation has meant 

that the development of number sense has greater social utility than facility with written 

calculation.  This shift towards valuing number sense has been visible in mathematics 

curriculum documents over that time, but there is uneven uptake of this in practice.  The 

amount and type of written calculation in the delivered curriculum (usually involving a 

disproportionally large emphasis on formal algorithms) is there because teachers still put 

it in there, perhaps for the lack of a coherent, balanced view of how calculation is used in 

contemporary society.  The amount of written calculation required outside of 

mathematics lessons appears to be marginal at best, making the time spent mastering 

formal written algorithms in mathematics lessons a very questionable use of the time 

allocated to learning mathematics in school.  If written calculation is to continue to be 

part of the mathematics curriculum, its purpose should be more than just getting answers 

to calculations that will, for the most part, only ever be done outside of school by 

pushing buttons.  The phrase “less but better” captures the findings of this study. 

This study has suggested that the teaching and use of number sense written 

methods, for a limited range of calculations with whole numbers, can contribute to 

strengthening conceptual understandings of place value and the four operations.  And it is 

these understandings that help students work meaningfully and successfully with 

numbers, whatever medium they might use for processing a calculation. 
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APPENDIX A 

Complexity of calculations for the classroom number sense initiative 

Tables A1.1 and A1.2 describe and give examples of what was considered, for the 

purposes of this study, to be fair and reasonable expectations for the complexity of 

calculations with whole numbers to be done mentally and by number sense written 

methods.  This represents a level of facility with calculations involving whole numbers 

that aligns closely with the ideas outlined in Plunkett (1979) and reflects the prevalence 

and efficacy of electronic means for calculation in contemporary society. 

Some people can calculate mentally with larger or more complex numbers.  

Similarly, some people may choose to use number-sense written methods to calculate the 

answer to more involved calculations.  However, these standards for mental computation 

and written calculation seem achievable and desirable.  When seen as a complement to 

the effective and efficient use of electronic calculation, this level of performance with 

mental and written calculation seems more than adequate for facilitating further learning 

of mathematics in school, and applied calculation in other contexts. 

 

Table A1.1.Complexity of calculations to be done mentally. 

Operation Performance level Examples 

Addition 2-digit number plus 2-digit number 48 + 37 

Subtraction 2-digit number minus 2-digit number 63 – 29  

Multiplication 2-digit number multiplied by 1-digit number 34 x 6 

Division 2-digit number divided by 1-digit number 72 ÷ 4 

 

Table A1.2. Complexity of calculations to be done using number sense written calculation. 

Operation Performance level Examples 

Addition 3-digit number plus 2- or 3-digit number 254 + 68 

434 + 267 

Subtraction 3-digit number minus 2- or 3-digit number 214 – 67 

431 – 259 

Multiplication 3-digit number multiplied by 1-digit number 

2-digit number multiplied by 2-digit number 

234 x 7 

82 x 29 

Division 3- or 4-digit number divided by 1-digit number 544 ÷ 8 

1014 ÷ 3 
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APPENDIX B 

Mental computation assessment tasks with whole numbers
2
 

 

Table B.1. Whole numbers/addition and subtraction 

 

A B C D 

1) 4 + 7 

2) 9 + 5 

3) 10 – 8 

4) 8 – 3 

5) 17 – 7 

6) 11 – 5 

7) 6 + 6 

 

1) 6 + 13 

2) 36 – 5 

3) 21 + 4 

4) 58 – 3 

5) 3 + 48 

6) 57 + 9 

7) 42 – 6 

8) 31 – 4 

1) 50 + 70 

2) 140 – 60 

3) 60 – 13 

4) 30 + 22 

5) 76 + 40 

6) 54 – 20 

7) 65 – 35 

8) 15 + 25 

1) 43 – 12 

2) 33 + 15 

3) 92 – 34 

4) 27 + 25 

5) 105 – 26 

6) 264 – 99 

 

basic facts 2 and 1 digit bundles of 10 mixed 

 

 

Table B.2. Whole numbers/multiplication and division 

 

A B C D 

1) 6 x 9 

2) 21 ÷ 3 

3) 20 ÷ 4 

4) 8 x 3 

5) 72 ÷ 9 

6) 7 x 8 

7) 24 ÷ 6 

1) 2 x 40 

2) halve 15 

3) 60 x 2 

4) halve 46 

5) 17 x 2 

6) 12 x 10 

7) 10 x 19 

8) 28 x 10 

9) 10 x 32 

1) 30 x 5 

2) 80 ÷ 4 

3) 200 ÷ 5 

4) 7 x 200 

5) 13 x 20 

6) 40 x 70 

 

1) 27 x 3 

2) 5 x 12 

3) 150 ÷ 6 

4) 26 x 7 

5) 92 ÷ 4 

6) 72 ÷ 3 

 

basic facts doubles and x 10 extended basic facts mixed 

 

 

                                                      
2 As in use at school C in 2005 
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APPENDIX C 

Student written task: initial and repeat 

 

Name Class 

Teacher School 

 

Here are a few calculations to do.  Thank you for having a go at them. 
 

Please do as many calculations as you can.  

Write your answers and how you worked them out in the boxes that 

look like this:  

 

 

 

 

Try and work out each answer in your head.  If you can 

 circle the word mentally 

 then explain how you worked out the answer. 

 

 

If you can’t work it out in your head, you may use pen (or pencil) 

and paper to help you any way you like. 

If you use pen (or pencil) and paper 

 circle the word written 

 then show how you worked out the answer. 

You can write a few words to help explain what you did. 

 

 

 

 

If you feel you would need a calculator to do the calculation 

 circle the word calculator 

 then move on to the next question. 
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1 

 68 + 44   mentally written  calculator 

 

 

 

 

 

 

 

2 

 92 – 34    mentally written  calculator 

 

 

 

 

 

 

 

3 

 264 – 99    mentally written  calculator 
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4 

 700 + 283  mentally written  calculator 

 

 

 

 

 

 

 

5 

 26 x 7   mentally written  calculator 

 

 

 

 

 

 

 

6 

 92 ÷ 4   mentally written  calculator 
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7 

 256 + 68   mentally written  calculator 

 

 

 

 

 

 

 

8 

 631 – 54    mentally written  calculator 

 

 

 

 

 

 

 

9 

 143 x 6   mentally written  calculator 
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10 

 1062 ÷ 9   mentally written  calculator 

 

 

 

 

 

 

 

11 

 53 x 28   mentally written  calculator 
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APPENDIX D 

Efficient mental calculation strategies for addition and subtraction tasks 

 

Table D.1 was adapted from Thompson (1999) and gives a selection of efficient 

mental calculation strategies for addition and subtraction tasks.  It gives names for, and 

examples of, the efficient strategies that were evident in the classroom observations and 

student work samples that were the focus of this study. 

The examples involve two two-digit numbers.  However, these strategies could be 

used with numbers that had more or fewer digits.  The ease with which such calculations 

could be done mentally would depend on the connections between the particular numbers 

involved in each case. 

 

Table D.1. Selection of efficient mental calculation strategies for addition and subtraction tasks. 

 

Strategy Description Examples 

 

Split 

[also called the 

partitioning 

method] 

 

The numbers in the 

calculation are split into 

multiples of ten and ones. 

 

Typically the multiples of 

ten are processed together 

first, then the ones. 

 

Intuitive interpretations of 

negative numbers as ‘more 

to take’ are workable. 

 

46 + 17 

40 plus 10 is 50 … 6 plus 7 is 13 … together that 

makes 63 

 

85 – 31 

(direct subtraction) 

80 take 30 is 50 … 5 minus 1 is 4 … so 54 

 

72 – 25 

(with regrouping) 

70 take 20 is 50 … 2 minus 5 is -3 which means take 

3 more away … 50 minus 3 is 47 
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Table D.1 continued 

 

Strategy Description Examples 

 

Jump 

[also called the 

sequencing or 

cumulative 

method] 

 

Start with one of the 

numbers and move in 

manageable parts of the 

other number [or the 

answer, depending on the 

task]. 

 

Efficient use of this 

strategy typically involves 

moving [or bridging] to a 

tens number, and moving 

in steps of one or more 

tens [move to a ten and 

move by a ten]. 

 

This strategy can be 

represented easily on the 

empty number line [ENL]. 

 

 

37 + 25 

I add 3 onto 37 to get 40, then 22 to get 62 

 

54 – 17  

(as take away) 

I take 4 off 54 to make 50 … then another 10 to get 

to 40 … then back 3 more to 37 

 

54 – 17  

(as difference) 

I start at 17 … add 3 to get 20, add 30 to get to 50, 

and there’s 4 more … 3 + 30 + 4 = 37 

 

 

Split/jump 

[also called the 

mixed method] 

 

This is a combination of 

the split and jump 

methods. 

 

75 + 26 

70 plus 20 is 90 … 95 plus another 5 makes 100, 

then one more … 

 

 

Compensation 

[also called the 

over-jump 

method] 

 

Add or subtract a near 

multiple of ten, then 

adjust. 

 

54 – 19 

54 take 20 is 34 … I took one too many so I add 

one back to get 35 
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APPENDIX E 

Support notes for scaffolding number sense written methods for multiplication and 

division 

This material was developed by the researcher during term two 2008.  The 

purpose of this material was to describe an effective teaching sequence that supported 

students in developing sound concepts of multiplication and division with whole 

numbers which would facilitate becoming competent with number sense written methods 

(NSWM) for these operations. 

 The main strategy used was splitting numbers into parts that were easily 

manipulated mentally.  Pre-requisite understanding and skills include: 

 mental computation with basic multiplication facts (up to 10 x 10 and reverse) 

 a knowledge of place value. 

 This material was used by teacher C to develop her own content-pedagogical 

knowledge of this aspect of the mathematics curriculum as she worked with the 

researcher in planning, implementing and evaluating some of the eight intervention 

sessions that are the focus of this study.  Table E.1 lists the sequence of focus areas and 

related strategies used in the resource. 

 

Table E.1. Focus areas and related strategies for teaching multiplication and division. 

 Focus Main strategy 

1 Establish multiplication as repeated equal groups rectangular arrays 

2 Explore visual representations of multiplicative 

part/whole relationships 

split arrays 

3 Consolidate symbolic representations of multiplicative 

part/whole relationships 

empty rectangle 

4 Develop language and notation for extended 

multiplication tasks 

empty rectangle 

5 Use an abridged version of the same sequence to 

establish meaningful connections between multiplication 

and division 

empty rectangle and reverse 

multiplication facts 

6 Introduce the chunking algorithm for division building with multiples of 

powers of ten 

In this appendix the material has been reproduced in close to its original format. 
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1 Establish multiplication as repeated equal groups 

 

 representation 

of quantity 

example key points 

1 random 

display 

12 counters tipped 

onto the table … 

some might even 

overlap 

lack of structure almost certainly makes it 

difficult to accurately and reliably 

determine the total 

 

likely approach is ‘count by ones’ but 

without moving the items keeping track of 

which items have been counted is not easy 

 

2 linear display line the 12 counters 

up in a single row … 

straight or curved 

linear structure still suggests ‘count by 

ones’ but assists in keeping track of which 

items have been counted 

 

only one group is represented; the total 

 

 

 

3 

 

 

 

bunch display 

 

 

 

make (say) four 

distinct groups, each 

group with three 

counters 

 

each group of three 

counters is like a 

little triangle 

grouped structure represents the total as a 

collection of equal-sized groups 

 

bunch display suggests skip counting to 

find the total: 3, 6, 9, 12 

 

unless the orientation of each group of 

three is the same the equality of the 

groups may not be obvious 
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 representation 

of quantity 

example key points 

4 rectangular 

array  

each group of three is 

placed as a 

horizontal line 

 

the four horizontal 

lines are stacked 

directly on top of 

each other to form 

three vertical groups 

of four counters 

 

*   *   * 

*   *   * 

*   *   * 

*   *   * 

group size and the equality of the repeated 

groups is arguably represented more 

directly 

 

the rectangular grouping suggests a two-

dimensional multiplicative count as the 

product of the number of repeated groups 

(vertical count) and group size (horizontal 

count): 4 x 3 = 12 

 

 

typical language here is ‘four groups of 

three’ 

this display structure provides a clear 

representation of basic multiplication facts 

 

rotating the array can help show what is 

the same and different in partnered 

multiplication facts (such as 4 x 3 and 3 x 

4) 

 what is the same? (the total) 

 what is different? (the group size and 

the number of repeated groups) 

 

sense-making approaches to teaching 

mathematics in the early years such as 

Count Me In Too make extensive use of 

rectangular arrays as a basis for 

constructing meaning for the operation of 

multiplication 
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Notes 

 A variation of the bunch display (category 3 above) is the iconic display.  This 

involves culturally significant display structures that represent quantity 

pictorially.  An example is the way five dots are typically represented on a die.  

Such displays have been connected to subatising (the recognition of quantity 

without needing to count).  The amount of cultural construction of meaning to the 

‘picture’ of the number suggests these display structures are significantly 

different in nature to ‘ordinary’ bunch displays. 

 A variation on rectangular arrays (category 4 above) is irregular arrays.  Counters 

are placed in a sequence of rows but not all rows are equal.  For example  

*   *   *   * 

*   * 

*   *   * 

*   *   * 

This representation suggests an additive strategy for finding the total.  The value 

of this representation is that it contrasts with the multiplicative thinking modelled 

by rectangular arrays. 

 Although multiplication and division are strongly related there may be value in 

initially emphasizing multiplication as a way of establishing multiplicative 

thinking.  Once there is evidence of students being grounded with multiplicative 

thinking there is perhaps a more effective and workable basis for representing 

division. 
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2 Explore visual representations of multiplicative part/whole relationships 

 Rectangular arrays can be used to give a structured visual representation of 

part/whole relationships involving products.  A term to describe this is ‘split arrays’. 

Consider the rectangular array representation of 4 x 9 as four rows each with nine dots: 

 

                  

                  

                  

                  

 

 This basic array can be ‘split’ with horizontal or vertical lines to represent a range 

of equivalent mathematical representations of the total of 36.  Each alternate 

representation will be the sum of two or more component products.  For example: 

 36 is four groups of three (12) plus four groups of six (24) 
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 36 is also four groups of seven (28) plus four groups of two (8) 

                  

                  

                  

                  

 

Both of these examples split the array vertically.  The array could also be split 

horizontally. 

36 could be represented as three groups of nine (27) plus one more group of nine (9) 

                  

                  

                  

                  

 

 The examples of spilt arrays so far have each had two component products.  

Further representations of 36 could be: 

 four groups of two (8) plus four groups of three (12) plus four groups of four (16) 
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or 

 four groups of five (20) plus three groups of four (12) plus one more group of 

four (4) 

                  

                  

                  

                  

 

 Possible strengths of activities of this type include: 

 consolidation of component number facts for multiplication 

 exercise in mentally adding several one-digit or two-digit numbers 

 meaningful visual representation of expressions such as 4 x 7 + 4 x 2 as an 

alternative to rule-based approaches for introducing conventions related to the 

order of processing arithmetic operations 

 providing a visual representation that illustrates the distributive law and gives 

meaning to conventional notation used to represent collecting common factors 

(consider 36 as 3 x 9 plus 1 x 9 which is (3 + 1) x 9 which is 4 x 9). 
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3 Consolidate symbolic representations of multiplicative part/whole 

relationships 

 Rectangular arrays give a direct visual representation of quantity.  The empty 

rectangle builds on the structural aspects of rectangular arrays but leaves behind the 

direct visual representation of quantity.  Instead the empty rectangle conceptualises 

quantity as lengths and areas (but not to scale) and works with a symbolic representation 

of quantity. 

 It appears essential for all students to initially establish meaning through 

representing quantity directly.  This is particularly important for students struggling with 

foundational concepts in number.  However it is also important to support students’ 

development so that they can eventually leave direct representations of quantity behind 

and develop reliable facility with symbolic representations of quantity. 

 A likely indicator that it is the appropriate time to shift away from quantity 

representations is that a student can mentally perform simple calculations such as 7 x 9 

quickly and correctly but when asked to, can also give an explanation that contains a 

quantity representation for that task. 

 An indicator of inadequate facility with basic multiplication facts is if a student 

cannot reliably or relatively quickly recall or calculate the answer to task such as 7 x 9 

without the support of a physical or visual representation of that task. 
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 strategy example key points 

1 represent 

rectangular 

arrays for 

basic 

multiplication 

facts as empty 

rectangles 

show the array for 7 x 9 

draw next to the array a rectangle 

with 7 on the left-hand side and 9 on 

top 

draw a vertical line to split the array 

into 7x 5 and 7 x 4 

draw a vertical line just to the right 

of half way across the rectangle 

write 5 below the rectangle to the 

left of the vertical line, and 4 below 

the rectangle to the right of the 

vertical line 

write the component products within 

the two parts of the rectangle 

write the total to the right of the 

rectangle 

discuss the meaning of the 

numbers with students 

 

 

 

here the 7 x 5 means 7 

groups of 5 dots (or 

whatever symbol is used in 

the original array) 

although this is 

conceptually congruent 

with indirectly calculating 

the area of a rectangle for 

its dimensions there is no 

need to link to this 

interpretation; doing so at 

this stage could confuse 

some students 

however this approach to 

understanding part/whole 

relationships in numbers to 

ten and the operation of 

multiplication is likely to 

support students in later 

making meaning for the 

formula A = l x b 
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 strategy example key points 

2 use the empty 

rectangle to 

represent 

two-digit by 

one-digit 

products  

show the calculation 6 x 14 

 

model this on an empty rectangle (6 

on the left, 14 on top) 

 

ask for ways of splitting 14 

 

explore ways of splitting 14 that 

might make calculation easy 

 

calculate component products and the 

total of those products 

several strategies might 

make the mental 

calculation of the total 

‘easy’: 

 splits of 10 + n exploit 

the relative ease of 

multiplying by ten 

 splitting the 14 in this 

example into two 

sevens could combine 

a possible known fact  

(6 x 7 = 42) and 

doubling 

 

review the equivalence in 

terms of the overall 

product of reverse 

representations (6 x 14 and 

14 x 6) 
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4 Develop language and notation for extended multiplication tasks 

 

 focus example key points 

1 one-digit by 

two-digit 

products 

mentally 

calculate 6 x 14 mentally by 

 splitting into 6 x 10 (60) and 6 x 4 

(24) then adding to get 84 

 calculating 6 x 7 (42) and 

doubling 

 some other efficient strategy 

previous work with the 

empty rectangle provides 

an image that can support 

the creation and managing 

of component calculations 

mentally 

 

2 two-digit by 

two-digit 

products with 

a number-

sense written 

method 

(empty 

rectangle) 

represent 27 x 14 on a 2 by 2 empty 

rectangle as (20 + 7) x (10 x 4) giving 

four component products: 

 20 x 10 

 7 x 10 

 4 x 20 

 4 x 7 

component products are 

calculated mentally; if 

students cannot do this 

readily then this task is 

unsuitable 

 

the answer to each 

component product (here 

200, 70, 80 and 28) is 

recorded in its respective 

cell 

 

the total (378) is then 

calculated mentally and 

recorded to the right of the 

rectangle 
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5 Establish meaningful connections between multiplication and division 

 

Multiplication and division both involve repeated equal groups: 

 

 I know  I know  I work out sample tasks 

multiplication the number 

of groups 

the number 

in each 

group 

the total I have 5 groups of 3 things 

How many do I have 

altogether? 

 

There are 6 packets in each box 

I have 4 full boxes 

How many packets are there 

altogether?  

 

division as ‘equal 

sharing’ 

(partitive) 

the total the number 

of groups 

the 

number in 

each group 

I have 12 minties 

I give the same number of 

minties to each of 4 people 

How many minties does each 

person get? 

 

I share 20 things equally 

between 5 people 

How many things does each 

person get? 

 

division as 

‘repeated 

subtraction’ or 

‘how many 

groups of …’ 

(quotative) 

the total the number 

in each 

group 

the 

number of 

groups 

There are 18 counters 

How many groups of 3 

counters can I make?  

 

I have $200 

I want to give $5 to each 

person 

How many people can I give $5 

to? 

 



 193 

Students need to relate division to multiplication and have experience with both 

interpretations of division (equal sharing and repeated subtraction). 

This can be initially modelled then supported with counters.  Students then 

develop written connected solutions to a task using words, pictures and symbols. 

 

 strategy example key points 

1 construct 

rectangular 

arrays to 

represent 

equal 

sharing 

here are 24 counters …  

 

if I share them equally among six 

people (place six counters in a 

vertical column) … 

 

 

 

 

 

 

 

how many counters will each 

person get? (complete each  row 

evenly) 

 

how can I use the counters to show 

sharing these among eight people? 

(place eight counters in a vertical 

column … complete each row) 

 

 

 

start by representing the 

number of groups as a 

column 

 

the number of groups is 

represented by the number of 

rows (which is the number of 

dots in a single column of a 

rectangular array) 

 

connect this to 24 ÷ 6 = 4 and 

6 x 4 = 24 
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 strategy example key points 

2 construct 

rectangular 

arrays to 

represent 

how many 

groups of …  

here are 24 counters … 

 

how many groups of four counters 

can I make? (place four counters in 

a horizontal row …  repeat making 

rows of four) 

 

 

 

 

 

 

 

what if I only wanted three 

counters in each row?  how many 

groups of three can I make? 

 

 

 

start by representing the 

number of things in one  

group as a row 

 

the number of groups is 

represented by the number of 

rows 

 

connect this to 24 ÷ 4 = 6 and 

6 x 4 = 24 
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 strategy example key points 

3a describe an 

array for a 

given division 

fact 

describe an array that represents 

24 ÷ 4  

 

 

partitive: to share 24 counters 

between four people I put four 

counters in a column to 

represent four rows … . I fill out 

the rows evenly … each row has 

six counters … so each of the 

four people would get six 

counters 

 

quotative: to show how many 

groups of four I can get I put 

four counters in a row … I keep 

making rows of four underneath 

the first row … I get six rows 

which means there are six  

groups of four in 24 …  

using rectangular arrays 

exploits connections to a 

known structure 

 

students need to develop 

language related to visual 

representations of both the 

partitive and quotative 

models/interpretations of 

division 

 

representing this could be 

done with an ‘L’ sketch 

which shows the number in 

each group (a full row) and 

how many groups (a full 

column): 

  

 *   *   *   *   *   * 

 * 

 * 

 * 

3b construct an 

empty 

rectangle to 

represent 

‘missing 

multiplication’ 

(draw an empty rectangle … put 

four on the left and 24 inside) … 

what must the top number be?  

explain your thinking 

 

how could we use an empty 

rectangle to represent 30 ÷ 6?  

 

using empty rectangles 

provides a connection to 

another known structure 

 

also connect 24 ÷ 4 to 4 x __ 

= 24 
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 strategy example key points 

4 split 

rectangles 

to represent 

extended 

two-digit by 

one-digit 

division 

put 42 ÷ 3 on the board 

 

how can we split 42 so that each bit is 

easily divided by three? (probably 30 

+ 12 … maybe 21 and 21 … ) 

 

for a 30 + 12 split draw an empty 

rectangle with two horizontal cells … 

put three outside on the left, 30 in the 

left cell, 12 in the right cell, 42 

outside to the right 

 

use equivalent language to identify 

the required values: 

 how many threes in 30? 

 if I share 30 three ways how 

much is each share? 

 what do I multiply by three to get 

30? 

 

put 10 on top of the cell above the 30; 

repeat the process for the remaining 

cell 

 

combine the component calculations 

(10 + 4 = 14) to give the answer to the 

original calculation 

 

 

promote splits that can be 

calculated mentally 

 

 

 

 

 

 

 

 

use equivalent language to 

build conceptual 

understanding of both 

models of division, and the 

link between division and 

multiplication: 

 how many ___ in _ _ _ 

? 

 if I share _ _ _  ___ 

ways how much is 

each share? 

 what do I multiply by 

___ to get _ _ _? 
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6 Introduce the chunking algorithm for division 

 

 strategy key points  

1 establish 

meaning for 

‘how many 

groups of 

…’ 

visual representation of quantity 

Put a 4 x 3 array of counters on the OHP 

 how many counters are there? (12) 

 how many groups of three are there? (each row has three counters … 

there are four rows) 

 how many groups of four are there? (each column has four counters 

… there are three columns) 

 why does the array makes it easy to answer these questions? (the 

groups (either rows or columns) are all equal and arranged so this is 

obvious) 

symbolic representation of quantity 

 how many groups of five are in forty? (8) 

 how do you know? (there are two fives in every ten … four tens are 

forty … two times four is eight …perhaps show this on a hundred 

chart on the OHP) 

 how would we write this calculation in mathematical symbols? (40 ÷ 

5 = 8) 

Explain: when we write a calculation like a ÷ b there are two 

interpretations 

 share a things b ways 

 how many groups of b (draw a circle around the b) are in a (draw an 

arrow from the b over the top to the a)?  It’s this interpretation of 

division we’ll keep working with because it’s the most common …  

Show: 40 ÷ 5 = 8 … circle the 5 … draw an arrow over the top to the 40 

 what are some other ways of working out how many fives are in 

forty? (skip count in fives, or reverse multiplication facts like 5 x 8 

or 4 x 5 is 20 and double the four …) 

Explain: multiplication and division are closely related …  
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 strategy key points 

2 MC division 

using splits 

what mental strategy have we used to calculate 42 ÷ 3 in our head? (split 

42 into parts that each are easily divisible by three … perhaps 30 + 12 … 

perhaps 21 twice …) 

model the language of ‘how many groups of three in … ’ by working 

through each (or another) split on an empty rectangle (ER) 

what about this calculation? (78 ÷ 3) … how could we interpret this 

calculation? (how many threes are in 78) 

what split could we use here? (perhaps 30, 30 and 18 … model the 

language as ‘how many threes in 30? (10) … same in the next 30 

(another 10) …  there are six threes in 18 … that’s 10, another 10 and six 

… 26 threes in 78 … so 78 ÷ 3 is 26 … ) 

3 P&P 

division as 

chunking 

Explain: let’s look at using the same sort of thinking with bigger 

numbers … we’ll use pen and paper (P&P) to keep track of the steps we 

work out in our head …  

Put the calculation 492 ÷ 6 on the board 

 how could we interpret this calculation? (how many sixes are in 492) 

 are there more or less that 10? (a lot more … ten sixes are only 60) 

 are there more or less that 100? (less) … how do you know? (100 

sixes would be 600 .. 492 is less than 600) 

 how about fifty sixes? (link this to half of 100 sixes) … that’s 300 … 

. if we take that out of the 492 what’s left? (192) 

Write this on the board using chunking notation …  

 what’s another easy chunk of sixes? (ten lots, double ten, half fifty 

…. ) 

Follow through with the chunking algorithm … 

Ask: so, how many sixes altogether are there in 492 ... exactly? (add up 

the numbers on the right to get 82) 
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Notes 

The chunking algorithm is flexible.  Different ‘chunks’ of the divisor can be 

progressively withdrawn depending on the student’s facility with splitting. 

Some writers suggest that the phrase ‘lots of … ‘ is not good … but it is what 

many teachers and students are used to. 

 

Scaffolding tasks 

Useful chunks are multiples of powers of tens (10, 100, 1000 …) and halves and 

doubles of these (five lots is half of ten lots, 50 lots is half of a hundred lots …) 

As warm-ups perhaps give students tasks like: 

  

Using the fact that 10 lots of seven is 70, how could you easily work out 

 5 lots of seven? 

 20 lots of seven? 

 

Using the fact that 100 lots of seven is 700, how could you easily work out 

 50 lots of seven? 

 25 lots of seven? 

 75 lots of seven? 

 

Using what you know about 10 lots and 100 lots of seven, how could you easily work out 

 15 lots of seven? 

 60 lots of seven? 

 80 lots of seven? 

 


