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ABSTRACT 22 

Background and review questions: The architectural characteristics of muscle (fascicle length, pennation 23 

angle, muscle thickness) respond to varying forms of stimuli (e.g. training, immobilisation and injury). 24 

Architectural changes following injury are thought to occur in response to the restricted range of motion 25 

experienced during rehabilitation and the associated neuromuscular inhibition. However, it is unknown if these 26 

differences exist prior to injury and had a role in it happening (prospectively) or if they occur in response to the 27 

incident itself (retrospectively). Considering that a muscles structure influences its function, it is of interest to 28 

understand how these architectural variations may alter how a muscle acts in the force-length and force-velocity 29 

relationships for example. Objectives: Our narrative review provides an overview of muscle architectural 30 

adaptations to training and injury. Specifically, we; (1) describe the methods used to measure muscle 31 

architecture, (2)  detail the impact that architectural alterations following training interventions, immobilisation 32 

as well as injury have on force production, and (3)  present a hypothesis on how neuromuscular inhibition could 33 

cause maladaptations to muscle architecture following injury. 34 

  35 



3 

 

What are the new findings 36 

• Skeletal muscle architecture can be assessed using many methods including two-dimensional 37 

ultrasound, magnetic resonance imaging and cadaveric dissection and observation; 38 

• The characteristics of muscle architecture are plastic in nature and respond to various stimuli such as 39 

resistance training interventions and immobilisation; 40 

• The extent of these architectural alterations depend on various factors including the muscle being 41 

targeted, the range of motion/joint position during the intervention, they type of contraction (e.g., 42 

eccentric/concentric), the mode of training and the velocity of the contractions; 43 

• There is only limited evidence as to how injury may alter muscle architecture and ultimately function, 44 

and conversely the role that these characteristics may play in the aetiology of a strain injury is also 45 

unknown.  46 

  47 
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1. INTRODUCTION 48 

 Factors that influence the force producing capabilities of skeletal muscle include fibre type distribution 4, neural 49 

contributions (e.g. central drive)5 6 and muscle architecture7. Architectural characteristics of muscle not only 50 

influence maximal force output, but also the interrelationship between force, muscle length, contraction 51 

velocity8 and susceptibility to injury 9. The characteristics of muscle architecture are adaptable and can be 52 

altered by a range of stimuli including muscle strain injury.  53 

Architectural characteristics of muscle (Figure 1) include cross sectional area (CSA) which can be further 54 

defined as either anatomical CSA (ASCA) or physiological CSA (PCSA); muscle thickness (the distance 55 

between the superficial and deep/intermediate aponeuroses); pennation angle (the angle of the fascicles relative 56 

to the tendon); fascicle angle (the angle of the fascicle onto the aponeuroses); fascicle length (the length of  57 

fascicles running between the aponeuroses/tendon); and muscle volume (the product of the length and ACSA of 58 

the skeletal tissue located within the epimysium) 8. The ACSA is the area of tissue assessed perpendicular to the 59 

longitudinal axis of the muscle1, while the PCSA is the sum of the cross-sectional area of all fascicles within the 60 

muscle and is subsequently influenced by pennation angle10 11.  61 

We reviewed muscle architectural adaptations to training and injury. Specifically, we; (1) described the methods 62 

used to measure muscle architecture, (2)  detailed the impact that architectural alterations following training 63 

interventions, immobilisation as well as injury have on force production, and (3)  present a hypothesis on how 64 

neuromuscular inhibition could cause maladaptations to muscle architecture following injury.  65 

2. METHODS USED TO MEASURE CHARACTERISTICS OF MUSCLE ARCHITECTURE  66 

Historically, cadaveric investigations12 were the sole means of assessing muscle architecture. Magnetic 67 

resonance imaging13 (MRI) and ultrasonography14 now permit in-vivo assessments of muscle architecture.  68 

2.1 Cadaveric observations 69 

Tissue from cadaveric samples has been used to directly study and measure gross characteristics of muscle 70 

architecture12 15 as well as sarcomere lengths16. However, there is a limited availability of donor tissue17 and 71 

most donations are from individuals aged 65 to 90 years18. We found no reports of architectural characteristics 72 

of cadaveric muscle under 45 years of age. Cadaver-derived measures of muscle architecture are most often 73 

obtained from sarcopaenic tissue19 which clearly limits relevance to young, essentially healthy athletic 74 

populations 20 21. 75 
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2.2 Magnetic Resonance Imaging (MRI) modes 76 

MRI is a valuable tool to measure muscle morphology22. It has the spatial capability to clearly identify various 77 

anatomical components, such as adipose, nerve and bone tissue. The high resolution permits individual muscles 78 

to be identified whereby the user can determine/calculate morphological parameters (e.g. volume and CSA).  79 

MR imaging is also possible at a muscle fascicle level. Specifically, diffusion tensor imaging is an MRI method 80 

which has been used to measure fascicle length and pennation angle of skeletal muscle at rest23-25. Diffusion 81 

tensor imaging is based on the movement of water through cell membranes within biological tissues in six or 82 

more non-collinear directions. This allows for the construction of a model showing the muscle fibre 83 

orientations23 26. While diffusion tensor imaging is a significant step forward for imaging in-vivo muscle 84 

architecture, there are still limitations such as the variability in the noise of the images and having fibre 85 

trajectories interrupted by anatomical artefacts (adipose and scar tissue etc.)26. Cost is a significant limitation of 86 

MRI which limits large scale studies using this method. 87 

2.3 Ultrasound imaging 88 

Two-dimensional (2-D) ultrasound imaging provides an inexpensive means of assessing the muscle 89 

architecture27-29. It is also the most common technique for measuring muscle architecture in-vivo18 21 29 30. 90 

Utilising 2-D ultrasound images collected along the longitudinal axis of the muscle belly allows for the 91 

determination of fascicle length, pennation angle, muscle thickness and the identification of the aponeuroses in 92 

the tissue (Figure 1) 31.  93 

Ultrasound imaging is undertaken using transducers with fields of view ranging from 3.8 to 8cm29. These fields 94 

of view are typically shorter than the fascicles under investigation, especially in large muscles such as the major 95 

knee flexors and extensors31. In these cases fascicle length is estimated with various linear approximations using 96 

the measured muscle thickness and pennation angle values17 31.  These methods fail to consider the variability 97 

associated with fascicular curvature and as such are prone to error32 33. These varying levels of error range from 98 

0% to 6.6%34. Additionally, extended-field-of-view ultrasonography has also been utilised to assess in-vivo 99 

vastus lateralis fascicle lengths35. This method is very reliable (intraclass correlation (ICC) = 0.99 in animal 100 

dissection), but cannot be utilised during active muscle contraction36, where other 2-D ultrasonography methods 101 

can37. 102 

The skill of the sonographer and the orientation of the transducer contribute to the error and subsequently limit 103 

the reproducibility of the method38. A change in the orientation and rotation of the ultrasound probe can result in 104 
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a 12% difference (13.6o to 15.5o) in the pennation angle reported39. A recent systematic review18 reported the 105 

reliability and validity of 2-D ultrasound in measuring fascicle length and pennation angle in various muscles. 106 

Ultrasound was concluded to be reliable across a number of muscle groups and valid in comparison to cadaveric 107 

samples. Despite these conclusions the reliability of the measure is mostly dependent upon the assessor’s 108 

aptitude and using a single assessor will aide in limiting error18 39. Different methods have been used for 109 

standardising the transducer orientation and location, however no general consensus has been found regarding 110 

the best process to limit measurement error17 31 34. 111 

Ultrasound imaging studies have examined architecture with the muscle in a passive state 31 40-43, during 112 

isometric contractions37 44-46 as well as dynamically during tasks such as walking 47 48, hopping 49and running 48 113 

50 . The ability of ultrasound to capture these characteristics during contraction is one of its major strengths 114 

compared with other methodologies 36. The assessment of muscle architecture during contraction allows for a 115 

greater insight into function than measures taken at rest. For example, pronounced changes in vastus lateralis 116 

fascicle length (shortening from 126 to 67mm) and pennation angle (increasing from 16° to 21°) occur as knee 117 

extensor forces rise from 0 to 10% of maximal isometric contraction46. The reliability of muscle architecture 118 

appears not to be influenced by contraction state, with a level of variance for fascicle length and pennation angle 119 

ranging from 0% to 6.3% when passive and 0% to 8.3% when active18 42-46. Passive and active assessments of 120 

fascicle length and pennation angle also display similar ICC’s (passive: 0.74-0.99, active: 0.62-0.99)18. There 121 

are some inconsistencies in the reliability of fascicle length and pennation angle assessments in different muscle 122 

groups with the vastus lateralis (ICC = 0.93-0.99) being the most reproducible and the supraspinatus being the 123 

least (ICC = 0.74 – 0.93)18. Muscle architecture can also vary along the length of the muscle. The biceps femoris 124 

long head possesses proximal fascicles which are on average 2.8cm longer than distal fascicles 51. Therefore 125 

standardising the assessment location is an important consideration.  126 

3. ADAPTABILITY OF MUSCLE ARCHITECTURE 127 

Significant alterations in muscle architecture, torque producing capabilities and activation are evident following 128 

various resistance training interventions11 52-54. Skeletal muscle is also significantly altered following 129 

immobilisation55, with increased age56 57 and following injury37. The level of force produced during a 130 

contraction and the speed at which it occurs, are influenced by muscle architecture8. Unsurprisingly in response 131 

to stimuli which alter muscle architecture, functional changes also arise.  132 
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3.1 Effect of training interventions on muscle architecture 133 

It is routinely reported that ACSA (6%-9%), PCSA (6%-8%), muscle thickness (6%-14%) and volume (7%-134 

11%) are increased in the vastus lateralis and the gastrocnemius (lateral and medial) following various resistance 135 

training interventions ranging from 3 to 18 weeks 11 40 45 54 55 58 59. The range of training interventions reported are 136 

a combination of conventional resistance training exercises (squats, leg press, bench press etc.), or exercises 137 

with an emphasis on the concentric or eccentric portion of the movement (e.g. overloading the specific 138 

contraction mode), or purely eccentric or concentric interventions (mostly done via isokinetic dynamometry).   139 

3.1.1 Concentric training 140 

Concentric training of the knee extensors has been shown to produce non-significant reductions of ~6% 141 

(isokinetic dynamometry)54 and ~5% (leg press)60 in vastus lateralis fascicle length following two different 10 142 

week training interventions. Additionally, 8 weeks of concentric shoulder abduction training reduced fascicle 143 

length of the supraspinatus by ~10% 61. Reductions in vastus lateralis fascicle length of ~11% have also been 144 

found in rats following 10 days of uphill/concentrically-biased walking 62. 145 

Muscle pennation angle has also been altered following concentric training interventions. Franchi and 146 

colleagues found a ~30% increase in pennation angle of the vastus lateralis after 10 weeks of concentric leg 147 

press training 60. Following 8 weeks of concentric shoulder abduction training, the pennation angle of the 148 

supraspinatus has been shown to increase by ~20% 61. However no significant alterations in the pennation angle 149 

of the vastus lateralis and vastus medialis were found following 10 weeks of concentric knee extensor training 150 

on an isokinetic dynamometer54.  151 

3.1.2 Eccentric training 152 

Eccentric training of the plantar flexors resulted in no significant increases in fascicle length (medial 153 

gastrocnemius = ~5%, lateral gastrocnemius = ~10% and soleus = ~0%) following a 14-week training 154 

intervention 63. Non-significant increases of ~3% and ~4% were found in the vastus lateralis after 9 and 10 155 

weeks of eccentric resistance training, respectively54 64. In contrast, other studies have reported significant 156 

increases in fascicle length following eccentric or eccentrically-biased training 58-60 65 66. These increases range 157 

from ~10% in the vastus lateralis to ~34% in the biceps femoris long head58 59.  158 

Muscle pennation angle has also been shown to be altered following eccentric training interventions. Guilhem 159 

and colleagues found an 11% increase in pennation angle in the vastus lateralis following an eccentric 160 

intervention performed on an isokinetic dynamometer 64. However, no significant alterations in the pennation 161 
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angle of the biceps femoris long head 59 and triceps surae 63 have been reported following 8 and 14 weeks of 162 

eccentric resistance training. It is possible that increases in pennation angle are reliant on the extent of fibre 163 

hypertrophy that occurs and that concurrent increases in fascicle length may counter the tendency for pennation 164 

angle to increase59 63. 165 

 166 

3.1.3 Conventional resistance training 167 

Conventional resistance training (consisting of a concentric and eccentric phase) has also been shown to alter 168 

muscle fascicle length. Following 13 weeks of general lower body strength training, fascicle length of the vastus 169 

lateralis significantly increased by 10% 40. Additionally, 12 weeks of conventional upper body resistance 170 

training increased fascicle length of the triceps brachii lateralis by 16% 67. In contrast, following 16 weeks of 171 

elbow extension training no changes in fascicle length of the triceps brachii long head were found 68.      172 

Muscle pennation angle has also been shown to be altered following conventional resistance training 173 

interventions. Increases of 30% to 33% in the pennation angle of the vastus lateralis have been reported 174 

following 10 and 14-weeks of conventional resistance training11 60. Triceps brachii long head pennation angle 175 

has also been shown to increase by 29% following 16 weeks of elbow extension training 68. Similar increases in 176 

pennation angle of the triceps brachii lateralis have been found after 13 weeks of conventional upper body 177 

resistance training 67. In contrast, non-significant reductions of 2.4% in vastus lateralis pennation angle have 178 

been found following 13 weeks of lower body strength training 40. Comparable non-significant reductions in 179 

vastus lateralis pennation angle have also been found following 12 weeks of conventional leg extension training 180 

69.   181 

3.1.4 Other exercise modalities 182 

Changes in muscle architecture are potentially reliant on the exercise being undertaken. A training study 183 

involving well-trained athletes used three different interventions in addition to their current regime (two sprint 184 

and jump session/week) 70. One intervention group undertook additional squat training and one group undertook 185 

hack-squat training, while the final group completed two additional sprint and jump training sessions/week. 186 

Distal vastus lateralis fascicle lengths increased significantly (~52%) and pennation angles decreased ~3% in the 187 

participants who completed extra sprint and jump training. By contrast, there were no significant changes in 188 

fascicle length and pennation angle in those who undertook additional squat and hack squat training. The 189 

authors concluded that the velocity requirements of exercises may influence the extent of fascicle length change 190 
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more so than the type of movement pattern. It is also possible that the range of motion and excursion 191 

experienced by the vastus lateralis during eccentric contractions was greater during sprint and jump training than 192 

during the squat and front hack-squat. This might presumably influence changes to the number of sarcomeres in-193 

series within a muscle. The results showed that adaptations to muscle architecture are possible in a well-trained 194 

population.   195 

3.1.5 Further variables to consider 196 

3.1.5.1 Range of motion/muscle length 197 

It is possible that there is an intricate relationship between the range of motion a muscle group routinely 198 

undertakes and its adaptations following resistance training interventions. Taking a muscle through a range of 199 

motion that is greater than what it is exposed to on a daily basis while adding resistance, may increase muscle 200 

fascicle length independent of contraction mode. This may explain different responses between young and 201 

elderly adults to eccentric resistance training, as elderly individuals appear to exhibit greater increases in 202 

fascicle length than their younger counterparts66 71. As elderly persons have, on average, a habitually reduced 203 

range of motion, it is thought that increasing the excursion their fascicles are familiar with, beyond that of their 204 

normal daily living, would result in longer fascicles, more so than interventions that work within their current 205 

range of motion. This may also potentially explain why some resistance interventions have elicited no fascicle 206 

length adaptations in younger adults who may already experience excursions and ranges of motion similar to 207 

those employed in training studies 70.  208 

3.1.5.2 Velocity 209 

One study has compared how a fast (240 deg/s) or slow (90 deg/s) eccentric knee extension training intervention 210 

(utilising isokinetic dynamometry) may alter vastus lateralis fascicle length72. Following 10 weeks of fast 211 

eccentric knee extension training, fascicle length of the vastus lateralis increased by 14%, with no significant 212 

changes in the slow training group. However the slow training group completed their training through a reduced 213 

range of motion (35 degrees less than the fast training group) so it is not possible to determine the effect of 214 

contraction velocity alone on changes in muscle fascicle lengths.  215 

3.1.6 Summary 216 

Architectural adaptations have been shown to occur in various muscles following different forms of 217 

interventions. Additionally some interventions have shown no alterations in muscle architecture following a 218 

period of training. Despite this evidence there is no consensus between studies to suggest a contraction mode 219 
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specific adaptation for muscle architecture. However those studies which reported a change in muscle 220 

architecture had a general trend for an increase in muscle fascicle length following eccentric training 221 

interventions, with a reduction seen in most of the concentric training studies. The lack of consistency between 222 

studies suggests that other variables, which are not consistent throughout these interventions, such as range of 223 

motion and velocity, must also be considered.    224 

3.2 Immobilisation 225 

Alterations in muscle CSA, volume, fascicle length, pennation angle and muscle thickness are found following 226 

periods of bed rest or immobilisation (limb suspension) 30 41 55 73-75. Fascicle length of the vastus lateralis was 227 

reported to decline by ~6% after 14 days of limb suspension, with a ~8% reduction after 23 days 76. Similar 228 

reductions have been observed in the lateral gastrocnemius, with ~9% decrements in fascicle length after 23 229 

days of lower limb suspension73. Not all studies involving bed rest or immobilisation in weight-bearing and non-230 

weight bearing muscles have shown changes in architecture. For example, fascicle lengths in the tibialis anterior 231 

and biceps brachii were not significantly altered following 5-weeks of bed rest77.  232 

It is thought that the muscle length when immobilised may influence the extent of change, with fascicle lengths 233 

expected to reduce if immobilisation occurs at lengths which are shorter than those experienced during the 234 

activities of daily living78. If immobilisation occurs at a ‘normal’ length, it is expected that there may be little 235 

change in fascicle lengths 78. Conversely immobilising a muscle at longer lengths may increase fascicles 78. 236 

3.3 Impact of fascicle length on muscle function 237 

Fascicle length has a significant influence on the force-velocity and force-length relationships and, by extension, 238 

may alter muscle function. The impact of fascicle length on the force-velocity relationship has been investigated 239 

previously in the feline semitendinosus79. This muscle consists of a proximal and distal head, separated by a 240 

thick tendinous inscription. Both portions display similar architectural characteristics, differing only in the 241 

length of their fascicles, with the distal head containing significantly longer fascicles (3.93 ± 0.1cm) than the 242 

proximal head (2.12 ± 0.1cm). An in-vivo comparison of the maximal shortening velocities for both of the heads 243 

showed that the distal head is able to shorten approximately twice as fast (424 mm/s) as the proximal head (224 244 

mm/s)79. As muscle fascicle length is shorter in humans with a previous strain injury 37, this could lead to a 245 

reduced maximal shortening velocity of the injured muscle (Figure 2, Figure 3).  246 

It is also hypothesized that muscle fascicle lengths have some bearing on the force-length relationship; however 247 

evidence in humans is limited1 8 21. It is thought that a previously injured muscle which is identical to an 248 
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uninjured muscle, however with shorter fascicle lengths, will have a reduced working range as a result of fewer 249 

sarcomeres in-series 37 80. This may increase the amount of work being completed on the descending limb (or a 250 

self-selection of range limitation) of the force-length relationship, where a reduced force generating capacity 251 

may result in an increased potential for muscle damage1 8.  This concept is supported in the literature in studies 252 

utilising animal models, where an increase of in-series sarcomeres in the vasti of rats and toads resulted in 253 

maximal force being produced at longer muscle lengths when compared to the vasti with fewer in-series 254 

sarcomeres 62 81-83. Muscle architecture plays a role in the active portion of the force-length relationship in 255 

animals models 1 8 84. It may also play a role in the generation of passive force that is produced at longer muscle 256 

lengths, yet this requires further investigation.  257 

3.4 Impact of muscle strain injury on architecture 258 

Limited evidence exists to characterise the effect of injury on muscle architecture. From the available literature, 259 

the isokinetic dynamometry derived torque-joint angle relationships has been used to postulate the effects of 260 

prior hamstring strain injury on fascicle length 9 85-87. These studies suggest that a shift in the angle of peak 261 

torque of the knee flexors towards shorter lengths, in individuals with a previously injured hamstring, is the 262 

result of a reduction in the number of in-series sarcomeres and a decrease in the optimum length for force 263 

production 9 20 87.  264 

Evidence for shorter fascicles in individuals with a history of strain injury has recently been provided through 265 

the use of 2-D ultrasound 37. Athletes who had experienced a unilateral biceps femoris long head strain injury 266 

within the preceding 18 months had the biceps femoris long head architecture of both limbs assessed at rest and 267 

during graded isometric contractions (25%, 50% and 75% of maximal voluntary isometric contraction). The 268 

previously injured muscles had shorter fascicles and greater pennation angles at rest and during all isometric 269 

contractions when compared to the contralateral, uninjured biceps femoris long head 37. Due to a lack of 270 

prospective studies it is unclear whether these architectural changes are the cause or consequence of injury, 271 

however their persistence long after these athletes had returned to full training and competition schedules is 272 

intriguing. It must also be acknowledged that factors such as changes in connective tissue content/fibrosis of the 273 

scar tissue 88 and damage to the intramuscular nerve branches at the site of injury 89 may influence these 274 

architectural differences in individuals with a history of strain injury.  275 

Neuromuscular inhibition after strain injury has been proposed to account for fascicular shortening following a 276 

strain injury87 90. The previously injured biceps femoris long head has a reduced level of activation during 277 
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eccentric contractions at long muscle lengths when compared to the contralateral uninjured biceps femoris long 278 

head86 90. This reduced activation, as well as the avoidance of long muscle lengths during the early stages of 279 

rehabilitation, could result in structural changes (e.g. reduced muscle volume, altered architecture) that would 280 

ultimately lead to adverse alterations in function 87. Despite the best efforts during rehabilitation to include 281 

heavily loaded eccentric exercise in an attempt to restore muscle structure and function to pre-injured levels 91-282 

94, the altered neural drive and difficulty in isolating the injured muscle may limit the potency of this stimulus 283 

and thus limit fascicle length changes.  284 

Possessing shorter fascicles has been suggested to increase the likelihood of microscopic muscle damage as a 285 

consequence of repetitive eccentric actions (e.g. high speed running) and, when coupled with a high frequency 286 

of training sessions, may result in an accumulation of damage87 96. This accumulation of eccentrically induced 287 

muscle damage would leave the muscle more vulnerable to strain injury when it encounters a potentially 288 

injurious situation, increasing the probability of re-injury 87. It is also possible that muscle fascicle length may 289 

be a primary risk factor and explain (at least in part) why certain athletes suffer muscle strain injuries in the first 290 

place9 96.  291 

It should also be noted that a number of factors are likely to influence the risk of injury and re-injury in addition 292 

to architectural maladaptations. For example, tendon geometry is another intrinsic risk factor that has recently 293 

been proposed to have a potential role in muscle strain injuries. The width of the proximal biceps femoris tendon 294 

has been shown to exhibit high levels of variability within healthy athletes 97. Possessing a narrow proximal 295 

tendon width has been shown to increase the tissue strains within the muscle fibres adjacent to the proximal 296 

musculotendinous junction of the biceps femoris long head during active lengthening 98 and high speed running 297 

99. The combination of these observations suggests that an athlete with a narrow proximal biceps femoris long 298 

head tendon may expose the tissue surrounding this tendon to high strains and potentially have an increased risk 299 

for injury at this site during active lengthening or high speed running. Additionally, eccentric strength deficits 300 

and neuromuscular inhibition might themselves elevate the risk of re-injury, perhaps in conjunction with the 301 

aforementioned architectural/anatomical factors. Much work is still required in this area to confirm this 302 

hypothesis, including prospective observations to determine if shorter muscle fascicles (fewer sarcomeres in-303 

series) increase the risk of future injury in human muscles.  304 
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4. SUMMARY 305 

Architectural characteristics of skeletal muscle characteristics can be assessed using multiple methods -- 2-D 306 

ultrasound is the most efficient and cost effective. Moreover architecture displays plasticity in response to 307 

different stimuli, which can partly explain changes in function following training and immobilisation. 308 

Previously injured muscles have shorter fascicle lengths than uninjured muscles. We present an argument as to 309 

how variations in architecture may impact function. However no research has examined the effect that fascicle 310 

lengths have on the risk of injury. The role of architectural characteristics in muscle strain injury aetiology 311 

currently remains unknown. We recommend investigators explore the relationship between muscle architecture 312 

and strain injury with a view to  ultimately assisting in preventingon of muscle strain injury and re-injury.  313 
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What are the new findings 

• Skeletal muscle architecture can be assessed using many methods including two-dimensional 

ultrasound, magnetic resonance imaging and cadaveric observation; 

• The characteristics of muscle architecture are plastic in nature and respond to various stimuli such as 

resistance training interventions and immobilisation  

• The extent of these architectural alterations are reliant on various factors including the muscle being 

targeted, the range of motion/joint position during the intervention, contraction mode of training and 

the velocity of the contractions; 

• There is only limited evidence as to how injury may alter muscle architecture and ultimately function, 

and conversely the role that these characteristics may play in the aetiology of a strain injury is also 

unknown.  

•  

 565 

  566 
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Figure 1 Characteristics of muscle architecture include: anatomical cross sectional area (ACSA - A), 567 
physiological cross sectional area (PCSA - B), pennation angle (ϴ), superficial (C) and intermediate (D) 568 
aponeuroses and fascicle length (distance of E to F between aponeuroses). 569 

Figure 2 A comparison of two different muscles with identical architectural characteristics, however one 570 
contains longer fascicles (uninjured) than the other (injured). Shorter muscles fascicles have been reported in 571 
previously injured biceps femoris long head 37. Less sarcomeres in-series (shorter fascicles) will result in a 572 
slower maximal shortening velocity 573 

Figure 3 The maximal shortening velocity of a muscle is influenced by the length of the muscle fascicle. 574 
Consider that hypothetically an uninjured muscle (i) has twice the number of in-series sarcomeres that a 575 
previously injured muscle (ii) does. At any shortening velocity, the individual sarcomeres will shorten across 576 
identical distances. However, as an uninjured muscle contains more in-series sarcomeres, the entire muscle 577 
shortens over a greater distance than one with a history of injury. As velocity is the quotient of displacement and 578 
time, if these muscles shortened over the same time epoch, an uninjured muscle will possess a greater shortening 579 
velocity 580 
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