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A B S T R A C T

Background: Cities have unique geographic, environmental and sociocultural characteristics that influence the
health status of their citizens. Identification and modification of these characteristics may help to promote
healthier cities.
Objective: We estimated premature mortality impacts of breaching international exposure guidelines for physical
activity (PA), air pollution, noise and access to green space for Bradford (UK) adult residents (n=393,091).
Methods: We applied the Urban and TranspOrt Planning Health Impact Assessment (UTOPHIA) methodology
and estimated mortality, life expectancy (LE) and economic impacts of non-compliance with recommended
exposure levels. We also investigated the distribution of the mortality burden among the population, focusing on
socioeconomic position (SEP) as defined by deprivation status and ethnicity.
Results: We estimated that annually almost 10% of premature mortality (i.e. 375 deaths, 95% CI: 276–474) in
Bradford is attributable to non-compliance with recommended exposure levels. Non-compliance was also esti-
mated to result in over 300 days of LE lost (95% CI: 238–432), which translated in economic losses of over
£50,000 per person (95% CI: 38,518–69,991). 90% of the premature mortality impact resulted from insufficient
PA performance. Air and noise pollution and the lack of green space had smaller impacts (i.e. 48 deaths).
Residents of lower SEP neighborhoods had the highest risks for adverse exposure and premature death. A larger
number of deaths (i.e. 253 and 145, respectively) could be prevented by reducing air and noise pollution levels
well below the guidelines.
Discussion: Current urban and transport planning related exposures result in a considerable health burden that is
unequally distributed among the Bradford population. Improvements in urban and transport planning practices
including the reduction of motor traffic and the promotion of active transport together with greening of the
district, particularly in areas of lower SEP, are promising strategies to increase PA performance and reduce
harmful environmental exposures.
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1. Introduction

By 2050, it is estimated that 70% of the global population will be
living in cities (United Nations, 2014). Cities have unique geographic,
environmental and sociocultural characteristics that influence the
health and well-being of their citizens. Therefore, identification and
modification of these characteristics may help to promote healthier
cities. Urban and transport planning is known to have a particularly
important impact on health (Mueller et al., 2017a; Nieuwenhuijsen,
2016).

Air pollution from traffic has become a major focus of policy dis-
cussion (Héroux et al., 2015; WHO, 2014). Chronic noise exposure is
increasingly linked to adverse health effects (Guski et al., 2017;

Nieuwenhuijsen et al., 2017c; Van Kempen et al., 2018). Continuing
urbanization and convenience lifestyles are associated with decreasing
physical activity (PA) levels and widespread sedentarism (Sallis et al.,
2015). Space scarcity and competing land-use interest have resulted in
the disappearance of natural outdoor environments in urban settings
(Boyko and Cooper, 2011; Dallimer et al., 2011), despite emerging
evidence on the physical and mental health benefits of green space in
direct residential proximity (Eakin et al., 2017; Gascon et al., 2018;
Nieuwenhuijsen et al., 2017a).

Incompliant exposure levels of these multiple urban and transport
planning related risk factors are known to contribute to a substantial
burden of disease and constrain national healthcare systems
(Forouzanfar et al., 2015; Gascon et al., 2016; Héroux et al., 2015;

BA

C D

Fig. 1. Major road network and environmental exposures at LSOA level.
A=Major road network of the Bradford district.
B= PM2.5 concentrations (2009/2010) at LSOA level.
C=Noise levels Lden (2006) at LSOA level.
D=% green space (2012) at LSOA level.
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Mueller et al., 2017a, 2017b; WHO Regional Office for Europe, 2011).
In addition, exposure levels are often socially patterned with more so-
cioeconomically deprived or ethnically diverse communities being
more adversely exposed (Casey et al., 2017; Clark et al., 2017; Eime
et al., 2015; Hajat et al., 2015; Pan et al., 2009; Schüle et al., 2017).
Numerous studies showed that residential traffic-related air pollution
and noise levels are higher among low-income groups and visible
minorities, as their residences are often located in high traffic areas
(Brainard et al., 2004; Carrier et al., 2016; Clark et al., 2017; Grineski
and Collins, 2018). Inequalities in green space access also exist: those
with greater resources tend to move to greener areas (Maas, 2008). The
health burden associated with the imbalance of these urban and
transport planning related exposures is therefore likely to be higher
among the most disadvantaged populations as the unequal access to
high quality environments accounts to large extend for this ‘triple
jeopardy’ of environmental, social and health inequalities (Pearce et al.,
2010). Moreover, these groups may already exhibit a variety of other
risk factors (e.g. suboptimal health care access, poor diet, stress, and
violence (Khreis et al., 2016)), which makes them more susceptible to
adverse health outcomes.

In this study, we aimed to estimate the mortality burden associated
with current exposure levels of the multiple urban and transport plan-
ning related exposures (i.e. PA, air pollution, noise, green space) in
Bradford, United Kingdom (UK). We also investigated the distribution
of the mortality burden among the population, focusing on socio-
economic position (SEP) as defined by deprivation status and ethnicity.

2. Methods

2.1. Study setting

The Bradford district, located in the North of England in the West
Yorkshire conurbation, as of 2016 had 534,279 residents living on
370 km2 (Office for National Statistics, 2017a; The City of Bradford
Metropolitan District Council, 2017). Bradford has a temperate mar-
itime climate with an annual mean temperature of 12 °C and significant
amounts of rainfall throughout the year (Met Office, 2018). A large
proportion of air and noise pollution in Bradford is estimated to result

from road traffic (in European cities the traffic contribution to urban
particulate matter (PM) can be as high as 66% and to nitrogen dioxide
(NO2) over 80% (Nieuwenhuijsen and Khreis, 2016; Sundvor et al.,
2012) and road traffic is by far the biggest contributor to urban noise
pollution (European Environment Agency, 2014)), with the highest
levels in Bradford to be found within the inner ring road and along the
M606 motorway corridor in the south and the adjacent towns of Shipley
and Keighley in the north and north-west (Fig. 1) (Cooper et al., 2014;
Khreis et al., 2018b). Bradford is located within a designated green belt
region as part of the National Planning Policy Framework (NPPF) that
extends into the district and surrounding counties and restricts the West
Yorkshire conurbation from further convergence by limiting the sprawl
of built-up areas (City of Bradford Metropolitan City Council, 2017;
Ministry of Housing Communities and Local Government, 2012).
Bradford has a younger demographic structure than most other British
cities, with over a quarter of residents being in the age group<18
years (Fielding, 2012; Khreis et al., 2018b). The district is among the
10% most deprived authorities in the UK (Fielding, 2012), with over
35% of the current working-age population being unemployed (The
City of Bradford Metropolitan District Council, 2017). In addition,
Bradford residents are highly ethnically-diverse with the main ethnic
groups being of South Asian origin (i.e. 30% of residents, mainly of
Pakistani origin) and white British origin (i.e. 60% of residents) (The
City of Bradford Metropolitan District Council, 2017; Wright et al.,
2016).

2.2. UTOPHIA methodology

We conducted a health impact assessment (HIA) at the Bradford
Lower Super Output Area level (LSOA; n=310, mean population 1,724
residents, mean area 118 ha). The analysis estimated the impact of
multiple exposures on all-cause mortality for Bradford residents
≥18 years (n=393,091) (Table 1) under compliance with interna-
tional exposure level recommendations. We followed the Urban and
TranspOrt Planning Health Impact Assessment (UTOPHIA) metho-
dology that was developed and applied to Barcelona, Spain previously
(Mueller et al., 2017a, 2017b). UTOPHIA follows a comparative risk
assessment approach assessing health impacts related to ‘unhealthy’
exposure levels of the multiple urban and transport planning related
exposures.

We estimated for Bradford the number of premature deaths attri-
butable to incompliance of recommended exposure levels for PA, air
and noise pollution and access to green space. Unlike for Barcelona, for
Bradford we ignored temperature effects (i.e. heat) because tempera-
ture data was not available and Bradford is less of a hotspot than
Barcelona for climate change vulnerability in terms of hot temperatures
(Guo et al., 2014). The applied all-cause mortality rate for Bradford
residents was 1,114 deaths/100,000 persons (Office for National

Table 1
Bradford population characteristics.

Bradford Males
≥18 years
(n)

Females
≥18 years
(n)

Total
≥18 years
(n)

Mortality
rate

Expected
annual
deaths (n)

Population 192,039 201,052 393,091 1,114/
100,000
persons

4,379

Table 2
Recommended and actual exosure levels in Bradford.

Exposures Counterfactual scenario Baseline

WHO recommendations Year Bradford LSOA range Bradford district mean

Physical activity 600METmin/week 2014 – 124METmin/weeka

Insufficiently active: 49.4% of population
(194,187 persons)

PM2.5 10 μg/m3 annual mean 2009/
2010

7.66–13.44 μg/m3 10.12 μg/m3

NO2 40 μg/m3 annual mean 2010 12.82–30.08 μg/m3 21.18 μg/m3

Noise 55 dB Lden annual mean 2006 30–65.1 dB Lden 44.41 dB Lden
Green space Access to green space ≥0.5 ha within

300m linear distance
2012 1–54% of population (quintiles) without access to

green space ≥0.5 ha within 300m linear distance
17.84% of population without access to green
space ≥0.5 ha within 300m linear distance

dB= decibel; LSOA=Lower Super Output Area; Lden=EU noise indicator with 5 dB penalties for the evening time and 10 dB penalties for the night time;
MET=metabolic equivalents of task.

a Mean weekly physical activity level of the insufficiently active population.
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Statistics, 2017b) (Table 1). The steps were as follows: (1) We obtained
recommended exposure levels (‘counterfactual scenario’ – WHO ex-
posure level recommendations) and (2) baseline exposure levels
(Table 2); (3) we obtained exposure response functions (ERFs) that
quantify the association between the exposures and mortality from the
literature (Table 3); (4) we scaled the relative risk (RR) to the estimated
difference in exposure level between baseline and recommended ex-
posure levels; and (5) calculated the population attributable fraction
(PAF) for each exposure level difference. Analyses were conducted in R
(v 3.3.1) and PostgreSQL/PostGIS (v 2.3.2).

2.2.1. International exposure level recommendations

• Physical activity (PA): Adults ≥18 years are advised to achieve
150min of moderate-intensity or 75min of vigorous-intensity
aerobic PA throughout the week (Table 2) (WHO, 2010).

• Air pollution: Annual mean particular matter with
diameter≤ 2.5 μm (PM2.5) should not exceed 10 μg/m3 and annual
mean nitrogen dioxide (NO2) levels should not exceed 40 μg/m3

(WHO, 2006).

• Noise: Day time (7:00–23:00 h) outdoor activity noise levels should
not exceed 55 A-weighted decibels [dB(A)] and night time
(23:00–7:00 h) outdoor activity noise levels should not exceed 40 dB
(A) (WHO, 2009, 1999).

• Green space: Universal access to a green space defined as living
within a 300m linear distance of a green space ≥0.5 ha is re-
commended (European Commission, 2001; WHO, 2016a).

2.2.2. Exposure level data
2.2.2.1. Physical activity. PA data were available for Bradford residents
(≥16 years) through the population-based randomly-sampled Active
People Survey (2014) that tracks the number of people participating in
sports and wider PA in England (Sport Sport England, 2014) (Table S1).
Proportionally reported mean PA levels of moderate to vigorous
intensity PA of all PA domains were extrapolated to all Bradford
residents ≥18 years (Table S1 and Table 2). WHO recommended PA
levels were translated into 600 metabolic equivalents of task (MET)
minutes per week (IPAQ Webpage, 2005). The association between PA
and mortality was quantified using a curvilinear ERF, applying a 0.25
power transformation to the PA exposure (Table 3) (Woodcock et al.,
2011). Because health benefits occur even at low levels of PA, the RR
and the PAF were calculated for both the current and the recommended
MET minutes per week. Estimated preventable deaths for current PA
levels were subtracted from estimated preventable deaths for
recommended PA levels to obtain the net gain of compliance.

2.2.2.2. Air pollution. Annual mean PM2.5 and NO2 levels (2009/2010)
were calculated for Bradford at the LSOA level using the European
Study of Cohorts for Air Pollution Effects Land Use Regression (ESCAPE
LUR) model (i.e. spatial scale: point level; LUR Oxford for PM2.5 and
LUR Bradford for NO2) (Beelen et al., 2013; Eeftens et al., 2012a,
2012b) (Fig. 1 and Table 2). For each LSOA, the exposure difference in
annual mean PM2.5 and NO2 and the recommended 10 μg/m3 and
40 μg/m3 was estimated, respectively. Since no LSOA exceeded the
recommended NO2 annual mean of 40 μg/m3 (i.e. LSOA range:
12.82–30.08 μg/m3 annual mean), NO2 was not included in the
analysis. The association between PM2.5 and mortality was quantified
using a linear ERF (Table 3) (WHO, 2014). The RR and PAF
corresponding to the exposure difference were calculated at the LSOA
level.

2.2.2.3. Noise. Annual mean EU 24-h noise indicator Lden (in dB) for
road traffic with 5 and 10 dB penalties for the evening and night time,
respectively, was available through Bradford's strategic noise map
(2006) imposed by Directive 2002/49/EC (The European Parliament
and the Council of the European Union, 2002) and was assigned area-
weighted at LSOA level (Fig. 1 and Table 2). LSOAs that are not or only
partially part of the Bradford agglomeration (i.e. rural areas that extend
into the district) and therefore had unavailable or implausible noise
values (i.e. < 30 dB Lden) were assigned 30 dB Lden which is defined as
the threshold for ‘quite rural area’ ambient noise levels. Until now, most
evidence exists for the association between Lden and cardiovascular
mortality (Van Kempen et al., 2018), reinforced by a recent cohort
study (Héritier et al., 2017). Given that the recommended day time
noise threshold for health protection is 55 dB and accounting for night
time noise exposure, where the WHO in 2009 recommended a threshold
of 55 dB Lnight for protection against cardiovascular effects (WHO,
2009), an overall exposure threshold of 55 dB Lden was chosen as our
counterfactual scenario. The difference in exposure level was
determined for each LSOA exceeding 55 dB Lden. The association
between Lden and cardiovascular mortality was quantified using a
linear ERF (Table 3) (Héritier et al., 2017). The hazard ratio and PAF
corresponding to the exposure level difference between recommended
and actual level were calculated at the LSOA level.

2.2.2.4. Green space. We estimated the percentage of green space
surface (%GS) each LSOA needed to have, to provide universal access
to a green space ≥0.5 ha within a 300m linear distance. Green space
data were available through Urban Atlas (2012; resolution 1:10,000)
(European Environment Agency, 2007) and the Born in Bradford (BiB)
cohort study (2007–2010) (Fig. 1 and Table 2). The BiB study, a largely
bi-ethnic cohort of families of White British and Pakistani origin
representing well the Bradford general population, tracks the health
and wellbeing of over 13,500 children (and their parents) born in
Bradford between March 2007 and December 2010 (Wright et al.,
2013).

Using PostgreSQL/PostGIS, the current %GS was calculated for each
LSOA. Quintiles of the LSOA %GS distribution were calculated. Using
GIS-derived green space data for 19,720 home addresses of the BiB
mothers recorded from 2007 to 2010 and distributed over the 310
LSOAs, the proportion of BiB mothers living within 300m of a green
space ≥0.5 ha was determined for each %GS quintile (Table S2). The
distribution of the BiB mothers having access to a green space across the
%GS quintiles was extrapolated to the entire Bradford adult population
≥18 years. Using the same BiB data, a binominal generalized linear
model was fitted to predict the %GS needed to provide universal access
to a green space ≥0.5 ha within a 300m linear distance at the LSOA
level (Fig. S1). It was predicted that each LSOA needed to have 25%GS
to provide universal access (i.e. 96.5% of population) to a green space
≥0.5 ha within a 300m linear distance. The exposure level difference
between the current %GS of each quintile and the necessary 25% was
determined. A linear ERF was used to quantify the association between

Table 3
Risk estimates for mortality by exposure domain.

Exposure
domain

Risk estimate Exposure Health
effect

Study
design

Reference

Physical
ac-
tivity

RR=0.81
(95% CI:
0.76–0.85)

660 versus
0METmin/
week

All-cause
mortality

Meta-
analysis

Woodcock
et al. (2011)

PM2.5 RR=1.07
(95% CI:
1.04–1.09)

per 10 μg/m3 All-cause
mortality

Meta-
analysis

WHO
(2014)

Noise HR=1.038
(95% CI:
1.019–1.0.58)

per 10 dB
Lden(Road)

CVD
mortality

Cohort
study

Héritier
et al. (2017)

Green
space

RR=0.99
(95% CI:
0.98–1.01)

per 10%
increase in
greenness

All-cause
mortality

Meta-
analysis

Gascon
et al. (2016)

CVD= cardiovascular disease; HR=hazard rate; Lden= EU noise indicator
with 5 dB penalties for the evening time and 10 dB penalties for the night time;
MET=metabolic equivalents of task; RR= relative risk; 95% CI=95% con-
fidence interval.
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green space and mortality (Table 3) (Gascon et al., 2016). For each %GS
quintile, the RR and the PAF corresponding to the exposure level dif-
ference were calculated.

2.3. Socioeconomic position (deprivation status and ethnicity)

We estimated how mortality impacts might vary by SEP as defined
by deprivation status and ethnicity. First, at the LSOA level, analyses
were stratified by using the English residential area Index of Multiple
Deprivation (IMD). We assigned each of Bradford's 310 LSOAs their
corresponding IMD rank (Table S3). The IMD ranks each of the 32,844
LSOAs in England from 1st (most deprived) to 32,844th (least deprived)
according to their level of deprivation based on seven domains (income,
employment, education, health, crime, barriers to housing and services,
and living environment) (Department for Communities and Local
Government, 2015). Bradford LSOA's were assigned national IMD rank
quintiles (each quintile representing 20% of the English population).
More than 60% of Bradford's residents fall into the 40% most deprived
of the country. Second, we stratified our analyses by the proportion of
non-White residents at the LSOA level (Table S4). We created five ca-
tegories (80–100%, 60–80%, 40–60%, 20–40%, 0–20%) of the non-
White resident distribution and assigned each LSOA the corresponding
category. District-wide>30% of residents were of non-White ethnicity.

To have an idea where premature mortality impacts will most likely
occur, we built a multiple environmental burdens by SEP index at LSOA
level by using the quintile distribution of the environmental exposures
(i.e. PM2.5, noise, green space) (Fig. 2). The sum of the environmental
exposure quintiles (i.e. 1–3, 4–6, 7–9, 10–12, 13–15) represent the
multiple environmental burdens cutoffs. For green space, inverse
quintile numbering was used. IMD rank quintiles (1–5) were used to
define the cutoffs for the socioeconomic index. Fig. 2 idea is adapted
from Flacke et al. (2016).

2.4. Life table and economic analyses

We estimated average changes in life expectancy (LE) following
standard life table methods (Miller and Hurley, 2003) and based on
published life tables for the UK (based on data for 2014–2016) (Office
for National Statistics, 2017c). We assumed that British age and sex-
specific LE was representative for Bradford's population and estimated
losses in LE due to incompliance with recommended exposure levels.
The estimated losses in LE correspond to losses in LE expected for males
and females born in Bradford today and living in incompliant areas
(Table 4).

We also estimated economic impacts of the estimated average
changes in LE by applying a value of a statistical life year (VSLY) of
£60,000 with future benefits discounted at 1.5% (Department for
Transport, 2017; Glover and Henderson, 2010).

2.5. Sensitivity analyses

As health effects of air and noise pollution occur under the estab-
lished ‘health thresholds’ (Health Effects Institute, 2010; WHO, 2009),
we also estimated preventable premature deaths under the lower limit
scenarios that assume that the smallest measured annual mean PM2.5

concentrations of 1.3 μg/m3 (Khreis et al., 2017; Morgenstern et al.,
2008) and ‘quiet urban area’ ambient noise levels of 40 dB Lden (WHO,
2009) were not exceeded. Moreover, we compared our air pollution
impact estimations for Bradford to the AirQ+ software (v 1.0) calcu-
lations provided by the WHO (WHO, 2016b). Similarly to the UTOPHIA
methodology, the freely-accessible AirQ+ software performs calcula-
tions that allow the quantification of the expected health impacts of
exposure to air pollution. To make the UTOPHIA methodology and
AirQ+ software calculations comparable, applying the same counter-
factual scenario (i.e. PM2.5 annual mean should not exceed 10 μg/m3)
and considering that AirQ+ in contrast to UTOPHIA provides only a

district-wide impact estimation that does not allow for spatial stratifi-
cation by LSOA, in AirQ+ we used the mean PM2.5 exposure of those
LSOAs with a mean annual exposure> 10 μg/m3 (i.e. 11.03 μg/m3) as
our input value (i.e. 55% of the population exposed) (Table 4). We also
applied the same mortality risk estimate in AirQ+ as in the UTOPHIA
methodology (i.e. RR=1.07, 95% CI: 1.04, 1.09), for comparability
reasons.

3. Results

Half of Bradford's adult population was insufficiently active
(Table 2). District-wide PM2.5 and noise levels exceeded recommended
annual mean levels only slightly (i.e. PM2.5+ 1.03 μg/m3 in 172 LSOAs
and noise +2.43 dB Lden in 113 LSOAs) (Table 4). 18% of Bradford's
adult population did not live within the recommended 300m linear
distance to a green space ≥0.5 ha (corresponding to a necessary 25%
GS of each LSOA).

Across all the exposures, 375 annual premature deaths (95% CI:
276–474) were estimated to be preventable if there would be com-
pliance with international exposure recommendations. The largest
share in preventable deaths was estimated to be attributable to in-
creases in PA levels (327 deaths, 95% CI: 245–441), followed by re-
ductions in air pollution exposure (17 deaths, 95% CI: 10–22), in-
creasing access to green space (16 deaths, 95% CI: 0–32) and reductions
in noise levels (15 deaths, 95% CI: 7–22) (Fig. 3). Bradford male re-
sidents were estimated to loose on average 348 days (95% CI: 263–432)
of their LE which corresponded to economic losses of £56,295 per
person (95% CI: 42,599–69,991) (Table 4). Female residents were es-
timated to loose on average 314 days (95% CI: 238–391) of their LE
which corresponded to economic losses of £50,897 per person (95% CI:
38,518–63,276). The biggest loss in LE resulted from insufficient PA
performance (63% of estimated lost days for males and females) (Fig.
S2).

Stratified analyses by SEP showed that residents of more deprived
and more ethnically-diverse LSOAs were at higher risk for adverse en-
vironmental exposures and mortality (Fig. 2) [i.e. 6–7 expected deaths/
100,000 persons for the most deprived versus 0–1 expected deaths/
100,000 persons for the least deprived across the environmental ex-
posures (i.e. air pollution, noise, green space) and 8–11 expected
deaths/100,000 persons in LSOAs with the highest proportion of non-
White residents versus 1–2 expected deaths/100,000 persons in LSOAs
with the lowest proportion of non-White residents across the environ-
mental exposures] (Figs. 4 and 5 and Tables S3 and S4).

3.1. Sensitivity analyses

The lower limit air and noise pollution scenarios resulted in 253
preventable deaths (95% CI: 149–320) for PM2.5 and 145 preventable
deaths (95% CI: 74–215) for noise< 40 dB Lden annually. Using the
WHO AirQ+ software to estimate mortality impacts under the com-
pliance of the PM2.5 air quality guideline, we estimated 17 preventable
premature deaths (95% CI: 10–21) for Bradford which confirms the 17
premature deaths we estimated using the UTOPHIA methodology.

4. Discussion

We applied the UTOPHIA methodology to Bradford and estimated
that 375 (i.e. almost 10% of total) annual premature deaths could be
prevented if international exposure recommendations for PA, air pol-
lution, noise and access to green space were complied with. An even
larger number of premature deaths could be prevented by lowering air
pollution and noise levels well below the guidelines. Over 300 days of
LE were estimated to be lost among Bradford residents due to current
incompliance which translated in economic losses of over £50,000 per
person. Residents of neighborhoods characterized by lower SEP (most
deprived and more ethnically-diverse) had the highest risk of
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environmental exposures and premature death.
HIA work in the West Yorkshire study area has so far solely focused

on air pollution exposure. A 2014 HIA study investigating different low
emission zone scenarios, estimated 222 premature deaths attributable
to slightly lower annual mean PM2.5 concentrations in Bradford (Cooper
et al., 2014), which is comparable to the 253 deaths we estimated in the
lower limit air pollution sensitivity scenario. Moreover, Cooper et al.'s
(2014) different low emission zone scenarios resulted in 15 to 19 deaths
preventable. Subsequently and building on Cooper et al.'s (2014) work,
a 2016 HIA study, estimated 10 premature deaths preventable in the
study area, assuming air quality improvements achieved through an
upgrade of EURO 4 buses and heavy goods vehicles to EURO 6 (Lomas
et al., 2016). Recently, two HIA studies looking at childhood asthma
cases attributable to air pollution in Bradford found similar district-
wide averages for PM2.5 and NO2 concentrations (11.2 μg/m3 PM2.5 and
21.93 μg/m3 NO2) and estimated between 279 and 687 attributable
asthma childhood cases depending on the pollutant studied (Khreis
et al., 2018a, 2018b). To our best knowledge, until now, only two HIA
studies, both conducted for Barcelona, Spain, holistically estimated
premature mortality impacts of the multiple urban and transport
planning related exposures (Mueller et al., 2017a, 2017b). In Barcelona,
almost 20% of premature mortality were estimated to be attributable to

non-compliance with recommended levels for PA, air and noise pollu-
tion, heat and access to green space (Mueller et al., 2017a). Barcelona
had similar exposures of low PA, but in addition exceeded more pro-
minently the recommended air and noise pollution levels and had less
green space. Also for Barcelona heat effects of extreme summer tem-
peratures were studied, but were considered as less relevant for Brad-
ford and thus were ignored. Barcelona is a more compact and dense city
(16,000 persons/km2) than Bradford and has with 6,000 vehicles/km2:
the highest traffic density in Europe (Barcelona City Council, 2018).
The lower estimates of mortality in Bradford appear to be due to less
traffic (Bradford is ranked 18th on the list of the UK's most congested
cities (TomTom International BV, 2018)) and subsequent less air pol-
lution and noise and greater availability of green space.

The largest mortality impacts in Bradford resulted from non-com-
pliance of recommended PA performance (i.e. 327 deaths), which is in
agreement with HIA studies of transport that considered (besides other
risk factors) the impacts of PA (Buekers et al., 2015; De Hartog et al.,
2010; Macmillan et al., 2014; Mueller et al., 2015; Rojas-Rueda et al.,
2011, 2012, 2016; Woodcock et al., 2009, 2013, 2014; Xia et al., 2015).
The breach of air pollution and noise exposure guidelines were esti-
mated to contribute to a health burden of similar magnitude in Bradford
(i.e. 17 and 15 premature deaths, respectively). Despite sharing the

Fig. 2. Multiple environmental burdens by SEP at LSOA level.
The multiple environmental burdens index was built by using the quintile distribution of the environmental exposures (air pollution, noise, green space). The sum of
the quintiles represent the different cutoffs. The national Index of Multiple Deprivation (IMD) rank quintiles were used to define the cutoffs for the socioeconomic
position (SEP) index.
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common source of motor traffic, the health effects of air and noise
pollution are suggested to be independent, but of similar extent
(Mueller et al., 2017a; Tétreault et al., 2013; Vienneau et al., 2015).
The green space analysis for Bradford, resulted in 16 preventable pre-
mature deaths and therefore highlights the increasing epidemiological
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Fig. 3. Attributable premature mortality due to non-compliance of exposure
level guidelines.

Fig. 4. Standardized mortality impacts by LSOA-level deprivation score.

Fig. 5. Standardized mortality impacts by LSOA-level ethnicity.
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importance of natural outdoor environments in times of ongoing ur-
banization processes, space scarcity and increasing population densities
(Dadvand et al., 2016; Gascon et al., 2016).

In Bradford, residents of lower SEP and more ethnically diverse
neighborhoods were more adversely exposed to the multiple environ-
mental exposures (i.e. higher air pollution, higher noise, less green
space) (Fig. 2) and therefore were more susceptible to adverse health
outcomes. Spatial exposure differences that especially discriminate
against the most unprivileged populations have been observed in other
settings (Casey et al., 2017; Clark et al., 2017; Eime et al., 2015; Pan
et al., 2009; Schüle et al., 2017). A recent US study demonstrated that
NO2 exposure concentrations were 37% higher for non-Whites than for
Whites and that these exposure differences were larger by race-ethni-
city, than by income (Clark et al., 2017). A study for Dortmund, Ger-
many showed that the multiple environmental burdens were sig-
nificantly correlated and strongest in low SEP neighborhoods (Flacke
et al., 2016). Identifying these hotspots of environmental injustice (and
resulting health inequity) is an issue that needs urgent consideration
and emphasizes that for successful urban and transport planning in-
terventions, the specific vulnerabilities of the populations affected need
to be taken into account (Flacke et al., 2016).

4.1. Public health implications

Nowadays, motor traffic is the most prominent and common source
for all exposures (low PA, high air and noise pollution, little green
space) in cities. Hence, in Bradford (and elsewhere) healthy living could
be best promoted by reducing motor traffic. In this context, interven-
tions at the community level (such as urban and transport planning
interventions) that change peoples' default decisions were shown to be
more effective than interventions at the individual level (Daumann
et al., 2015; Frieden, 2010; Nieuwenhuijsen, 2016).

Active transport (i.e. walking and cycling for transportation in
combination with public transport use) is a healthy and sustainable
alternative to motor transport. Active transport serves the multi-pur-
pose of (1) providing transport, (2) opportunities for routine PA en-
gagement (a policy priority in Bradford as 90% of the mortality impact
resulted from low PA performance) and (3) simultaneously improves
environmental quality by being low to zero emission transport modes
(Dons et al., 2015; Mueller et al., 2015; Saris et al., 2013). Moreover,
active transport is a very accessible and equitable mode of transport
and PA opportunity. By being economically affordable, it can also reach
population sub-groups that are irresponsive to the appeals of leisure
time PA (Dons et al., 2015).

Moreover, the proximity to green space has been identified as one
urban planning related feature that promotes an active lifestyle (Sallis
et al., 2015). Green spaces add aesthetic appeal (Triguero-Mas et al.,
2015), provide a space for PA performance (Gladwell et al., 2013; Lee
et al., 2015) and reduce harmful environmental exposures of air pol-
lution, noise and heat (Abhijith and Gokhale, 2015; Doick et al., 2014;
Raji et al., 2015; Van Renterghem et al., 2015). Nonetheless, as green
space allocation of ≥0.5 ha in established cities might be difficult and
the decisive mechanisms of green space providing health benefits re-
main uncertain (Gascon et al., 2016; Markevych et al., 2017), the re-
inforcement of surrounding greenness (i.e. green corridors, street trees,
pocket parks, etc.) should be considered because already visual access
to nature has been associated with health benefits of stress reduction
and restoration (De Vries et al., 2013; Triguero-Mas et al., 2015) and
this type of greenness may be more feasible to implement. The fact that
in Bradford (and elsewhere) residents of neighborhoods of lower SEP
face multiple environmental burdens (high air pollution, high noise,
little green space) and are thus more vulnerable to adverse health
outcomes, suggests that these residents would benefit the most from
health promoting interventions, such as reducing motor traffic, pro-
moting active transport and developing green space. Persons of lower
SEP tend to be less mobile (e.g. persisting relationship between income

and car ownership in England and Wales (Yeboah et al., 2015)) than
persons of higher SEP and their activities and social contacts are often
situated closer to their homes (Dadvand et al., 2014; Maas, 2008;
Schwanen et al., 2002). Active transport can help improve their mo-
bility, and green space access in their direct residential proximity can
increase the likelihood for these residents to actively use them, which in
itself will provide health benefits (Dadvand et al., 2014; McEachan
et al., 2016).

4.2. Strengths and limitations

This study adds to the limited evidence base documenting expected
health impacts of the multiple urban and transport planning related
exposures (beyond air pollution) and their directions and magnitude
(Briggs, 2008). This allows for comparison of the severities of the ex-
posures that with other study designs would not be possible and helps
to identify priorities for policy action (see implications for public
health). By also studying the distribution of health impacts among the
population (and in the case of Bradford identifying the residents of
lower SEP neighborhoods as most exposed and hence at the highest
risks), HIA studies can provide valuable information on inequalities and
can help to overcome misperceptions that health disparities are ex-
clusively due to lifestyle choices, genetic predispositions and access to
medical care (Collins and Koplan, 2009; National Research Council Of
The National Academies, 2011).

However, as with all HIA studies, their validity is limited by as-
sumptions on causal inferences were evidence is lacking. We estimated
health impacts corresponding to the counterfactual scenario of com-
plying with international exposure recommendations. Larger impacts
are expected when choosing lower comparison thresholds for air and
noise pollution (as demonstrated in the lower limit sensitivity analyses),
and more ambitious thresholds for PA and access to green space.
Moreover, there might have been exposure and outcome mis-
classification, as the different UTOPHIA inputs (i.e. exposures, health
statistic and population data) were only available for different years
(2006–2016). Nevertheless, we are unaware of any major policy
changes over this 10-year timeframe that might have changed exposure
levels drastically. Therefore, we believe that our results are a robust
estimation of the overall health impact to be expected.

In the context of exposure misclassification, road traffic noise data
was only available for the Bradford agglomeration and was assigned
area-weighted at LSOA level. This might have underestimated the
overall noise exposure of LOSAs that are not or only partially part of the
Bradford agglomeration. Furthermore, in terms of personal exposure,
we have no insight on whether people spend most time of their day at
their LSOA of residence. Also, PA data was unavailable at the LSOA
level. Consequently, we do not know how PA is distributed among the
population within different areas of Bradford. Research evidence,
nevertheless, demonstrated more available resources for PA participa-
tion, including parks and walking and biking trails, in higher SEP
neighborhoods (Estabrooks et al., 2003), and correlated increasing PA
performance with increases in SEP (Eime et al., 2015; Pan et al., 2009).
If this finding holds true for Bradford, then residents of lower SEP
neighborhoods are performing the lowest levels of PA, adding to so-
cioeconomic inequalities in the total health burden. In terms of air
pollution exposure, we exclusively considered PM2.5 in our analyses as
a general marker for air pollution from all fossil fuel combustion
sources (Mueller et al., 2015). Despite having NO2 data available, no
LSOA exceeded the recommended value (i.e. > 40 μg/m3) and the high
correlation between pollutants of traffic exhaust (e.g. PM2.5 and NO2)
needs to be considered with caution because it complicates the dis-
tinction of pollutant-specific effects (Khreis et al., 2018a).

In terms of outcome misclassification, all-cause mortality was our
health outcome of interest. Yet, for noise exposure only evidence for
Lden and cardiovascular mortality exists (Héritier et al., 2017). It is
believed, though, that the greatest contribution of noise to mortality is
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through cardiovascular effects, according to current evidence on the
effects of noise on different conditions (Basner et al., 2014; Héritier
et al., 2017). Therefore, we considered the applied risk estimate as a
valid proxy to estimate overall mortality impacts associated with noise
exposure. For the association between green space and mortality more
recent evidence exists. However, despite being of longitudinal study
design and providing continuous ERFs, these studies are setting and
population-specific (i.e. Canadian cities, American women) and use
another exposure unit (i.e. the Normalized Difference Vegetation Index
(NDVI)) (Crouse et al., 2017; James et al., 2016). Moreover, a recent
meta-analysis provides an odds ratio for all-cause mortality of 0.69
comparing high with low green space exposure (Twohig-Bennett and
Jones, 2018). Generally, this new evidence is suggesting stronger health
benefits of green space than the risk estimate we applied (i.e. RR=0.99
per 10% increase in greenness). The latter we chose because it origi-
nates from the only existing meta-analysis providing a continuous ERF
that corresponds to our exposure unit (i.e. % increase in greenness)
(Gascon et al., 2016). Therefore, one can argue that our estimated
impacts are conservative and possibly more premature deaths could be
attributed to the lack of green space in Bradford. Moreover, a stratifi-
cation of the applied all-cause mortality ratio by SEP was unavailable.
Stratified mortality ratios would probably have amplified the estimated
mortality differences by SEP, making the consideration of inequalities
an even more pressing issue. Likewise, life tables specifically for the
Bradford population were unavailable, therefore national life tables
were used. This possibly has led to an underestimation of the LE
changes as the Bradford population has higher levels of deprivation
(Cooper et al., 2014; Fielding, 2012).

Even though we suggest that community-level interventions (i.e. the
promotion of active transport and the development of green space) may
lead to improvements in exposure levels, HIA studies are unable to
capture individuals' intrinsic motivations and personal choices as fos-
tered by the sociocultural environment. Hence, for successful policy
(health) outcomes, it is important to keep in mind the sociocultural
drivers for behavior change that we were unable to quantify. Therefore,
integrated, participatory engagement of the communities affected in
the policy planning process helps to gain a better understanding of
necessities and expected behaviors and ensures that policy outcomes
are realistic, practicable and acceptable (Collins and Koplan, 2009;
Forsyth et al., 2010; Joffe and Mindell, 2005; Nieuwenhuijsen et al.,
2017b).

5. Conclusions

In Bradford, 10% of all premature deaths are due to urban and
transport related exposures. Residents of lower SEP neighborhoods
were estimated to experience the highest exposure and mortality
burden. Reducing motor traffic and promoting PA through the pro-
motion of active transport together with the development of green
space should be a focus for urban and health planners that most likely
will help to reduce harmful environmental air and noise pollution. The
focus of these health promoting interventions should be on the most
deprived and ethnically-diverse neighborhoods as the largest health
gains are to be expected in these areas.
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