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ABSTRACT: The “exposome” is defined as “the totality of human environ-
mental exposures from conception onward, complementing the genome” and its
holistic approach may advance understanding of disease etiology. We aimed to
describe the correlation structure of the exposome during pregnancy to better
understand the relationships between and within families of exposure and to
develop analytical tools appropriate to exposome data. Estimates on 81
environmental exposures of current health concern were obtained for 728
women enrolled in The INMA (INfancia y Medio Ambiente) birth cohort, in
Sabadell, Spain, using biomonitoring, geospatial modeling, remote sensors, and
questionnaires. Pair-wise Pearson’s and polychoric correlations were calculated
and principal components were derived. The median absolute correlation across
all exposures was 0.06 (5th−95th centiles, 0.01−0.54). There were strong levels
of correlation within families of exposure (median = 0.45, 5th−95th centiles,
0.07−0.85). Nine exposures (11%) had a correlation higher than 0.5 with at least one exposure outside their exposure family.
Effectively all the variance in the data set (99.5%) was explained by 40 principal components. Future exposome studies should
interpret exposure effects in light of their correlations to other exposures. The weak to moderate correlation observed between
exposure families will permit adjustment for confounding in future exposome studies.

■ INTRODUCTION
Environmental chemical and physical exposures during fetal or
early life have been associated with adverse fetal growth and
with developmental neurotoxic, immunotoxic, and obesogenic
effects in children, although for many of these associations
evidence has been classified as limited or inadequate.1−4 These
are highly complex chronic pathologies, and it is hypothesized
that improved understanding of how environmental risk factors
coexist and interact during early life can help elucidate their
causes.5−7 It is clear that, up to now, the environment and child
health field has almost uniquely focused on single exposure-
health effect relationships; there is no global view of how
various types of exposures coexist and jointly impact health.
The concept of the “exposome”8 has attracted growing interest
in recent years and is defined as the totality of human
environmental (i.e., nongenetic) exposures from conception
onward, complementing the genome. It is hoped that through
the use of holistic and data-driven approaches pioneered in the
genomics fields, similar advances can be made in understanding

the environmental component of disease etiology. Since the
developing fetus is particularly vulnerable to potential environ-
mental hazards and since exposures during the critical in utero
period may have a lifetime impact, the pregnancy period is an
important starting point in characterizing the life course
exposome.9

Implementing the exposome concept however poses a
number of challenges. First, full measurement of the exposome
at even a single time point is probably impossible. While “top-
down” measurement of exposome signals, either through
measurement of the global internal biological response using
molecular ‘omic technologies or the untargeted analysis of
chemicals present in biological samples, addresses this issue to
some extent, current analytical technology is not sensitive or
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flexible enough to capture and identify the components of the
exposome in a single analytical sweep.10,11 Therefore, a
complementary approach is to construct the exposome from
the “bottom-up” using existing tools of exposure assessment
such as biomonitoring across various analytical platforms, geo-
spatial modeling, and questionnaires. Although this is a
laborious process it should be recognized that even partial
exposome coverage will be valuable and other ‘omic-wide scans
such as the genome wide association studies (GWAS) rely on
incomplete coverage, supplemented with imputation based on
resources such as haplotype databases.12,13 Second, appropriate
statistical tools, which provide sufficient sensitivity and
specificity in the face of the high dimensionality and dense
correlations inherent in exposome data, will be required for
exposome-health association studies. Understanding what a
typical exposome looks like, including the structure of
correlations between and within groups of exposure is an
important first step in planning the optimal use of both targeted
exposome measurements and statistical analyses. Some of the
first exposome studies1415 have used the cross-sectional
National Health and Nutrition Examination Survey
(NHANES) biomonitoring data, which has provided reference
values of contamination levels to a wide range of both
environmental pollutants and nutrients.16 Patel and Ioannidis17

recently described the correlation structure of the NHANES
data set, giving ranges of absolute correlation for each exposure
group analyzed, providing important information on part of the
exposome structure of the general U.S. population. Further-
more, they proposed that transparent knowledge of the
correlation structure of a data set is required to best interpret
reported results using that data set, which over the course of
particular study may number hundreds of publications.
INMA (INfancia y Medio Ambiente) is a birth cohort study

in seven regions of Spain that aims to examine the role of
environmental pollutants during pregnancy and early childhood
in relation to child growth and development.18 The INMA
Sabadell subcohort, situated in Catalonia, has already described
levels of exposure to a range of environmental factors during
pregnancy including outdoor and indoor air pollution,19−22

persistent organic pollutants (POPs,23 brominated flame
retardants,24 perfluoroalkyl substances (PFAS,25), metals,26−28

phenols and phthalates,29,30 disinfection byproducts in water,31

environmental tobacco smoke,32 insecticides,33 and green
spaces.34 Here we present an analysis of relationships within
and between important groups of environmental exposure
among pregnant Spanish women with the aim of better
understanding the correlation structure of an important part of
the “pregnancy exposome”.

■ METHODS

A full description of the project protocol has been previously
described.18 Briefly, during 2004−2006, pregnant women (N =
728) from the general population were recruited at the first
trimester routine antenatal care visit in the main public hospital
or health center of reference, using the following inclusion
criteria: Women had to be at least 16 years old, intend to
deliver in the reference hospital, have a singleton pregnancy
with no assisted conception, and have no problems with
communication. The study was conducted with the approval of
the hospital ethics committee, and written informed consent
was obtained from all women.
Estimates on 81 exposures covering the pregnancy period

were collated into a single data set. Exposures were selected on
the basis of availability from current or ongoing INMA studies.
Biomonitoring data included organochlorines (including
pesticides and polychlorinated biphenyls (PCBs)) and PFAS
in serum; mercury in cord blood; polybrominated diphenyl
ethers (PBDEs) in breast milk; metals, phthalates, bisphenol A
in urine (averaged over measurements in samples collected
during the first and third trimesters) ; and cotinine in urine
(from third trimester) (Table 1). Biomarker measurements
where the analyte was nondetectable in over 85% of samples
(including lead in cord blood, PCB congeners 28, 52, 101, and
118, dichlorodiphenyltrichloroethane (DDT), and PBDE
congeners 17, 28, 71, 66, 138, and 190) were excluded from
the analysis. Geospatial modeling and remote sensing data
included air pollutants (including nitrogen oxides, particulate

Table 1. Exposure Families Included in Analysis

exposure family

no. of
exposures
measured

no. of
women matrix sampling time method ref

PFAS 4 433
serum

first trimester HPLC-MS 25

organochlorines 6 637 GC-MS 23

PBDEs 8 242 colostrum birth GC-MS 39

metals 13 range:
243−
489

urine and cord blood
(for mercury)

average of first and third trimester spot
urines and birth (for mercury)

Q-ICP-MS, AAS (for mercury) 26, 28

phthalates 10 391
urine

average of first and third trimester spot
urines

HPLC-MS 29

bisphenol A 1 497 HPLC-MS 29

water pollutants 3 561 home address and
questionnaire

pregnancy average model and interview 31

home
environment

4 616 questionnaire
third trimester

interview 21, 32,
33

cotinine 1 597 urine LC-MS 32

air pollutants 24 range:
573−
611

home address pregnancy average

land use regression models 19, 20,
22

built environment 3 range:
477−
720

calculation from maps. Landsat imagery
(normalized vegetation difference Index).

34, 36,
37

noise 3 631 municipal strategic noise maps 35

surface
temperature

1 728 Landsat imagery (thermal band) 38
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matter (of diameter less than 2.5 μm (PM2.5), less than 10 μm
(PM10), and between 2.5 and 10 μm (PMcoarse)) PM2.5

absorbance (a measure of black carbon) and various elemental
fractions of PM2.5 and PM10), the built environment (building
density, street connectivity, and green spaces), noise (averages
over day, evening, and night), and land surface temperature.
Questionnaire data, collected by trained interviewers during the
third trimester, included four home environment related binary
variables including gas cooking, home and garden pesticide use,
and environmental tobacco smoke exposure. Water use habits
collected by questionnaire were combined with modeled levels
of disinfection byproducts (total trihalomethanes, brominated
trihalomethanes, and chloroform) in the residential water
supply to calculate daily ingestion. References for the original
studies and methods used are shown in Table 1. Additionally in
this study, estimates on noise, surface temperate, building
density, and street connectivity were assigned to the home

address of participants within the ArcGIS platform (ESRI
ArcMap TM 10.0, ArcGIS Desktop 10 Service Pack 4, spatialite
v.4.11). Noise exposures were obtained from the strategic noise
maps for Sabadell produced by the Generalitat de Catalunya
under the European Noise Directive.35 Total building area and
number of street intersections within a 100 m radius buffer
were calculated from topographical36 and road network maps.37

The radiometric surface temperature was calculated from
LANDSAT thermal imagery within a 50 m radius buffer from
the home address.38 Exposures were grouped into families
depending on their structure (for individually measured
biomarkers) or source (other exposures) (Table 1).
Continuous variables were log-transformed to give a normal

distribution. Biomarker measurements below the detection
limit were imputed using distribution-based multiple imputa-
tion.40 The proportion of biomarker measurements below the
detection limit are shown in Supplementary Table S1

Figure 1. Relative standard deviation (standard deviation/mean) for each continuous exposure. Abbreviations for all exposures are shown in
Supplementary Table S1 in the Supporting Information.
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(Supporting Information). Pair-wise Pearson’s correlations (for
continuous variables) and polychoric correlations (for
correlations involving binary variables) between each individual
exposures were calculated to produce a correlation matrix. Heat
map and circos plots were made to display the correlations.
Principal components were then derived directly from the
correlations. All analyses were conducted in the R software
environment (http://www.r-project.org/index.html).

■ RESULTS
The number of women with available exposure estimates
ranged from 242 for the PBDEs to 728 women for temperature
(mean number of women per exposure, 501). All exposures,
along with summary statistics of their levels, are listed in the
Supplementary Table S1 in the Supporting Information. The
percentage relative standard deviation (standard deviation/
mean) for each exposure ranged from 3% for surface
temperature at the home address to 531% for mono (4-
methyl-7-hydroxyoctyl) phthalate (7OHMMeOP) (Figure 1,
Supplementary Table S1 in the Supporting Information), with a
mean relative standard deviation across all exposures of 84%.
The mean correlation (r) across all exposures was 0.08, with a
standard deviation of 0.21 (median =0.02; 5−95th centiles =
−0.12 to 0.54). The mean absolute correlation was 0.13, with
standard deviation of 0.18 and range 0.00 to 1.00 (median =
0.06; 5−95th centiles = 0.01−0.54).
There were strong levels of correlation within families of

exposure with absolute correlations strongest among the noise
indicators (median r = 0.99) and weakest among the home

environment exposures (median r = 0.08) (Figure 2). The
water disinfection byproducts and air pollutants had strong
median levels of absolute correlation (r = 0.67 and 0.53,
respectively) although with large ranges. The four PFOA
compounds had the strongest median absolute correlation (r =
0.62) of the individually measured biomarkers. The other
biomarker families, PDBEs, phthalates, metals, and organo-
chlorines, all had median absolute correlations below 0.5,
reflecting their more diverse sources. However, some pairwise
correlations within each of these families were above 0.5. The
built environment measures showed lower levels of correlations
between them, with an absolute median correlation of 0.16.
The strongest correlation within the home environment
exposures was between use of home and garden pesticides (r
= 0.16). Overall, the median of all within-family absolute
correlations was 0.45 (5th−95th centiles, 0.07−0.85).
The correlation heatmap (Figure 3) displays the linkage

across all exposures by their correlation. “Blocks” of high
correlation within families of exposure were observed along the
main diagonal of the heat map, with certain groups such as the
organochlorines and phthalate metabolites showing less dense
within-family correlations than more closely linked exposures
such as the PFAS. With respect to between family correlations,
no exposure had an absolute correlation higher than 0.6 with an
exposure outside its family. Nine exposures (11% of all 81
exposures) had an absolute correlation higher than 0.5 with at
least one exposure outside its family. These included nighttime
noise, which had a correlation of 0.52 with the air concentration
of the copper fraction of PM2.5; proximity to green spaces,

Figure 2. Pairwise correlations (absolute value) within families of exposure (for families with more than one exposure). Boxes illustrate interquartile
range (IQR) with median displayed as a thick horizontal black line in the middle of the box. The whiskers extend to the most extreme data point,
which is no more than 1.5 times the IQR from the box. Outliers are shown in actual points. “(all)” denotes correlation across all pairs of variables
available; the horizontal line on the graph denotes the 95th percentile of these absolute correlations.
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which had negative correlations with nitrogen oxides and PM2.5

absorbance; and building density which was positively
correlated with benzene, nitrogen oxides, and PM2.5 absorb-
ance. A total of 26 exposures (32%) had an absolute correlation
higher than 0.4 with at least one exposure outside its family: In
addition to further associations between noise variables, green
space proximity, building density, and air pollutants, we
observed a positive correlation of 0.43 between street
connectivity and the nickel fraction of PM10. Street connectivity
also had a correlation of 0.39 with the nickel fraction of PM2.5

and a correlation of 0.32 with the vanadium fraction of PM2.5.
Surface temperature had a correlation of 0.41 with the
vanadium fraction of PM2.5 and correlations above 0.3 with
11 other air pollutants. As may be expected, urinary cotinine
was correlated (r = 0.35) with self-reported environmental
tobacco smoke exposure. In general, for those exposures
measured individually, through biomarker or questionnaire,
there was low correlation between exposures in separate
families: Only three pairwise correlations between biomarker-
measured exposures in separate families were above 0.3 with
the strongest correlation observed between perfluorooctane-
sulfonic acid and PCB-153 (r = 0.32). Overall, the median of all

between-family absolute correlations was 0.05 (5th−95th
centiles, 0.01−0.23).
Only three principal components were required to explain

50% of variance across the whole data set, while six
components explained 70% of variance and 22 components
explained 95% of the variance (Supplementary Figure S1 in the
Supporting Information, Table 2). The components were not
solely loaded onto single exposure families. The exposures most
strongly loading onto the first component (absolute loading
>0.10) were primarily outdoor environment exposures,
including all the air pollutants, building density, noise, surface
temperature (range of loadings, −0.11 to −0.19), and green
spaces (0.16). The second component was composed primarily
of positive loadings to the PFAS (0.11−0.15), PBDEs (0.12 to
−0.22), hexachlorobenzene (0.14), PCB congeners 153 and
180 (both 0.11), and some metals (0.11−0.17) and negative
loadings to the phthalates (monoethyl phthalate (MEP) =
−0.08 and others −0.13 to −0.24) and BPA (−0.15), with
further contributions from cobalt (−0.11) and home pesticides
(−0.17). The third component was composed of positive
loadings to all the metals except mercury and cobalt (0.18−
0.27) and strong negative loadings to the PFAS, the

Figure 3. Correlation heatmap, showing pair correlations across all exposures, with blue color indicating positive correlations and red color indicating
negative correlations. Abbreviations for all exposures are shown in Supplementary Table S1 in the Supporting Information.
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organochlorines (except DDE), five of the PBDEs, and three of
the phthalates (−0.10 to −0.18). A total of 99.5% of variance in
the data set, which may be considered effectively all variance,
was explained by 40 components. Within each exposure family,
only one component was needed to explain 99.5% of variance
among the three noise variables, 10 components were needed
to explain 99.5% of variance among the 24 air pollution
variables while 11 components were needed to explain 99.5% of
variance among the 13 metals (Table 2). Principal component
loadings can be found in Supplementary Table S2 in the
Supporting Information.

■ DISCUSSION
Since its initiation in 2004, the INMA Sabadell birth cohort has
measured exposure to many of the most important environ-
mental factors of current concern to child health, providing a
wide range of exposure estimates covering the in utero period
for a substantial number of Spanish women. This has provided
a rich resource of environmental data for the study of
longitudinal health outcomes in children and has now allowed
a first picture of the structure of an important piece of the
pregnancy exposome, a key starting point in constructing a life
course exposome.
The presented correlation structure enables improved

interpretation of results reported by both the INMA Sabadell
birth cohort and in epidemiological studies in general. As with
other reported exposure correlations17,41 we find strong levels
of correlations within families of exposure (grouped by
structure or source) and therefore results reported for single
exposures need to be interpreted in light of their correlations to
other exposures within their respective families. An increasing
number of studies are now including multiple within family
exposures9 and it has long been recognized that air pollution
studies should consider multiple pollutants simultaneously,
although in the presence of high correlation it becomes difficult
to disentangle the effects of each pollutant.42 We see weak
levels of correlation between the families of chemical exposures
measured in individual women and with other families of
exposure. This provides confidence that reported results for

biomarker exposure estimates are not confounded by
correlation with other unreported exposures and provides
scope for epidemiological studies to separate the effects of each
exposure group. We do however see stronger levels of
correlation between families of exposures encountered in the
outdoor environment such as air pollutants, noise, temperature,
and the built environment indicating that studies focusing on
one of these families should be interpreted with caution.
However, the range of between-family correlations found in this
study, all lower than 0.6, would allow disentangling of their
effects if all exposures have been measured. Future studies
should consider these families of outdoor exposures in
combination in order to provide appropriate risk estimates,
an approach adopted now by a growing number of studies.43,44

In the environment-wide association study (EWAS)
approach to exposome analysis, analogous to GWAS, adopted
by Patel and colleagues14 (and they argue, adopted implicitly by
research projects with repeated publications), multiple analyses
of single pollutants must be adjusted to guard against
generation of false positives by a Bonferroni correction or
similar. In the presence of correlations between exposures (or
linkage disequilibrium between single nucleotide polymor-
phisms (SNPs) in GWAS), Bonferroni correction would be
overly conservative and instead correction should be made
based on effective, rather than actual variables. Patel and
Ioannidis17 report that the 530 exposure variables available in
the NHANES data set could be reduced to 476 “effective
variables” based on the within family correlations following the
method of Nyolt.45 Here for simplicity we have presented the
number of principal components required to explain the
variances observed for each exposure group and across
exposure groups for the whole data set. Following the method
of Gao et al.,46 which was demonstrated to provide more
efficient multiple testing correction when there is high linkage
disequilibrium (or correlation in the exposome context), the
number of effective variables is equivalent to the number of
principal components required to explain 99.5% of the variance.
Therefore, of the 81 variables analyzed here, we find that there
are 40 “effective variables” that explain practically all the
variance contained in the data set. A hypothetical EWAS
analysis of the INMA Sabadell pregnancy exposome data set
using a Bonferroni-type correction may therefore choose a p
value threshold of 0.001 (i.e., 0.05/40).
Although the EWAS approach is flexible, other method-

ologies (reviewed in ref 47) may prove more appropriate. The
presented results may be used as a foundation in simulation
studies to assess the performance of different statistical models
for the analysis of exposome data. However, one difficulty when
analyzing associations with health outcomes using this data set,
particularly when applying multivariate methods, is missing
values. To maintain a breadth of exposures that approaches an
“exposome” data set, while also retaining a sufficient number of
observations would not be possible, since not all exposures,
particularly those derived from biomarkers, were available for
all women. A common solution in these situations is to use an
imputed data set41,48 which is a justifiable approach for analyses
on large populations, providing certain assumptions hold.49

Imputation also provides a more general solution to providing
the wide coverage of the external exposome required for
agnostic exposome wide scans. Since we find that effectively all
the variance in this data set could be explained by much fewer
principal components than the actual number of variables
measured, improved knowledge of the correlation structure of

Table 2. Principal Component (PC) Analysis Showing the
Number of Components Required to Explain Percentages of
Cumulative Variance by Each Exposure Group and Across
All Exposures

no. of PCs required to explain
% of cumulative variance:

exposure group no. of variables 50 70 95 99.5

PFAS 4 2 2 3 3
organochlorines 6 1 2 3 4
PBDEs 8 2 3 5 6
metals 13 2 4 9 11
phthalates 10 1 3 5 7
bisphenol A 1
water pollutants 3 1 1 2 2
cotinine 1
home environment 4 2 2 3 3
air pollutants 24 2 2 5 10
built environment 3 1 2 2 2
noise 3 2 1 1 1
temperature 1

all 81 3 6 22 40
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the exposome may allow external exposome assessment based
on fewer measured exposures. To return to the GWAS analogy,
wide and more cost-effective genome coverage is provided by
genotyping of a few hundred thousand SNPs, which provide
information on several million base pairs based on imputation.
“Hits” detected in imputed regions may then be followed up
with deep sequencing to confirm results. The required
correlation or haplotype information is provided by consortia
who have conducted full genome sequencing on only a
relatively small number of individuals representing a range of
different ethnicities.12,13 Although we have presented PCA to
describe the underlying dimensions of the data, it may not be
the optimal strategy to select the exposures best able to provide
a wide coverage of the exposome. Several other variable
reduction techniques exist,50 and the final set of selected
variables may vary according to each technique.
Whether this approach is applicable to exposome research

will depend on how reproducible the exposome correlation
structure is across spatially and temporally distributed
populations. Only some of the correlations reported here
may be compared to correlations reported in other data sets
such as NHANES17 and the study of Lenters et al.41 that
measured multiple biomarkers among males of reproductive
age living in Greenland, Ukraine, and Poland. For instance of
the 13 phthalate metabolites measured in NHANES, the
median absolute correlation is 0.25, of the four phthalate
metabolites reported by Lenters et al. the median absolute
correlation is 0.38, and the median absolute correlation of the
10 phthalate metabolites measured here is 0.30. The correlation
levels will, however, be very dependent on the analytes chosen
within particular families; it is of interest that the median
absolute correlation of four PFAS that were measured both in
this study and in the study of Lenters et al. was very similar
(0.62 and 0.68, respectively). Between-family correlations were
generally weak in both the study of Lenters et al. and as
reported here. However, Lenters et al. found relatively strong
correlations between mercury, the PFAS, and PCB-153, which
were absent among the INMA Sabadell women. This is likely
explained by the higher levels found for all these chemicals
among the studied Greenland population since correlations
were not reported separately for the three included regions.
Thus, while some aspects of the correlation structure of
exposomes of populations around the world are similar, other
aspects will depend on the particular environment and lifestyles
of the population studied, such as the consumption of large
marine animals in the Greenland population. A future “Human
Exposome Project” will need to consider measurements in a
range of populations with standardized exposure measurements
(with respect to analyte, method, and matrix analyzed).
The INMA Sabadell pregnancy exposome data set provides

broad coverage of the exposome since indicators of most
environmental exposure groups of key current concern are
included, covering biomarker measurements of both persistent
and nonpersistent pollutants, questionnaire information on
personal commercial product use, and geospatial modeled
estimates on air and water contaminants. Exposures derived
from geospatial models are not included in the NHANES data
set but should be included in characterization of the external
exposome since they provide information for many exposures
for which specific biomarkers are not available. However, we
observed overall differences in the variability between those
exposures measured through biomarkers and those exposures
that were assigned based on address. This may be problematic

for exposome analyses since statistical models may have
reduced sensitivity to detect health effects from those exposures
with lower variability. Biomarker measurements may have
higher between subject variability because they incorporate
information regarding both prevalence in the environment and
personal behavior. The precision of the geospatially derived
estimates will be improved when supplemented with
information about how individuals move through their
environment, now becoming available from smartphones.51

Similarly the binary estimates on personal product use would
be improved with the use of more detailed questionnaires.
Further limitations to the current analysis include preselection
of the included analytes which may limit their utility in truly
agnostic exposome analyses.11 Future measurements of the
external exposome may consider choosing indicator exposures
to provide the widest exposome coverage (i.e., representative of
most exposure groups) rather than those of most regulatory
concern. Furthermore, one must consider that parts of the
correlation structure presented here are composed of analytical
variability; those exposures measured using the same analytical
platform may show greater within platform correlation
compared to those measured on other platforms, obscuring
“true” biological variability and correlation. Outdoor exposure
models constructed from the same variables, such as traffic
density, may similarly show inflated correlations. A final
important limitation is the different degrees of exposure
misclassification between exposures. As with all exposure
assessment, efforts are needed to improve assessment of each
exposure. Misclassification may be high for nonpersistent
exposures such as BPA since it is known that within person
variability for these compounds is high.52 Despite addressing
this to some extent using the average of urinary measurements
at two time points, exposure misclassification will be greater
than for other exposures such as air pollution for which routine
monitoring can provide daily and relatively accurate exposure
estimates at the address level.20 Combined analyses of
exposures with differential measurement error may decrease
the accuracy of joint effect estimates, with the effect of the well-
measured exposures dominating the effect estimates for
correlated but less well-measured exposures.53

These limitations may only be overcome with the develop-
ment of an “exposome chip” for a single exposome analysis or
similarly, the concurrent analysis of the “top-down” exposome
and its relationship to the “bottom-up” exposome presented
here.11,54 Potential future analyses in the INMA Sabadell
exposome data set involve the inclusion of other parts of the
external exposome such as diet, physical activity, and drug use
and more general social and economic factors. This more
complete external exposome could also be examined in relation
to available measures of the internal exposome (i.e., the
biological response and endogenously derived exposures) that
include metabolome, DNA methylation, and inflammatory
markers. Assessment of the internal exposome using molecular
’omic technologies may allow more appropriate grouping of
external exposures based on shared toxicogenomic effects.
Furthermore, ongoing European-wide research projects such as
the HELIX project55 will provide broad coverage in a large
numbers of subjects of both the external and internal
exposomes and test the utility of both the “bottom-up” and
the “top-down” approaches.
In summary, the correlation analysis presented here of

multiple environmental exposures among pregnant women
provides a first picture of the structure of the exposome during
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the crucial in utero period. This information will aid
interpretation of reported findings from epidemiological studies
in general and inform future analyses of the exposome.
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