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Abstract 

The ability to decode graphics is an increasingly important component of mathematics 

assessment and curricula. This study examined 50, 9- to 10-year-old students (23 

male, 27 female), as they solved items from six distinct graphical languages (e.g., 

maps) that are commonly used to convey mathematical information. The results of the 

study revealed: 1) factors which contribute to success or hinder performance on tasks 

with various graphical representations; and 2) how the literacy and graphical demands 

of tasks influence the mathematical sense making of students. The outcomes of this 

study highlight the changing nature of assessment in school mathematics and identify 

the function and influence of graphics in the design of assessment tasks.  
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UNDERSTANDING GRAPHICACY: STUDENTS’ MAKING SENSE OF 

GRAPHICS IN MATHEMATICS ASSESSMENT TASKS  

Introduction 

Our society is becoming more reliant on the representation of information in graphical 

forms as traditional communication and literacy demands change and adapt to what 

could be considered a burgeoning information age (Leu, Kinzer, Coiro, & Cammack, 

2004). The access that individuals have to digital technologies seems limitless and as 

such, ―seems to provide optimal conditions for graphs and diagrams to be used as 

tools for presenting information‖ (Stern, Aprea, & Ebner, 2003, p. 192). Hence, the 

collation and presentation of information is becoming increasingly visual and spatial 

in nature. At the same time, there is renewed debate regarding the approaches that 

schools should take to ensure the development of a numerate society who can 

effectively engage with and understand the practical mathematical demands of 

everyday life (e.g., National Council of Teachers of Mathematics [NCTM], 2000; 

Steen, 1997). There is a strong case for the view that ―numeracy also demands 

practical understandings of the ways in which information is gathered by counting and 

measuring, and is presented in graphs, diagrams, charts and tables (emphasis added)‖ 

(Department for Education and Employment U.K., 1998, p. 110). Recent studies have 

argued that today‘s primary-aged students are more likely to encounter assessment 

tasks that contain graphics than in the past (Gagatsis & Elia, 2004; Lowrie & 

Diezmann, 2009; Yeh & McTigue, 2009). This investigation is timely due to the fact 

that high-stakes testing has heralded a new era in school assessment. New forms of 

accountability and an increased emphasis on national and international standards (and 

benchmarks) not only have the potential to reshape school curricula but also have 

broader ramifications for students and teachers (Jones & Egley, 2007). The scope of 

this paper is to determine whether the design of mathematics items are more likely to 

be a reliable indication of student performance if graphical, contextual and literacy 

elements are considered both in isolation and in integrated ways as essential aspects of 

task design. This research does not advocate ―teaching to tests‖ but rather presents an 

investigation which considers the extent to which new assessment items (which have 

higher graphical demands) influence students‘ sense making (Lowrie & Diezmann, 

2009).  
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Graphical Tasks in Mathematics  

In this study, the term ‗graphical tasks‘ is used to describe those items specifically 

used in this study, that is, mathematics assessment items which contain a graphic 

which is deemed to be integral to the solution process. The purpose of this study is to 

identify the task elements that either promote or hinder sense making when students 

solve graphical tasks—and indeed consider the interplay between these elements as 

students‘ make sense of these tasks. The graphical elements include the graphic, the 

mathematics content (including the task context) and the associated literacy demands.   

 

The Graphic 

Graphics are defined as visual representations for ―storing, understanding and 

communicating essential information‖ (Bertin, 1967/1983, p. 2) and include graphs, 

maps, number lines, and flow charts. They play a dual role in mathematics tasks and 

involve information and contextual graphics or what Gagatsis and Elia (2004) term 

autonomous or auxiliary graphics respectively. Information or autonomous 

representations contain information essential to the task which is not presented 

elsewhere (i.e., in text or symbols). By contrast, an auxiliary or contextual 

representation contains information that might be helpful in problem solving (e.g., 

providing a cue to the context) but is not essential to solution.  

In order to decode a graphic, an individual must contend with multiple sources 

of information which may include text, keys or legends, axes, and labels (Kosslyn, 

2006), as well as perceptual elements of retinal variables (e.g., depth of shading and 

pattern) (Bertin, 1967/1983). In most standardised mathematics instruments it is often 

necessary to consider these interrelated components in conjunction with the actual 

mathematics that is contained within a given task. Studies by Hittleman (1985) and 

Carpenter and Shah (1998) have shown that students find it challenging to move 

between text and graphics to the extent that it can disturb their thinking. Research 

suggests that the graphic can make the task more difficult to decode (Berends & van 

Lieshout, 2009; Elia, Gagatsis, & Demetriou, 2007; Schmidt-Weigand, Kohnert, & 

Glowalla, 2010). In any given mathematics task, the degree of difficulty students 

experience could be due to the complexity of the graphic, the mathematics content or 

the literacy demands associated with the task (Lowrie & Diezmann, 2009). 
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Specific graphics can have a strong influence on students‘ success even when 

the graphics are informationally equivalent, indicating that the graphic representation 

does matter (Baker, Corbett, and Koedinger, 2001). If students are not able to access 

and interpret the information effectively, the actual mathematics embedded within a 

given graphics task is not likely to be influential in the solution. As a result, students 

may disregard some of the information in graphics, rather than utilising them to their 

full capabilities (Schnotz, Picard, & Hron, 1993). 

Graphical elements influence task complexity. Roth (2002) argued that the 

difficulties exhibited by students reading mathematical formulae and graphs may 

occur not because of ‗misconceptions‘ or cognitive ‗understandings‘, but rather 

because they are unfamiliar with the content domain and conventions regulating sign 

use. When readers are very familiar with the signs and symbols within a task, these 

graphical elements may potentially be ‗glazed over‘. These elements provide the 

spatial framework that helps organise information and the particular conventions that 

represent information. The problem solver may pay less attention to the various 

graphical elements within the graphic and thus disregard necessary graphical 

structures (e.g., the segments in a pie chart). Readers are required to be familiar with 

and understand the mathematical purpose and situations for which such conventions 

are constructed and the extent to which contextual meaning (and experiences) 

influence the interpretation of the graphic. 

 

Mathematical Content and Contexts 

The interpretation of graphics requires consideration of the mathematical content and 

the context. Curcio (1987) argues that the mathematical content of a graph involves 

the numbers, their relationships, and the operations with numbers represented on the 

graph. The context is the mathematical situation in which the task is framed. These 

relationships can be exemplified through a description of a typical mathematics task.  

A box contains 4 blue marbles, 10 red marbles and 6 yellow marbles. 

Which colour marble is impossible to take from the box? 

 Red  Blue  White  Yellow 

The graphic for this question would typically be represented as a box with various 

coloured marbles displayed within the box. These marbles may well be coloured or 

labelled (typically in a key) by colour. The context of this question involves the notion 

of a realistic scenario in the sense that you are required to determine whether you can 
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―find‖ the respective marbles in the box. The context, therefore, is based on the 

premise that it is impossible to take White marbles out of the box because there are no 

White marbles in the box.  

The way in which mathematical content is presented may impact on a problem 

solvers initial sense of a task, leading to the use of routine and highly practiced 

responses. As such, students may pay only superficial attention to the written text 

within a task, finding key words which may indicate important information relating to 

the graphic. This can limit students‘ holistic understanding of the task, and hence, the 

rationality and correctness of their answers (Wiest, 2003). Moreover, ―many 

mathematics problems require students to suspend reality and ignore their common 

sense in order to get a correct answer‖ (Boaler, 1994, p. 554). 

As Cooper and Dunne (2000) maintained, many students attempt to solve tasks 

set within a ‗realistic‘ context as if they are not ‗realistic‘ at all. They argue that there 

is often a blurring of the boundary between tasks that demand or do not demand a 

realistic solution and that those students often bring their own experiences to the 

contextual situation. When solutions require a single ‗correct‘ response (as is the case 

with multiple choice tasks) the opportunity to interpret the task from a realistic 

perspective may be less problematic. However, as Lowrie and Diezmann (2009) 

suggested, realistic intentions and impressions may result in an incorrect interpretation 

of the task if students give preference to information from their experiences in favour 

of information from the graphic.  

 

Literacy Demands in Mathematics Tasks 

A major issue in interpreting and reading mathematic graphical tasks is the multiple 

meanings represented in the accompanying written text. The multiple layering of 

‗meaning‘ is also applied to the use of language in everyday contexts and interactions 

(Adams, 2003). The issues associated with multiple meanings become somewhat 

more problematic when working with primary-aged children. As Berenson (1997) 

maintained, ―the pre-adolescent child has multiple meanings for words used in the 

interactions and is comfortable with moving between meanings even in the same 

interaction‖ (p. 4). Thus, language used in out-of-school contexts has the potential to 

confuse students‘ understanding of mathematics, where they fail to differentiate 

between the mathematical meaning and the everyday meaning (MacGregor, 2002). 

Assessment items designed in a relatively authentic or realistic manner may prove 
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challenging as the problem solver is confronted with the choice of making 

connections with prior knowledge of the real-world context or analysing the task 

within the mathematical context boundaries. Mathematical tasks use language that is 

also used in everyday contexts (for example, ‗volume‘ and ‗net‘) and for some 

students, the dual mathematical-everyday use of terms may potentially cause 

difficulties (e.g., Zevenbergen, 2000). 

 

The Categorisation and Hierarchy of Information Graphics 

A body of literature has indicated that even the most routine analysis of data that is 

embedded in graphics may be difficult for primary-aged children (Doig & Groves, 

1999), older children (Preece, 1993), university students (Goldberg & Anderson, 

1989), and even professionals (Roth & Bowen, 2001). As Postigo and Pozo (2004) 

suggested, ―students restrict themselves to reading data and processing specific 

aspects of the material and encounter problems when they have to go beyond this 

elementary level and interpret the information represented‖ (p. 628). Since students 

encounter a diverse range of graphs—in both school and out-of-school contexts—

difficulties may arise in their capacity to interpret and read between (and beyond) the 

data. A current curriculum document states it is ―important for students to reflect on 

their use of representations to develop an understanding of the relative strengths and 

weaknesses of various representations for difference purposes‖ (NCTM, 2000, p. 70). 

To understand the complexities of interpreting graphics, it is necessary to appreciate 

the different graphical forms to which students are typically exposed. 

Mackinlay‘s (1999) model of graphical languages was selected as the theoretical 

framework for the study because it provides a perceptual basis for analysing students‘ 

understanding of mathematical items. It provides scope to categorise graphics within a 

visual and spatial domain and lends itself well to current thinking about how students 

create and decode graphics to both organise and communicate mathematical ideas. 

Mackinlay describes six types of graphics representation in the following ways (see 

Table 1): 
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Table 1 

Structure and Functionality of the Six Graphical Languages  

Graphical 

languages 

Graphical knowledge Mathematics 

functionality 

Axis (e.g., number 

line) 

Relative position of a mark on an 

axis.   

Number line as a 

measurement model  

Apposed-position 

(e.g. graph) 

Relative position of marked sets of 

points between two axes. 

Representation of 

quantitative data 

Retinal-list (e.g., 

flip) 

Conventions in using colour, shape, 

size, saturation, texture, or orientation 

in representation. Markings are not 

dependent on position. 

Translations, rotations, 

reflections, 

discrimination skills 

Map  Model of spatial representation of 

locations or objects and the 

convention of key use. 

Bird‘s-eye view, 2D-3D 

representations 

Connection 

language (e.g., 

family tree) 

Conventions of structured networks 

with nodes, links and directionality.  

Everyday applications 

(e.g. train maps, 

knockout competitions) 

Miscellaneous 

(e.g., pie chart) 

Conventions of additional graphical 

techniques (e.g., angle, containment) 

in representation.  

Various depending on 

the graphic, including 

proportion 

(Adapted from Lowrie & Diezmann, 2005, p. 266) 

 

Mackinlay‘s (1999) framework provides scope for the analysis of different forms of 

graphical representations that are commonly encountered by students in assessment 

situations. Examples of the six graphical languages are included in the Appendix. 

 

Design and Method 

This investigation is part of a 4-year longitudinal study in which we are monitoring the 

development of primary students‘ ability to decode the six types of graphical languages. 

This study examines the cohort involved in the qualitative component of the larger 

study. Grade 4 students‘ performance and interview responses on a set of 12 graphical 

tasks found in mathematics standardised instruments were analysed. Students‘ 

performance and responses were investigated through the following two research 

questions: 



Understanding Graphicacy 

9 

1. What aspects of a graphical task influence successful performance? 

2. What elements influence students‘ sense-making on graphical tasks? 

The first research question considers students‘ success on tasks and the extent to 

which their understandings (or lack of) influenced performance. The second research 

questions examines the elements of a task including the graphic, the mathematics 

content and context and the literacy demands with the specific tasks.  

Participants 

This study involved 50 participants (23 male, 27 female) aged 9- to 10-years-old 

students from three primary schools in a large regional city. The three schools 

involved consisted of one government, one Catholic and one independent school and 

they all catered for children aged 5-12 years (Kindergarten to Grade 6). Situated in a 

large regional city with a population of over 50 000, these medium-sized schools all 

had enrolments of over 200 students. The schools were randomly chosen from a 

convenience sample within a practical distance from the University. Given the 

diversity of the school environments, the participants were from varying 

socioeconomic and academic backgrounds, and reflected the ethnic and cultural 

composition of the local community, with less than 5% of the students speaking 

English as their second language. The participants were randomly selected across the 

classes and could be described as relatively monocultural with students typically from 

an Anglo Saxon background. Verification with teachers indicated that the participants 

were of mixed academic ability.  

 

Interview Items 

The set of 12 interview items consisted of one pair of items from each of the six 

graphical languages. These items were selected from Grade 4 state and national tests 

and thus were considered age and grade appropriate for this study and were drawn 

from the 36 item Graphical Languages in Mathematics [GLIM] instrument (see 

Diezmann & Lowrie, 2009 for an extensive summary of how the Instrument was 

designed). These 36 items were organised into three sets of age-appropriate items 

comprising two items from each graphical language. Set 1, which were the focus of 

this study, was comprised of the Grade 4 items from each of the six types of graphics 

presented to the students.  
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The mathematics items contained in this instrument are typical of the tasks 

students of this age encounter in formalised testing. We do not suggest that these 

items are exceptionally-well designed but rather have typical representation and 

structure. Moreover, the participants may have encountered these types of graphics 

previously during instruction, in the use of textbooks, or in assessment tasks. To our 

knowledge, none of these students has received overt instruction about how to decode 

these types of graphics because neither the state mathematics syllabus nor the school 

mathematics programs included a specific focus on learning about graphics. In fact, 

the most likely encounters with such items would be associated with the 

implementation of state and national testing. 

 

The Interview Design and Framework 

Each participant‘s interview took place over two days, with students completing six 

tasks each day. The timing was to minimise any effects of fatigue on students. In the 

interviews, two tasks from each of the six graphical languages were presented to the 

students in turn. Thus, in the first interview, students were asked to solve two Axis, 

two Apposed-position and two Retinal-list tasks. In the second interview, students 

were presented with two Map, two Connection and two Miscellaneous tasks (see 

Appendix). Thus, over the two days they had responded to all twelve tasks of the 

booklet over the two interviews. 

In each interview, after participants had completed two tasks from each of the 

languages, semi-structured interview questions were posed. These questions were 

designed to support students to explain their thinking and the strategies that they had 

used to solve the tasks. The semi-structured questions included:  

 Can you tell me how you worked out the answer? 

 What information was there on the diagram that helped you work out the 

answer? 

 How does it tell you that information? 

 Tell me what you did to work out the answer. 

 Please tell me a bit more about that. 

The interview data were analysed within an inductive theory-building framework with 

a focus on description and explanation (Krathwohl, 1993) to identify the strategies 

that students used in task solution and the difficulties they encountered with particular 

reference to the graphic in the task. The tactics for generating meaning were noting 



Understanding Graphicacy 

11 

patterns and themes, imputing plausibility, and building a logical chain of evidence 

(Miles & Huberman, 1994). 

Three categories were considered (in the first instance in isolation) in order to 

create a framework that would provide opportunities to appreciate the sense making 

that takes place when children are involved with solving mathematics problems with 

embedded graphics. These categories were: 1) the graphic; 2) the mathematical 

content and contexts; and 3) the literacy demands in mathematics tasks. These three 

categories were initially considered as separate identities, however, the complexities 

associated with sense making require these elements to be considered in tandem. 

These three categories were used as ‗lenses‘ that helped us describe the way in which 

the students interpreted the graphic and constructed meaning from the mathematics 

task. Within this context, we considered factors that enhanced or inhibited task 

success and mathematical sense making, specifically focusing on the knowledge 

utilised and the difficulties faced when decoding graphical tasks. 

 

Results and Discussion 

The analysis of students‘ performance on graphical tasks provides insight into critical 

aspects of the decoding process. Specifically, we identified elements of graphics tasks 

that supported or hindered successful completion; highlighted the knowledge that 

students use in the decoding process; and described the difficulties that students 

encounter in this process. 

 

What Aspects of a Graphical Task Influence Successful Performance? 

This section addresses the first research question by focussing on tasks which a high 

proportion of students answered correctly. On each of the four easiest items, which 

are discussed shortly, at least 90% of students‘ responses were correct (see Table 2). 

However, there were distinct differences in the performance of participants across the 

12 graphical problems (see Appendix) with mean scores ranging from .98 to .32 on 

individual items within the test.  
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Table 2 

Means and Standard Deviations for the Twelve Mathematical Items (N =50) in 

Descending Order of Difficulty 

Language 

Item number 

(see Appendix) Mean S.D 

Retinal-list 6 .32 .47 

Retinal-list 5 .40 .49 

Apposed-position 4 .54 .50 

Miscellaneous  12 .66 .48 

Axis  2 .72 .45 

Axis  1 .74 .44 

Connection  10 .70 .46 

Map  8 .74 .44 

Apposed-position 3 .90 .33 

Connection  9 .94 .24 

Miscellaneous  11 .94 .24 

Map  7 .98 .14 

 

 

Jasmine’s Desk Item 

This Map item (see Appendix, Item 7) required the students to interpret multiple 

representations pertaining to space and location, and yet this was the easiest task for 

the participants to complete (98% answered correctly). Students usually have 

difficulty in effectively solving tasks with multiple coordinated representations (Brna, 

Cox and Good, 2001) however the ease of the task also needs to be considered. 

Ainsworth, Wood, and Bibby (1996) highlighted the fact that, under certain 

circumstances, it would seem that these multiple representations could ‗act against‘ 

each other. There were a number of factors that made Jasmine‘s desk item easy for 

students to interpret. Although the item was presented from a bird‘s-eye view, there 

were no overlapping elements and there was no requirement to re-orientate the 

graphic to answer the question. 

Elise: The glue is the circle—top right hand corner. The ruler is next 

to the glue, the book is in the bottom left hand corner and the 

pencil case is next to the book. 

This task simply involved the one-to-one correspondence of simple shapes 

representing familiar objects. For this item, most students were able to decode the 
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graphical information which essentially involved two 2D representations of a 3D 

situation. 

 

The Temperature Item 

The Miscellaneous item (see Appendix, Item 11, 94% correct) involved the 

identification and matching of scales (of a temperature recording) on two different 

representations. We anticipated this would be difficult for students because Baker, 

Corbett and Koedinger (2001) found large variations in students‘ ability to identify 

informationally equivalent representations. Baker, Corbett and Koedinger (2001) 

reported substantial variance in eighth- and ninth-grade students‘ ability to interpret 

informationally equivalent graphics with students‘ comparative success rates of 95% 

on a histogram, 56% on a scatterplot, and 17% on a stem-and-leaf plot. They argued 

that this performance variance was due to students‘ transfer of knowledge about bar 

graphs to the other three graphics, and that although histograms and scatterplots share 

surface features with bar graphs, stem and-leaf plots vary at the surface level from bar 

graphs. Hence, we expected that matching the representation of thermometers using a 

vertical scale and a circular scale would be difficult for students of this age. Although 

reading a vertical scale was likely to be familiar to students as this is a common type 

of thermometer, reading a circular scale was likely to be novel since this thermometer 

was represented in an unusual way. As one student suggested: 

Terry: it would be easier if the question was like a speedo in the car, 

because most kids have seen them before. 

Terry found it difficult appreciate that a thermometer (and hence temperature) could 

be represented in a circular manner. By contrast, other students were able to make the 

connection between an axis and circular thermometer representation because they 

related it to the characteristics of a clock face. For example, when Rachael described 

how she made sense of the circular representations, she talked about the arrows as 

hands in order to determine an accurate reading. Other students used clock analogies 

in their solution explanations with words and phrases like ‗past‘, ‗past 20 and before 

21‘, ‗pointing to 21‘. These phrases are often used when children are being taught 

how to tell the time. 
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The Hum Item 

The Connection item (see Appendix, Item 9, 94% correct) was framed within 

everyday contexts however, the intent of the task was for students to use mathematics 

processing to navigate a flow-chart representation. Despite the very high success rate, 

the ―realistic‖ nature of the task provided some students with the opportunity to use 

prior knowledge and experiences to complete the task rather than utilise the graphic. 

Thus, some students‘ familiarity with the concept of ‗sound‘ proved to be highly 

influential, as they drew on past experience and overlooked the graphic in selecting 

their response. 

Lorraine: I chose low and soft [the correct response] because a hum goes 

low not high and hums are mostly soft not loud. 

When working out his answer, one student decided not to consider the left-hand side 

of the graphic. 

Jason: Hums aren‘t loud [but indicated that the question was confusing 

because] some people do hum loud. 

Another student used a combination of general knowledge and the graphic. 

Rachael: I thought of a hum in my head and what it sounded like… 

[and] it was underneath low and soft. 

Other students relied completely on general knowledge to correctly solve the item. 

Teneal: I remember humming to my baby cousin.  

Those students who used the graphic tended to start at its base and followed the path 

upwards from the term ‗hum‘.  

Gemma: I found hum and followed the line going to soft and then the 

line going across and up to low. 

Justin: I saw hum down the bottom, looked up and saw soft, thought 

maybe soft and loud but that wasn‘t an option so looked up 

again and saw low. 

Based on the variety of response, it would be misleading to infer that students had an 

adequate understanding of how to solve tasks using connection graphics. Students‘ 

familiarity with a context can have a positive effect on emotions and memory in 

situations where they are re-exposed to the context (Monahan, Murphy, & Zajonc, 
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2000), however previous exposure changes the way the perceiver subjectively 

experiences the stimulus (Smith, 1998). This familiarity has the affect of distracting 

the individual from objectively undertaking a task to responding more subjectively 

based on prior experience. 

 

The Picnic Area Item 

This Apposed-position item (see Appendix, Item 3, 90% correct) required students to 

read and compare bars on a graph. The correct response was the tallest bar on the 

graph—as is typically the case in textbooks, teacher demonstrations and testing items 

with students at this age level. Of the correct responses, 22% of students simply 

selected the correct answer because it was the tallest bar. Hence, students‘ proficiency 

with this graphical representation was unclear because their success was in part due to 

an automated response rather than their knowledge of an Apposed-position graphic.  

Sarah: January has the most visitors because the white line is bigger 

than all the rest.  

Lorraine: January has the most people because it is bigger than all the 

others.  

Terry: That [January] is the tallest column, the rest are all shorter. I 

looked at the key but didn‘t really pay much attention just chose 

the tallest column. 

Although exemplars are useful in mathematics for presenting a summary 

representation encapsulating the salient properties of a category (Varela, Thompson, 

& Rosch, 1993), they can limit the scope of students‘ conceptual understanding. This 

outcome was also the case for Item 4 (also an Apposed-position language item) where 

the majority of students (58%) selected an incorrect response primarily because it was 

the tallest bar in the graphic. Repeatedly asking students to identify the ‗tallest‘ bar 

could lead to a form of automaticity in which the graphic, and the information 

embedded within, essentially is overlooked.  
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What Elements Influence Students’ Sense-making on Graphical Tasks? 

The second research question considered the impact task elements had on 

performance, and focused on the manner in which the students made sense of the 

respective items in the instrument. As previously discussed, the six graphical 

languages share common features, but nevertheless elicit different solution strategies 

and specific graphical knowledge in order to decode and solve tasks. Table 3 outlines 

student performance in relation to task correctness and also identifies the most 

common correct and incorrect strategy used to solve the respective tasks. The most 

influential element of the task was determined through an analysis of the most 

common strategy or form of behaviour exhibited by the students as they solved the 

task. This was the case for both correct and incorrect solutions and thus the task 

element represented the element of the task that was most influential in students‘ 

interpretation of the task.  
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Table 3 

Performance success by task, most common strategy used and most influential task 

element 

 Total Correct 

(C) and 

Incorrect (In) 

Most prominent code No. of 

students 

using 

strategy (%) 

Task 

element 

1 C=37 Located letter closest to 20  26 (70%) Graphic 

In=13 Did not understand what the letters 

represented   

9 (69%) 

2 C=36 Chose option to the right/past/after 1 on line 9 (25%) Graphic 

In=14 Inaccurate position  12 (86%) 

3 C=45 Used key and chose tallest bar  39 (87%) Graphic 

In=5 Misread the graphic   5 (100%) 

4 C=27 Used text and chose shortest bar    21 (78%) Literacy 

demands In=23 Did not consider text & chose tallest bar  23 (100%) 

5 C=20 Matched piece to puzzle   14 (70%) Graphic 

In=20 Inappropriate matching  20 (100%) 

6 C=16 Imagined the action of flipping   11 (69%) Literacy 

demands In=34 Inappropriate flipping  28 (82%) 

7 C=49 Matched position of items  41 (84%) Graphic 

In=1 N/A  

8 C=37 Followed set directions  36 (97%) Literacy 

demands In=13 Counted landmarks   5 (38%) 

9 C=47 Followed path/line  39 (83%) Context 

In=3 Used prior knowledge  3 (100%) 

10 C=35 Used keys and arrows to follow path  19 (54%) Context  

In=15 Misread the arrows / used prior knowledge 11 (73%) 

11 C=47 Located information on scales  47 (100%) Graphic 

In=3 Vague responses  2 (67%) 

12 C=33 Used key and compared portions  26 (79%) Literacy 

demands In=17 Unable to match words to graphic & chose 

most shaded area    

16 (94%) 

 

Although the identification of relatively specific graphical ‗structures and functions‘ 

(see Table 1) provided scope for analysis, the manner in which students interpreted 

and solved individual items within each language had to be addressed. As a 

consequence, all of the transcripts were analysed across items as well as within each 

language. Interview transcripts were coded in relation to student responses with video 

analysis used to complement these data. This ensured that we could ascertain what 

aspects of the task most influenced the students‘ mathematics processing. In most 
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instances, the students predominantly utilised the graphic to solve the task. Given the 

nature of the tasks, this was to be expected.  

 

The Graphic 

For each item, we were able to isolate the graphic demands, and the other 

aspects of the task (namely the content/context and literacy demands) as the 

participants employed a range of strategies to solve the task. For five of the items 

(Items 1, 2, 3, 5, and 11) students‘ capacity to decode the graphic was the most 

influential element in task success (see Table 3). For these items, the context and 

other literacy demands were less influential.  

From a conceptual perspective, the students found it easier to decipher 

information when the spatial representations required matching and comparing rather 

than the transformation or rotation of objects (e.g., see Appendix, Item 7 as opposed 

to Item 6). Some of the items in the instrument required students to move beyond 

relatively simplistic interpretation of the graphic by establishing connections between 

numerous aspects of the problem and thus make inferences from information 

provided. For example, 46% of students were unable to consider the inverse 

relationship between variables on one of the Apposed-position items (see Appendix, 

Item 4). This item required strong connections to be made between the nature of the 

graphic and application of the content in the written text. The specific content 

knowledge (which has science-based foundations) needed to be considered with the 

graphic representation in order to solve the task. This is in contrast to Item 3 (the 

Picnic task) which could be solved predominately by looking at the graphic. 

Students‘ responses were derived from their everyday knowledge of graphics. 

Thus, general applications tended to span most of the graphical languages—with 

students appreciating that the graphics were represented in different scales, 

perspectives and orientations. However, an over familiarity with specific 

mathematical language, terminology or context influenced not only success but the 

attention given to the graphic embedded within the item. 

 

Content and Context 

Items that were based fundamentally on realistic scenarios had the potential to 

draw students‘ attention away from the actual graphic and allowed them to use 
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general, out-of-school knowledge to complete the task. This was particularly the case 

with the two Connection items (see Appendix, Items 9 and 10). At times, this 

knowledge became overly influential and the mathematics and graphic in the task 

were overlooked as students used their everyday knowledge to complete the items 

without considering all of the information. Nearly a third of students (30%) were 

strongly influenced by ‗life-like‘ content of the items, with approximately half (47%) 

of these students distracted by this information. Given the plausibility of the choice of 

options presented in Item 9 [options were: a) high and loud; b) high and soft; c) low 

and loud; and d) low and soft] and Item 10 [options were: a) snails and snakes; b) 

frogs and snails; c) insects and snails; and d) snakes and insects], it was possible for 

students to choose a correct answer relying solely on general, out-of-school 

knowledge. As an example of this, in the first connection item, (see Appendix, Item 9) 

students responded: 

Geraldine: Usually when you hum it is low and soft. 

Angela: [vocalizing the hum sound] I chose that one [low and soft] 

because it is the closest [to what a hum sounds like]. 

For the second Connection item (see Appendix, Item 10), a number of students relied 

solely on their out-of-school or general knowledge in choosing the correct answer. 

Ian: I just knew that birds eat snails and insects, I didn‘t use the 

diagram. 

Jason: Snails and insects are small and birds can pick them up. 

However, it was also possible to choose an incorrect answer using this same process. 

Three of the respondents commented that they just thought birds eat ‗frogs and 

snails‘, or they have seen birds eat ‗snakes and insects‘. For example: 

Geraldine: I just thought about what some birds eat and thought frogs and 

snails.  

Kate: When I have looked at a bird before they‘ve had frogs and 

snails, I have seen them.  

Sarah: I just thought birds would eat snakes and insects. 

Such familiarity with task context can lead to situations where the problem solver 

does not interpret or decode the graphic—rather selecting a solution that intuitively 

‗makes sense‘. 
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Mathematics Literacy Demands 

On occasions, the interpretation of specific mathematical terminology was influential 

in how students made sense of the graphics. The most difficult interview item, which 

was a Retinal-list item (see Appendix, Item 6, 32% correct), asked ―Which two faces 

show a flip?‖ Although the term ‗flip‘ is part of the students‘ mathematics curriculum, 

it had dual meaning—in the sense that it related to a word that is part of their day-to-

day vocabulary or everyday usage. A high proportion of students (56%) were 

confused by the term ‗flip‘ but demonstrated the capacity to rotate two-dimensional 

representations. Many of the students thought that the concept of a ‗flip‘ was 

associated with rotating an object 180
o 
rather than the reflection of an object along an 

axis of symmetry. 

Tammy: [A flip is] upside down and right way up. 

Angela:  A flip is upside down. One face is up and one face is down. 

To make sense of the item, students called upon prior knowledge of the word ‗flip‘. 

This knowledge was often based on out-of-school experiences associated with day-to-

day activities like flipping over a card. 

Lachlan:  You do a flip into a pool, going upside down.  

These students‘ responses highlighted how easily the disjunction between the 

mathematical and everyday use of a term can impact negatively on students‘ 

performance. 

The mathematical language embedded within some of the items affected task 

performance. In two items (see Table 3), the complexity of the written information 

(e.g., Item 4) or unfamiliarity of the words (e.g., Item 12) created misunderstandings. 

These two items had success rates of 54% and 66% respectively, and were the third 

and fourth most difficult items. Students had difficulty connecting the written 

information within the item to the graphic and thus the linking of information from 

these two aspects was diminished. 

It was certainly the case that tasks which contained ‗realistic‘ or authentic 

contexts created a degree of layering that generated multiple (and false) meanings 

outside the intended scope of the task. Thus, the context and language have acted as a 
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distracter because the mathematics ideas (and the ‗intended‘ processes for solving the 

task) were not evoked. 

 

Conclusions 

Primary students are increasingly required to interpret mathematics tasks that are rich 

in graphics with such ‗task representations‘ now common in standardised tests. The 

increased use of graphics adds another layer of interpretation to a given task requiring 

the co-ordination of disparate aspects of the task in order to produce a correct 

solution. The results of this study demonstrate that many errors and 

misunderstandings on standardised items could be attributed to an inability to decode 

the graphic embedded within the task. By considering the different graphic elements 

that constitute a task (Kosslyn, 2006), we were able to identify which aspects of a 

standardised item most influences student performance. 

The Retinal-list language items proved to be the most difficult for students to 

solve. We maintain that these items demanded the solver to pay careful attention to 

either the graphical elements (Item 3) or the literacy demands (Item 4) of the tasks as 

they had to discriminate between graphical information that varied (only) slightly in 

representation. By contrast, the easier items required the matching of certain graphical 

elements on a one-to-one basis such as matching the glue pot (3D object) to the circle 

and so on. As a result, the interpretation of the graphical tasks was not necessarily 

considered holistically. For example, on Items 7 and 11 students tended to isolate 

objects within the graphic in order to complete the task, whereas with the Retinal-list 

items, students needed to consider the graphics and other information simultaneously 

to solve the task. As Preece (1993), and Goldberg and Anderson (1989) argued, even 

older students find it difficult to move between different components of a task (e.g., 

from the graphic to the text and back to the graphic) when solving a problem. 

Misunderstandings arose when one element of the task (whether it be a word or 

an aspect of the graphic) disrupted reasoning to such an extent that important 

information pertaining to the task was overlooked. In particular, words (and thus the 

literacy demands) had multiple meanings and were complex in nature or unfamiliar. 

In such cases, the graphic did not provide the students with complementary (or 

additional) information to scaffold thinking or realign conceptual misconceptions. 

Difficulties also arose when contextual information was considered apart from 

the collective information presented in the task. On the two Connection items (Items 9 
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and 10), for example, nearly a third of students ignored the graphics in the tasks and 

based their answers on knowledge of everyday events or an intuitive understanding of 

what information was presented (Boaler, 1993). Lowrie (2000) found that when 

students encountered mathematics tasks with high visual or spatial demands, realistic 

scenarios caused confusion if students were not willing (or able) to internalise all 

information presented. Incorrect responses occurred when student‘s personal 

experiences disrupted the problem-solving process. In the present study, necessary 

information was ignored if students selected solution pathways that appeared realistic 

or sensible to them (based on personal experiences). 

With some of the more difficult items, an ability to make connections between 

the graphic, the mathematics content/context and the literacy demands was essential. 

Those students who focused on one aspect of the graphic (e.g., a word or a context 

experience), without considering the connection between all graphical elements, were 

distracted by (mis)information. By contrast, those students who were able to consider 

the graphic representation, in its entirety, were able to use cues to make sense of the 

mathematics tasks. 

When students are learning to decode graphical tasks, all graphical elements 

(such as text, keys or legends, axes and labels) need to be addressed. Since specific 

graphics have different function and form, the relationship between the graphic, the 

mathematics content and the literacy demands can be variously influential. Apart from 

the Retinal-list language items, students in this study did not find graphics within a 

particular language to be any more difficult to solve than others. Nevertheless, we 

argue that it is necessary for classroom teachers to explicitly identify the attributes 

(and differences) among the respective graphical languages since many of the 

students‘ incorrect responses were due to the fact that important graphical features 

were overlooked. 

This study highlights the problematic nature of assessment items in a high-

stakes testing era. The abundance of graphics in mandatory tests is a relatively new 

phenomenon (Lowrie & Diezmann, 2009) with this study showing the influential 

nature of graphics in the responses students select. Many of the graphic elements 

within these tasks scaffolded the students‘ mathematical understanding rather than 

being an essential component of the task from which to assess mathematics 

performance. By contrast, the graphic elements in other tasks actually disrupted 

students thinking to such an extent that the mathematics concepts were neutralised. 
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We maintain that it is essential that poorly constructed graphical tasks do not impact 

on performance and consequently the graphic needs to be carefully chosen to ensure 

the integrity and meaning of the item is maintained (Diezmann, 2008). This study 

demonstrates the need to construct mathematics test items from an ‗holistic design‘ 

perspective which considers the entire representation—and hence the relationship 

between the graphic, the mathematics content (and context) and the surrounding 

literacy demands—which is an avenue for further research. 
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Appendix 

Graphical Language Tasks from Interview 

 

Estimate where you think 17 should go on this number 

line. 

 

 

 

 

 

 

Estimate where you think 1.3 should go on this number 

line. 

 

 

 

Item 1, Axis (Adapted from QSCC, 2000a, p. 11.) 

 

Item 2, Axis (QSCC, 2000b, p. 8.) 

 

This graph shows the number of visitors to the picnic area 

for Saturdays and Sundays. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Which month had the most visitors on Sundays? 

 

 

 

 

Syrups are thick, sticky liquids. The thicker the syrup, the 

slower it will move down a slope. 

The graph shows the distance four different syrups moved 

down a slope in one minute. 

 

 

 

 

 

 

 

 

 

 

 

 

Which syrup is the thickest? 

 

  

 
 

 

Item 3, Apposed-position (QSCC, 2000c, p. 9.) Item 4, Apposed-position (Adapted from NSW Educational 

Testing Centre, 2003, p.3.) 

 

 

  

Answer 
   A     B     C     D 

Answer 
   A     B     C     D 

Answer 
  Jan    Feb    Mar              Apr 

Answer 
  Blue     Green 

  Yellow     Purple 
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When the last piece is put into the puzzle it shows 3 

triangles. 

 

  
 

Which piece is missing from this puzzle? 

 

 

 

 

 

Which two faces show a flip? 

 

  
  A  B 

  
  C  D 
 

Item 5, Retinal-list (Adapted from NSW Educational Testing 

Centre, 2002a, p. 8.) 

 

Item 6, Retinal-list (Adapted from QSCC, 2001, p. 13.) 

Jasmine has a book, ruler, pencil case and glue on her 

desk. 

    
 

  
    

Which map best shows where everything is on 

Jasmine‘s desk? 

 

 

 

 

Ben went from the gate to the tap, then to the shed, 

then to the rubbish bins.  

How many times did he cross the track? 

 

  
 

Item 7, Map (Adapted from NSW Educational Testing Centre, 

2002b, p. 4.) 

 

Item 8, Map (QSCC, 2002, p.11.) 

 

  

Answer 
   A     B     C     D 

Answer 
   A     B     C     D 

Answer 
   A     B     C     D 

Answer 
   1     2     3     4 
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This flowchart shows a way to describe sounds. 

 

  
 

Which of the following describes a ‗hum‘? 

 

 

 

 

 
 

This diagram shows what some animals eat. 

  
 

What are some of the animals that these birds eat? 

 

 

 
 

Item 9, Connection (NSW Educational Testing Centre, 2001, 

p. 3.) 
Item 10, Connection (NSW Educational Testing Centre, 

2000a, p. 9.) 

 

Sam measured the temperature using this 

thermometer. 

 

Julie measured the same temperature using a 

different thermometer like the one below. 

Which picture shows this temperature?

 

    

 

 

 
 

The graphs below show the proportion of 

carbohydrates, proteins, fats and water in some 

foods. 

 
 

Which food has the highest proportion of 

carbohydrates? 
 

Item 11, Miscellaneous (NSW Educational Testing Centre, 

2000b, p. 3.) 

 

Item 12, Miscellaneous (Adapted from NSW Educational 

Testing Centre, 1999, p. 2.) 

 

 

Answer 
  high and loud       high and soft 

  low and loud       low and soft 

Answer 
  snails and snakes       frogs and snails 

  insects and snails       snakes and insects 

Answer 
   A     B     C     D 

Answer 
  tomatoes     beans 

  rice      milk 


