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1. Introduction

It has been by now well-established that inflation can naturally solve cosmological problems

such as the flatness, homogeneity and monopole problems, thereby avoiding a fine-tuning

for the initial condition of the history of our Universe. Inflation is also known to predict

almost scale invariant Gaussian density perturbations. At the next stage of observation,

the detection of non-Gaussianity [1]-[4] is one of the central concerns, since a detailed study

of the non-Gaussianity and the shape of the bispectrum [5][6] in particular could constrain

various inflationary models. It has been argued that in slow roll models of a single scalar

inflaton the non-Gaussianity is negligibly small [7][8]. In the last several years there has

been a lot of work exploring inflation models in which large non-Gaussianity could be

produced. A partial list of such models includes DBI type inflation, k-inflation, curvaton

scenarios, ghost inflation and so on.

In the present paper we will consider a general class of inflationary models in which a

single inflaton field couples non-minimally to background geometry. In such a broad class

of inflationary models, we can explore the classification of the shape of the bispectrum. It

has been known rather well that the method of conformal transformation makes it possible

to put the calculation of cosmological correlations into the minimal coupling case, and we

will actually make full use of the method throughout this work. What we would like to add

to this common wisdom is that the reduction to the minimal coupling case is in fact possible

to all orders in perturbation theory. This paves the way for avoiding technical difficulties
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associated with the non-minimal coupling to a considerable extent and for alleviating the

need for separate studies.

The method of conformal transformation has been applied before in cosmology to

discuss a higher derivative gravity theory [9]. It has been proved in [10] that the comoving

curvature perturbation on slices orthogonal to comoving worldlines in the Jordan and

Einstein frames coincides at the first order. It has also been shown in [11] that the curvature

perturbation on uniform-density hypersurfaces agrees in these two frames up to second

order. A couple of years ago Chiba and Yamaguchi [12] showed a very remarkable fact that

all perturbation variables in the comoving gauge are conformally invariant to all orders of

perturbation. More recently Gong et al. [13] have given another proof of the conformal

invariance and have discussed its implications in the δN formalism. Motivated by the

observation of Chiba and Yamaguchi and that of Gong et al. we now go one step further

to show the usefulness of the conformal invariance of the perturbation and to present a

coherent method to perform practical calculations of cosmological correlations in a general

conformal frame.

The usefulness of the conformal transformation has been demonstrated in the context

of cosmological perturbations by many people [14] - [18]. While we share basic ideas with

these previous authors, we would like to emphasize that our argument can be extended

rather easily to all orders in the cosmological perturbation in contrast with previous works.

An all order argument is made possible by the fact that, due to our choice of gauge, the

fluctuation part is separated from the conformal transformation factor.

In connection with our work, let us recall that Seery and Lidsey [19] and Chen et

al. [20] investigated the shape of non-Gaussianity in a general Lagrangian of single field

inflation models minimally coupled to gravity. In the case of arbitrary sound speed the

shape is classified in terms of five parameters. Their work has been recently extended to

the non-minimal coupling case by Qiu and Yang [21]. The computation of the cosmological

correlation becomes necessarily difficult in the Jordan frame. This is particularly so when

one has to solve equations of motion for the mode functions of the curvature perturbation.

Our technique shows that the difficulties in the non-minimal case are only ostensible and

that all of the calculations in [21] can be reproduced by a conformal transformation from

those in [19] - [20] .

The present paper is organized as follows. After presenting the general single field

inflation model in Sec. 2, we apply the conformal transformation and discuss connections

between various quantities in the Jordan and Einstein frames in Sec. 3. In Sec. 4 we express

the quadratic and cubic effective actions with respect to the curvature perturbation in the

Einstein frame, and then we transform the action back into the Jordan frame in Sec. 5.

The connection between the calculations in [19] - [20] and those in [21] is clarified there.

In Sec. 6 the connection between the mode-functions in Jordan and Einstein frames is

discussed. It is argued that the vacuum, on which correlation functions are computed, is

identical in the two frames. The fact that N -point cosmological correlation functions agree

in Jordan and Einstein frames is proved there. Our work is summarized in Sec. 7.
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2. General single field inflation

In the following sections we discuss the general models that include a scalar field coupled

non-minimally to gravity and go on to perform a conformal transformation to put the

equations into a form which is the same as in the minimal coupling case. First we consider

the following generalized Einstein-scalar gravitational system

S =
1

2

∫
dt d3~x

√−g
[ 1

8πG
f(ϕ)R+ 2P (ϕ,X)

]
, (2.1)

where we have introduced the notation

X = −1

2
gµν∂µϕ∂νϕ . (2.2)

Hereafter we omit the gravitational constant G by setting 8πG = 1.

The functional f(ϕ) of a scalar field ϕ coupled to the scalar curvature R can be

arbitrary. The minimal coupling case corresponds to choosing f(ϕ) = 1; however attention

has been paid in literature [11], [22]- [28] to non-minimal cases such as f(ϕ) = 1 − ξ ϕ2 ,

where ξ is a parameter. We wish, however, to proceed most generally without specifying

a particular example of f(ϕ). In (2.1) we have also introduced an arbitrary functional

P (ϕ,X), which can be expanded in power series in X as

P (ϕ,X) = −V (ϕ) +K(ϕ)X + L(ϕ)X2 + · · · · · · . (2.3)

The case of k-inflation [29] corresponds to V (ϕ) = 0. The non-canonical kinetic term of

ϕ, which could be produced in underlying fundamental theories such as supergravity and

superstring theories, has many physical implications. We will, however, proceed without

explicit use of the expansion as in (2.3) . In principle we could include higher derivative

terms of ϕ as well. Effects of such higher derivative terms would be presumably suppressed

by the ultraviolet cut-off scale. In so far as we consider the first derivative terms of ϕ, the

action (2.1) is the most general.

The equations of motion for the scalar field ϕ and gravity turn out to be

1

2

∂f(ϕ)

∂ϕ
R+ P,ϕ+(P,XX ∇µX + P,Xϕ ∇µϕ)∇µϕ+ P,X ∇µ∂

µϕ = 0 , (2.4)

∇λ∂
λfgµν −∇µ∇νf + fRµν −

1

2
fRgµν − P,X ∇µϕ∇νϕ− Pgµν = 0 . (2.5)

The derivatives of P with respect to X and ϕ are denoted by P,X and P,ϕ, respectively.

The classical solution ϕ(t), which does not depend on spatial coordinates, is obtained by

solving (2.4), and hereafter ϕ shall always denote the classical solution after choosing an

appropriate gauge (as will be discussed in Eq. (4.4)).

3. Conformal transformation to the Einstein frame

Given the general action (2.1), it is useful to employ a conformal transformation to go to

the Einstein frame, which will be simpler and more familiar for us to develop cosmological
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perturbations. In the following we shall assume, in the Jordan frame, the Friedmann-

Lemaitre-Robertson-Walker (FLRW) background

ds2 = −dt2 + a2(t)δijdx
idxj . (3.1)

Now, let us consider the following conformal transformation:

ds2 → dŝ2 = Ω2ds2 = Ω2
{
g00(dt)

2 + 2 g0i dtdx
i + gijdx

idxj
}

= g00(dt̂)
2 + 2 Ω g0i dt̂dx

i +Ω2gijdx
idxj (3.2)

where i and j are spatial indices and we have changed the time variable via the formula

dt̂ = Ωdt = Ω(ϕ(t))dt . (3.3)

The functional form of Ω will be determined below, but note that Ω(ϕ(t)) is a classical

quantity, i.e., it does not contain a fluctuation part (see Eq. (4.4)). We also assume

Ω(ϕ(t)) > 0 for the solution ϕ(t). This assumption could be related with the stability of

the ground state. Although the stability has been investigated in the literature [22, 23] for

a particular choice of f(ϕ) and is interesting in its own right, we do not go into the details

here.

We are thus led to redefine the metric in the following way:

ĝ00 = g00, ĝ0i = Ωg0i, ĝij = Ω2gij , (i, j = 1, 2, 3) . (3.4)

The FLRW background turns out in the Einstein frame to be

dŝ2 = Ω2ds2 = −dt̂2 + â2(t̂)δijdx
idxj . (3.5)

where our notation is

â(t̂) = Ω(ϕ(t)) a(t) , (3.6)

and we should note again that â(t̂) does not contain a fluctuation part. Starting from the

action (2.1) and using the conformal transformation properties of the Ricci scalar [30], [31]

R = Ω2

[
R̂+ 6�̂ lnΩ− 6ĝµν(∂µ ln Ω)(∂ν ln Ω)

]
, (3.7)

we can show that the action (2.1) is transformed as follows:

S =
1

2

∫
dt̂ d3~x Ω−4

√
−ĝ

×
[
Ω2f(ϕ)

{
R̂+ 6�̂ ln Ω− 6ĝµν(∂µ ln Ω)(∂ν ln Ω)

}
+ 2P (ϕ,X)

]
. (3.8)

In order to arrive at the Einstein frame by making the coefficient of the scalar curvature

unity, we set

Ω(ϕ) =
√
f(ϕ) . (3.9)
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This puts the action into the following form:

S =
1

2

∫
dt̂ d3~x

√
−ĝ
[
R̂+ 2P̂ (ϕ, X̂)

]
(3.10)

where in the last step above the �̂ term disappears after integrating by parts and we have

also defined

X̂ = −1

2
ĝµν∂µϕ∂νϕ =

1

Ω2
X , (3.11)

P̂ (ϕ, X̂) =
1

Ω4
P (ϕ,X) − 3ĝµν(∂µ ln Ω)(∂ν ln Ω)

=
1

Ω4
P (ϕ,X) +

6X̂

Ω2

(
dΩ

dϕ

)2

. (3.12)

The energy-momentum tensor of ϕ is given in terms of P̂ (ϕ, X̂) as

T 0
0 ≡ Ê = 2X̂P̂

,X̂
− P̂ , T i

j = −P̂ δij, (i, j = 1, 2, 3).

In our abbreviated notation, P̂
,X̂

is the derivative of P̂ with respect to X̂. The energy

conservation law and the Friedmann equation are given as usual by

dÊ

dt̂
= −3Ĥ

(
Ê + P̂

)
, Ĥ2 ≡

(
1

â

dâ

dt̂

)2

=
Ê

3
. (3.13)

4. ADM formalism in the Einstein frame

Cosmological perturbation theories have been developed for many years and the reader is

referred to [32] for reviews. In the case of the general quantum computation in gravity,

we first decompose the metric perturbations using the ADM formalism [33], an applica-

tion of which to cosmology has been done very early by Bardeen [34]. This method of

decomposition has recently been applied to the study of non-Gaussianity by Maldecena

[7] in standard inflation and was then considered for more general models in [19, 20, 35].

Because we shall work in the Einstein frame we can simply use the results already derived

in [19, 20, 35] for example, but with quantities now expressed with hats ( ̂ ). Thus, we

shall just briefly outline the method, which provides us with a second order action for the

curvature perturbation (first derived by different means in [29]) and together with a third

order action which leads to the bispectrum after applying the in-in formalism along lines

similar to [7].

We consider the metric which may be given as

dŝ2 = −N̂2(dt̂ )2 + ĥij

(
dxi + N̂ idt̂

)(
dxj + N̂ jdt̂

)
. (4.1)

The action in terms of the ADM variables is expressed as

S =
1

2

∫
dt̂ d3~x

√
ĥN̂

{
(3)R̂+

1

N̂2

(
ÊijÊ

ij − Ê2
)
+ 2P̂ (ϕ, X̂)

}
, (4.2)
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where ĥ = detĥij , and the tensor Êij and Ê are defined, respectively, by

Êij =
1

2

(
∂ĥij

∂t̂
− ∇̂iN̂j − ∇̂jN̂i

)
, Ê = Êij ĥ

ij . (4.3)

The covariant derivative ∇̂i is with respect to ĥij . The three dimensional scalar curvature

is denoted as (3)R̂

We choose a gauge to fix time and spatial reparametrization by setting [7]

δϕ = 0. (4.4)

together with fluctuations around the FLRW metric in the following form:

dŝ2 = −(dt̂)2 + â(t̂)2e2R̂ (δij + γ̂ij) , (∂iγ̂ij = 0, δij γ̂ij = 0) . (4.5)

Eqs. (4.4) and (4.5) fix the whole gauge degrees of freedom [7, 36]. Eq. (4.5) should be

compared with the fluctuations in the Jordan frame

ds2 = −(dt)2 + a(t)2e2R (δij + γij) (∂iγij = 0, δijγij = 0) ,

=
1

Ω2

{
−(dt̂)2 + â(t̂)2e2R (δij + γij)

}
, (4.6)

where we have substituted the relations (3.3) and (3.6). Eqs. (4.5) and (4.6) indicate

clearly that we need not distinguish R from R̂ or γij from γ̂ij (as stressed in [12, 13]), i.e.,

R̂ = R, γ̂ij = γij . (4.7)

Hereafter we consider only the curvature perturbation R̂ = R, and leave discussion of the

tensor perturbation γ̂ij = γij for future work.

The equations of motion for N̂ and N̂ i are the Hamiltonian and momentum constraints

which are given by

∇̂i

{
1

N̂

(
Êi

j − δijÊ
)}

= 0, (4.8)

(3)R̂+ 2P̂ − 4X̂P̂
,X̂

− 1

N̂2

(
ÊijÊ

ij − Ê2
)
= 0 . (4.9)

We can solve the Hamiltonian and momentum constraints order by order, by setting

N̂ = 1 + N̂ (1) + · · · , N̂i = ∂iψ̂
(1) + ̂̃N

(1)

i + · · · , (4.10)

where N̂ (1), ψ̂(1) and ̂̃N
(1)

i are the first order and the ellipsis denotes higher order terms.

Here we assume ∂i ̂̃N
(1)

i = 0. The solutions to (4.8) and (4.9) have been worked out [19, 20]

and are known to be

N̂ (1) =
1

Ĥ

∂R̂
∂t̂
, ̂̃N

(1)

i = 0, ψ̂(1) = −R̂
Ĥ

+ χ̂ ,

(
Ĥ =

1

â

dâ

dt̂

)
. (4.11)
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Here χ̂ is a solution to the differential equation

∂2χ̂ = â2
ε̂

ĉ2s

dR̂
dt̂

,
(
∂2 = δij∂i∂j

)
, (4.12)

where the slow variation parameter and the sound speed are defined, respectively, by

ε̂ = − 1

Ĥ2

dĤ

dt̂
, ĉ2s =

P̂
,X̂

2X̂P̂
,X̂X̂

+ P̂
,X̂

. (4.13)

As argued in [7, 20], when calculating the effective action up to third order in R̂, we need

not calculate the R̂2 terms in N̂ or N̂i.

Now let us turn to expansion of the action (2.1) in power series of the curvature

perturbation

S = S(0) + S(2) + S(3) + · · · · · · , (4.14)

where S(n) is the n-th order action. Seery and Lidsey [19] and Chen et al. [20] have studied

S(2) and S(3) after performing integration by parts. After straightforward calculations they

obtained

S(2) =

∫
dt̂ d3~x

{
â3
ε̂

ĉ2s

(
dR̂
dt̂

)2

− âε̂
(
∂R̂
)2
}

=

∫
dt̂ d3~x

{
â3

Σ̂

Ĥ2

(
dR̂
dt̂

)2

− âε̂
(
∂R̂
)2
}
, (4.15)

and

S(3) =

∫
dt̂ d3~x

[
− âε̂R̂(∂R̂)2 −

(
Σ̂ + 2λ̂

) â3

Ĥ3

(
dR̂
dt̂

)3

+
3â3ε̂

ĉ2s
R̂
(
dR̂
dt̂

)2

+
1

2â

(
3R̂ − 1

Ĥ

dR̂
dt̂

)(
∂i∂jψ̂

(1)∂i∂jψ̂(1) − ∂2ψ̂(1)∂2ψ̂(1)
)

−2

â
(∂iψ̂

(1))(∂iR̂)(∂2ψ̂(1))

]
, (4.16)

which we have also confirmed. Here we use notation analogous to that in [19] and [20], i.e.,

Σ̂ = X̂P̂
,X̂

+ 2X̂2P̂
,X̂X̂

=
X̂P̂

,X̂

ĉ2s
=
ε̂Ĥ2

ĉ2s
, (4.17)

λ̂ = X̂2P̂
,X̂X̂

+
2

3
X̂3P̂

,X̂X̂X̂
. (4.18)

Note that X̂ , P̂
,X̂

and P̂
,X̂X̂

are all understood as classical values corresponding to ϕ = ϕ(t).

For possible operators that could appear in the third order action, see Ref. [37].
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5. The Jordan frame

5.1 The quadratic part of the action

The definition (4.17) of Σ̂ together with (3.12) enables us to express Σ̂ in terms of quantities

without hat:

Σ̂ =
1

Ω4

{
XP,X + 2X2P,XX + 6X

(
dΩ

dϕ

)2
}

=
1

f(ϕ)2

{
Σ+

3

4f(ϕ)

(
df

dt

)2
}

= e−4θa4

{
Σ+ 3e2θa−2

(
dθ

dt
−H

)2
}

. (5.1)

Here we have introduced the notation

Σ = XP,X + 2X2P,XX , θ =
1

2
log(f(ϕ)a2), H =

1

a

da

dt
. (5.2)

As we see Σ is an analog in the Jordan frame, corresponding to Σ̂. The function θ has been

employed by Qiu and Yang [21] extensively. The Hubble constant defined in the Jordan

frame is denoted by H.

The connection between Ĥ and the Hubble constant H in the Jordan frame is easily

seen from (3.6) to be

Ĥ =
1

â

dâ

dt̂
=
H

Ω
+

1

Ω2

dΩ

dt
=

1√
f(ϕ)

{
H +

1

2f(ϕ)

df(ϕ)

dt

}
= e−θa

dθ

dt
. (5.3)

One of the standard parameters ε̂ in the Einstein frame can be expressed in terms of θ by

using (5.3) as

ε̂ = − 1

Ĥ2

dĤ

dt̂
= −

(
dθ

dt

)−2
{
d2θ

dt2
+H

dθ

dt
−
(
dθ

dt

)2
}

. (5.4)

The coefficients of each term in the quadratic action (4.15) can all be expressed in terms

of θ,

â3
Σ̂

Ĥ2
= eθa2

{
Σ+ 3e2θa−2

(
dθ

dt
−H

)2
}(

dθ

dt

)−2

, (5.5)

−âε̂ = eθ
(
dθ

dt

)−2
{
d2θ

dt2
+H

dθ

dt
−
(
dθ

dt

)2
}
. (5.6)

We thus end up with the quardratic action

S(2) =

∫
dt d3~x

[
a3

{
Σ+ 3e2θa−2

(
dθ

dt
−H

)2
}(

dθ

dt

)−2(dR
dt

)2

+e2θa−1

(
dθ

dt

)−2
{
d2θ

dt2
+H

dθ

dt
−
(
dθ

dt

)2
}
(∂R)2

]
(5.7)
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in the Jordan frame. This agrees with the result obtained previously by Qiu and Yang [21]

via a direct computation.

5.2 The cubic part of the action

We would also like to express the cubic action (4.16) by using quantities without hat. The

definition (4.18) is shuffled into

λ̂ =
1

Ω4

(
X2P,XX +

2

3
X3P,XXX

)
≡ e−4θa4λ , (5.8)

where λ, an analog in the Jordan frame, is defined by the equation above. The coefficient

of the second term in the cubic action (4.16) thus turns out to be

(
Σ̂ + 2λ̂

) â3

Ĥ3
= a e2θ

{
Σ+ 2λ+ 3e2θa−2

(
dθ

dt
−H

)2
}(

dθ

dt

)−3

. (5.9)

The quantities that appear in the third and fourth terms in (4.16) are also worked out

straightforwardly. In fact a combined use of (4.17) and (5.5) gives us

3â3ε

ĉ2s
=

3â3Σ̂

Ĥ2

= 3eθa2

{
Σ+ 3e2θa−2

(
dθ

dt
−H

)2
}(

dθ

dt

)−2

. (5.10)

From (4.7) and (5.3) , we also get

3R̂ − 1

Ĥ

dR̂
dt̂

= 3R−
(
dθ

dt

)−1 dR
dt

. (5.11)

We are thus led to the cubic action

S(3) =

∫
dt d3~x

[
e2θa−1

(
dθ

dt

)−2
{
d2θ

dt2
+H

dθ

dt
−
(
dθ

dt

)2
}
R(∂R)2

−a3
{
Σ+ 2λ+ 3e2θa−2

(
dθ

dt
−H

)2
}(

dθ

dt

)−3(dR
dt

)3

+3a3

{
Σ+ 3e2θa−2

(
dθ

dt
−H

)2
}(

dθ

dt

)−2

R
(
dR
dt

)2

+
1

2
e2θa−3

{
3R−

(
dθ

dt

)−1 dR
dt

}(
∂i∂jψ

(1)∂i∂jψ(1) − ∂2ψ(1)∂2ψ(1)
)

−2e2θa−3(∂iψ
(1))(∂iR)(∂2ψ(1))

]
, (5.12)

which is suitable for computation of cosmological correlations in the Jordan frame. In the

above we have set

ψ̂(1) = Ωψ(1) = eθa−1ψ(1) . (5.13)
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Note that Eq. (5.13) is due to the fact that the lapse function, shift function and the

three-dimensional metric in Einstein and Jordan frames are connected by the formulae

N̂ = N, N̂i = ΩNi, N̂ i =
1

Ω
N i, ĥij = Ω2hij , (5.14)

in accordance with (3.4). The cubic action (5.12) agrees with the result in [21] obtained

by a direct method.

6. Frame independence of quantum calculations

As a final step of our analyses let us scrutinize the properties of quantization in the Einstein

and Jordan frames. The Lagrangian densities in Einstein and Jordan frames are connected

by the relation ΩL̂ = L. This can be seen by rewriting the action in the following way:

S =

∫
dt̂ d3~x L̂ =

∫
dt d3~x ΩL̂ =

∫
dt d3~x L . (6.1)

The canonical momentum variables conjugate to R̂ and R, i.e.,

Π̂ =
δL̂

δ(∂R̂/∂t̂ )
, Π =

δL
δ(∂R/∂t) (6.2)

are also apparently indentical with each other, namely,

Π̂(t̂, ~x) = Π(t, ~x) . (6.3)

The canonical commutation relations

[
R̂(t̂, ~x), Π̂(t̂, ~x′)

]
= i δ3(~x− ~x′) ,

[
R(t, ~x),Π(t, ~x′)

]
= i δ3(~x− ~x′) (6.4)

lead to the same quantization procedure common in both Einstein and Jordan frames.

Let us turn to the mode expansion in Einstein and Jordan frames,

R̂(t̂, ~x) =

∫
d3~k

(2π)3

{
â(~k)û(t̂, ~k)ei

~k·~x + â†(~k)û∗(t̂, ~k)e−i~k·~x
}
, (6.5)

R(t, ~x) =

∫
d3~k

(2π)3

{
a(~k)u(t,~k)ei

~k·~x + a†(~k)u∗(t,~k)e−i~k·~x
}
, (6.6)

and look at the connection between creation and annihilation operators in the two frames.

Hereafter all quantities are supposed to be in the interaction picture. The differential

equations to be satisfied by the mode functions are given by the quadratic part of the

action and are

{
d

dt̂

(
â3

Σ̂

Ĥ2

d

dt̂

)
+ âε̂ ~k2

}
û(t̂, ~k) = 0 (6.7)
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and

d

dt

[
a3

{
Σ+ 3e2θa−2

(
dθ

dt
−H

)2
}(

dθ

dt

)−2 d

dt

]
u(t,~k)

−e2θa−1

(
dθ

dt

)−2
{
d2θ

dt2
+H

dθ

dt
−
(
dθ

dt

)2
}
~k2u(t,~k) = 0 (6.8)

in the two frames, respectively. Qiu and Yang [21] elaborated the solutions to (6.8) in

the Jordan frame. It should be, however, remarked that Eq. (6.8) can be equivalently

rewritten as
{

1

Ω

d

dt

(
â3

Σ̂

Ĥ3

1

Ω

d

dt

)
+ âε̂ ~k2

}
u(t,~k) = 0 , (6.9)

thanks to the relation (5.5) and (5.6). Furthermore, it is also obvious that (6.9) is the same

differential equation as (6.7) because of (3.3).

The solutions to (6.8) can be worked out by going over to the Einstein frame, thereby

making full use of results obtained previously. In fact, by adjusting the normalization of

u(t,~k) and û(t̂, ~k) in the same manner, we can always set

û(t̂, ~x) = u(t, ~x) , (6.10)

â(~k) = a(~k), â†(~k) = a†(~k) . (6.11)

The “free vacuum” |0〉 is defined as the state that is annihilated by all of the annihilation

operators, i.e., a(~k)|0〉 = 0, and â(~k)|0〉 = 0 . Because of (6.11), the free vacuum |0〉 is

common in both Einstein and Jordan frames.

In the interaction picture, the time-development of the “interaction vacuum” starting

from |0〉 at some early time (t̂0 or t0) is described by the unitary transformation composed

of the interaction Hamiltonian, that is,

|v̂ac〉 = T exp

(
−i
∫ t̂

t̂0

dt̂′ Ĥint(t̂′)

)
|0〉 (6.12)

in the Einstein frame and

|vac〉 = T exp

(
−i
∫ t

t0

dt′ Hint(t
′)

)
|0〉 (6.13)

in the Jordan frame. Here T indicates the time-ordering and the interaction Hamiltonian

is denoted by Ĥint(t̂) (Hint(t)) in the Einstein (Jordan) frame. Now we show that the two

states, (6.12) and (6.13), are in fact identical. From the preceding analyses, we can easily

see that Ĥint(t̂) is connected with Hint(t) via

Ĥint(t̂) =
1

Ω(ϕ(t))
Hint(t) . (6.14)

Combining (6.14) with (3.3), we obtain a simple relation:

∫ t̂

t̂0

dt̂′ Ĥint(t̂′) =

∫ t

t0

dt′ Hint(t
′) , (6.15)
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and therefore the two vacua are identical, i.e., |v̂ac〉 = |vac〉.
In Sec. 5 we discussed only the quadratic and cubic terms, S(2) and S(3) in the action,

but our argument can obviously be extended to higher order terms in R̂ = R. Since

the interaction vacuum is one and the same in both frames, the cosmological correlation

functions computed in each frame can be shown to agree with each other, that is,

〈v̂ac|R̂(t̂, ~k1) · · · R̂(t̂, ~kN )|v̂ac〉 = 〈vac|R(t,~k1) · · · R(t,~kN )|vac〉 (6.16)

for an arbitrary integer N , not to mention the N = 2 (power spectrum) and N = 3

(bispectrum) cases. Here R(t,~k) (R̂(t̂, ~k)) is the three-dimensional Fourier transform of R
(R̂) in the Jordan (Einstein) frame.

7. Summary

In the present paper we have made an overall comparison between two types of cosmological

perturbation theories, one in the Einstein and the other in the Jordan frame. By virtue

of the basic relation (4.7), the connection between the two frames is extremely simple and

we can easily go back and forth between the two frames. In this way we are able to find a

way for alleviating the need for separate studies in the two frames.

In the actual calculation of the correlation (6.16), we have to evaluate multiple-

commutators [38]

〈v̂ac|R̂(t̂, ~k1) · · · R̂(t̂, ~kN )|v̂ac〉

=
∞∑

n=0

in
∫ t̂

t̂0

dt̂n

∫ t̂n

t̂0

dt̂n−1 · · · · · ·
∫ t̂2

t̂0

dt̂1

×〈0|[Ĥint(t̂n), [Ĥint(t̂n−1), · · · · · · [Ĥint(t̂1), R̂(t̂, ~k1) · · · R̂(t̂, ~kN )] · · · · · · ]]|0〉 (7.1)

in the Einstein frame or similarly in the Jordan frame. Thanks to (6.15) every step of

calculating the commutators in the Einstein and Jordan frames may be compared with

each other and can be shown to be identical.
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