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ABSTRACT 

Background: Spine posture, range of motion (ROM) and movement asymmetry can contribute to low 

back pain (LBP). These variables may have greater impact in populations required to perform 

repetitive spine movements, such as dancers; however, there is limited evidence to support this.  

Research Question: What is the influence of dance and LBP on spinal kinematics? 

Methods: In this cross-sectional study, multi-segment spinal kinematics were examined in 60 female 

participants, including dancers (n = 21) and non-dancers (n = 39) with LBP (n = 33) and without LBP 

(n = 27). A nine-camera motion analysis system sampling at 100Hz was used to assess standing 

posture, as well as ROM and movement asymmetry for side bend and trunk rotation tasks. A two-way 

ANOVA was performed for each of the outcome variables to detect any differences between dancers 

and non-dancers, or individuals with and without LBP. 

Results: Compared to non-dancers, dancers displayed a flatter upper lumbar angle when standing (p< 

0.01, ηp2 = 0.15), and achieved greater frontal plane ROM for the upper lumbar (p=0.04, ηp2=0.08) 

and lower thoracic (p=0.02, ηp2=0.09) segments. There were no differences between dancers and non-

dancers for transverse plane ROM (p>0.05) or movement asymmetry (p>0.05). There was no main 

effect for LBP symptoms on any kinematic measures, and no interaction effect for dance group and 

LBP on spinal kinematics (p>0.05). 

Significance: Female dancers displayed a flatter spine posture and increased spine ROM compared to 

non-dancers for a select number of spine segments and movement tasks. However, the overall number 

of differences was small, and no relationship was observed between LBP and spinal kinematics. This 

suggests that these simple, static posture, ROM, and asymmetry measures often used in clinical 

practice can provide only limited generalisable information about the impact of dance or LBP on 

spinal kinematics. 
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Highlights 

• Select measures of posture and ROM differentiated between dancers and non-dancers. 

• No relationship between LBP and spinal kinematics was observed. 

• There was no difference in movement asymmetry between dancers and non-dancers. 
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Introduction 

Alongside biological and psychosocial factors, biomechanical factors can contribute to the initiation 

and persistence of low back pain (LBP) [1]. Prospectively, a flatter standing posture as well as 

reduced spine mobility have been seen to precede more serious episodes of first time LBP [2]. 

Furthermore, individuals with existing LBP commonly present with reduced lumbar spine range of 

motion (ROM), as well as more asymmetrical spine movement, compared to persons without [3, 4]. 

Accordingly, assessment of spinal posture and movement is a common component of clinical 

examination for LBP patients and can inform treatment strategy [5, 6]. 

It is possible that the contribution of biomechanical factors on the development of LBP is of greater 

importance in populations with large movement demands [2]. Performing movements with a less 

mobile spine is associated with increased spine loading [7]. Tennis players with LBP have shown 

reduced ROM of the lower lumbar spine as well as a more laterally tilted pelvis than their 

asymptomatic counterparts [8]. Spinal kinematics may also be influenced by this type of physical 

exposure. Cross-sectional research has documented increased prevalence of rotation related deficits 

and spine movement asymmetries in individuals that participate in rotation related sports [9]. 

Furthermore, longitudinal research has shown decreases in spinal kinematic function in occupational 

work that involves more dynamic physical exposures [10], which may have implications for athletic 

populations that perform similar movements. However, while a relationship between participation in 

athletic activity and LBP has been identified, there is only limited research into movement patterns in 

people with LBP participating in these activities [11].   

Dancers are required to perform many complex and repetitive movements of the spine, often to 

extreme ranges of motion, and therefore represent an ideal population to study spinal kinematics and 

LBP. Cohort studies have confirmed dancers experience LBP at least as much as, if not more than, 

general and sporting populations [12, 13]. Research documenting high prevalence of spondylolysis in 

ballet dancers [14], as well as an association between dance hours and spinal stress fractures or LBP 

support a relationship between dance exposure and spine health [15, 16]. Evidence also supports a 

unique spine profile in this population, with dancers presenting with flatter spine postures and greater 
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sagittal plane spine mobility than non-dancers [17], as well as a prevalence of trunk asymmetries 

(measured with a scoliometer) and asymmetrical trunk muscle morphology [18, 19]. 

Despite this, the relationship between dance, spinal kinematics, and LBP remains unclear. One 

previous kinematic study did not find an association between sagittal plane mobility and LBP in dance 

students [17], an observation which is counter to those from both athletic and non-athletic populations 

[2, 4, 8]. However, this study used a broad definition of dancer, considered only the sagittal plane, and 

modelled the lumbar and thoracic spine as single segments [17], which may be less able to provide 

accurate descriptions of spinal kinematics compared to a multi-segment model [20]. Elsewhere, unlike 

non-dance populations, measures including trunk stiffness and thickness of select paraspinal muscles 

did not discriminate between ballet dancers with or without LBP [18, 21]. As such, kinematic 

differences should not be automatically assumed. Evaluating differences between dancers and non-

dancers in simple measures of spinal kinematics that have previously been associated with LBP and 

that are common in clinical practice may provide insight into the interaction of dance, spine 

movement, and LBP. Therefore, the purpose of this study was to analyse spine posture, maximum 

ROM, and movement asymmetry in dancers and non-dancers with and without LBP. 

 

Methods 

Participants 

Female professional and student dancers aged 15 years old and above, from both classical ballet and 

contemporary dance styles were recruited. Dance students were eligible for inclusion in this study if 

they were enrolled in senior level full-time training at a ballet school, a tertiary dance programme, or 

had recently (<1 year) completed an equivalent programme. Dance professionals were eligible for this 

study if they were either dancing with a company or as an independent professional. Non-dancers 

were recruited to match the age and sex of the dancers. They were recruited from university and 

community settings. Dancers and non-dancers were allocated to the LBP group if they had 

experienced a minimum of two episodes of LBP in the past 12 months that resulted in activity 
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modification, consultation with a health professional, or the use of medication. They were allocated to 

the Without-LBP group if they had not experienced any episode of LBP in the past 12 months. 

Exclusion criteria for all groups included known spinal deformities, pregnancy, or the presence of 

injury in any body region other than the lower back resulting in a modified training load or 

compromised spinal kinematics at the time of testing. Ethical approval was granted by the Australian 

Catholic University Human Research Ethics Committee. All participants above the age of 18 (n = 50) 

provided written informed consent prior to participation in the project. Participants below the age of 

18 (n = 10) provided informed parental/ guardian consent as well as participant assent.  

 

Procedure and Data Collection 

Prior to testing, participant height (cm) and body mass (kg) were collected using a stadiometer 

(SECA) and scales (A&D HW-PW200), respectively. For all participants, age (years), current and 

past medical history, as well as current and past LBP status were collected by questionnaire. 

Information on dance practice (e.g. current dance level, primary style, dance hours) and physical 

activity (e.g. moderate and vigorous activity type, weekly frequency, weekly hours) were collected for 

dancers and non-dancers, respectively using a standardised questionnaire. To obtain a more complete 

description of the LBP experience, participants with LBP indicated their current, typical, and worst 

pain intensity on a visual analogue pain scale and completed the Tampa Scale for Kinesiophobia 

(TSK) and Pain Catastrophizing Scale (PCS) [22, 23]. 

Spinal kinematics were measured using a nine camera three dimensional Vicon Nexus motion 

analysis system (six MX13+ and three T20-S cameras, Nexus 2.2 software, Vicon, Oxford, UK) 

sampling at 100Hz. A multi-segment spine marker set that has previously identified kinematic 

differences between individuals with and without LBP was used [24]. Seventeen (12mm) reflective 

markers were attached to the pelvis, lumbar spine and thoracic spine of each participant, as previously 

described [24]. Five central markers were placed on the spinous processes of T1, T6, L1, L3 and L5, 

which were identified via palpation. Eight lateral markers were placed 5cm either side from the 
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midpoint of the central markers. Four markers were placed on the right and left posterior superior iliac 

spines and the anterior superior-iliac spines (Figure 1).  

<Figure 1 around here please> 

After marker placement, trials of fundamental (normal) standing posture, frontal plane range of 

motion (ROM) in standing and transverse plane ROM in sitting were completed. For each task, a 

demonstration and standardised verbal instructions (Table 1) were provided to all participants. All 

tasks were performed in the same order, and at the participants own pace, to ensure that the most 

reliable measure of trunk motion was obtained [25, 26]. Multiple practice attempts were provided, and 

two successful captures of each task were completed.  

< Table 1 around here please > 

Data Analyses 

Gap filling was completed in the Vicon Nexus software and then the motion capture data was 

subsequently exported as C3D files. Kinematic parameters were quantified using Visual 3D (C-

Motion, Inc. MD, USA) after marker data were filtered using a low-pass Butterworth filter at a cut-off 

frequency of 6Hz to eliminate motion artefact. As described by Christe, Redhead [24], the trunk was 

divided into a series of five segments, including the pelvis (R + L ASIS, R + L PSIS), the lower 

lumbar segment (L3, L5, two midpoint markers), the upper lumbar segment (L1, L3, two midpoint 

markers), lower thoracic segment (T6, L1, two midpoint markers), upper thoracic segment (T1, T6, 

two midpoint markers). For each task, lower lumbar angles (LLa) were defined as the angles between 

the lower lumbar and pelvis segments, the upper lumbar angles (ULa) as the angles between the upper 

lumbar and lower lumbar segments, the lower thoracic angles (LTa) as the angles between the lower 

thoracic and upper lumbar segments and the upper thoracic angles (UTa) as the angles between the 

upper thoracic and lower thoracic segments. To calculate ROM in the movement tasks, the peak 

angles to the left were added to the peak angles to the right for each segment. To calculate asymmetry, 

the maximum absolute values to the left were subtracted from the maximum absolute values to the 

right then divided by the total ROM and multiplied by 100 [26]. 
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All statistical analyses were performed using SPSS software for Windows (version 22.0, SPSS Inc., 

IL, USA). Statistical significance was set at p<0.05 for all tests. For demographic, pain intensity, 

TSK, and PCS variables, independent t-tests were used to examine for differences between dancers 

and non-dancers. For kinematic variables, the Shapiro-Wilk test was used to determine whether the 

data were normally distributed. Asymmetry variables for the LLa, ULa, and UTa in the frontal plane 

and LLa, LTa and UTa in the transverse plane were not normally distributed and thus log-transformed 

prior to any further analysis. Levene’s Test was used to assess equality of variance. A two-way 

analysis of variance (ANOVA) was performed for each of the outcome variables to detect whether 

there were any differences between dancers and non-dancers, or individuals with and without LBP. 

Dance (two levels: dancer and non-dancer) and LBP (two levels: with LBP and without LBP) were 

entered as fixed factors. As the fixed factors were only two levels, no post-hoc tests were necessary. 

Partial eta squared (ηp2) was obtained for all significant findings as a measure of effect size.  

 

Results 

Twenty-one female dancers (LBP n = 15) and 39 female non-dancers (LBP n = 18) volunteered to 

participate. Demographic data for all participants are presented in Table 2. There were no significant 

differences in age or height between dancers and non-dancers, but dancers had significantly lower 

body mass and BMI than non-dancers. For the participants with LBP, there were no differences in 

current, typical, or worst pain intensity. Nor were there differences kinesiophobia between dancers 

and non-dancers; however, dancers reported significantly higher PCS scores than non-dancers (Table 

2). 

<Table 2 around here please> 

For posture, there was a significant main effect for dance on the ULa (F(1,56) = 9.78, p<0.01, 

ηp2=0.15), with dancers demonstrating significantly smaller angles in the sagittal plane, suggesting a 

flatter standing posture. There was no main effect for LBP on posture for any segment. There was no 

interaction effect for dance and LBP on posture. For ROM, significant main effects of dance on ULa 
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(F(1,56)=4.49, p=0.04, ηp2=0.08) and LTa (F(1,56)=5.09, p=0.02, ηp2=0.09) were observed in the frontal 

plane, with dancers achieving greater ROM compared to non-dancers. There was no main effect of 

dance on transverse plane ROM or any measure of movement asymmetry for any segment. There was 

also no main effect of LBP symptoms on ROM or movement asymmetry, nor was there any 

interaction between dance and LBP symptoms for these measures. Mean and significance values for 

standing posture, ROM, and movement asymmetry are presented in Table 3. 

<Table 3 around here please> 

Discussion 

The purpose of this study was to examine the relationship between dance, LBP, and multi-segment 

spinal kinematics. In our sample of female participants, dance had a significant relationship with 

fundamental posture and spine ROM for select segments and tasks. The dancers presented with a 

smaller upper lumbar angle when standing, indicating a flatter posture at this segment in the sagittal 

plane. In addition, dancers displayed significantly increased frontal plane ROM at the upper lumbar 

and lower thoracic segments compared to non-dancers. Dance explained between 8 – 15% of the 

variation observed in these measures. No relationship between LBP and spinal kinematics was 

observed, and no interaction between dance and LBP with spinal kinematics was observed. 

Similar to previous research, there were differences in posture and ROM in dancers compared to non-

dancers [17]. However, the total number of differences between dancers and non-dancers were small 

and these were limited to the upper lumbar and lower thoracic segments. Furthermore, although 

differences in frontal plane ROM were observed, there were no differences between dancers and non-

dancers in transverse plane ROM. Therefore, the differences should collectively be viewed as modest, 

and, overall, measures such as posture and spine mobility appear to have limited ability to 

discriminate between trained dancers and non-dancers. With respect to asymmetry, previously, ballet 

students have exhibited a higher prevalence of trunk asymmetries measured with a scoliometer and 

ballet professionals have possessed asymmetrical trunk muscle morphology that is not evident in non-

dancers [18, 19]. Using three-dimensional motion capture and a multi-segment marker set, the current 
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study did not observe any differences in movement asymmetry between dancers and non-dancers. 

While we did not measure muscle morphology, the implication of the current study is that these 

characteristics may not necessarily translate into more movement asymmetry than non-dancers.  

The findings should also be considered in the context of previous studies examining physical activity 

types, spine posture, and movement patterns. Encouraging bipedal motion in animals precedes the 

development of a lordotic curve [27], which supports the notion that spine posture is influenced by 

activity type. Furthermore, participation in repetitive rotation related sports has been linked to specific 

movement adaptations that can be detected in clinical assessment [9]. However, while former elite 

gymnasts presented with a flatter thoracic posture than controls, there were no differences between 

spine mobility between gymnasts and non-gymnasts [28]. Similarly, in young dancers, gymnasts, and 

figure skaters, sagittal plane extension did not change as training progressed [28, 29]. In the current 

study, select differences were observed between dancers and non-dancers, although the number of 

differences were small. This suggests that dance activity may just be one of the many contributors to 

habitual posture and spine mobility. 

The present study did not find an association between spine posture, ROM, or movement asymmetry 

and LBP. Although non-neutral postures and reduced spine segment ROM have been associated with 

LBP [4, 30], an absence of clear differences between groups with and without LBP is not without 

precedent [31]. In a three-year prospective study, reduced spine mobility was a significant predictor of 

more serious first time LBP, but it was not associated with transient LBP and only able to explain 

2.1% of the variation in all the serious LBP experienced [2]. Previous results regarding movement 

asymmetry and LBP have been varied. Two kinematic studies that used similar movement tasks to the 

current study observed more asymmetrical spine movement in people with LBP [3, 26]. In contrast, in 

clinical assessment, spine movement asymmetries were not associated with LBP unless the movement 

of a limb was involved [9]. Collectively, the relationship between LBP and movement does not appear 

simple or stereotypical [32]. In support of this, the present study suggests that generic interpretation of 

the simple clinical assessments used at a single time point may be of limited value for LBP in dance 

and non-dance populations.  
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There was no interaction effect for dance and LBP on spinal kinematics. Recent studies have shown 

that measures previously able to discriminate between people with and without LBP, such as trunk 

muscle cross-sectional area or spine stiffness, are less able to discriminate between dancers with and 

without a history of LBP [18, 21] suggesting dancers may be resistant to changes often associated 

with LBP. However, the current study did not see an interaction between LBP and spinal kinematics 

in non-dancers either. Thus, the present results cannot support the hypothesis that dancers are resistant 

to changes associated with LBP. Rather, despite the use of three-dimensional motion analysis, it is 

more likely that the simple posture, ROM, and movement asymmetry measures used were not 

sensitive enough to provide insight into movement changes associated with LBP. It is also important 

to acknowledge the development of LBP is often multifactorial in nature [1]. As such, adequate 

assessment of spine movement changes associated with LBP may require use of more probing 

kinematic assessment and functional or dance specific tasks, alongside possible subgrouping and 

appropriate biopsychosocial assessments. 

Information on pain intensity, kinesiophobia, and pain catastrophising was collected to provide a more 

complete description of the LBP experience. No differences in current, typical, or worst pain intensity 

were observed between dancers and non-dancers with LBP, which suggests the current results were 

not influenced by fluctuations or severity of pain symptoms. Previous research that has identified 

altered spinal kinematics in LBP patients who were pain free at testing suggests that an absence of 

current pain does not impair the ability to identify kinematic deficits [24, 33]. This also raises the 

issue as to whether kinematic assessment is sensitive to changes in pain symptoms, which is an area 

for future research. Dancers with LBP displayed increased pain catastrophising than non-dancers with 

LBP. Whether this suggests dancers either magnify the threat of pain or feel more helpless in its 

presence compared to non-dancers, which may be possible if they attribute their experience of LBP to 

their dance practice, also warrants further research. 

Several methodological limitations should be considered when interpreting these findings. First, the 

cross-sectional nature of this study is unable to determine whether the small number of differences 

observed are caused by dance or merely reflect a selection bias within it. Second, this study was 



 

12 
 

limited to a convenience sample of a well-trained, highly specialised population, for whom LBP is 

common [12, 13], which limited the statistical power of the analysis and prevented subgrouping or 

adjustment for confounding. However, the 60 participants allowed a power of 0.86 to detect 

differences with a large effect between groups at an alpha level of 0.05, and, based on the observed 

effect sizes, a minimum sample of 368 participants would have been required to detect transverse 

plane ROM differences between dancers and non-dancers. Third, although there were no significant 

differences between participants for age, sex, and height, dancers had significantly lower body mass. 

Due to the traditional builds preferred in classical ballet, obtaining a control group matched for body 

mass was not achievable.  

 

Conclusion 

A small number of differences in spinal kinematics differentiated dancers from non-dancers. In this 

study, simple static posture, spine ROM, and movement asymmetry assessments often used in clinical 

assessment did not provide generalisable information on the experience of LBP symptoms in dance or 

non-dance populations. 
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Table 1: Verbal instructions for movement assessments 

Trial Verbal Instructions 

Standing Posture Stand relaxed how you would normally stand. Feet shoulder-width apart, knees 

straight and arms hanging freely, look forward. 

Trunk Rotation With your arms crossed over your chest (hands on shoulders) and keeping both 

sit bones on the stool, rotate your trunk to one side as far as you can, look over 

your shoulder, return to the starting position. 

Side Bend With your feet positioned pelvis width apart, easily bend to your (direction) side 

as far as you can, sliding your arm along your leg, return to the starting position. 
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Table 2: Participant descriptive data 

  Dancers (n=21) Non-Dancers (n=39) p 
Demographics Age (years) 21.5 (6.4) 22.9 (5.8) 0.42 
 Height (cm) 165.6 (8.35) 165.2 (6.2) 0.85 
 Body Mass (kg) 53.2 (7.5) 60.9 (8.6) < 0.01* 
 BMI 19.5 (2.7) 22.3 (2.8) < 0.01* 
Dance participation Age started dancing 5.6 (2.5)   
 Dance experience (yrs) 14.9 (5.7)   
 Weekly dance hours 20.5 (9.8)   
Physical activity Weekly MVPA hours  4.4 (3.3)  
LBP Information** Current pain (/10) 2.1 (2.7) 0.9 (0.9) 0.15 
 Typical pain (/10) 3.8 (1.6) 4.2 (2.2) 0.55 
 Worst pain (/10) 6.7 (1.9) 6.6 (1.8) 0.68 
 TSK (/52) 24.9 (5.7) 23.4 (5.7) 0.50 
 PCS (/52) 17.1 (9.2) 8.9 (6.5) 0.01* 
BMI = body mass index, MVPA = moderate to vigorous physical activity, *a statistically 
significant difference (p < 0.05), **LBP information provided for participants with LBP only 
(dancers n = 15, non-dancers n = 18). 
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Table 3: Mean (SD) values and significance from the Two-Way ANOVAs 

 Angles Dancer Non-Dancer p With LBP Without LBP p Interaction p 
Standing Posture (degrees) LLa 7.02 (8.15) 5.76 (10.34) 0.50 5.87 (10.32) 6.60 (8.77) 0.60 0.60 
 ULa 7.40 (9.16) 14.26 (8.29) <0.01* 11.97 (9.05) 11.72 (9.42) 0.29 0.48 
 LTa 1.23 (10.22) -3.73 (6.46) 0.10 -0.33 (8.78) -4.03 (7.17) 0.16 0.49 
 UTa -17.48 (6.43) -19.18 (8.26) 0.27 -19.20 (7.37) -17.84 (8.06) 0.30 0.59 
Frontal Plane ROM (degrees) LLa 16.10 (6.94) 16.74 (7.17) 0.69 16.45 (7.67) 16.59 (6.31) 0.69 0.72 
 ULa 27.61 (10.20) 23.73 (6.24) 0.04* 25.42 (8.16) 24.72 (7.97) 0.53 0.15 
 LTa 41.15 (9.50) 35.25 (7.35) 0.02* 38.66 (9.30) 35.69 (7.42) 0.52 0.85 
 UTa 26.55 (6.02) 24.10 (5.89) 0.15 26.55 (5.55) 22.98 (6.07) 0.19 0.11 
Frontal Plane Asymmetry  
[(R-L)/ (R + L)] x 100 

LLa** 6.66 (2.48) 7.25 (2.40) 0.96 5.81 (2.64) 8.87 (2.03) 0.10 0.90 
ULa** 5.83 (2.55) 6.27 (2.27) 0.53 6.09 (2.55) 6.15 (2.14) 0.60 0.20 

 LTa 6.30 (3.30) 8.00 (4.10) 0.28 6.78 (3.70) 8.19 (4.07) 0.21 0.47 
 UTa** 4.87 (2.77) 7.49 (1.86) 0.09 5.95 (2.57) 7.13 (1.79) 0.65 0.96 
Transverse Plane ROM 
(degrees) 

LLa 9.55 (5.30) 9.31 (4.99) 0.51 9.41 (5.40) 9.37 (4.73) 0.45 0.13 
ULa 14.44 (4.06) 15.97 (5.00) 0.28 15.31 (4.37) 15.62 (5.19) 0.99 0.99 
LTa 35.41 (12.14) 33.73 (9.05) 0.75 35.67 (11.53) 32.68 (8.07) 0.34 0.93 

 UTa 20.94 (10.87) 19.90 (8.79) 0.67 18.82 (7.42) 21.92 (11.31) 0.12 0.60 
Transverse Plane Asymmetry 
[(R-L)/ (R + L)] x 100 

LLa** 13.54 (2.88) 17.78 (1.97) 0.24 16.24 (2.27) 16.78 (2.32) 0.90 0.92 
ULa 16.12 (10.36) 14.37 (10.27) 0.54 13.70 (9.60) 16.50 (10.95) 0.45 0.37 

LTa** 6.46 (2.50) 6.02 (2.45) 0.74 5.74 (3.00) 6.66 (1.92) 0.62 0.72 
 UTa** 10.23 (2.76) 13.49 (1.86) 0.27 11.83 (2.63) 12.57 (2.95) 0.78 0.47 
*A statistically significant (p < 0.05) effect, ** Analysis performed on log transformed data. Mean and SD has been back transformed, LBP = Low back pain, 
LLa = Lower Lumbar, LTa = Lower Thoracic, ROM = Range of motion, ULa = Upper Lumbar, UTa = Upper Thoracic.  
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Figure 1: Multi-segment spine marker set. 

 




