Dynamics of the Structural Connectome in Traumatic Brain Injury

Phoebe Imms
Bachelor of Science (Honours)

Submitted in total fulfilment of requirements for the degree of
Doctor of Philosophy

Mary MacKillop Institute for Health Research,
Faculty of Health Sciences,
Australian Catholic University

27" May 2021






Declaration of Authorship and Sources

This thesis contains no material that has been extracted in whole or in part from a
thesis that | have submitted towards the award of any other degree or diploma in any other
tertiary institution. No other person’s work has been used without due acknowledgment in
the main text of the thesis. All figures and illustrations in this thesis are original unless
otherwise cited. All research procedures reported in the thesis received the approval of the

relevant Ethics Committees (where required).

Signed:

Date: 27" May 2021






Abstract

Traumatic Brain Injury (TBI) is a leading cause of death and disability globally,
with survivors often experiencing ongoing and debilitating cognitive impairments (e.g.,
slowed processing speed, poor attention, and executive functioning deficits). These
impairments are often linked to focal lesions in regions of the cerebral cortex thought to
uphold each cognitive function. However, the spectrum of impairments experienced by
individual patients are not fully explained by focal lesions of the grey matter; instead,
emerging theories suggest that many cognitive burdens result from disconnections in the
white matter of the brain. With the advent of diffusion MRI (dMRI), new techniques are
available to study how TBI disrupts the white matter pathways that connect brain regions
(structural connectomics). Structural connectomics allows the quantification of network
disruption in TBI patients using graph theoretical analyses, with studies reporting
alterations in brain network integration and segregation. These studies suggest that graph
metrics may be used as a ‘biomarker’ for TBI patients’ cognitive impairments, by linking
changes in brain derived graph metrics to cognitive symptoms. However, challenges remain
in ascribing behavioural relevance to graph metrics in this newly emerging field.

This thesis critically evaluates the use of graph theoretical measures of the structural
connectome in moderate-severe TBI, and their use at a single-subject level. First, a meta-
analysis of studies comparing healthy controls and TBI patients using graph metrics is used
to demonstrate that communication metrics are most robustly linked to brain injury. This
review also highlights issues with the over-interpretation of the relationship between graph

metrics such as path-length and the efficiency of cognitive processes. Second, a study in



healthy adults shows that communication metrics are related to processing speed. This
relationship between cognitive performance and measures of network alteration is
underpinned by biologically plausible models of cognition and brain structure. Third, a
profile of graph theoretical properties and alterations in six TBI patients is explored using a
personalised connectomics approach. Spiderplots are used to represent graph metric
alterations in each patient compared to healthy controls. Profiling individual patients in this
way provides new insights into how graph metrics relate to lesion characteristics and TBI
subtypes. Taken together, this thesis explores 1) how structural network topology is altered
in patients with TBI, 2) how graph metrics can be interpreted, 3) how a personalised
connectomics approach to TBI can be implemented, and 4) the methodological
considerations for studying TBI using graph theory. The collective results of thesis indicate
that graph metrics display potential for characterising network alterations in patients with
brain injury; specifically, a profiling approach can account for heterogeneity in the TBI

population, informing clinical decision making.
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Overview of Thesis

The human brain is a dynamic network of ~100 billion neurons, comprising ~100
trillion connections. Signals travel between neuronal cell bodies which manifest as the grey
matter, via bundles of axons that form white matter pathways. This complex structure can be
damaged in many ways, the most common being stroke, Alzheimer’s disease, multiple
sclerosis, dementia, or trauma. Each method of injury has its own characteristics, aetiology
and prognosis. While other brain injuries have been relatively well characterised due to their
more homogenous causes and symptomatology, the mechanisms of Traumatic Brain Injury
(TBI) are complex and therefore less coherently represented in scientific research. It is
therefore the goal of this thesis to improve our understanding of the neurological and
cognitive impacts of TBI.

Moderate-severe TBI is caused by a large force to the head, resulting in damage to
brain tissue. TBI has a high incidence rate worldwide and causes widespread, persistent, and
debilitating cognitive impairment. Patients more than 6 months post injury show a plateau in
improvements and face a lifetime of disability (Rabinowitz & Levin, 2014). The long-term
cognitive deficits following TBI are often due to injury in the frontal and temporal brain
regions and shearing and degradation of the white matter pathways (Bigler, 2013). Diffusion
MRI (dMRI) is a method that characterises organisation of the white matter pathways in vivo
and has been used to study how damage to white matter tracts impacts cognitive outcome
following TBI. However, individual tracts alone do not support brain activity, but instead are
essential for synchronous integration of activity across brain regions (Bullmore & Sporns,
2012). As such, recent work has employed a novel framework connectomics to understand
how TBI impacts the brain network as a whole (e.g., Caeyenberghs, Leemans, De Decker, et
al., 2012). Connectome studies of traumatic brain injury (TBI) utilise graph theory to evaluate
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network alterations in comparison to healthy controls, by calculating graph metrics —
summary statistics of the brain network that represent integration, segregation, and centrality.
Results suggest that the TBI brain network is altered in comparison to healthy controls;
however, there is a lack of converging evidence between studies, likely due to the
heterogeneous nature of TBI patients. Also, the nature of the relationship between graph
metrics and cognitive performance remains unclear. This thesis aims to address these gaps by
1) systematically characterising the available literature, 2) identifying relationships between
brain network measures and cognition, and 3) formulating a new approach to using
connectomics in individual TBI patients.

In Study 1, a meta-analysis examines the robust patterns of change in graph metrics
across the available literature. Ten studies are included in a random-effects meta-analysis of
global graph metrics (N=429 TBI patients; N=306 healthy controls), and subgroup analyses
(age, time since injury, severity of injury) to examine confounding effects. The meta-analysis
reveals significantly higher values of normalised clustering coefficient and characteristic path
length in TBI patients compared with healthy controls. Longer characteristic path length (less
efficient network communication) is robust across studies. It is concluded that the pattern of
change revealed, including increased communication measures (path length) and clustering,
can be used in the next stages to guide our hypothesis-driven research into the role of graph
metrics as diagnostic biomarkers of TBI.

Study 2 examines the relationship between communication measures such as
characteristic path length and cognitive performance. Processing speed on cognitive tasks
(which is often affected following brain injury) relies upon efficient communication between
widespread regions of the brain such as the fronto-parietal attention network. What remains
unclear is whether there is a direct link between these communication measures and

processing speed. This relationship is tested in forty-five healthy adults (27 female, Mage =
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30.9 years), where processing speed is defined as decision-making time on a Global-Local
task and measured using drift rate from the hierarchical drift diffusion model.
Communication measures are calculated for the whole brain structural connectome and for a
task-relevant fronto-parietal structural subnetwork. A novel and more biologically plausible
method of quantifying network communication is also included — called navigation
efficiency. Faster processing speed is found to be correlated with higher navigation efficiency
(of both the whole-brain and the task-relevant subnetwork). In the task-relevant subnetwork
only, faster processing speed on trials that require more automatic processing is correlated
with longer path-length. Overall, findings suggest that there is a relationship between the
speed of cognitive processing and the structural constraints of the human brain network —
though, this relationship depends on the specificity of the measures used.

In Study 3, a novel single-subject profiling approach is used to characterise the graph
theoretical properties of individual TBI patients. In the search for graph metric ‘biomarkers’,
group level analyses of TBI patients often average neuroimaging and cognitive data across
patients regardless of lesion and patient characteristics. Instead, personalised connectomics
(individual-level analysis of the structural connectome) may allow for an individual’s brain
network to be used as a “fingerprint’, to examine the profile of graph metric alterations in one
patient compared to healthy controls. In this study, a personalised structural connectome
analysis is performed using high angular resolution dMRI data from five TBI patients, to
facilitate interpretation of unique disconnectivity profiles. A large amount of variability is
observed in the profile of graph metric alterations between patients. Where group analyses
wipe out variability, individual normative comparisons allow researchers to capture the range
of network alteration patterns. This renewed emphasis on profiling individual patients based
on their unique injury presentation provides new insights into how graph metrics relate to

lesion characteristics and TBI subtypes.



Overall, this thesis explores how graph analysis of the structural brain connectome
adds to our understanding of TBI; whether graph metrics are related to cognitive performance
in healthy adults and thus have potential as biomarkers of cognitive dysfunction; the benefits
and limitations of single-subject profiling to study TBI; and the methodological
considerations of diffusion-based graph analysis in brain injured patients (see Figure 1). The
role of graph metrics as biomarkers of TBI is critically evaluated by examining the current
state of the literature (Study 1), the relationship between metrics and measures of cognition
(Study 2), and the ability of graph metrics to represent an individual patient (Study 3). In the
review and meta-analysis, communication measures such as path length are longer in TBI
patients than healthy controls, a finding which was robust across studies and TBI subtypes. In
the second empirical chapter, these communication measures were related to processing
speed, albeit when using specific measures of brain structure and cognition. In the third
empirical chapter a large amount of variability is observed in the graph metric profiles of TBI
patients. Thus, instead of a singular graph metric biomarker, it is argued that visualising a
profile of graph metric alterations is a better method for characterising this heterogeneous
patient group. In conclusion, this thesis represents a critical assessment of the role of graph

metrics in the comparison of adults with chronic moderate-severe TBI to healthy controls.
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Chapter 1: Introduction



1.1 Traumatic Brain Injury
1.1.1 Causes, incidence, and impact

Traumatic Brain Injury is caused by an external force to the head resulting in damage
to brain tissue (Kay & Lezak, 1990), often following a traffic accident (61.4%), fall (24.9%),
or assault (non-gunshot; 7.2%) (Myburgh et al., 2008). In their epidemiological study of TBI,
Majdan et al. (2011) found that while young men are most likely to experience TBI from
motor vehicle accidents, older people are also more vulnerable to brain injury from falls.
Unsurprisingly, the most severe injuries occur from traffic related incidents, such as motor
vehicle and bicycle accidents — these patients spend on average the longest time in intensive
care and on ventilation. However, fall related TBIs have the highest percentage of patients
requiring cranial surgery due to bleeds in brain tissues, and show the poorest expected
outcomes especially for older patients. Assault related TBI, while less common than falls and
traffic accidents, is strongly related to being male, especially for men with substance abuse
and/or financial problems (Schopp et al., 2006; Wagner et al., 2000). In truth, while some
groups are more at risk than others, what separates TBI from other forms of brain injury is
that sudden trauma can occur indiscriminately, and with devastating consequences.

TBI has a high prevalence internationally. The World Health Organisation estimates
that traffic accidents will be the 3rd leading cause of premature death across all ages by the
year 2020 (Murray et al., 1996) — a speculation which appears to have merit based on recent
numbers (James et al., 2019). In 2016 there were 27.08 million new cases of TBI globally,
with an incidence rate of 369 per 100,000 population (James et al., 2019) — in Australia, the
incidence of TBI is approximately 100 in a 100, 000 (Tate et al., 1998). In the western world
TBI accounts for half of the trauma that leads to death and long-term disability (Baxter &

Wilson, 2012). TBI case numbers are growing, due to increasing use of motor vehicles (Maas



et al., 2008) and sport injuries (Dashnaw et al., 2012). Fortunately, life support technologies
have improved meaning survival is more likely than ever following serious trauma — though
this does increase the prevalence of people living with debilitating disability for years after an
injury.

Living with the consequences of a head injury requires medical, emotional, and
financial support from workplaces, community support services, family, and friends.
Consequently, in Australia it is estimated that the total cost of TBI in 2008 was $8.6 billion,
including both financial costs and burden of disease costs (including medical costs, carer
salaries, loss of taxable income, etc.; Access Economics Pty Limited, 2009). The
psychosocial costs of TBI are also high — most TBI survivors live with their family and are
no longer employed or attending school (for review, see Humphreys et al., 2013). Therefore,
family members also face social and financial hardship as they rise to the challenge of
demanding medical costs and long-term caregiving (Kreutzer et al., 2002). In summary, TBI
has a high incidence rate, a large human cost to both the patient and carer, as well as an

enormous financial cost to society.

1.1.2 Diagnosis and classification

There are three widely accepted categories of TBI diagnosis — mild, moderate, or
severe (see Table 1). Categorisation is performed based on the severity of the symptoms at
the time of injury, and neuroimaging to identify the extent of the lesions (Hannawi &
Stevens, 2016; Maas et al., 2008). The latter is accomplished using Computed Tomography
(CT), or in more serious cases Magnetic Resonance Imaging (MRI), to check for intracranial
pathologies. The former, the severity of the symptoms, is often assessed using three criteria;

1) the patient’s level of responsiveness (Teasdale & Jennett, 1974), 2) the amount of time



with post traumatic amnesia (PTA; memory loss and confusion) (Russell & Smith, 1961), and

3) the duration of loss of consciousness (time period in coma/unaware).

Table 1.

Severity Ratings for Traumatic Brain Injury

Rating Glasgow Coma Scale  Post-Traumatic Amnesia  Loss of Consciousness
Mild 13-15 < 24 hours 0 — 30 minutes
Moderate 9-12 1 -7 days 30 minutes — 24 hours
Severe 3-8 > 7 days > 1 day

Mild TBI is identified by post traumatic amnesia for less than 24 hours, loss of
consciousness for less than 30 minutes (Rabinowitz & Levin, 2014), and less severe cognitive
impairments. Neuroimaging, especially CT, often does not demonstrate any injury-related
abnormalities. Mild TBI is more common than moderate-severe TBI, representing 61.5% of
cases (Tate et al., 1998). Following mild TBI, improvements in cognitive or motor
impairments mostly occur within 3-6 months post injury (Belanger & Vanderploeg, 2005;
Carroll et al., 2004). Conversely, moderate—severe TBI patients immediately suffer loss of
consciousness for more than half an hour and post traumatic amnesia for longer than a day
(see Table 1; Rabinowitz & Levin, 2014). For moderate-severe TBI, an MRI or CT scan may
alert neurologists to a range of findings including (but not limited to) focal lesions, swelling,
and damage to the grey-white matter boundaries of the brain. Moderate-severe TBI patients
are less common and less often represented in the literature. However, these are the patients

that tend to exhibit longer lasting or even permanent disabilities.
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1.1.3 Pathophysiology over the phases of TBI

The pathophysiology of TBI is multifaceted and can continue to evolve for months or
even years following the injury. To characterise the stages of injury progression, researchers
and clinicians often refer to the acute (<1 month), subacute (1month - 6months), and chronic
(>6 months) phases of TBI (Rabinowitz & Levin, 2014). At the time of injury and during the
acute phase, the primary injuries that occurred directly from the external force are treated in
hospital (Maas et al., 2008). Most often, primary injuries (e.g., hematoma, haemorrhage, and
oedema) affect the frontal and temporal lobes where bony protuberances of the skull are
prominent (Bigler, 2013). As the head hits the external surface inertia causes the brain to
continue its trajectory and hit the inside of the skull at the site of impact (coup), which in turn
forces the brain to ricochet back to hit the opposite side to the impact (contre coup) (Drew &
Drew, 2004). At the cellular level, lesions involve the rupturing and necrotic death of neurons
and glial cells (Kurland et al., 2012). These types of injuries cause tissue loss and are

collectively referred to as focal lesions (see Figure 2).

Figure 2

Examples of Focal Lesions Caused by Traumatic Brain Injury
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Primary injuries are not confined to the grey matter where physical impact occurred.
Besides these focal lesions, it is estimated that approximately half of TBI patients also
present with diffuse injuries in white matter pathways (Hammoud & Wasserman, 2002).
When the brain experiences rapid acceleration-deceleration forces, the interface between
tissues of different densities is vulnerable to shearing effects (Meythaler et al., 2001). These
injuries are particularly evident in high-speed car crashes (Li & Feng, 2009), and are
generally referred to as Diffuse Axonal Injury (DAI). DAL is evidenced by microlesions in
the white matter tracts (Currie et al., 2016; Maas et al., 2008), apparent in deep brain white
matter structures, the corpus callosum, periventricular and hippocampal regions, and the
brainstem (Hammoud & Wasserman, 2002; Kou et al., 2015). Despite being well-described
in the scientific literature, DAL is still often missed in clinical settings, due to the fact that the
CT scans used for diagnosis at the time of injury are inadequate for visualizing microbleeds
(Currie et al., 2016; Maas et al., 2008).

Secondary injuries may also occur, evolving over the acute and subacute phases of the
injury. Secondary injuries are pathophysiological mechanisms triggered by the primary
injury, as the intracellular substances released by dying neurons and the breakdown products
of blood are toxic to the nearby cells (Kurland et al., 2012). Secondary injuries can be caused
by excess neurotransmitter release and inflammation that causes oedema (swelling), ischemia
(reduced blood flow), hypoxia (reduced oxygen), raising of intracranial pressure, and gliotic
scarring (Maas et al., 2008). Often TBI leads to chronic excitotoxicity, where neurons and
oligodendrocytes become vulnerable to glutamate stimulation as the neurotransmitter
accumulates in brain tissues (Bramlett & Dietrich, 2015; Pekna & Pekny, 2012; Pekna et al.,
2012). Overall, this secondary cascade of injuries leads to inflammation, glial and
mitochondrial dysfunction, and destruction of vasculature (Maas et al., 2008; Park et al.,

2008). The biochemical cascade can continue for months after the initial injury, causing
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further damage to axonal pathways (Bramlett & Dietrich, 2015). Treatment of any secondary
injuries may therefore continue into the subacute phase of TBI, when the patient begins to
recover lost cognitive and motor functions.

The subacute phase is also when the patient’s brain will begin the recovery and
healing processes. Unlike other organs, brain tissue is limited in its ability to regenerate;
instead, neurons can alter their interconnectivity in response to functional loss to circumvent
damaged brain tissue — termed neuroplasticity. Upregulation of synaptic markers and axonal
sprouting occurs during this time (Carmichael, 2003), leading to an increase in the density of
synapses perilesional or contralateral to the damaged tissue (Pekna & Pekny, 2012). This
neuroplasticity peaks one to three months post injury (Pekna & Pekny, 2012). In addition,
during this subacute phase TBI patients begin to experience secondary pathologies that may
continue well into the chronic phase of their injuries: these pathologies may include seizures,
sleep disorders, neurodegeneration, neuroendocrine and psychiatric problems (Bramlett &
Dietrich, 2015).

Typically, the chronic phase is characterized by a plateau in behavioural and physical
improvements (Schretlen & Shapiro, 2003), due to the limits of intrinsic neurological repair
processes. However, there is also evidence from rat and mouse studies that accelerated
atrophy of grey and white matter occurs months and years after a TBI (Smith et al., 1997),
potentially due to chronic excitotoxicity (Bramlett & Dietrich, 2015). TBI patients may also
continue to show reductions in white matter, inflammation, and volume loss even years after
the injury (e.g., Green, 2016). TBI can be a compounding issue for an individual already
experiencing neurodegeneration (e.g., older adults) and is a risk factor for the onset of
Alzheimer’s Disease (e.g., Sivanandam & Thakur, 2012). However, not all outcomes are
adverse. Recent work in the field of training-induced neuroplasticity shows that behavioural

and neurological changes are still possible even years after an acquired brain injury (e.g.,
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Caeyenberghs et al., 2018) providing evidence to support continued research into chronic

TBI.

1.1.4 Chronic cognitive impairments

Cognitive impairments are the major cause long-term disability in patients with
moderate-severe TBI. Around 25% of TBI patients cannot return to work for a year post-
injury (Whiteneck et al., 2004), and almost half experience cognitive disability for a period of
6 months or more (Selassie et al., 2008). Cognitive impairment caused by TBI can impact
participation in all aspects of life, from housework and hygiene, to schooling and
employment. Simple tasks such as planning a trip on public transport might become
impossible or frustratingly slow. The exact symptoms that a person may experience long-
term following a TBI can depend on the severity of the injury, the affected areas of the brain,
and the type of secondary pathologies that were triggered by the injury. Accurately predicting
the outcome of an individual is complicated and doing so with precision and confidence is
beyond the capacity of current medical practices. However, the ability to predict cognitive
symptoms could enable a patient with TBI to understand what their future might look like.

One of the major domains of cognitive impairment following moderate to severe TBI
is executive dysfunction, which occurs in 65% of the chronic TBI population (Rabinowitz &
Levin, 2014). Executive functioning includes mental control and self-regulation — the set of
processes by which the brain *‘manages’ itself. Till et al. (2008) found that in 27.3% of their
TBI cases there was a decline in measures of executive functioning even 5 years after injury.
Moderate-severe TBI patients often exhibit 1) processing speed, 2) memory, 3) attention, and
4) planning deficits for years after the injury (Ruff et al., 1989; Ruff et al., 1993). These
cognitive functions are integral for daily life (Rabinowitz & Levin, 2014). TBI patients may

experience delay when inhibiting responses, updating, and switching tasks, which are all
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attributable to poor processing speed (Caeyenberghs et al., 2014). They may also show poor
prospective and retrospective memory (Shum et al., 2011), and have difficulty organising
information in a manner that facilitates encoding and retrieval of new memories (Dikmen et
al., 2009). Sustained attention can be affected when insult occurs to frontoparietal areas,
meaning the patient may be unable to maintain consistent performance on tasks over time
(Bonnelle et al., 2011). Planning is also poorer in TBI patients than in healthy adults, with
TBI patients more likely to take unnecessary extra steps when working towards a goal (Shum
et al., 2009).

In particular, slowed processing speed is arguably one of the more persistent and
influential cognitive complaints following TBI (Battistone et al., 2008). There is strong
evidence for the relationship between moderate-severe TBI and slower performance on
cognitive tasks (e.g., Madigan et al., 2000). Evidence suggests that slowed processing speed
is not specific to one cognitive task, but a global slowing of the capacity for processing
information and transmitting neural impulses (e.g., Ponsford & Kinsella, 1992), linked to
diffuse axonal shearing and white matter damage. Furthermore, there is evidence that TBI
patients can show the same accuracy as healthy counterparts on cognitive tasks when under
no time constraint (e.g., Capruso & Levin, 1992); however, when asked to respond at a faster
pace their accuracy decreases (Gronwall & Sampson, 1974). Battistone et al. (2008) found
that TBI patients showed a slower rate of information accrual, as well as a hesitation to
respond early. However, the exact mechanism of this slowed rate of information accrual is

not well understood.

1.1.5 Heterogeneity in the TBI population
Studying TBI as a group is problematic as there is no ‘average’ TBI patient (Maas,

2016). Patients with TBI are diverse, and several clinical and demographic factors (such as
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severity, age, 1Q, race, and time since injury) will impact patient outcome (Roozenbeek et al.,
2012). For example, longer PTA duration (severity) is widely acknowledged to be associated
with more persistent and extensive cognitive impairment (Donders & Stout, 2019; Novack et
al., 2001; Rapoport et al., 2002; Rassovsky et al., 2015). In the United States, people of
colour are less likely to be referred for further care and therefore display worse outcomes
following moderate-severe TBI, suggesting that race and ethnicity can impact cognitive
outcome (Brenner et al., 2020). There is also a significant association between older
age/longer PTA and larger lesion volumes, indicating that older age at injury can worsen the
impact of TBI on the brain (Schénberger et al., 2009). In terms of cognitive recovery, higher
IQ and younger age in moderate-severe TBI patients is associated with greater improvements
in attention, memory, and executive function up to 5 years post injury (Fraser et al., 2019).
Time since injury is an important factor to consider when comparing patients, as TBI is a
continuing process involving a cascade of neurotoxic events and the full extent of the lesion
may not be immediately apparent (Nortje & Menon, 2004).

Lesion characteristics are another source of heterogeneity that is important to
consider. Intuitively, there is evidence that larger frontal, parietal, and occipital lesion
volumes are associated with poorer memory and processing speed impairment (Spitz, Bigler,
et al., 2013). The location of the injury can also have a large impact on patient outcome.
Focal frontal and temporal lesions are particularly common in TBI patients and are thought to
cause a range of impairments in executive functioning, attention, memory, social cognition,
and processing speed (e.g., Fujiwara et al., 2008; Levine et al., 2008; Spikman et al., 2012).
However, white matter lesions located in the anterior thalamic radiation and superior
longitudinal fasciculus have also been associated with poorer executive functioning in a

lesion-symptom mapping study of brain injury (Biesbroek et al., 2017). The exact link
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between lesion size and location and cognitive outcome in TBI remains unclear (Lipton et al.,
2008).

Group-level analyses, which constitute most publications investigating TBI patients,
involve averaging across patients. Often, patients are grouped according to severity (mild or
moderate-severe), age (paediatric, adolescent, or adult), and injury type (penetrating, focal,
diffuse). While large cohort studies are necessary for driving statistical comparisons between
large scale groups, methods that do not assume an individual patient will fit neatly into a
group-average estimation of TBI are also needed (Mant, 1999). Instead, case series and
individual-level analyses may be used to formulate hypotheses about TBI patient recovery
and cognitive functioning according to lesion characteristics (e.g., Jelcic et al., 2013). Case
series are essential for trend analysis, health-care planning, and hypothesis generation
(Grimes & Schulz, 2002). While no cause-effect inferences can be drawn from single-subject
observations, they do provide a more holistic understanding of the patient and their outcome.
Pathological profiling of individual cases based on advanced neuroimaging approaches may

also help with clinical rehabilitation planning (Irimia, Wang, et al., 2012).

1.1.6 Mapping cognitive functions following brain damage

Localisation of function is the guiding principle of modern lesion studies — where
cognitive symptoms are matched to specific sites of brain damage following a brain injury or
insult (notably, Phineas Gage; Henry Molaison and work by Scoville and Milner in 1957;
“The Man Who Mistook His Wife for a Hat” case study by Oliver Sacks). For instance,
damage to the left posterior temporal lobe can cause a speech deficit characterised by fluent
yet meaningless speech (i.e., Wernicke’s aphasia) — and similar damage in the left inferior
frontal lobe produces an expressive aphasia where the patient can only utter a few words or

phrases, despite retaining full cognitive faculties (i.e., Broca’s aphasia) (Binder, 2015;
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Fridriksson et al., 2015). The pursuit of “mapping’ cognitive functions such as language,
memory, even personality to distinct regions of the brain has been the basis of
neuropsychological research for decades.

However, it has recently become apparent that the profile of persistent cognitive
impairments does not always match the location of a focal lesion following TBI (Lipton et
al., 2008). This is because cognitive and motor functions use broadly distributed networks of
brain regions to co-ordinate complex patterns of activity (Bressler & Menon, 2010). These
networks are reliant on the density, myelination, and organisation of white matter pathways
that connect grey matter areas. DAI can cause disconnection of the pathways between cortical
and subcortical areas of the brain and may underlie the neurodisabilities following TBI
(Adams et al., 1982; Kraus et al., 2007). As white matter damage increases so does the
severity of cognitive and motor deficits (Kraus et al., 2007). As such, TBI is described as a
disconnection syndrome (Catani & Ffytche, 2005; Griffa et al., 2013). Therefore, while it is
necessary to look at the location of a grey matter lesion when examining the symptoms of a
TBI patient, it is not always sufficient. Based on the disconnection concept of TBI, it is
essential to unpack how white matter damage impacts the brain network in brain injured

patients.

1.2 Neuroimaging

1.2.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a diagnostic medical imaging technique that
leverages magnetic fields and radio frequency pulses to excite the protons of hydrogen atoms
contained in water molecules. The hydrogen protons rotate on their own axes around a

magnetic field (see Figure 3, panel 1). When they are placed in a homogenous magnetic field
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such as in an MR, their rotational axes align, and they begin to precess together (Figure 3,
panel 2). A radio frequency pulse forces the precessing protons to flip transverse to their
aligned position (Figure 3, panel 3). Once the pulse ends, the protons naturally return to
alignment within the homogenous magnetic field — this is called the longitudinal relaxation
time (T1; Figure 3, panel 4). When the gradient coils localise the magnetic field on the brain,
protons in fatty tissue such as myelin relax much faster than protons in free water such as
cerebral spinal fluid (CSF). The contrast between the longitudinal relaxation time in the CSF

and trapped water of the fatty tissues provides images of the anatomy brain in vivo.
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Figure 3

Magnetisation and Relaxation of Hydrogen Protons in Magnetic Resonance Imaging

Radio frequency pulse Longitudinal relaxation time (T))

Note: WM = white matter; GM = grey matter; CSF = cerebral spinal fluid.

The current thesis examines the impact of moderate-severe TBI in adults who are
experiencing ongoing cognitive impairments in the chronic phase of their injury. Of
particular interest is the white matter of these individuals, which is often damaged following
TBI. The imaging techniques clinically used to diagnose and manage TBI before diffusion

imaging was made available 15 years ago (e.g., CT, T1-weighted MRI, FLAIR) were unable
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to visualise the white matter in a quantifiable way. These traditional neuroimaging techniques
are tailored to measuring contrasts in signal intensity between fat and water in the brain,
essential in the diagnosis of focal lesions but insufficient for investigating microstructural
axonal injuries. Instead, diffusion MRI (dMRI) enables examination of the microstructural

properties of the white matter (Hulkower et al., 2013).

1.2.2 Diffusion Weighted Magnetic Resonance Imaging

Recently, dMRI has been used to investigate the microstructural properties and
architecture of the white matter by characterising the direction of water molecule diffusion in
the brain (see Figure 4). MRI is sensitive to the magnetic properties of the hydrogen protons
contained within water molecules (section 1.2.1). According to the properties of Brownian
motion, water molecules are constantly in motion due to thermal energies and will move
isotropically — randomly and equally in any direction — if not restricted, such as in the
cerebrospinal fluid. However, water molecules in the white matter can only move
anisotropically (longitudinally along the axonal pathway) as the fatty cell walls and myelin
sheaths of the axonal bundles hinder diffusion in other directions. Thus, the boundaries
created by the axon bundles restrict the movement of water molecules in the white matter.
Following injury, the barriers that maintain the direction of water flow can be broken, and the
differences in water molecule diffusion can be used as evidence of white matter damage

following TBI.
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Figure 4.

Diffusion Properties and Models of the White Matter and the Cerebral Spinal Fluid

®) ©

White Matter

Cerebral Spinal Fluid

Note: (A) Diffusion is anisotropic in the white matter (i.e., movement is restricted along the white matter tract),
but isotropic in the cerebral spinal fluid; (B) measurement of the primary direction of diffusion in the x, y, and z
planes gives rise to; (C) models of brain tissue structure within a given voxel.

The dMRI signal is the T2 signal, or the transverse decay time — the time taken for the
hydrogen proton spin to return to the low energy state. This T2 signal attenuates differently
depending on how easily water can diffuse in each tissue type. Thus, dMRI uses the
properties of water diffusion by applying multiple gradient fields (at least 6, often up to 60)
alongside the strong b0 magnetic field. Gradient fields are sensitive to the different directions
of water movement, such that the water molecules that moved during one diffusion gradient
will have a different magnetisation to those that did not move, forming an image contrast.
These diffusion sensitising gradients can be applied in X, y, and z axes, or a combination of
all — the more gradient directions are applied, the more contrast images are attained depicting
differences in water movement in a particular direction. As water movement is hindered by
the microstructural tissue geometries in the brain, these images can be used to provide
information about the physical properties of the white matter bundles, including direction and

magnitude (for a full description of the principles of diffusion MRI, see Jones, 2010b).

22



Once the diffusion-weighted signal is measured across the whole brain in multiple
directions, a model can be used to estimate the primary direction and magnitude of water
diffusion in each voxel (see Figure 5). There are different methods of doing this, including
the diffusion tensor model (DTI) (for review, see Basser & Jones, 2002) and the fibre
orientation distribution (FOD) model (Tournier et al., 2004), through the use of constrained
spherical deconvolution (CSD). The tensor model simply characterises the diffusion-
weighted signal in each voxel using 6 parameters: three representing the magnitude of the
diffusion, and three representing the direction. Geometrically, this portrays the diffusion
signal in each voxel as an ellipsoid (Basser et al., 1994), with the longest axis of the tensor
indicating the direction of the maximum diffusion and thus the primary fibre direction of that

voxel.
Figure 5.

The Diffusion Tensor Model and Constrained Spherical Deconvolution

Diffusion Tensor Imaging Constrained Spherical Deconvolution

Note: This cross-section was chosen to highlight the crossing of the corona radiata, superior longitudinal
fasciculus, corpus callosum, and cingulum bundle.

On the other hand, CSD (Tournier et al., 2007) allows the estimation of multiple fibre
directions in one voxel, by measuring all fibre orientations and their respective uncertainty
values within each voxel and representing this as an FOD. Given that 90% of voxels within
the white matter contain crossing axonal projections (Jeurissen et al., 2013), the FOD model
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is generally thought to be a more sensitive representation of white matter microstructure than
the tensor model. It should be noted, other approaches have been proposed that are also
capable of estimating multiple fibre directions in one voxel, including Q-ball imaging (Tuch,
2004); diffusion spectrum imaging (DSI; Hsu et al., 2015); composite hindered and restricted
model of diffusion (CHARMED; Assaf et al., 2004). However, these approaches are less
feasible for clinical imaging as they require large and multiple b-values, leading to long scan
times.

Subsequently, there are divergent methods for analysing the dMRI signal.
Traditionally diffusion metrics were calculated for each voxel and compared between
subjects or groups in an area of interest (e.g., Caeyenberghs, Leemans, Geurts, et al., 2011),
across the whole brain (e.g., Caeyenberghs et al., 2010), or using tractography approaches
(e.g., Caeyenberghs, Leemans, Coxon, et al., 2011). These diffusion metrics are used to
quantify the directionality of water movement as a proxy for measuring the integrity of the
white matter within that voxel, or along a specific tract. The most common diffusion metrics
are derived from the tensor model, including fractional anisotropy (FA), mean diffusivity
(MD), axial diffusivity (AD), and radial diffusivity (RD) (Basser et al., 1994). FA represents
the overall directional coherence of the water molecules within neuronal tissue. On the other
hand, MD, AD, and RD can be used to represent the direction and magnitude of water
diffusion more specifically — MD is the total diffusion within a voxel, regardless of the
direction; AD measures diffusion along only the principal direction of diffusion; and RD is
the average diffusion across the two minor axes.

Metrics such as these are often interpreted as a direct measure of axonal integrity,
with low FA thought to represent alterations in white matter that are consistent with DAI
(Shenton et al., 2012). However, this is not without pitfalls and challenges (e.g., Jones,

2010a; Jones & Cercignani, 2010; Le Bihan et al., 2006). FA values can change based on
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myelination, axon density, or the layout of axons within the voxel (Jones et al., 2013). As
such is it not a specific marker of any one property of the white matter (Caeyenberghs et al.,
2018; Jones et al., 2013). Increases in FA are sometimes observed when decreases would be
expected (e.g., Bazarian et al., 2007; Mayer et al., 2010) — while this is hypothesised to be
caused by cytotoxic oedema (Mayer et al., 2010), the true mechanism remains unclear.

Recently, algorithms have been created that can estimate and reconstruct the white
matter tracts of the brain using a technique called tractography. Unlike scalar metrics (e.g.,
voxel-wise FA), tractography is used to measure structural connectivity — how well regions of
the brain are connected. Tractography uses the diffusion signal described above as the basis
for an algorithm that reconstructs the white matter tracts, providing estimates of the axon
pathway orientation and density in living brain tissue (Tournier et al., 2011). In other words,
tractography is essentially a very complex game of connect-the-dots. The direction and
magnitude of the tensor or FOD derived from the diffusion signal in each voxel is used by the
tractography algorithm to generate streamlines. Of course, there are many algorithms
available to choose from, and selection of the appropriate technique will depend on the
acquisition parameters of the dMRI data (Jones et al., 2013). Numerous reviews and
methodological comparisons have been published in this field, debating the appropriateness
of each tractography technique from data acquisition through to statistical analyses (for

example, Hutchinson et al., 2018).

1.2.3 Tensors and tractography in TBI
Diffusion imaging, whether analysed using voxel-wise metrics, region of interest, or
whole brain tractography, has opened avenues for exploring the properties of the white matter

in healthy and damaged brain tissue. There is mounting evidence supporting dMRI as a
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sensitive diagnostic tool in the care of patients with TBI (for reviews, see Delouche et al.,
2016; Hulkower et al., 2013; Hutchinson et al., 2018; Levin et al., 2008; Xiong et al., 2014).
The relevance of dMRI techniques in the care of patients with TBI has long been
acknowledged (e.g., Kraus et al., 2007; Rutgers et al., 2008). The first study to examine TBI
in humans using diffusion imaging was published 18 years ago (Arfanakis et al., 2002) —
since then, there have been hundreds of publications examining regional and whole brain
alterations in anisotropy in patients with brain injuries.

In their seminal review, Hulkower et al. (2013) acknowledge the power of diffusion
imaging for visualising white matter, which can quantify pathology not detected by other
imaging modalities such as CT. They show that diffusion imaging can be leveraged to
distinguish between TBI patients and healthy controls, regardless of time since injury,
severity of injury, analytical or imaging discrepancies, and sampling characteristics. In
particular, across the 100 articles included in the review, the most common regions where FA
was significantly lower (or in some cases, higher) than healthy controls were the corpus
callosum (e.g., Aoki & Inokuchi, 2016; Caeyenberghs et al., 2010; Mayer et al., 2010; Niogi
et al., 2008) the posterior limb of the internal capsule (e.g., Caeyenberghs, Leemans, Coxon,
et al., 2011), the frontal lobe (e.g., Oni et al., 2010), corona radiata (e.g., Bonnelle et al.,
2011), cingulum (e.g., Benson et al., 2007), superior longitudinal fasciculus (e.g., Farbota et
al., 2012; Spitz, Maller, et al., 2013), and the centrum semiovale (e.g., Huisman et al., 2004;
Inglese et al., 2005).

Decreased white matter organization has also been shown to predict poorer outcomes
in chronic TBI patients of all severity types (Kinnunen et al., 2011; Kraus et al., 2007), and in
acute mild TBI patients with persistent symptoms (Niogi et al., 2008). Lower FA in the
subregions of the corpus callosum is associated with poorer bimanual coordination

(Caeyenberghs, Leemans, Coxon, et al., 2011) and with slower processing speed (e.g., Levin
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et al., 2008; Wilde et al., 2006), while lower FA in the cerebellum is associated with poorer
manual dexterity (Caeyenberghs, Leemans, Geurts, et al., 2011) in moderate-severe TBI
patients. D’souza et al. (2015) found that reduced FA and MD in the corpus callosum, fornix,
uncinate fasciculus and thalamic radiations are correlated with post-concussion symptom
scores. Working memory deficits in children with TBI are associated with lower RD of the
corpus callosum (Treble et al., 2013). Poorer visual motor tracking performance is associated
with lower FA of tracts important for transmission of information for motor responses to
visual stimuli, i.e., the cortico-spinal tract, posterior thalamic radiation, and optic radiation, in
adolescents with TBI (Caeyenberghs et al., 2010). The list goes on — for reviews, see
Delouche et al. (2016), Hulkower et al. (2013), Hutchinson et al. (2018), and Xiong et al.
(2014). Importantly, the overwhelming majority of these studies have employed tensor-based

metrics such as FA or have used tractography to look at tracts of interest.

1.2.4 Advances in tractography

It is well-known that tractography techniques suffer from several limitations and
biases, impacting the reliability of findings (Jeurissen et al., 2013; Jones, 2010a). Both
deterministic and probabilistic tractography algorithms are commonly used to reconstruct
streamlines, and both have problems with accurately reconstructing voxels with crossing or
kissing fibres (Jones et al., 2013). After all, tractography is not a direct replication of the
anatomy of white matter pathways, but a reconstruction based on finite diffusion signals,
voxel by voxel. Therefore, in order to obtain measures of structural connectivity that are
robust and interpretable, reconstruction techniques that are as biologically accurate as
possible must be used (Sporns et al., 2005). In the present research program, a state-of-the art

diffusion MRI sequence and processing pipeline is employed to avoid biases that may result
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in false pathways. Many of the studies described in section 1.2.3 that used tractography to
examine white matter tracts in TBI patients were performed before these techniques became
available. Three major avenues were explored in this thesis for improving the robustness of
tractography: minimising false positives, generating streamlines from the grey-white matter
boundary, and avoiding reconstruction biases.

First, to minimise false positives by avoiding overestimation of the volume of white
matter in voxels containing both signal types, a single-shell 3 tissue CSD model with fibre
orientation distributions estimated in the grey matter, white matter, and CSF is used
(Jeurissen et al., 2014). To the best of our knowledge, this will be one of the first projects
using this new multi-tissue method of CSD to estimate white matter tracts in TBI patients.
Second, when generating tracts, certain termination criteria are required that tell the algorithm
to discontinue the streamline. However, Smith et al. (2012) showed that these criteria allowed
streamlines to terminate in the white matter or CSF, which is anatomically implausible. This
precipitated their development of Anatomically Constrained Tractography (ACT) to
accurately determine where streamlines should be generated and terminated based on grey
matter segmentation from structural T1 images. ACT has also been shown to reduce the
number of biologically implausible streamlines by restricting streamline initiation and
termination to the grey-white matter boundaries (e.g., Horbruegger et al., 2019).

Finally, streamline density is often over-estimated in longer fibre pathways — referred
to as the reconstruction bias. According to Jones et al. (2013), the density of the streamlines
that are reconstructed are not equivalent to the density of the actual fibre pathways. The
number of streamlines is an important measure often used to quantify the strength of the
connection between any two regions of the brain — however, if the tractography is biased

towards longer streamlines, this measure may not be reliable. To use a measure of streamline
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density as a proxy for white matter organisation, it is important to use the most biologically
accurate measure.

Using the FOD amplitude representing the density of fibres in each voxel, the
advanced tractography reconstruction technique ‘SIFT’ (Spherical-deconvolution Informed
Filtering of Tractograms) provides a more accurate representation of streamline count (Smith
etal., 2013, 2015b; Yeh et al., 2016). SIFT filters the density of the streamlines to match the
density implied by the FOD from the diffusion signal, by deleting streamlines. However, this
has the unwanted effect of increasing the computation time, as ~90% of the reconstructed
streamlines must be discarded. SIFT2 was designed shortly after in response to this concern
(Smith et al., 2015a). Instead of eliminating streamlines to match the underlying fibre density,
the FODs are used to determine an appropriate cross-sectional area that is then multiplied by
the number of streamlines. The resulting streamlines are therefore proportionate to the
density of the underlying FODs without the need for wasteful deletion processes — and
therefore should be a closer estimation of the actual underlying white matter density (Smith,
Raffelt, et al., 2020). Because it is more related to the actual diffusion signal than unfiltered
structural connectivity measures, using SIFT2 has been shown to have the potential for
stronger clinical relationships (McColgan et al., 2018), but has not yet been utilised to

quantify structural connectivity in TBI patients.

1.3 Connectomics and Network Analysis

1.3.1 Introduction to connectomics
It is widely acknowledged that cognitive functions rely on broadly distributed
cognitive networks, and so tract-based approaches such as those described in sections 1.2.2

and 1.2.3 may form an incomplete perspective of brain connectivity. Rather, the brain
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operates as a set of interconnected networks in complex arrangements, disseminating
information across distributed areas (Bressler & Menon, 2010). Connectome analyses have
provided a novel way to understand communication in brain networks (Bassett & Sporns,
2017). The connectome is the entire collection of all white matter connections within the
brain (Sporns et al., 2005) (see Figure 6 for an overview of connectome construction). Based
on the disconnection concept of TBI, network analysis is highly suited to this topic as it can
be used to consider the complex, integrated nature of the brain and the impact of both large

focal lesions and small white matter lesions.

Figure 6

The Basics of Connectome Construction
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Note: (A) Raw diffusion MRI images are pre-processed to remove noise; (B) FODs are estimated for each voxel;
(C) tractography is performed to generate the streamlines (edges); (D) anatomical T; scans are used to segment
brain regions (nodes); (E) the connectome is created by assigning the streamlines from tractography to the brain
regions from Freesurfer, resulting in; (F) a connectivity matrix where each cell represents the connectivity strength
between two brain regions.

To generate the structural connectome, the brain is mathematically described as a
series of ‘nodes’ or regions of grey matter, connected by ‘edges’ that represent the white

matter connections (Hagmann et al., 2008). The nodes of the graph are delineated from
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structural T1 images and segmented using ‘atlases’ that describe functionally specialised
modules of grey matter tissue (e.g., Desikan-Killiany atlas; Desikan et al., 2006). The edges
are the connections between these brain regions, quantified using either functional (fMRI) or
tractography (see section 1.2.4). It is important to note that functional and structural imaging
modalities summarise brain networks differently. In simple terms, the functional network
summarises how likely two regions of the brain are to be active at the same time; the
correlations between blood-oxygen-level-dependent (BOLD) signals of two regions indicate
the likelihood that if one region is active then the other is as well. On the other hand, the
structural network is an estimation of the microstructural properties of the white matter fibre
bundles connecting two brain regions. Given white matter damage is a key element of TBI
(Hulkower et al., 2013), and the questions that remain around whether DAI is an underlying
cause of ongoing cognitive deficits in chronic patients, the focus of this thesis is on structural
connectivity (dMRI). However, it should be noted that functional connectivity (fMRI) is
another (enormous) field entirely and has its own relationship with brain injury. The link
between the structural connectivity findings of this thesis and how these may relate to
relevant functional theories is examined in the General Discussion (Chapter 6).

For the purposes of investigating structural connectivity, nodes and edges can be
defined in different ways depending on the scale at which one wishes to analyse the network
(Zalesky et al., 2010). A macroscopic view is normally preferred when studying the human
connectome in vivo, where nodes are the major cortical and subcortical regions of the brain
and the edges represent the white matter bundles that connect them (Bassett & Bullmore,
2009). The simplest way to define edges is using a binary measure of streamline connectivity
(connection present = 1; connection absent = 0), which avoids problems with diverse
streamline densities. In cases such as this, a certain threshold is applied to the connectivity

matrix such that only the top 10% (or so) strongest connections remain. As such, binary
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connectomes are oversimplified and are dependent on arbitrary density thresholds (Yeh et al.,
2020). Instead, it is argued that the weight of the connection between two regions is
important to factor in brain network representation. While dMRI cannot provide exact
measures of the microstructural vasculature that underly information transmission (e.g., axon
diameter, myelination, or density), it does allow indirect approximations of these biophysical
properties (for review, see Sotiropoulos & Zalesky, 2019).

As such, the edges of the brain graph are often represented using weights derived
from the tractography techniques and diffusion metrics described above (section 1.2.2). Most
often, the number of streamlines (NOS) — the number of reconstructed streamlines between
two regions — is used to quantify connectivity between two brain regions. NOS, however, is
not an indication of the actual number of axons within that bundle, although it can be
misinterpreted as such (Lazaridou et al., 2013; Schlaug et al., 2009). Instead, NOS can be
heavily biased by processing of the tractography algorithms as described in section 1.2.4
(also see Jones & Cercignani, 2010), and it is therefore hard to make biologically meaningful
interpretations following a change in NOS. Another common method of quantifying edge
weights in a connectome analysis is using the average FA of all voxels traversed by a
particular streamline. Again, as described above, FA is a measure of white matter
organisation that is not specific to any one type of microstructural alteration and is heavily
influenced by the presence of crossing fibres (Jeurissen et al., 2013). The utility of the
advanced methods detailed in section 1.2.4 such as SIFT2 to quantify the edge weights in a
connectome analysis has only just begun to be explored (Civier et al., 2019; Frigo et al.,

2020).
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1.3.2  Graph theoretical analysis

In modern-day neuroimaging, graph theoretical analysis is a mathematical tool used
for summarising network properties of the human connectome. However, graph theory itself
emerged in 1735, when the Swiss mathematician Leonard Euler answered the question of
whether it was possible to completely traverse his hometown with seven bridges and four
land masses using each bridge only once. To solve this geographical problem, Euler
summarised the information into nodes (landmasses) and edges (bridges) and proved that it
was not possible. In this instance, the topography (spatial distances between landmasses) was
unimportant — it was the topology (the layout of the bridges that connected each landmass)
that allowed Euler to solve the riddle. Since then, graph analysis has become a branch of
mathematics devoted to describing and quantifying network structures by their topology. In
the modern world, graph theory is used extensively to understand network properties in social
sciences, epidemiology, website page rankings and data tracking. In the 1980’s, graph theory
was first applied to the study of the human brain (Watts & Strogatz, 1998).

The connectivity matrix (see Figure 6) represents the entire set of nodes and edges of
the brain in a two-dimensional format, upon which mathematical applications can be
performed. Each of the axes of the connectivity matrix represents the brain regions, while the
squares of the matrix represent the connections between those regions. Matrix operations can
be used to summarise connectivity strength between brain regions in terms of integration and
segregation, or how central certain nodes are to the graph (Rubinov & Sporns, 2010). These
summary measures are called graph metrics — Table 2 provides working definitions of the
most common graph metrics, which are built from four basic matrix properties. These are
degree (the number of connections for node i), strength (the sum of edge weights for node i),

shortest path length (the shortest distance or fewest hops between node i and j), and clustering
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coefficient (the probability that two nodes i and j each connected to a third node k are also

connected to each other).

Table 2

Definitions of Basic Graph Metrics

Graph Metric

Description

Higher values mean...

Integration

Characteristic Path
Length

Global Efficiency

The shortest path is the fastest and
most direct communication pathway
between two network nodes.
Characteristic path length is defined as
the average shortest path length
between all node pairs in a network
(Watts & Strogatz, 1998).

The inverse average shortest path
efficiency between all possible pairs
of nodes in a network, where
efficiency is computed as the inverse
of shortest the path length (Latora &
Marchiori, 2001).

A higher characteristic path length
indicates that the fastest
communication pathways between
regions are, on average, longer and
less efficient.

A higher global efficiency will
indicate a greater capacity for efficient
integration of information (in parallel)
across the network.

Segregation

Clustering Coefficient

Local Efficiency

The number of existing connections
between the neighbours of a node,
divided by all the possible
connections, calculated for each node
individually and averaged across the
entire network (Watts & Strogatz,
1998).

The local efficiency is the average of
inverse shortest path length in a local
area. Mean local efficiency is taken as
the efficiency of each node in the
network averaged over the total
number of nodes (Latora & Marchiori,
2001).

A higher average clustering
coefficient means that a greater
proportion of connections are made
between nodes neighbours, compared
to the connections possible, and
indicates more clustered connectivity
around individual nodes.

A higher local efficiency means
greater capacity for integration
between the immediate neighbours of
a given node.

Centrality
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Graph Metric

Description

Higher values mean...

Strength

Betweenness Centrality

The strength of a node is the sum of
the weights of its edges. Mean
strength is the average of all the
normalised strength values across
each node of the network.

The proportion of shortest paths that
pass-through node i between its
neighboring nodes, calculated for each
node and averaged across the network
(Freeman, 1978).

A higher strength indicates a greater
average edge weight for each node.

Higher betweenness centrality means
that node lies on more shortest paths
in the network pass through it, and
this that node is more central and
important to the network. A high
network/average betweenness
centrality indicates a high number of
nodes that are central to shortest
paths.

Summary Measures

Small-worldness

The capacity of a network for an
energy-efficient balance between
clustering and short paths, relative to
an appropriate random network (e.g.,
Maslov & Sneppen, 2002). A small-
world network has normalised
clustering higher than a random
network (y > 1), and normalised
characteristic path length akin to a
random network (A ~ 1) (Humphreys
& Gurney, 2008).

If 6 > 1, the network is demonstrating
small-world properties.

The connections in the human brain are predominantly short and weak, connecting

proximal neighbours very tightly. This means that information can be shared very easily

between neuronal columns that share similar functions. However, higher order cognition

relies on signalling between broadly distributed regions to engage attention and execute

complex actions (Bressler & Menon, 2010). Therefore, the human brain, both functionally

and structurally, optimises performance by balancing functional segregation and network

integration (Bullmore & Sporns, 2009).

Measures of integration are based on path length (e.g., characteristic path length and

global efficiency) and are also known as communication measures, as they represent how
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well brain regions can communicate with each other. Segregation is based on clustering and
measures the decomposition of brain regions into functional modules. This modular structure
is interspersed with some long-distance connections, via ‘hubs’ such as the thalamus and
cingulate regions, allowing for information to integrate between modules (Watts & Strogatz,
1998). Hubs are measured using betweenness centrality, which determines the number of
‘shortest paths’ that traverse each brain region. This balance between segregation and
integration, and the presence of hubs, is what is thought to give rise to higher order cognitive

functions — and what is potentially damaged following brain injury.

1.3.3 Graph metrics and cognition

It is often assumed that higher order cognitive functions rely on efficient integration
properties of the structural network (Bullmore & Sporns, 2012). As such, communication
measures have been suggested to be important measures in graph theoretical analyses
(Rubinov & Sporns, 2010). Several graph theoretical studies have revealed that
communication efficiency can predict individual variation in processing speed in older adults
(e.g., Wen et al., 2011) and clinical populations (e.g., Caeyenberghs et al., 2014; Reijmer,
Leemans, Caeyenberghs, et al., 2013). For example, Caeyenberghs et al. (2014) revealed that
slower processing speeds corresponded with lower global efficiency in adults with TBI.
While these early results are promising, advances in the way we measure brain network
communication, process diffusion weighted imaging data, and model information processing
could lend further weight to the link between network efficiency and information processing
speed.

Most connectome studies have computed communication metrics based on shortest

path length — including characteristic path length and global efficiency (based on the seminal
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article by Rubinov & Sporns, 2010) — to tap into information transfer (for review, see Betzel,
2020). A network with short path lengths is often interpreted as having efficient information
transfer between brain regions (Latora & Marchiori, 2001). Similarly, longer path lengths in
brain networks of brain-injured populations are interpreted in terms of poorer efficiency of
information transfer (Imms et al., 2019). However, several connectome studies failed to show
significant associations between processing speed and communication metrics (e.g., Kim et
al., 2014a; van der Horn et al., 2017). For example, Kim et al. (2014a) found that path length
was longer in people who had suffered brain injuries — but this increase wasn’t associated
with slower processing speed. The reason for this may lie in the sensitivity of the
communication metrics used. Recently, a more biologically realistic routing model for brain
network communication has been suggested, i.e., navigation efficiency (Seguin et al., 2018).
Navigation metrics assume that information moves from one node to the next based on the
distance between that node and the target node — and have been shown to be a plausible way
of characterising communication in the human brain network (Seguin et al., 2020). The
relationship between this communication measure and processing speed has yet to be
examined. Furthermore, this communication measure has never been calculated in TBI

patients.

1.3.4 Graph metrics: A biomarker of brain injury?

Graph theoretical analysis has previously been used to compare the connectivity of
damaged brain networks to healthy connectomes (Griffa et al., 2013), but understanding of
the brain network of patients with TBI is still emerging (Caeyenberghs & Leemans, 2014;
Caeyenberghs, Leemans, De Decker, et al., 2012; Caeyenberghs, Leemans, Heitger, et al.,
2012; Yuan, Treble-Barna, et al., 2017). In their seminal review paper, Griffa et al. (2013)

describe how graph metrics can be used to represent network disruption in ADHD (Cao et al.,
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2013), neurodegenerative diseases like Alzheimer’s disease (Lo et al., 2010) and multiple
sclerosis (Shu et al., 2011), and psychiatric disorders such as schizophrenia (Fornito et al.,
2012). Griffa et al. state that graph theory provides a unique insight into how damaged neural
tissue in one local area of the brain can impact the entire network structure — and that graph
metrics therefore have the potential to be useful biomarkers of brain injury.

In one of the first structural graph theory studies of TBI, Caeyenberghs, Leemans, De
Decker, et al. (2012) revealed that young TBI patients have decreased connectivity degree
within the brain, which correlated significantly with poor balance. Similarly, Kim et al.
(2014a) found that longer path length in moderate-severe adults with TBI correlated with
poorer higher-order cognitive processes like executive function and verbal learning. Since
then, more research has suggested that graph metrics could be ‘biomarkers’ of TBI (Hellyer
etal., 2015; Yuan et al., 2015; Yuan, Wade, et al., 2017). In TBI, to date, 18 studies have
been performed comparing graph metrics in TBI patients to healthy controls. The first
empirical chapter of this thesis is a systematic literature review and meta-analysis of 13 of
these studies (the remaining 5 studies published after this paper was accepted in January 2019

are described in linking Chapter 5.1).

1.3.5 Use of graph metrics in individual patients

TBI patients are heterogeneous (see section 1.1.5) and group-level comparisons
disregard individual variability (Mant, 1999). Thus, there is a mounting call for the use of
individual-level approaches to enable the analysis of clinically heterogeneous groups such as
TBI (Irimia, Chambers, et al., 2012; Jolly et al., 2021) and Schizophrenia (Lv et al., 2020).
For example, Lv et al. (2020) examined alterations in FA and CT in Schizophrenia patients

compared to a normative range. They found overall reductions in both measures for the
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Schizophrenia patients — however, the anatomical location of individual decreases was highly
inconsistent, and as such group-level maps were not representative of individuals. Another
study by Jolly et al. (2021) has used individual examination of FA in TBI patients in the
chronic (>6 months) and subacute (10 days — 6weeks) phases to develop a structural
connectivity pipeline for diagnosing diffuse axonal injury (DAI). These recent studies,
however, do not utilise connectomics to represent individual patients.

The idea of personalised structural connectomics for improving the care of TBI
patients was introduced by Irimia, Wang, et al. (2012). They produced a visualisation method
that allows clinicians to rapidly identify white matter atrophy over time, in order to create
personalised rehabilitation programs (Irimia, Chambers, et al., 2012). There is other evidence
that individual network- and connectivity-based profiles are promising for patient
characterisation. For example, individual measures of connectivity (dynamic resting-state of
the default mode network) predict changes in symptoms in patients with Schizophrenia better
than grey matter volume/cortical thickness and clinical observations (Kottaram et al., 2020);
and individual variations in connectome topography have been shown to predict surgical
outcome in patients with temporal lobe epilepsy (Bonilha et al., 2015). Thus, personalised
connectomics holds promise as a means for characterising individual patients’ topological
profiles. To date, however, no study has examined the profile of graph metric alterations in

individual TBI patients.

1.4 Aims and Research Questions

The overarching aim of this research program is to interrogate the use of graph
metrics to study TBI. While there is great interest in the use of graph metrics as a diagnostic
‘biomarker’ of TBI, there is currently no systematic examination of which graph metric/s are

specific enough to be given this label (section 1.3.4). In addition, the relationship between
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graph metrics and measures of cognitive performance is not well understood (section 1.3.3),
making interpretation of graph metric biomarkers difficult. Finally, the issue of heterogeneity
in the TBI population (section 1.2.5) is not addressed by current group-level graph theoretical
approaches. Therefore, this research project constitutes a substantive critical assessment of
the use of graph metrics as biomarkers of TBI.

The first aim of this research program is therefore to systematically evaluate the
current status of structural graph analysis findings in TBI patients. In the first empirical study
(Study 1), a narrative review of diffusion MRI papers comparing healthy controls using
global graph metrics — and the first meta-analysis of graph metrics in TBI — is conducted. The
aim is to identify whether there are systematic differences in graph metric findings between
TBI subtypes, and to provide a framework for hypotheses in future graph theoretical studies,

which is currently lacking. The research questions were:

1. Which graph metrics are consistently different between TBI patients and
healthy controls across all the currently available literature?

2. Do alterations in graph metrics vary according to time since injury; severity of
injury; and age at injury?

3. What are the major methodological challenges associated with investigating

graph metrics in TBI patients?

The second aim of this research program is to examine whether graph metrics are
related to measures of cognition. The findings of the meta-analysis were used to decide which
graph metric to focus on. The second empirical study (Study 2) therefore investigates how
inter-individual differences in processing speed relates to communication metrics — i.e.,

characteristic path length, navigation, and global efficiency. This analysis is performed in a
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healthy cohort, as a proof-of-concept for future studies. This study also demonstrates the
methodology used to overcome the connectome reconstruction challenges raised in the first
empirical study and in section 1.2.4; and a more specific measure of processing speed called

drift rate. The research questions were:

1. Can communication metrics be used as a biological marker of inter-individual
variability in processing speed?

2. Which communication metrics are the most specific to processing speed?

Finally, the third aim is to develop and implement a personalised structural
connectome analysis and visualisation approach for a case-series of moderate-severe TBI
patients. Thus, the third empirical study (Study 3) provides a demonstration of how graph
metric biomarkers might be used in the care and treatment of heterogeneous TBI patients.
This includes a profile of graph metrics that are shown to be altered in TBI patients compared
to healthy controls from Study 1, including a new graph metric navigation efficiency which is
emerging as a more biologically grounded representation of global network communication
in Study 2. An extensive cognitive testing battery is also employed, including measures of
core cognitive domains affected following TBI: processing speed, attention, and working
memory (section 1.1.4; Rabinowitz & Levin, 2014). Finally, the advanced connectome
construction pipeline from Study 2 is once again used to overcome known limitations of

connectome reconstruction in TBI patients (section 1.2.4). The research questions were:

1. How can visual comparisons between TBI patients and healthy controls be

facilitated using graph metrics?
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2. What observations can be made regarding the variability in graph metrics and
cognitive performance across individuals?
3. Do personalised connectomics have a role in the care and treatment of TBI

patients — i.e., is using graph metrics as biomarkers of brain injury feasible?

The following three empirical chapters address each of these aims in turn. The first
empirical chapter (Study 1) consists of a literature review and meta-analysis of all available
TBI studies that use graph metrics to compare patients to healthy controls. This study
investigates which graph metrics are consistently different between TBI patients and healthy
controls, how these alterations change according to injury factors, and the methodological
challenges that remain to improve connectome construction (Aim 1, Research Questions 1, 2,

and 3).
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Chapter 2: Study 1 - The structural connectome in Traumatic Brain

Injury: A meta-analysis of graph metrics
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2.1.2 Abstract

Although recent structural connectivity studies of traumatic brain injury (TBI) have used
graph theory to evaluate alterations in global integration and functional segregation, pooled
analysis is needed to examine the robust patterns of change in graph metrics across studies.
Following a systematic search, 15 studies met the inclusion criteria for review. Of these, ten
studies were included in a random-effects meta-analysis of global graph metrics, and subgroup
analyses examined the confounding effects of severity and time since injury. The meta-analysis
revealed significantly higher values of normalised clustering coefficient (g=1.445, CI1=[0.512,
2.378], p=0.002) and longer characteristic path length (g=0.514, CI=[0.190, 0.838], p=0.002) in
TBI patients compared with healthy controls. Our findings suggest that the TBI structural
network has shifted away from the balanced small-world network towards a regular lattice.
Therefore, these graph metrics may be useful markers of neurocognitive dysfunction in TBI. We
conclude that the pattern of change revealed by our analysis should be used to guide hypothesis-

driven research into the role of graph metrics as diagnostic and prognostic biomarkers.
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2.1.3 Introduction

Traumatic Brain Injury (TBI) is one of the leading causes of death and disability in young
people, affecting 10 million people worldwide every year (Humphreys et al., 2013; Hyder et al.,
2007). The severity of a brain injury is typically described as mild, moderate, or severe, based on
time spent unconscious and/or coma rating score, the duration of post-traumatic amnesia, and
neuroimaging results. Cognitive deficits (e.g., slow processing speed and poor concentration),
motor control deficits (e.g., poor manual dexterity, balance deficits), and behavioural problems
(e.g., impulsivity) are particularly common (Rabinowitz & Levin, 2014; Rossi & Sullivan, 1996).
Approximately 15-30% of mild TBI cases (Shenton et al., 2012) and up to 65% of moderate-
severe cases (Rabinowitz & Levin, 2014; Selassie et al., 2008) report long-term problems. These
persistent deficits cause disability and interfere with a patient’s ability to perform day-to-day
tasks, for example getting dressed, planning ahead, and preparing food (Rabinowitz & Levin,
2014). Isolating neurological biomarkers holds promise as a means to identify which patients are
at risk of long-term disability, which has implications for patient management and development
of economically sustainable treatment options.

There is mounting evidence supporting diffusion MRI as a sensitive diagnostic tool in the
care of patients with TBI (for reviews, see Delouche et al., 2016; Hulkower et al., 2013;
Hutchinson et al., 2018; Xiong et al., 2014). First, changes in white matter organisation
following TBI have been demonstrated in several important fibre bundles of the brain (Bendlin et
al., 2008), including the superior longitudinal fasciculus (e.g., Farbota et al., 2012; Spitz, Maller,
et al., 2013) and the corpus callosum (e.g., Levin et al., 2008; Mayer et al., 2010; Rutgers et al.,

2008). For example, in a meta-analysis of 13 diffusion studies of TBI, significant increases in
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fractional anisotropy (FA) and decreases in mean diffusivity (MD) were found in the posterior
parts of the corpus callosum (Aoki & Inokuchi, 2016).

Second, decreased white matter organization has been shown to predict poorer outcome
in chronic TBI patients of all severity types (Kinnunen et al., 2011; Kraus et al., 2007), and in
acute mild TBI patients with persistent symptoms (Niogi et al., 2008). Lower FA in the
subregions of the corpus callosum has been associated with poorer bimanual coordination
(Caeyenberghs, Leemans, Coxon, et al., 2011) and slower processing speed (e.g., Levin et al.,
2008; Wilde et al., 2006) in moderate-severe TBI patients. Similarly, lower FA in the cerebellum
has been associated with poorer manual dexterity (Caeyenberghs, Leemans, Geurts, et al., 2011).
Despite multiple reports of altered diffusion metrics, the regional analyses reported in these
studies cannot identify how whole brain networks are affected by white matter damage following
TBI.

Because TBI may be considered a ‘disconnection syndrome’, where symptoms are
accounted for by altered connectivity between regions of the brain, it is important to take global
network disruption into account (Catani & Ffytche, 2005; Griffa et al., 2013). Where traditional
diffusion approaches such as those outlined above examine isolated brain regions, graph
theoretical analysis (GTA) can characterise the global structure of the brain network (or
‘connectome’; Bullmore & Bassett, 2011; Hagmann et al., 2008; Sporns, 2013). Structural GTA
represents the brain as a set of ‘edges’ (white matter pathways) that pass between ‘nodes’ (brain
regions), using the reconstruction of white matter tracts as weights. This graph is then used to
calculate graph metrics, which estimate network properties such as global integration and
functional segregation (see Supplementary Material 1 for definitions, interpretations, and

calculations for the graph metrics included in this review).
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Connectome analyses have rapidly found applications in the clinical neurosciences
because the balance between integration and segregation necessary to support complex function
may be affected by disease or injury. In their seminal review, Griffa et al. (2013) propose that
graph metrics show promise as biomarkers in neurodevelopmental disorders such as ADHD
(e.g., Cao et al., 2013), neurodegenerative diseases like Alzheimer’s disease (e.g., Lo et al.,
2010), and psychiatric disorders such as schizophrenia (e.g., Fornito et al., 2012). In one of the
first structural GTA studies of TBI, Caeyenberghs, Leemans, De Decker, et al. (2012) have
revealed that young TBI patients have decreased connectivity degree within the brain, which
correlated significantly with poor balance. Similarly, Kim et al. (2014a) found that longer path
length in adults with moderate-severe TBI correlated with poorer higher-order cognitive
processes like executive function and verbal learning. Since then, more research has suggested
that graph metrics could be “‘biomarkers’ of TBI (e.g., Hellyer et al., 2015; Yuan et al., 2015;
Yuan, Wade, et al., 2017).

With recent growth in the use of structural GTA in all types of TBI, there is a need to
conduct a meta-analytical review to probe consistent patterns of change in graph metrics to see
which hold promise as biomarkers. In the study presented here, we conduct a narrative review of
diffusion MRI papers comparing healthy controls (HCs) using GTA, and the first meta-analysis
to date of graph metrics in TBI. Heterogeneity in patient samples is addressed using subgroup
analyses. This divides up an already small body of research, and as such the results are for
hypothesis generation only. It was also our aim to draw inferences from this data about how
graph metrics might be used as biomarkers in TBI, and to provide a framework for hypotheses in

future GTA studies.
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2.1.4 Method

21441 Search and Selection Strategy

A systematic literature search was conducted using Medline, CINAHL, PsycINFO, and
Web of Science for all relevant articles published from 1999 until the last search date (4™ of
April 2018; see Figure 1 for PRISMA diagram). The search terms were [((T| OR AB) “traumatic
brain injur*” OR TBI)) AND ((TI OR AB) connectom* OR *“structural connect*” OR “graph
theor*” OR “graph metric*” OR “graph analys*” OR “network analys*”)] (see Supplementary
Material 2 for Mesh headings).

Abstracts and titles of 247 unique papers were returned from this search. The reference
lists of review papers were searched for additional studies (but none were found). After
screening titles and abstracts, we excluded studies of functional MRI, electro-encephalography
(EEG) or magnetoencephalography (MEG), animal models of TBI, and other causes of acquired
brain injury (such as brain tumours or stroke). Also excluded were studies that did not employ a
network analysis (for example, tract-based comparisons of FA), any publications that were not

peer-reviewed (e.g., conference abstracts), and review papers.
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Figure 1.

PRISMA flow diagram of the systematic literature search
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The remaining 26 articles were examined in full to assess eligibility. Studies that did not
compare the structural connectomes between TBI patients and HCs, or that did not calculate
graph metrics or run network-based statistics (NBS) were excluded, leaving 15 studies for
inclusion in the narrative review. Of these, ten studies were included in the meta-analysis,
addressing global graph metrics that directly compared the structural connectomes of TBI
patients and HCs. The five studies not included in the meta-analysis were Fagerholm et al.
(2015) and Mitra et al. (2016), both of which applied machine learning techniques; Dall'Acqua et
al. (2016)which employed Network Based Statistics (NBS) for the group comparisons; and
finally Solmaz et al. (2017) and Caeyenberghs et al. (2013), who only investigated group

differences in regional graph metrics.

2.1.4.2  Quality Assessment

Two authors (PI, AC) assessed the methodological quality of each study independently,
using a quality checklist for diffusion MRI studies adapted from Strakowski et al. (2000). This
checklist has been used to measure methodological quality of papers in previous meta-analyses
on schizophrenia (e.g., Baiano et al., 2007; Shepherd et al., 2012), major depressive disorder
(e.g., Jiang et al., 2017), and bipolar disorder (Strakowski et al., 2000). As shown in
Supplementary Material 3, the checklist included three categories: (i) subjects (items 1-4); (ii)
image acquisition methodology and analysis (items 5-10); and (iii) results and conclusions (items
11-13). For each item, scores of 1, 0.5, and 0 were assigned (1 = criteria fully met; 0.5 = criteria
partially met; 0 = not met). Total scores vary from 0 to 13. Currently, there are no established
cut-off scores for high- and low-quality studies using this tool, however, it was decided by the

research team that any study with less than half the total score would be excluded from the
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analysis for poor methodological quality. Disagreements between reviewers were resolved by a

third review from the senior author (KC).

2.1.4.3  Data Extraction for Quantitative Synthesis

Global graph metrics estimating global integration (global efficiency, normalised path
length, and characteristic path length); functional segregation (normalised clustering coefficient,
transitivity, mean local efficiency, modularity); centrality, resilience (betweenness centrality,
small-worldness, assortativity); and basic measures (degree, density, and strength) were
extracted across studies (see Supplementary Material 1 for comprehensive definitions of these
graph metrics). To calculate effect sizes, means and standard deviations were extracted from
published articles, supplementary materials, or via email correspondence with the authors
(Caeyenberghs et al., 2014; Kim et al., 2014a; van der Horn et al., 2017). In one study, p-values
and t-scores were used to estimate the effect size (Hellyer et al., 2015). For longitudinal GTA
studies (Yuan, Treble-Barna, et al., 2017; Yuan, Wade, et al., 2017), only the baseline (“pre-
training’) comparisons between TBI and HCs were included. Two papers reported TBI
connectivity data in separate subgroups, one according to severity level (Konigs et al., 2017), and
the other by post-traumatic complaints (van der Horn et al., 2017). The latter provided pooled
data for the purpose of the overall synthesis via email. For Konigs et al. (2017) the averages
across the TBI group were pooled for the global synthesis in Microsoft Excel (using calculations
included in Supplementary Material 4). Graph metrics that were calculated at the local or nodal
level were excluded (i.e., local efficiency, eigenvector centrality, and betweenness centrality of
singular nodes not averaged across the network) to constrain the scope of the analysis to

network-level dysfunction.
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2.1.4.4  Data Analysis for Quantitative Synthesis

Hedge’s g, the standardised mean difference score between groups, was calculated for
each outcome variable (i.e., graph metric) using the Comprehensive Meta-Analysis software, and
analysed using a random-effects model (CMA,; Biostat, USA, v2.2.064). In basic terms, a
separate meta-analysis for each graph metric was run, as each metric should be treated as a
separate outcome measure. To calculate the overall effect sizes, mean effects of each metric were
pooled across studies and weighted by sample size and the 95% confidence intervals (CI). A
positive effect size indicated that the TBI group had a higher mean value of the graph metric
compared with the HC group, while a negative value indicated higher mean values in the HC
group. Effect sizes were regarded as small if g >0.2, medium if g >0.5 and large if g >0.8 (Cohen,
1988). Also, subgroup analyses on graph metrics were conducted for injury severity (mild,
moderate-severe), chronicity (time since injury) (acute: <6 months post injury; chronic: >6
months post injury), and age at injury (paediatric: <18 years old; adult: 18-65 years old). The
results of our meta-analysis should be considered as hypothesis generation only, as suggested by
the Cochrane guidelines when the number of studies in the analysis is low (Sambunjak et al.,
2017).

The 12 statistic was used to index heterogeneity in the data, i.e., the percentage of
observed variability that is greater than what would be expected by chance or sampling error
alone. High scores (12>75%) suggest heterogeneity due to differences in sample demographics
(Higgins et al., 2003). Low 12 scores (12 <50%) represent homogenous data, supporting a real
effect between HC and TBI groups. Publication bias was assessed using Egger’s test for

asymmetry in a funnel plot (Egger et al., 1997).
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Finally, false discovery rate (FDR) correction (p<0.002) was conducted for all analyses
in accordance with recommendations by Wang and Ware (2013). Interdependencies between
outcomes were accounted for using the Benjamini-Yekutieli procedure on the Bioinformatics

toolbox in MATLAB_R2018a (Benjamini & Yekutieli, 2001).

2.1.5 Results

2.1.5.1 Sample characteristics

The TBI patient pool included 429 participants, and the HC pool 306, with an age range
of 8 — 65 years old. Four studies included mTBI patients only, six studies included moderate-
severe TBI patients only, and two studies included both severity types (see Table 1). Chronicity
varied widely between studies, with TBI groups ranging from acute (e.g., within 96 hours post
injury; Yuan et al., 2015) to chronic (e.g., 5.91 years post injury, £ 3.1 years; Yuan, Treble-
Barna, et al., 2017). Six studies recruited paediatric TBI patients, two studies included both

children and young adults, and four studies recruited adult TBI patients.

56



Aydei3ojoen

snsifiqeqoid paurensuod Afjesrwoleue = 1)V Aydeidoioen onsiiqeqold = 14 ‘Aydei3olorn onsiuuaiop = I SUONN[OAU0IIP [BILIDYdS Pauensuod = qs) p
‘1 10Y O3 JO BaIR 90RJINS 9y} AQ PO[EOS ‘I 9POU UL PIPIIS SOUI[WELALS JO Joquunu ay) £q PIpIAIp ‘[ opou 03 1 opou

WOJJ SAUI[WERANS JO Joquunu dY)) A[Iqeqold [eUOnIpuOd Pa[eds = DS S[OY 0M) Sunoouuod joexn e Jo ANfiqeqord ayi = S {(99rJIns jrun 19d SUONOUUOD 91q1J
Jo IJoquunu) AJISuop aurueans = (IS ‘opou ay} y3noayy ssed jey) sourjueans [je Jo o3ejuadiod = 9 (Adonosiue [euonoeyy = v (SOUI[WUBANS JO IdqUNU = SON ,
"sosA[eue dnoi3qns 919A98-91LIOPOUL Y} UL PApN[oUL Sem (G1(7) T8 19 J9A[[SH YOons S pue ‘10Ads-91eIopowl d1om sjudned [ €9 9y JO 66 4

-91qeorddy 10N = VN ((dS)N ‘sypuowr ur paquiosap ‘syuaned g 10J UBdS YA [IUN 39suo/Am(ur oy Wwoj S oWl ], , :9J0N

FEETERE] SUGTEAL Fmage] o LTOT “1®

SON 1 a[dioug 0& Im{jagaIay [RAILINELTY PaTELOny (04 L} o0ot 19 F-1 PV 51 cecl {rad 19 3pEAL “mEN R
: Iozasuadia suoiEan Faage] (Zeg) BIDADS- . . . L1oz
SON 1a sy 06 mjagaas) [EMIONEY PRI (D9 1) 0001 19 6L AIPO RL -6 (IThLT I 12 BUIEg
~3qILL ‘uEnx
. amaanuadia sumEar Fmjage] [ . . si0g
SON 1a apdioutg 06 mjagan)  eonmeeny pajeweyny (09 110001 19 1’0 PItA pEL eI TR s weng
) . {Iapmsaar]) (1) DDAIE- 3 . . BI0T
SON 12v) 1d asd 8 Ty 0N uomE([2aed [ENpLapuy {0g 1} oozt ¥ BT HRISPORY ¥El Lr-n L R LFERTIELEETY
suoFar
. : [EAUOaGTS ¥ . 1 9107 “IE 12
5 A[ILOuAA PUE {na Lk 1 1 -
SON 1d asa 58 P e uﬂh pu Koumry-umpsaq (09 L) 0001 09 k I FEE ©-81  W00E o an we
. aaaadia B S {0a o) ) cv A~ _ " LI0T
S0 Id 3y o8 (1a)mEaaL]) URYIEH] 049 L ooot ne WONSFE  spmaapopy ¥N FO-BI (SE)F “I8 13 ZEWOG
Wi FIEERLERE] sunFar LS pue Suraqe . [z . . | LIDT
ats 1d R— v8 mpge) ooy pumwomy  (095) 050 0 95E A i P ERE o sy
BIURERbISRIE] SUNF2L S - ) {975L) 2IDAIE- . . N
425 1d syt g ch mPgatsn (13} mE300 ) UENIEH(] (09 TF 00T ne o SmIapoy 9z Le-Ll (81T FI0T "% 13 Wiy
i EUEERE TR ) . . [f3] ) +Tn . S10T
Vi 1Ld apdioug Fa1 (3apmsaarg) xmansag (09 ) O00L 9 eg AV 1€ it (9g)e9 “pe 12 1349
. FIEEREHIE] SUMEAT Fmage . . L 10T ¥
SON 1a B 06 mpqaey  onmoEmy pammomy (09 1) 0001 ¥ 7o PI SHe -8 (EIS e e
maaaadia Fmyjage] (6T} a3 ; FIOT “18 12
1 Ia apdioug 911 - [EOIIOIELY PATBLLONTY {nq 1} oot ¥ 15 SRIPORY L 626 e sYBIAquasIey
Vi 1aaauadia ) i (6T) A3 R ) ET0T “18 12
S0N 1a aqdiounag i HosaN Summg {09 1} oot ¥ 15 HIIPORY T LU B syBiaquatae]y
Jopanuadna Fapage . (z 1€} 2IAIE- - . 107 “18 19
as 1a sy atl - [ESIIOJEY PajEmOIny (04 1) 008 st ¥ HRIZPORY £ 0z-8 ez sYBIAquasIey
[T
A apom 5 o A HIID suopaap Amfwm _“.H“.wh.u_ (k) O
uhu phyderdeaery, E:_ u_uu..:.. u“..,u_uh _r.”.._t .z FWIYIS WHNE[FIIE] anjeA-i] Jo axurs ANaaag u N WEIS FqL
PO A NEHIALIg) quiny] ¥ A -5 waE e azs
Yy Aty adweg
ANITALId DNISEAI0HA NOLLISINGOOY ¥L¥a SINVAIDLLAYA

Amfu] uipag oupwnp.LJ JO SaIPNIS [PI112.402Y ] Ydp.1r) 10f SpoyId SUlSS2004g pub S1Ydp.i3ouad(J

I 919eL



2.1.5.2  Quality Assessment

Table 2 summarises the quality of the 13 papers according to the diffusion MRI checklist
categories, ranked according to overall score (maximum score 13). Most papers scored full
points for describing parameters of the diffusion scanning sequences. Points were often deducted
for poor description of graph metric calculations and failing to correct for multiple comparisons.
The “subjects’ category of the checklist had the highest average score (3.6/4, 90.5%), followed
by ‘methodology’ (5.4/6, 89.7%), and ‘results/conclusions’ (2.5/3, 83.3%). Overall, the total
quality score was high, and varied from 9 to 12.5 points out of a possible 13 (average score:
11.5/13, 88.5%). The study of Verhelst et al. (2018) had the highest methodological quality.
There was no significant effect of publication bias (Egger’s regression intercept=1.81, Cl: [-1.94,
5.57], p=0.34), and all studies met the benchmark for inclusion in the meta-analysis, showing

that the published studies are a good representation of available evidence.
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2.1.5.3 Meta-Analysis

Table 3 summarises the differences in global graph metrics between TBI and HC cohorts
across studies. For each graph metric, the direction of significant group differences between TBI
and HCs was the same across studies, with the exception of small-worldness and normalised path
length. The overall effect sizes for normalised clustering coefficient, global efficiency, density,
and characteristic path length were found to be significant (p<0.05), with moderate to large
Hedge’s g effect sizes (g >0.5) (see Figure 2, and Supplementary Material 5 for statistics).
However, only normalised clustering coefficient and characteristic path length remained
significant following FDR correction (p<0.002). The subgroup analyses revealed longer
normalised path length in acute/mild patients; higher small-worldness in chronic patients; higher
small-worldness in paediatric TBI patients; and higher normalised clustering coefficient in
paediatric TBI patients compared to HCs (FDR corrected, p<0.001, see Table 4). In the next
paragraphs, we will present the results of key overall effects and subgroup analyses for each

graph metric that was significant after FDR correction.
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2.1.5.4  Global Integration

Four of the ten studies investigated characteristic path length (Caeyenberghs et al., 2014;
Hellyer et al., 2015; Kim et al., 2014b; Konigs et al., 2017). Of the 142 patients in this analysis,
114 were moderate to severe; 63 acute patients were on average 5.5 months post-injury, while 79
chronic patients were on average 3.5 years post-injury; and 101 were adults (average age: ~26.9
years) and 41 were paediatric (average age: ~10.5 years) at injury. Across this entire cohort,
characteristic path length was longer in the TBI patients compared with HCs (g = 0.514, p =
0.002, 12 =28.601%). The heterogeneity value of this graph metric was low, indicating that the
dataset was homogenous.

Six studies investigated normalized path length (Caeyenberghs, Leemans, De Decker, et
al., 2012; Caeyenberghs et al., 2014; Verhelst et al., 2018; Yuan, Treble-Barna, et al., 2017;
Yuan et al., 2015; Yuan, Wade, et al., 2017) with no overall group effect (g = 0.815, p = 0.129, I?
=92.1%). Of the 112 patients in this analysis, 67 were moderate to severe; 45 acute patients were
between 96 hours and 4 months post-injury, while 67 chronic patients were on average 4 years
post-injury; and 21 were adults (average age: ~21.3 years) and 91 were paediatric (average age:
~12.1 years) at injury. Subgroup analysis revealed that the acute/mild TBI group showed
significantly increased normalised path length compared with HCs (g =0.965, p <0.001, 12
=0.0%), with a decreased heterogeneity value. The effect size for the chronic/moderate-severe

group was not significant.

2.1.5.5  Functional segregation

Seven studies calculated normalized clustering coefficient (Caeyenberghs, Leemans, De

Decker, et al., 2012; Caeyenberghs et al., 2014; van der Horn et al., 2017; Verhelst et al., 2018;
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Yuan, Treble-Barna, et al., 2017; Yuan et al., 2015; Yuan, Wade, et al., 2017). Of the 165
patients in this analysis, 67 were moderate to severe; 98 acute patients were between 96 hours
and 4 months post-injury, while 67 chronic patients were on average 4 years post-injury; and 74
were adults (average age: ~27.4 years) and 91 were paediatric (average age: ~12.1 years) at
injury. Normalised clustering coefficient was higher in TBI patients in the overall meta-analysis
(g =1.445, p =0.002, 1 =91.484). In the chronicity and severity subgroup-analysis, the effect
remained significant in the chronic/moderate-severe patients only (chronic/moderate-severe: g
=1.924 p=.014, 12=92.440%). However, this effect retained a high heterogeneity value.
Similarly, in the age at injury subgroup analysis, normalised clustering coefficient was
significantly higher in the paediatric TBI patients than HCs (g = 2.00, p = 0.001, I?> = 89.82).
This effect was not observed for adult TBI patients. However, grouping by age at injury only

lowered the observed heterogeneity in normalised clustering coefficient by ~2%.

2.1.5.6 Small-Worldness

Six studies reported on small-worldness differences between TBI and HCs
(Caeyenberghs, Leemans, De Decker, et al., 2012; Caeyenberghs et al., 2014; Hellyer et al.,
2015; Yuan, Treble-Barna, et al., 2017; Yuan et al., 2015; Yuan, Wade, et al., 2017), with no
significant effect size overall; however, a trend was evident for larger values in TBI patients (g
=0.794, p =0.06, 12 =89.736%). Of the 158 patients in this analysis, 105 were moderate to
severe; 108 acute patients were between 96 hours and 5.5 months post-injury, while 50 chronic
patients were on average 4.6 years post-injury; and 84 were adults (average age: ~26.6 years) and
74 were paediatric (average age: ~11.8 years) at injury. Subgroup analysis showed a significant

effect size for chronic patients only, with increased small-worldness in chronic TBI patients
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compared with HCs (g =0.950, p=.001, 12 =39.536%). Grouping by chronicity also greatly
reduced heterogeneity in the chronic group. Subgroup analysis by severity revealed larger small
worldness values for the mild group (g =1.309, p=.020, 12 =81.922%); however, heterogeneity
remained high and did not survive FDR correction. Finally, small-worldness was significantly
higher in the paediatric TBI patients (but not adult TBI patients) compared to HCs (g = 1.25, p <
0.001, 12 = 56.949). Grouping by age at injury reduced the heterogeneity observed in small-
worldness, meaning that age at injury could be explaining some of the differences in small-

worldness between TBI patients and HCs.

2.1.6 Discussion

Our study is the first meta-analysis to assess the consistency of recent graph theoretical
studies of TBI. The overall quality of the papers was high, and all met the benchmark for
inclusion in the review. Findings suggest that normalized clustering coefficient and
characteristic path length may be sensitive diagnostic biomarkers to distinguish TBI patients
from HCs, with the former particularly high in chronic/moderate-severe and paediatric TBI
patients after subgroup analyses. Furthermore, we suggest that values of normalised path length
may be increased in acute/mild patients, and small worldness may be higher in chronic and
paediatric TBI patients. In the following sections we will examine the use of graph metrics from
a critical view. Specifically, we will discuss the following topics: (4.1) evidence that the TBI
network is closer to a regular lattice structure than HCs, and (4.2) the use of graph metrics as
diagnostic and prognostic biomarkers in longitudinal studies. In (4.3) we will also point out

several methodological issues and provide recommendations for the future study of structural
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connectomics in TBI. Finally, in (4.4) we will address any limitations of this pooled analysis,

including heterogeneity in patient samples and parcellation schemes.

2.1.6.1 Towards a regular network structure in TBI patients

The hypotheses presented in the research papers reflect the exploratory nature of GTA in
TBI studies. Clear rationales and a priori hypotheses regarding the specific choice of graph
metrics (together with the expected direction of effect) were omitted in many of the studies
analysed. For example, Yuan, Wade, et al. (2017) ambiguously predicted that metrics would be
“abnormal at baseline but would normalise after training”. Only Yuan et al. (2015) and Konigs
et al. (2017) justified their choice of each graph metric. While exploratory research is necessary,
a clear rationale concerning the selection of graph metrics will advance theoretical reasoning in
the field. Furthermore, having a priori hypotheses about the expected direction of effect will
minimise multiple comparisons, thereby reducing chance findings that inflate the false positive
rate. The findings from our meta-analysis, outlined in the following paragraphs, can serve as a
guide in the development of hypotheses for the next generation of GTA studies in TBI.

Small-worldness is the ratio of normalised clustering coefficient to normalised path
length, and represents the balance between segregation for local specialization and global
integration (Watts & Strogatz, 1998). While all studies found that the TBI connectome is still a
small-world network, there was evidence of a shift towards a regular lattice structure. Small-
worldness values were significantly higher for TBI patients greater than 6 months post injury,
and for children with TBI. These results suggest a shift in network structure, which is probably
due to a secondary process of neurodegeneration and/or is specific to those patients injured

during childhood. However, further research is needed to evaluate the neurobiological

67



mechanisms underlying increases in small-worldness. Yuan et al. (2015) and Yuan, Treble-
Barna, et al. (2017) suggested that higher small-worldness is primarily driven by an increase in
local clustering. Still, changes in small-worldness alone do not provide insight into the nature of
the group differences. Instead, researchers could focus on more specific metrics that can
differentiate between alterations in segregation and integration (Fornito et al., 2013; Papo et al.,
2016), including measures of clustering and path length as described next.

In line with the observed shift towards a regular network, our review revealed that
normalised clustering coefficient was significantly higher in the TBI group compared to HCs.
This result indicates that TBI patients have more “closed triangles’ in their network graph
compared to the controls, denoting greater functional specialisation. We also observed that this
effect remained significant in the paediatric group but not the adult group. Yuan et al. (2015)
suggested that this finding in paediatric TBI patients reflected an adaptive response to the injury,
whereby local connections are increased because they are less vulnerable to damage than long-
range connections. However, we argue that this is a costly adaptation, as it would increase the
number of steps needed for information to travel between any two regions (Fornito et al., 2016;
Sporns, 2011). In fact, our meta-analysis also showed that characteristic path length was
significantly longer in the TBI population compared to the HCs, meaning there are a greater
number of steps between any two nodes on average in the TBI network than in the HC network.
Furthermore, the subgroup analysis demonstrated that normalised path length in the acute mild
TBI group (but not the chronic moderate-severe group) was significantly higher than HCs.
However due to the paucity of data available, it was impossible to determine whether this effect
was driven by chronicity or severity. Despite the lack of data, our findings support the idea that

the TBI network topology departs from the economical random-graph (Sporns, 2011).
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2.1.6.2  Use of graph metrics as diagnostic and prognostic biomarkers

The effects described in section 4.1 support the use of normalised clustering coefficient
and characteristic path length as diagnostic biomarkers to identify group differences between
TBI patients and HCs. Graph metrics can also be used to detect the presence or absence of
diffuse axonal injuries (DAI) within TBI patients. Two papers included in the review (Fagerholm
et al., 2015; Mitra et al., 2016) employed machine learning methods on graph metrics to classify
patients. Fagerholm and colleagues were able to classify the presence of DAI in TBI patients
with a high accuracy rate of 93.4% and found that betweenness centrality had the highest *feature
importance’ when differentiating between patients with microbleeds and HCs. Using a similar
machine learning technique, Mitra et al. found that connectivity strength could differentiate mild
TBI patients with DAI from HCs with an accuracy rate of 68.16%. These are very promising
techniques that clearly demonstrate the use of graph metrics as diagnostic biomarkers.

Another important aspect of evaluating a diagnostic biomarker is the association of the
metric with behavioural/clinical outcomes, which was done in all studies apart from one (Hellyer
et al., 2015). For example, longer characteristic path length correlated with worse performance
on verbal learning task as well as executive dysfunction in moderate-severe TBI patients (Kim et
al., 2014a). Longer characteristic path length also coincided with lower intelligence scores and
shorter working memory span in moderate-severe TBI patients (Konigs et al., 2017). Lower
normalised clustering coefficient was found to be associated with slower processing speed in
mild TBI patients (van der Horn et al., 2017). These significant correlations highlight the
potential of normalised clustering coefficient and characteristic path length as biomarkers of
behavioural deficits following TBI. However, reminding us of the preliminary nature of this

work, several studies did not correct for multiple comparisons when running correlations
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between graph metrics and behavioural tests (Kim et al., 2014a; Yuan, Treble-Barna, et al.,
2017). While uncorrected thresholds can be useful for exploratory research, correction for
multiple comparisons would strengthen the validity of these findings. Finally, comparison
between studies is problematic because different outcome measures were used across studies.
We recommend the use of a core set of behavioural tests in the future (e.g., Wefel et al., 2011).
Finally, we wanted to explore whether graph metrics can be used as prognostic
biomarkers to predict treatment response. Longitudinal studies are necessary to investigate which
graph metrics change in response to training. Only two GTA studies (by the same group, Yuan,
Treble-Barna, et al., 2017; Yuan, Wade, et al., 2017) so far have conducted longitudinal training
studies. Yuan, Treble-Barna, et al. (2017) found that normalised clustering-coefficient and small-
worldness values decreased following 10 weeks of attention and executive function training in
TBI patients but remained the same in the HCs. In an aerobic training study, Yuan, Wade, et al.
(2017) found that improved Post-Concussion Symptom Inventory scores following 4 — 16 weeks
of training correlated with increased global efficiency and lower normalised path length.
However, this study did not investigate the interaction effect between group and time directly.
Overall, there is some evidence that network measures can be used as prognostic biomarkers, but

further longitudinal analyses are needed to investigate the predictive value of graph metrics.

2.1.6.3 Methodological considerations and further recommendations

As a tentative conclusion, our meta-analysis showed that normalized clustering
coefficient and characteristic path length are potential diagnostic biomarkers that may be
sensitive to group differences between TBI and controls. However, GTA is a mathematical

framework that has only recently been applied in neuroscience (for a critical review, see Fornito
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et al., 2013), and the underlying biological mechanism of change (e.g., increase in axon density,
diameter, myelination, sprouting of synapses) is so far unknown. Due to inherent limitations in
tractography, we do not know yet whether graph metrics directly reflect white matter integrity
(e.g., Jones, 2010a). Therefore, it is important to refrain from diagnosing ‘abnormal’ graph
metrics, when comparing TBI patients to HCs (e.g., Yuan, Wade, et al., 2017), until we know the
biological mechanisms underpinning graph metrics. Validated neuro-psychometric testing could
couple structural connectome measures such as graph metrics (and other diffusion-based
measures) to multimodal data with known information processing properties. Until then,
structural graph metrics represent the necessary but insufficient properties of the network to
function (Sporns, 2012). However, we can get a better understanding if we first obtain reliable
patterns of brain connectivity.

There are methodological challenges associated with investigating graph metrics in
patients with TBI. These include applying appropriate MRI acquisition and preprocessing
techniques, connectome construction, and specifying edge weights (see Table 1 for a summary of
the methods used in the studies in this review). Future research should (a) utilise advanced
diffusion sequences (e.g., multishell, not used by any studies in the review) with accelerated
acquisition speed to accommodate for non-compliance due to poor concentration (e.g.,
multiband/compressive sensing); (b) employ robust estimation approaches for diffusion MRI
metrics (e.g., Slicewise OutLler Detection 'SOLID'; Sairanen et al., 2018); and (c) apply a model
that can resolve crossing fibre orientations (e.g., constrained spherical deconvolution, only used
by two papers in the current review). Furthermore, although connection density has a noticeable
impact on graph metrics (van Wijk et al., 2010), only six of the thirteen studies in the quality

assessment accounted for differences in network density (as suggested by Bullmore & Bassett,
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2011) when comparing structural networks of TBI and HCs (Caeyenberghs, Leemans, De
Decker, et al., 2012; Hellyer et al., 2015; Konigs et al., 2017; Solmaz et al., 2017; van der Horn
etal., 2017; Yuan et al., 2015). Similarly, researchers should consider using multiple edge
weighting and parcellation schemes to examine the robustness of data (Qi et al., 2015;
Sotiropoulos & Zalesky, 2019), as was done by Caeyenberghs, Leemans, De Decker, et al.
(2012), Caeyenberghs et al. (2014), Caeyenberghs et al. (2013), Fagerholm et al. (2015), and
Konigs et al. (2017). Finally, future studies should employ advanced measures of white matter
such as fibre density and cross section (Raffelt et al., 2017) as edge weights, because FA (used
by three studies) and number of ‘streamlines’ (used by eight studies) lack the microstructural
specificity to fully characterise the integrity of the structural network. In summary, by using
more advanced MRI acquisition and pre-processing techniques we can get closer to an

understanding of the biological underpinnings of the TBI structural connectome.

2.1.6.4 Limitations of the pooled analysis

Heterogeneity in parcellation schemes

One limitation of combining different graph analyses is that it inevitably requires pooling
data obtained with different parcellation schemes. Differences in the way the cortex is
parcellated can significantly impact the results of GTA (Zalesky et al., 2010). As shown in Table
1, five different parcellation schemes (e.g., the Desikan atlas from Freesurfer and the Automated
Anatomical Labelling atlas) were used across the papers included in the meta-analysis, each with
a different number of regions of interest or ‘nodes’ (range: 82-164). Parcellation schemes with
higher resolution (i.e., more nodes) will demonstrate gradual increases in normalised path length

and reductions in normalised clustering coefficient (Bassett et al., 2011), while measures of
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network organisation (e.g., small-worldness) will remain largely the same (Qi et al., 2015).
However, because whole brain node templates in this current study were of similar spatial scales,
impact on pooled graph metrics should be negligible (Zalesky et al., 2010), and it is therefore

likely that this effect is small and does not detract from the overall findings.

Heterogeneity in the TBI samples

Patients with TBI are diverse, and several clinical and demographic factors (such as
severity, chronicity, and age at injury) will impact the comparability of patient cohorts across
studies. In the present meta-analysis, we attempted to address the issue of heterogeneity in our
pooled TBI population by conducting subgroup analyses. However, the heterogeneity values
remained above 75% for the majority of the subgroup analyses, indicating that results may still
have been driven by differences in sample demographics (Higgins et al., 2003). This is not
surprising given the diversity present in the structure of an injured brain, which may include
focal lesions, diffuse axonal injury, or both. There were also limited studies that could be
included in this review, making some subgroup analyses hard to interpret. For example, there
were no studies of moderate-severe TBI patients in the acute phase, or mild TBI patients in the
chronic phase that could be included in the normalised path length subgroup analyses (see Table
4). Therefore, it is impossible to determine whether normalised path length was increased in the
acute/mild group due to the time since injury, or the severity of the injury. Overall, this meta-
analysis allows us to see universal trends that are present in the structural connectome of TBI
patients; however more research is needed that span across all TBI subgroups, so that future

pooled analyses can better distinguish between all TBI populations.
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2.1.6.5 Conclusion

Despite the complexity of applying GTA to the heterogeneous TBI population, our meta-
analysis of structural connectivity studies revealed that normalised clustering coefficient and
characteristic path length can be regarded as diagnostic biomarkers of TBI. These findings
provide an evidentiary framework for future research. The emerging evidence suggests that
average path length and clustering is increased in TBI patients, with the overall network more
closely resembling a regular lattice. Using graph metrics, we are able to differentiate between
TBI population and healthy controls on the one hand, and the presence/absence of DAI on the
other hand. Also, there is preliminary evidence that graph metrics predict future response to
training. Despite the promising results, the biological mechanisms underlying alterations in
graph metrics is unclear. Future research should employ advanced diffusion MRI tools and

obtain biologically validated measures of structural connectivity in longitudinal studies.
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2.1.7 Supplementary Materials

Supplementary Material 1

Definition of Graph Metrics

GRAPH METRIC

DEFINITION

HIGHER VALUE
DENOTES

CALCULATION

BASIC MEASURES

Degree ki is the number of
connections that node i

has to its neighbours.
Degree can be calculated
for weighted or binary
networks and can also be
measured separately in

A high degree means a
high level of interaction
between node i and the
rest of the network. A
high number of
connections on a
particular node will

k= Ay
iEN
A;ey = the connection status between i
and all other nodes in the network

K D directed networks as out- identify that node as a
egree de in-d hub’.
gree, or in-degree
(number of edges leading
out/in from a node,
respectively; for these
calculations see Rubinov
& Sporns, 2010 or
Fornito, Zalesky, &
Bullmore, 2016).
Density is an estimate of Higher density indicates
the ‘wiring cost’ of the that a greater percentage _ 2|E|
network. It is calculated as  of all the possible T IN|(IN| = 1)
the number of existing connections have in fact N = complete set of nodes in the network
connections divided by the  been made between E = complete set of edges in the network
total number of possible regions of the brain.
connections within the Interpretation and
. graph. Sometimes density ~ comparison of density

D Density is also calculated by should be done with
summing all the edges in care, as calculation of
individual i's graph, then density may differ
averaging this sum across  between studies.
all individuals — perhaps
more appropriately termed
as the mean number of
edges.
Strength is similar to A higher strength , 1
degree, but for weighted indicates a greater Si=NC 12 Wij
networks. The strength of ~ average edge weight for . Jzi .
node i is the sum of the each node. The wij = weight of edges from nodes i to j

s Strength weights of its edges. The interpretation of this

average of the edge
weights connected to node
i are the normalised
strength s’. Mean strength
can be the average of all

will vary depending on
the weighting variable
(e.g., fractional
anisotropy or number of
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the normalised strength
values across each node of
the network. Strength can
also be measured of
direction or undirected
networks and calculated
separated for positive and
negative connections (see
Fornito et al., 2016).

streamlines) that was
used.

Shortest path

li length

The number of edges or
sum of weights of edges
on the shortest possible
path between any two
nodes (i.e., the pathway
between node i and node j
with the least number of
edges).

A higher value indicates
a longer shortest path
length — which means
more connections must
be passed through in
order to transfer
information from node i
to node j.

GLOBAL INTEGRATION

Characteristic

The average shortest path
length between all
possible pairs of nodes in
a network (Watts &
Strogatz, 1998). The
harmonic characteristic
path length (L’) takes into

A higher average
shortest path length
indicates a greater
number of steps is
required to transmit
information between
any two regions.

1
L= N(N — 1)21”
i#j
-1

1
L'=N©N-1) Zl—
= Y

brain is thought to work as
a massively parallel
system, and the harmonic
better represents a parallel
(compared to a serial)

L path length account nodes with no
possible path by summing
the inverse of lj; so that
they equal 0 (Fornito et al,
2016). For weighted and
directed calculations see
Rubinov & Sporns (2010).
Characteristic path length I A > 1 there is longer
of the network, relative to  average path length than 1= L
arandom network. Small ~ a random network, " Lyana)

X Normalized world architecture indicating worse global

path length indicates that path lengths integration. If A ~ 1,

will be similar to a random  average path length is
network, and shorter than similar to that of a
a regular lattice. random network.
Average inverse harmonic A higher global
characteristic path length efficiency will indicate
between all pairs of nodes  a greater capacity for E 1
in the network. The efficient integration of glob — 77
harmonic L’ is normally information across the

E Global used to calculate Egiob network.

b efficiency rather than L because the
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system (Latora &
Marchiori, 2001).

FUNCTIONAL SEGREGATION

Clustering

Cl coefficient

The number of existing
connections between the
neighbours of node i,
divided by all the possible
connections, calculated for
each node individually and
averaged across the entire
network (Watts &
Strogatz, 1998).

Globally, a higher CI
means that a greater
proportion of
connections are made
between nodes
neighbours, compared
to the connections
possible, and indicates
more clustered
connectivity around
individual nodes, with
all nodes weighted
equally.

N LyCe — 1)

t; = number of closed triangles

An alternative to ClI,
which can be biased by

A higher value of T
indicates a greater

inflation from nodes with probability that two _ Yien 2t;
small degree. Transitivity ~ nodes with a shared T= Yien ki(ki — 1)
uses network-wide neighbour are also
normalisation that weights  connected to each other,
T Transitivity nodes depending on their i.e., the probability of
degree, to estimate the finding a closed triangle
probability that any two in an entire network.
nodes connected to a third
node are also connected to
each other (Newman,
2003).
Clustering coefficient of Higher local
the network normalized to  specialization. Ify =1, y = cl
Normalized a rarlwdomr?_etwork. Small thercl:lust;ermg is similar (Clygna)
clustering wor d architecture to that of a rar)dom
v - indicates that the network, and if y > 1,
coefficient . -
clustering will be greater the network has greater
than random, comparable  than random clustering.
to a regular lattice.
The local efficiency isthe A higher local
average of the normalised  efficiency means greater E,.(i) = 1 Z i
sum of the reciprocal of capacity for integration loctt) = Ng,(Ng, — 1) Lin
the shortest path length between the immediate JheG;
(e.g., global efficiency), in  neighbours of a given ,
a local area. The node. G; = subgraph of i's neighbours
immediate neighbours of
Local h
Eioc . node i become a
efficiency

‘subgraph’ on which the
efficiency is calculated,
once i is removed. Mean
Eioc is taken as the
efficiency of each node in
the network averaged over
the total number of nodes

7




(Latora & Marchiori,
2001).

The subdivision of the
network in groups of
nodes with many
connections to nodes
within the group and few
to nodes outside the group,
based on the premise that
some nodes preferentially
network with one another

A positive modularity
value indicates greater
density of connections
within modules than
expected by chance, a
negative value means it
lacks modular structure,
and a zero-value means
there is no difference

1
Q= EZ(AU — e;;)8(m;, my)
]

S(mi,m]-)

= the indicator of whether nodes i and j

belong in the same module (1 if yes,0if no)

Q Modularity (Newman, 2004). Modular  from the null model.
networks will mostly show
small-worldness, in that
high within module
connectivity results in
high clustering, while just
a few direct links between
modules is sufficient to
support short path length
(Fornito et al., 2016).
CENTRALITY AND RESILIENCE
The proportion of shortest A node that lies on 1 Prj (D)
paths that pass through many shortest paths in bi = (N-D((N-2) Pnj
node i between its the network is central ] h#ih#j j*i
neighboring nodes, and important to the Pnj(i) = the shortest paths
calculated for each node network. This can be from h to j that traverse i
b Betweenness and averaged across the used as a way to
centrality network (Freeman, 1978).  identify hubs. A high
network betweenness
centrality indicates a
high number of nodes
that are central to
shortest paths.
The capacity of a network  If ¢ > 1, the network is
for an energy-efficient demonstrating small- o= Y
balance between world properties. A
clustering and short paths,
relative to an appropriate for y see normalised clustering coef ficient
random network (e.g., for A see normalised path length
Maslov & Sneppen, 2002).
Small- A_small Wo'rld network
will have high levels of
worldness

clustering compared to a
random network (y > 1),
combined with low
average path length,
similar to that of a random
network (A ~ 1)
(Humphreys & Gurney,
2008).
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a

The correlation between A high Pearson _ . B 1 . 2
the ki of connected nodes,  correlation for a o= E™ Xijiki — [E ' 21'7 Ui+ k")]
in other words the indicates that high I I 2
tendency for nodes with degree nodes tend to be E Zi? Ui +k) — [E Zi? (]i"'ki)]
similar degrees to be linked to each other and
connected. Assortativity low degree nodes tend jiand k; = degrees of nodes linked by ittedge
should not be confused to be link with each
with rich-club analysis — other — this kind of
Assortativity assortativity investigates network is termed an
the tendency for similar ‘assortative’ network.
degree nodes to be Low values mean that
connected, while rich-club  high degree nodes tend
analysis measures the to link with low degree
density of connection nodes and low degree
between high degree nodes link with high.
nodes (Fornito et al.,
2016).

Note: Definitions are based on descriptions in Rubinov & Sporns, 2010; Fornito, Zalesky, & Bullmore, 2016. Node
= brain region; functional segregation = functional specialization within densely interconnected groups of brain
regions; global integration = the capacity of the network to rapidly combine information from distributed brain
regions at a global level

Supplementary Material 2.

Mesh Headings:

Medline: [MH “Brain Injuries, Chronic” OR “Brain Injuries”] AND [MH “Connectome”]
PSYCinfo: [DE “Traumatic Brain Injury”] AND [DE “Brain Connectivity”]

CINAHL: [MH ”Brain Injuries”]
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Supplementary Material 3.

Imaging Methodology Quality Assessment Checklist (adapted Strakowski et al., 2000)

Category 1: Subjects
1. Patients were evaluated prospectively, specific diagnostic criteria were applied, and
demographic data was reported
2. Healthy comparison subjects were evaluated prospectively, psychiatric and medical
illnesses were excluded, and demographic data was reported
3. Important variables (e.g., illness duration, severity of illness, injury type, drug status,
handedness) were checked either by stratification or statistically

4. Sample size per group > 10, and no significant difference in age and sex existed

Category 2: Methods for image acquisition and analysis
6. Magnet strength at least 1.5T.
7. DTI with at least 12 directions was used.
8. The imaging technique used was clearly described and is reproducible
9. Parcellation scheme clearly reported, reproducible, and no brain regions were excluded
from the parcellation scheme (e.g., cerebellum)
10. Calculation of edge weights were clearly reported and are reproducible

11. Calculation of graph metrics were clearly described and are reproducible

Category 3: Results and conclusions
12. Corrections for multiple comparisons (if necessary)
13. Statistical parameters for significant and important non-significant differences were
provided

14. Conclusions were consistent with the results obtained and the limitations were discussed

TOTAL /13
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Supplementary Material 4

Calculations of pooled mean and standard deviation.

Mmildnmild + Mmodsevnmodsev

M =
pooled
Nmild + Nmodsev

(nmild - 1)SD72nild + (nmodsev - 1)SD72nodsev

Nmild + Nmodsev — 2

SDpooled =
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Supplementary Material 5

Overall Effect Sizes for Graph Metrics

Number of

Graph Metric studies Hedge'sg Lower limit* Upper limit* z-value p-value 12(%)
Assortativity (a) 12 0.207 -0.287 0.701 0.822 0.411 0
Betweenness Centrality (b) 3 0.475 -0.186 1.136 1.407 0.159  69.317
Clustering Coefficient (Cl) 3 -0.108 -0.556 0.34 -0.473 0.636  53.664
Characteristic Path Length (L) 4 0.514 0.190 0.838 3.109  *0.002 28.601
Degree (K) 12 -0.790 -1.258 -0.323 -3.313  *0.001 0
Density (D) 3 -2.706 -5.283 -0.128 -2.057 0.04 95.329
Global Efficiency (Egiob) 5 -1.144 -2.195 -0.094 -2.136  0.033  91.587
Local Efficiency (Eioc) 5 -0.453 -1.067 0.161 -1.445 0148 77.961
Modularity (Q) 6 0.272 -0.257 0.801 1.007 0.314 78.876
Strength (s) 2 -0.223 -0.684 0.238 -0.949 0.343  74.466
Normalised Clustering Coefficient (y) 7 1.445 0.512 2.378 3.034  *0.002 91.484
Normalised Path Length () 6 0.815 -0.238 1.868 1.517 0.129 92.1
Small Worldness (o) 6 0.794 -0.034 1.623 1.88 0.06 89.736
Transitivity (T) 2 0.059 -0.494 0.613 0.21 0.833  49.738

Note: * Significant at p<0.05; significant at p<*0.002 (FDR corrected)

d Effect sizes with less than 2 studies are not considered in the meta-analysis
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Chapter 3: General Methods for Data Collection?

2 This chapter provides a detailed account of the data collection protocol for Study 2 and Study 3. Information
regarding specific study methods, data processing, and statistical analyses are included separately within each
publication.
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3.1 Participants

3.1.1 Participants for Study 2 (Monash Biomedical Imaging)

31141 Recruitment

This project was approved by the Monash University Human Research Ethics
Committee (MUHREC) (Project: #1181, Title: Cognitive Function and Brain Structure, Chief
Investigator: Karen Caeyenberghs, Expiry: 27/10/2021) and lodged with the ACU Human
Research Ethics Committee (ACU project #2017-222R). Recruitment of healthy adults
occurred using flyers and by word of mouth — participants were not offered compensation.
Flyers were used (Appendix E) to give interested participants an overview of the study. Effort
was taken to ensure variety of background demographics and equality in gender, age, and
education level. This was done by recruiting from the general public and targeting under-
represented demographics later in the recruitment phase (e.g., older adults, lower education
levels). Initial screening occurred via the phone (Appendix F). To be included in the study,
participants had to be (a) aged between 18 to 65 years; (b) generally healthy with no history
of head injury; (c) right-hand dominant; and (d) fluent in English. Exclusion criteria included
(a) history of psychiatric illness (moderate levels of depression and anxiety not included); (b)
pregnancy; and (c) any contra-indications for MRI as ascertained by the MRI screening and
information form (Appendix G). Once recruited, participants were sent an outline of what to

expect on the testing day (Appendix H).

3.11.2 Consent

A Plain Language Statement was given to each participant prior to testing that
described the research project in full (Appendix I). Written informed consent was obtained
from each subject prior to testing; consent was also given with regards to incidental and

adverse findings (Appendix J). More precisely, participants could choose to be advised of (a)
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any diagnostic findings (both incidental and adverse); (b) all incidental findings (any finding
that may require treatment or have implications for future health); or (c) only those adverse
findings that would usually lead directly to treatment. Communication of these findings could
either be from their General Practitioner or another doctor, or from a member of the research
team (at the participants discretion). Participants were informed that they could withdraw at

any time during the experiment.

3.1.2 Participants for Study 3 (Royal Children’s Hospital)

3.1.2.1 Recruitment

This project was approved by the St Vincent’s Human Research Ethics Committee
(SVHREC) (Project: #250/17, Title: The effects of tablet-based home interventions on brain
structure, cognitive functioning, motor performance, and daily life participation in patients
with Traumatic Brain Injury, Chief Investigator: Karen Caeyenberghs)®. Recruitment of
patients with a TBI was conducted in association with Professor Mark Cook and Associate
Professor Wendyl D'Souza of the Neurology department at St. Vincent’s Hospital in
Melbourne. Medical files of patients both past and present were examined to determine if
they met the inclusion criteria. Once a patient was deemed to be a potential participant by
Prof Cook or A/Prof D’Souza, they were contacted by one of the three principal investigators
of the study (Prof Caeyenberghs, Prof Cook, or A/Prof D’Souza). Patients were provided
with a letter of invitation to the study (Appendix K), along with the participant information
form (Appendix L). Following this, if patients were interested in participating, they were
contacted by researchers via phone using a phone script (Appendix M) and screening form

(Appendix N). Recruitment also occurred via Dr. Hamed Akhlaghi in the Emergency

3 Recruitment occurred in conjunction with a training study. Only data from the baseline assessment was
included in this thesis.
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Department of St Vincent’s Hospital Melbourne. Patient records from more than 6 months
prior were used to source the contact information of TBI patients who fit the inclusion criteria
for the study.

To be included in the study, participants were required to meet the following criteria:
(a) aged between 18-65 years old; (b) more than 6 months post injury; (c) experienced a
moderate-severe TBI (determined by Professor Cook and Associate Professor D'Souza); (d)
speak fluent English; (e) ambulant or independently mobile (able to travel to and from the
testing location; (f) no previous history of TBI (single TBI); and (g) able to give their own
informed consent (i.e., able to describe back to the researcher the procedure of the experiment
in their own words, and demonstrate a clear understanding of the true nature and purpose of
the study). Professor Cook and Associate Professor D'Souza also gave their own professional
opinion on whether or not a patient had the capacity to give informed consent. Participants
were excluded if (a) they had a history of psychiatric illness that they take medication for; (b)
they were pregnant; or (c) they had any contraindications for the MRI. If the participants
were eligible after this process, they were invited to participate in the study at a mutually
convenient time. Participants were offered $50 as compensation for their time.

Recruitment of healthy adults from the general population occurred using flyers and
by word of mouth — participants were sent the information letter upon expression of interest
via email (Appendix O). Effort was taken to ensure equivalence in gender, age, and education
level in comparison to the TBI participants. This was done by targeting recruitment of
healthy controls that matched already recruited TBI participants based on age, gender, and
education. Screening occurred via the phone (Appendix P). To be included in the study,
control participants had to meet criteria for healthy adult functioning, as outlined in section

3.1.1.1. Participants were offered $50 as compensation for their time.
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3.1.2.2 Consent

A participant information letter was given to every participant prior to testing, which
described the research project in full. Written informed consent was obtained from each
subject prior to testing, and a declaration was signed by the study doctor or senior researcher
verifying that the verbal explanation of the project was understood by the participant (TBI
patients, Appendix Q; healthy controls, Appendix R). Participants were informed that they

could withdraw at any time during the experiment.

3.2 Cognitive and Self-Report Measures
Study 2 and 3 both included computerised tests of cognitive performance; surveys of
cognitive complaints, daily-life-participation, and 1Q; and structural MRI scans. Measures
were identical between the two testing sites, with the exception of the 1Q test (only

administered for Study 3).

3.2.1 Demographics
Demographic information was acquired via survey (Appendix S), including age,

gender, education level, and handedness (Edinburgh Handedness Inventory; Oldfield, 1971).

322 1IQ
The Weschler Abbreviated Scale of Intelligence (WASI-I1) (Revised edition;
Wechsler, 2011) was administered to TBI patients and healthy controls for Study 3 only. The
WASI-I1I consists of four individually administered assessments of intelligence for
participants aged between 6 and 90 years. Two of the four subtests of the WASI-I1I
(vocabulary and matrix reasoning) were used to generate the Full-Scale Intelligence Quotient

2 (FSIQ-2). Higher scores in both subtests indicate higher 1Q.

87



3.221 Vocabulary

The Vocabulary subtest consists of three picture items and 28 verbal items (or 31
items in total). The picture items are only used if the participant incorrectly describes the first
verbal item (“shirt’) — then, the participant is asked to name the object that is visually
presented to them — otherwise only the verbal items are used. The participant must define
words that are presented to them in written form (words are also verbalised out loud by the
investigator). Answers are recorded verbatim by the investigator using the WASI-II scoring
sheet and scored according to the standardised administration protocol. Correct responses are
given a full score of 2’; otherwise, the participant is queried for more information, or given a
score of *1” or ‘0. Item administration stops if the participant receives three ‘0’ scores in a

row, or if they reach the end of the word list.

3.2.2.2 Matrix Reasoning

The Matrix Reasoning subtest requires the participant to view sequence of four
patterns with the fifth missing and select the response option that completes the series. The
subtest has 30 items that are used to assess fluid intelligence, broad visual intelligence,
classification and spatial ability, knowledge of part-whole relationships, simultaneous
processing, and perceptual organisation. The participant is shown the series and asked,
“Which of these [here] belong [here]”. Participants have four responses to choose from.
Answers are recorded on the WASI-II scoring sheet. For the Matrix Reasoning task, correct
responses are given ‘1, or ‘0’ for incorrect. Testing ends if three “0’s is received in a row or
if the participant reaches the end of the test booklet. Combined, scores on the Vocabulary

and Matrix Reasoning subtests provide a single measure of 1Q.

3.2.3 Subjective Cognitive Ability
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3.2.3.1 Neurobehavioural Functioning Inventory

The Neurobehavioural Functioning Inventory (NFI) was used to provide an indication
of self-reported daily life cognitive function (Appendix T). The NFI (Kreutzer et al., 1999)
contains 76-items that measure the frequency of symptoms that often occur following TBI
(Sandberg, 2011) such as confusion, headaches, or forgetfulness. The NFI includes six
subscales; depression (e.g., feeling worthless); somatic complaints (e.g., headaches);
memory/attention (e.g., forgetting or missing appointments); communication (e.g., difficulty
making conversation); aggression (e.g., hitting or pushing others); and motor problems (e.g.,
dropping things). In TBI patients, factor analysis found that the internal consistency for each
individual scale was very high (ICC=0.86 — 0.95), as is that for the total scale (Cronbach’s
alpha = 0.97). Convergent validity is also very good with each subscale of the NFI correlating
significantly with other measures of memory, attention, learning, communication, motor and

cognitive functioning, personality, and psychopathology (Kreutzer et al., 1996).

3.2.4 Obijective Cognition

3.2.41 The Psychological Experiment Building Language

Obijective cognitive ability was assessed using the computerised Psychology
Experiment Building Language (PEBL) battery (Mueller & Piper, 2014; see Table 1). A Dell
Inspiron 15” 3537 laptop (response latency=80ms; refresh rate=60Hz) was used to display
and record responses to the PEBL, with the stimulus display synchronised to device refresh
rate. A subset of eight tasks were used to measure core domains of cognitive functioning:

processing speed, memory, attention, and planning.
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Table 1.

Example of PEBL Battery Tasks Assessing Objective Cognition

Name Task Cognition Variables

Go/No-Go For the first part of the test, the participant must Response Number and
respond to the letter “P” (Go trials), but not the inhibition average reaction
letter, “R” (No-Go trials) by pressing the ‘shift’ time (RT) of
key. There are more P’s than R’s. In the second correct and
section of trials, the participant must respond to the incorrect
letter “R” (Go trials), but not the letter, “P” (No-Go responses, for
trials). There are less R’s than P’s in this section. Go and No-Go

trials.

Tower of London Participants must match the pattern of stacked discs  Planning Total number of
in as few moves as possible, using the mouse to movements and
drag the tiles in the bottom row to match the tiles in RT for all trials.
the top row. The pattern must be matched on
colour, location, and position of the disc within the
stack.

Corsi Blocks The participant must reproduce the sequence of Visuospatial Longest
blocks after they light up by clicking on the box working sequence
using a mouse, in the correct order. After two memory correctly
correct trials of a particular length, sequence length  span remembered
increases by one box.

Digit Span The task is to reproduce the sequence of numbers Verbal Longest
heard and seen, in the correct order. The participant  working sequence
hears/sees the sequence, then has as long as they memory correctly

5 need to type out the sequence using the keyboard. span remembered
After two correct trials of a particular length,
sequence length increases by one digit.
Letter-Digit Participants are asked to match the letter that Processing ~ Number of
Substitution appears with its corresponding number, according speed correct responses
i to the code displayed at the top of the screen, by and RT of
\ & .« L. & pressing the corresponding key on the keyboard. correct
T responses.

Connections In the non-switch trials (e.g., 1-2-3; or A-B-C), the ~ Mental Mean number of
participant has 20 seconds to create as large a trail flexibility items per
as possible by clicking on letters/digits in sequence sequence
using a mouse. In the switch trials, the trials (separately for
alternate between letters and digits (e.g., A-1-B-2- non-switch and
C-3; or 1-A-2-B-3-C). switch trials).

Global Local Task  The participant must respond to either the large Selective Number of
(global) or small (local) stimuli, an “S’ or ‘H’, as attention correct/incorrect
directed, by pressing either the left or right ‘shift’ and task stimuli, and RT
key (respectively). Stimuli are both congruent (e.g.,  switching difference
a large ‘S’ made of small “s’s) or incongruent (e.g., between

a large ‘S’ made of small ‘h’s).

congruent and
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Name Task Cognition Variables

incongruent
trials
Vigilance The participant must wait for an X to appear in the  Sustained RT to X trials
circle. A cross appears before each trial, to alert the  attention,
participant that a response will be required soon. response
@ When the X appears in the circle, the participant inhibition
must respond as fast as possible by pressing the

space bar. If the letter is not an X, the participant
must withhold a response.

3.3 Magnetic Resonance Imaging of the Brain

The imaging protocol for Study 2 and 3 were largely identical. At each site (MBI and
RCH) a suite of six scans were acquired — though only the anatomical T, diffusion, and
FLAIR scans are used in this thesis. The anatomical T1 and diffusion scans were used to
perform the structural connectome analyses, and the FLAIR scans of all healthy participants
were used by neurologists at the respective scan sites to check for the presence of
hyperintensities and other incidental findings. The T1 and FLAIR scans of the TBI patients
were sent to neurologist Paul Beech (Alfred Hospital Melbourne) for lesion description.
Therefore, only these three scans are described in detail. For a full overview of all scans

acquired (for use in other projects) see Tables 2 and 3.

3.3.1 MRI for Study 2 (Monash Biomedical Imaging)
Images were acquired on a Siemens 3T SKYRA, 32-channel head coil, whole-body

scanner. The entire acquisition time was 53 minutes and 49 seconds (Table 2).

3.3.1.1 Anatomical scan
High resolution 3D T1-weighted imaging was performed with magnetisation-

prepared rapid gradient-echo acquisition (MPRAGE), ADNI protocol with 192 contiguous
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slices (A>>P), FOV = 256mm, voxel size = 1.0mm isotropic, TR = 2300ms, TE = 2.07ms,

flip angle = 9°, and a total acquisition time of 3:52min.

3.3.1.2 Diffusion Weighted Imaging

Diffusion MRI (dMRI) was performed using single-shot echo planar with twice-
reinforced spin echo and was obtained with 60 contiguous sagittal slices (FOV = 220mm,
voxel size = 2.5mm isotropic, TR = 10100ms, TE = 101.0ms. A high angular resolution
diffusion imaging (HARDI) gradient scheme was applied in 66 non-collinear gradient
directions, b-value of 3000s/mm?, and seven interleaved b0 images. A pair of reverse phase
encoded b0 images was also collected to correct for geometric distortions (TA = 42 seconds

each). Total acquisition time was 13:26mins.

3.31.3 FLAIR
3D fluid-attenuated inversion recovery was performed to assess the presence of
lesions (192 slices, FOV = 256mm, voxel size = 1mm isotropic, TR = 5000ms, TE = 397ms,

Tl =1800 ms, TA = 4:52mins).

Table 2.

Scanning Protocol and Measures from Monash Biomedical Imaging (MBI)

Scan Measures Toolbox Image Scan Values (Tnm
3D Anatomy Freesurfer/FSL MPRAGE (ADNI protocol). 03:52
MPRAGE 1mm isotropic, 192 slices. TR

2300.0ms, TE 2.07ms. FoV
256mm.
HARDI Tractography ~ MRtrix3 66 directions, maximum b- 13:26

ExploreDTI value 3000. 2.5mm isotropic,
60 slices. Ten b0 images.
Extra LR and RL image for
dist. correction. Phase
encoding L>>R. TR 10100ms,

TE 101.0ms.
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Time

Scan Measures Toolbox Scan Values (min)
mcDESPOT  Myelin QUIT Four subsequences: SSFP 15:00
Mapping phase 0; SSFP phase 180;
SPGR; and irSPGR. 8 flip
angles.
QSM Magnetic Nipype (python) 4 Echo, monopolar, 10:00

0.7x0.7x1.3mm, TR 35.0ms,
TE 14.80ms, FoV 256mm.

Susceptibility

T2 FLAIR Lesion FSL
identification

1mm isotropic, FoV 256mm. 4:52
TR 5000ms, TE 397.0ms.

BOLD. 3mm isotropic. 5:16
FoV 190mm. TR 754ms, TE
21.00ms. Multi-band

acceleration factor 3, 42 slices,

400 measurements.

fMRI Resting state  REST/ICA
Connectivity  (SPM)

Total
53:49

3.3.2 MRI for Study 3 (Royal Children’s Hospital)
Images were acquired on a Siemens 3T PRISMA, 32-channel head coil whole-body

scanner. The entire acquisition time was 52 min (Table 3).

3.3.21 Anatomical scan

High resolution 3D Ti-weighted imaging was performed with magnetisation-prepared
rapid gradient-echo acquisition (MPRAGE), ADNI protocol with 208 contiguous slices
(A>>P), FOV = 256mm, voxel size = 0.8mm isotropic, TR = 2100ms, TE = 2.22ms, flip

angle = 8°, and a total acquisition time of 5:48 min.
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3.3.2.2 Diffusion Weighted Imaging

Diffusion weighted imaging was performed using single-shot echo planar with twice-
reinforced spin echo, obtained with 70 contiguous transversal slices (FOV = 260mm, voxel
size = 2.3mm isotropic, TR = 3500ms, TE = 67.0ms. A high angular resolution diffusion
imaging (HARDI) gradient scheme was applied in 66 non-collinear gradient directions, b-
value of 3000s/mm?, and seven interleaved b0 images. A pair of reverse phase encoded b0
images (BU and BD) were also collected to correct for geometric distortions (TA =50s

each). Total acquisition time was 6:17 min.

3.3.2.3 FLAIR
3D fluid-attenuated inversion recovery was performed to assess the presence of
lesions (176 slices; FOV = 256mm; voxel size = 0.5x0.5x0.9mm; TR = 6000ms; TE =

437ms; Tl = 2100ms). Total acquisition time was 7:20 min.

Table 3.

Scanning Protocol from Royal Children’s Hospital (RCH)

Scan Purpose Toolbox Scan Values Z;T']T]e)
3D Anatomy Freesurfer/FSL MPRAGE 0.8mm isotropic, 208  5:48
MPRAGE slices, TR 2100.0ms, TE 2.22ms,

FoV 256mm.
HARDI Tractography  MRtrix3 66 directions, maximum b-value  6:17
ExploreDTI 3000, 2.3mm isotropic, 70 slices,
7 b0 images, phase encoding
A>>P, TR 3500ms, TE 67ms,
reverse encoded images for dist.
correction
QSM Magnetic Nipype 3 Echo, monopolar, 1mm 8:43

Susceptibility  (python) isotropic. TR 35.0ms, TE
14.80ms. FoV 256mm. Readout

mode bipolar.




Time

Scan Purpose Toolbox Image Scan Values .
(min)

T2 FLAIR  Lesion FSL
identification

0.5%0.5x0.9mm, FoV 256mm, TR 7:20
6000ms, TE 437.0ms.

FWF Piloting NA NA 6:40

Resting Resting state REST/ICA
state fMRI  Connectivity  (SPM)

BOLD, 2.5mm isotropic, 7:48
FoV 250mm, TR 1150ms, TE

37ms, multiband AF 4, 56 slices,

X volumes.

Total
42:36

3.4 Procedure
The testing session for each participant was three to four hours in total, including
surveys, cognitive/motor/1Q testing, and MRI scan. The procedure for Study 2 and 3 was

identical, and as such is described here together.

3.4.1 Opverview of the Testing Session

The testing session took place in a quiet room with space for the participant and their
carer or partner (if necessary for the TBI patients), and one investigator. Upon arrival,
participants were given the plain language/explanatory statement and consent form to sign.
After this, participants either went to the scanner for their MRI, or completed the surveys and
cognitive testing. Effort was taken to ensure the participant’s comfort during the testing
process to minimise fatigue; for instance, breaks were offered after completion of cognitive
testing, 1Q testing, and MRI scanning. Participants were allowed to drink coffee or tea or
water during the testing process, but food was only consumed during break times. As much

or as little break time was given depending on the participants’ needs. The length of the
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testing session varied between participants, depending on their level of proficiency and length

of their break time/s.

3.4.2 Details of the Data Collection Process

Surveys (demographic questionnaire and NF14) were completed using pen and paper
with the investigator present to answer any questions or clarify any ambiguities. In total, the
surveys took approximately 30 min to complete. 1Q (WASI-II°) testing took place using pen
and paper with the investigator acting as scribe according to protocols described fully in the
manual. The Vocabulary test was administered first with participants asked to describe the
meaning of a word out loud. For the Matrix Reasoning task, the investigator showed the
participant the flipbook of matrices and asked the participant to indicate which of five

multiple choice options was correct. The participant gave their response verbally.

3.4.2.1 Computerised cognitive testing

Cognitive testing was completed in the same quiet room, with the investigator present
to explain each of the eight computerised tasks to the participant if necessary. The Dell
Inspiron 15” laptop was arranged next to a mouse and mousepad in front of the participant,
who was seated in an ergonomic chair. The eight-task PEBL test battery was run
consecutively, with no gap between tasks. The sequence of tasks is as follows: Go/No-Go,
Tower of London, Corsi Blocks, Digit Span, Letter-Digit Substitution, Connections, Global-
Local, and Vigilance. Tasks were not randomised but ordered so as minimise fatigue by
interspersing longer more effortful tasks with shorter easier ones. Each task began with an
instruction screen and a set of practice trials, during which the participant could ask the

investigator any questions they might have or take a break if necessary. The duration of the

4 also performed were the MASQ, PART-O, and SPRS, though these were not used in this thesis.
5> NB: the WASI-II was only delivered at the RCH testing site
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cognitive testing was approximately 50 mins. Raw data were stored directly on the Dell

laptop once the PEBL was completed.

34.2.2 MRIscan

MRI data acquisition occurred variably either before or after the testing, depending on
the convenience of the participant. At both sites, the MRI scans took approximately 1 hour
and 15 min, including 5-10 min before the scan for the radiographer interview. All
subsequent preparations were performed by the radiographer — the investigator remained in
the radiographer’s office taking notes on the sequence of events on the Scan Running Sheet
(Appendix U). The radiologist first double-checked for contra-indications to the MRI scan by
going through the MRI screening form at length with the participant. Next, a fiducial marker
was placed on the participant’s right temple. The participant was then positioned comfortably
in the scanner using cushions and blankets — this also minimised any movement on the bed.
Participants were asked not to move during the scans by reminding them that they would be
given allocated times to move their arms and legs (but preferably not their head). Verbal
instructions and check-ins were given via the intercom system. A movie was screened for
them, if requested, during the structural MRI scans. The sequence of scans remained the same
for all participants, with breaks offered between each scan to enhance comfort during the
scan. Scans were checked visually by the radiographer and investigator for major movement
artefacts and performed again if necessary (and if time allowed). Notes were taken of any
movement or change to the scan protocol on the scan running sheet. Following the
completion of the MRI scan the participants were extracted from the MRI and left the MRI
suite with the investigator.

Once scans were acquired, the FLAIR images were sent to a neuroradiologist to check

for abnormalities. In the case of abnormalities, the consent form was checked to indicate
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whether they would like to be informed, and then either their general practitioner was
contacted, or a senior member of the research team (Prof. Karen Caeyenberghs) contacted the

participants.

3.4.3 Confidentiality

Once the pen and paper testing finished, the surveys and 1Q testing forms were
compiled into a folder labelled with the participants ID (HC##: Healthy Adults at MBI,
CMT## or DTC##: TBI patients at RCH; CON##: Healthy Controls at RCH). The only
paperwork that contained both the participants’ name and their ID was the consent form. This
paperwork was organised into folders depending on testing location and participant ID and
stored in a locked cabinet at the Mary MacKillop Institute for Health Research, in Prof.

Karen Caeyenberghs office.

3.4.4 Data Entry and Security

Raw data from the pen-and-paper surveys and IQ test were entered into a master
spreadsheet in Excel (v16.43) which was then saved on a locked hard drive and stored in the
same locked cabinet as the paperwork. Variables of interest from the cognitive testing were
entered into the master spreadsheet, and all raw data files from the PEBL were backed up
onto the same hard drive and removed from the testing computer. The MRI data for Study 2
(MBI) was downloaded directly from the project’s DARIS (Nov 2016 — Sep 2017) or XNAT
(Sep 2017 — Apr 2018) server and saved onto the same locked hard drive. The MRI data
Study 3 was pushed to the DICOM node of Mark Seal, the institute director at the Murdoch
Children’s’ Research Institute, who then forwarded the downloadable files to the investigator
via secure links using Cloudstor (Feb 2019 — Jan 2020). Also, the data was saved onto a DVD
at the time of scanning and transferred onto the hard drive as a back-up while the XNAT data

was being transferred. All DVDs were stored in the same locked cupboard as the hard drive
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and paperwork. After January 2020 when the Australian Catholic University’s XNAT server
went live, data was transferred and downloaded directly from the project’s XNAT. All data

transfers occurred using secure links.

3.4.5 General approach to data analysis

Study 2 and 3 both utilise a graph theoretical analysis (Rubinov & Sporns, 2010) of
brain imaging data. The details of these analyses are detailed in the empirical chapters. MRI
data were analysed on MASSIVE using freely available image processing tools, including
mrtrix3 (v3.0_rc3; Tournier et al., 2019) mrtrix3tissue (v5.2.8; https://3tissue.github.io),
Freesurfer (6.0; http://surfer.nmr.mgh.harvard.edu/) (Fischl, 2012), and FSL (6.0; Jenkinson
et al., 2012). Once processing was performed, brain data was downloaded to Matlab in the
form of connectivity matrices for further analysis. Connectome analyses were performed
using the Brain Connectivity Toolbox (Rubinov & Sporns, 2010) and in-house built Matlab
(R2019b) scripts (see Appendix V). Also, cognitive data (demographics, PEBL, NFI, and 1Q)

were stored in an Excel spreadsheet before being imported into Matlab for data analysis.
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Chapter 4: Study 2 - Navigating the link between processing speed and

network communication in the human brain
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4.1 Preface

Connectome analyses have recently provided a novel way to understand the
mechanisms of information transfer in brain networks (Bassett & Sporns, 2017). In Study 1,
it is substantiated that graph metrics are useful for evaluating structural differences between
TBI patients and healthy controls (Imms et al., 2019). However, what remains unclear is
whether graph metrics have interpretive value as biomarkers of brain injury (Woo et al.,
2017). In this regard, it is important to establish whether graph metrics are behaviourally
relevant — in other words, do they relate to measures of cognition. Thus, the purpose of Study
2 is to investigate the relationship between graph metrics and cognitive performance in
healthy adults.

Rather than investigating the cognitive correlates of all graph metrics, Study 2
focusses on one important sub-group — communication measures. The rationale for choosing
communication measures was as such: the meta-analysis (Study 1) revealed that
characteristic path length showed the most robust alterations in TBI patients. In particular,
path length was longer on average in TBI patients than healthy controls in three of the four of
studies where it was measured. Characteristic path length also had the lowest heterogeneity
value (12 = 28.60%), supporting the idea of a real effect between TBI patients and healthy
controls. Finally, path length measures were found to correlate with some measures of
cognition, such as processing speed and task switching (Caeyenberghs et al., 2014); and
executive functioning and verbal learning (Kim et al., 2014a). These findings suggest that the
behavioural relevance of communication within the brain network should be further
investigated.

In the discussion of Study 1 it was noted that communication measures such as path

length and global efficiency are often interpreted in terms of information transfer or
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processing speed. This is due to an underlying assumption that the speed of executive
processes relies on efficient integration properties of the structural network to facilitate
communication within the brain (Bullmore & Sporns, 2012). Several graph theoretical studies
outside the TBI literature have revealed that network communication is also related to
individual variation in processing speed in older adults (e.g., Wen et al., 2011) and
Alzheimer’s Disease (e.g., Caeyenberghs et al., 2014; Reijmer, Leemans, Caeyenberghs, et
al., 2013). While these early results are promising, advances in connectome reconstruction
and cognitive modelling could lend further weight to the link between network
communication and information processing speed. These advanced measures of processing
speed and network communication should provide more specific estimates of brain structure

and cognition and thus improve the strength of the observed relationships.

4.1.1 Advances in measuring processing speed

In the present study, we apply the hierarchical Bayesian drift diffusion model
(HDDM; Wiecki et al., 2013) to estimate decision-making time from the overall reaction time
for each trial. The drift-diffusion model has been successfully used to investigate processing
speed in Autism (Powell et al., 2019), and neurodegenerative disorders (Zhang et al., 2016).
By removing the confounding effect of non-decision times, we expect that this measure of
processing speed should be more sensitive to individual differences in healthy adults (\Voss et

al., 2004).

4.1.2 Advances in measuring communication

Most connectome studies have computed communication measures based on shortest
path length — including characteristic path length and global efficiency (for an overview of
the definition of global integration metrics used in this study, the interested reader is referred

to Appendix A). A network with short path lengths is often interpreted as having efficient
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information transfer between brain regions (Latora & Marchiori, 2001). Similarly, longer
path lengths in brain-injured populations are often interpreted in terms of poorer efficiency of
information transfer (see Imms et al., 2019). However, the assumption of information transfer
under global integration is problematic because it assumes that every node has a global
‘roadmap’ of the overall network — an assumption which may be biologically implausible.
Therefore, Study 2 also investigates a new communication measure, called navigation
efficiency, which has been shown to be a more plausible way of characterising

communication in the human brain network (Seguin et al., 2018).

4.1.3 Advances in connectome reconstruction

It is well-known that diffusion imaging and processing techniques suffer from several
limitations and biases, impacting the reliability of global integration findings (Jeurissen et al.,
2013; Jones, 2010a). Previous structural connectome studies have used a deterministic
tractography approach, which can result in false negatives and do not account for crossing
fibres. Constrained Spherical Deconvolution (CSD) is often used to address these concerns,
albeit at the expense of accumulating false positives (Thomas et al., 2014). In the present
study a state-of-the art diffusion MRI sequence and processing pipeline is used to avoid
biases that may result in false pathways. Specifically, we employ (i) single-shell 3 tissue CSD
with fibre orientation distributions estimated in the grey matter, white matter, and CSF (to
avoid overestimating the volume of white matter in voxels containing both signal types)
(Jeurissen et al., 2014), (ii) Anatomically Constrained Tractography (ACT) to accurately
determine where streamlines should be generated (Smith et al., 2012), and (iii) an advanced
tractogram reconstruction SIFT2 technigue to provide a more ‘biologically accurate’
representation of streamline count (Smith et al., 2015a) with the potential for stronger clinical

relationships (McColgan et al., 2018).
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4.1.4 Summary

In summary, Study 2 examines the relationship between structural brain networks and
cognitive processing speed in healthy adults, as a proof of concept that communication
measures are a biomarker of slowed processing speed (Aim 2, Research Questions 1 and 2).
Innovative measures of network communication and decision-making time are used to
improve the specificity of the findings. Processing speed is often chronically impaired in TBI
patients (see section 1.1.4); as such, this proof-of-concept study in healthy adults constitutes
an important step towards assessing the link between graph metrics and cognitive impairment
after brain injury. Furthermore, this chapter provides a detailed description of the state-of-the-

art connectome processing pipeline that is also used in Study 3.
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4.2.2 Abstract

Processing speed on cognitive tasks relies upon efficient communication between
widespread regions of the brain. Recently, novel methods of quantifying network
communication like “navigation efficiency’ have emerged, which aim to be more biologically
plausible compared to traditional shortest path-length based measures. However, it is still
unclear whether there is a direct link between these communication measures and processing
speed. We tested this relationship in forty-five healthy adults (27 females), where processing
speed was defined as decision-making time and measured using drift rate from the
hierarchical drift diffusion model. Communication measures were calculated from a graph
theoretical analysis of the whole brain structural connectome and of a task-relevant fronto-
parietal structural subnetwork. We found that faster processing speed on trials that require
greater cognitive control are correlated with higher navigation efficiency (of both the whole-
brain and the task-relevant subnetwork). In contrast, faster processing speed on trials that
require more automatic processing are correlated with shorter path-length within the task-
relevant subnetwork. Our findings reveal that differences in the way communication is
modelled between shortest path-length and navigation may be sensitive to processing of
automatic and controlled responses respectively. Further, our findings suggest that there is a
relationship between the speed of cognitive processing and the structural constraints of the

human brain network.
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4.2.3 Introduction

Processing speed is the time it takes to perform a cognitive task, including identifying,
manipulating, and responding to information (Holdnack et al., 2015). It plays a central role in
a broad range of cognitive abilities, in particular top-down control of attention and executive
functioning (Kail & Salthouse, 1994). Notably, inter-individual variability in processing
speed is related to intelligence (Sheppard & Vernon, 2008) and is argued to be one of the
most meaningful ways of measuring mental capacity (Kail & Salthouse, 1994). It is theorized
that processing speed relies on the topological organisation of white matter pathways that
connect regions of the brain, allowing for efficient communication between brain regions
(Bullmore & Sporns, 2012). Consequently, slowed processing speed has been implicated in
patients with brain injuries (Battistone et al., 2008) and neurodegenerative disorders that
disrupt these connections (Soloveva et al., 2018). However, few studies have investigated
whether inter-individual variability in processing speed is directly related to white matter
connectivity measures, especially in healthy populations.

Processing speed is thought to be constrained by white matter network organisation,
since cognitive processes rely on efficient communication along axonal pathways between
brain regions (Bullmore & Sporns, 2012; Lynn & Bassett, 2019). Cognitive processing is
slowed if signals must travel via more synaptic connections (Fornito et al., 2016) or via
connections with poor myelination or low axon density (e.g., Tolhurst & Lewis, 1992).
Neuroimaging studies have used diffusion MRI to examine the relationship between
processing speed and properties of specific white matter tracts in healthy populations (e.g.,
Karahan et al., 2019; Turken et al., 2008). For instance, Turken et al. (2008) found that faster
processing speed is associated with higher connectivity of fronto-parietal and fronto-temporal

white matter pathways. While these studies suggest that processing speed relies on white
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matter organisation, they used tract-based approaches that provide an incomplete picture of
the link between processing speed and brain connectivity. Rather, the brain operates as a set
of interconnected networks in complex arrangements, disseminating information across
distributed areas (Bressler & Menon, 2010). Brain organization in terms of these complex
networks will likely determine processing speed over and above the structure of individual
brain regions or tracts.

Network analysis has been used to understand how ensembles of brain regions work
together in a network, which is crucial for higher-order cognitive processing (Bullmore &
Sporns, 2009; Sporns, 2010; Sporns et al., 2005). These analyses have rapidly found
applications in the clinical neurosciences (for reviews, see Fornito et al., 2015; Griffa et al.,
2013; Imms et al., 2019) and have provided several global graph measures to capture the
different structural properties of the brain (Rubinov & Sporns, 2010). A particular class of
graph measures is concerned with modelling how the structure of brain networks facilitates
and constrains large-scale neural signalling (Avena-Koenigsberger et al., 2018; Seguin et al.,
2020). Network communication measures take into account the organization of white matter
networks to compute the efficiency of putative communication pathways between brain
regions. Of particular interest are communication measures based on the shortest path
between brain regions (i.e., characteristic path length and global efficiency; Rubinov &
Sporns, 2010). There is emerging evidence from clinical populations that suggests slower
processing speed is associated with longer path length and/or lower global efficiency in aging
(e.g., Wen et al., 2011), brain injury (e.g., Caeyenberghs et al., 2014), and diabetes (e.g.,
Reijmer, Leemans, Brundel, et al., 2013). For example, Caeyenberghs et al. (2014)found that
slower processing speed was associated with lower global efficiency in adults with traumatic
brain injury. This relationship between processing speed and communication measures in

clinical populations suggests that there may be similar patterns in healthy adults.

112



There has been no dedicated structural connectome analysis examining processing
speed and graph communication measures in healthy adults, though communication models
have recently been shown to improve prediction of behaviours, such as overall cognition and
tobacco use (Seguin et al., 2020). Furthermore, previous clinical studies have only used
shortest path-based algorithms to measure communication (e.g., Caeyenberghs et al., 2014;
Reijmer, Leemans, Brundel, et al., 2013; Wen et al., 2011). This is potentially problematic
because shortest path-based routing relies on the assumption that every brain region has a
global ‘roadmap’ of the network, which may be biologically implausible (Avena-
Koenigsberger et al., 2019; Goifii et al., 2014). Recently, a more realistic routing model for
neural communication has been suggested, named ““navigation” (Seguin et al., 2018).
Navigation assumes that neural signalling unfolds based on local knowledge of the spatial
positioning of brain regions. Therefore, navigation models neural communication as a
decentralized process, which may be more robust with regards to the biological mechanisms
of information transfer in the brain. The associated measure ““navigation efficiency’ has
shown stronger correlations with resting-state brain activity compared with shortest path-
based routing (Seguin et al., 2018), and is reported to track abnormalities in the functional
synchronization of brain regions following stroke (Wang et al., 2019). Navigation efficiency
may therefore represent a more specific marker of how communication is structurally
facilitated by the brain network.

The present study aims to investigate how inter-individual differences in processing
speed relates to communication measures in healthy adults. We employed measures that are
as specific as possible to individual differences in (1) processing speed and, (2) white matter
connectivity. First, processing speed is traditionally measured by means of overall reaction
time on tasks such as the global-local task (which taps into processing speed by asking

participants to identify either global or local elements of a stimulus while ignoring interfering
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information) (Navon, 1977). However, theoretical models of cognition suggest that
processing speed can be divided into three components, including the time taken to (a)
visually perceive the stimulus, (b) ‘process’ the information and decide how to respond
(decision-making), and (c) execute the motor response (e.g., Romo & Salinas, 1999). There is
evidence that decision-making time (b) is relevant to cognitive performance (for review, see
Forstmann et al., 2016), and is a more specific measure of processing speed (Poudel et al.,
2017; Powell et al., 2019). As such it is useful for investigating the white matter substrates of
processing speed in healthy adults (Schall, 2001). To extract decision-making time, we
employ a drift diffusion model where processing speed is operationalised as the rate of
information accumulation during the decision-making process—"“drift rate”-with higher
values denoting faster decision-making time (Ratcliff & McKoon, 2008; Voss et al., 2004;
Wiecki et al., 2013). Second, we modelled network communication using both shortest path-
based and navigation-based routing strategies, to examine whether navigation efficiency is
more strongly correlated with decision-making speed than path-length. Furthermore, we
computed each communication measure for the whole-brain and for a task-relevant
subnetwork, as the specificity of these measures can be improved by examining connectivity
in the subnetwork important for the task at hand (e.g., Roman et al., 2017). The global-local
task is known to elicit specific activation in fronto-parietal regions, the temporal-parietal
junction, areas of the occipital cortex, and the thalamus (Gadgil et al., 2013; Han et al., 2004;
Hedden & Gabrieli, 2010; Liddell et al., 2015; Weissman & Woldorff, 2005). These regions
were therefore selected for the task-relevant subnetwork.

We hypothesised that drift rate on the global-local task would be lowest (i.e., slow
processing speed) on incongruent trials where the large and small elements of the stimuli are
different. On the basis of previous studies (Caeyenberghs et al., 2014; Reijmer, Leemans,

Brundel, et al., 2013; Wen et al., 2011), we hypothesised that higher drift rate on the global-
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local task would be (i) positively correlated with navigation efficiency, (ii) positively
correlated with global efficiency, and (iii) negatively correlated with characteristic path

length.

4.2.4 Materials and Methods

4.2.4.1 Participants

Forty-five healthy adults (27 female) aged 21 — 59 years (mean age=30.9 years,
SD=11.8 years) participated in this study. All participants were right-handed (average
Edinburgh Handedness Inventory score: 9.91/10; Oldfield, 1971) and reported no history of
psychiatric illness or neurological disorders. The majority of participants (94.6%) were high
school graduates or above (Less than high-school or equivalent = 5.41%; High-school or
equivalent = 5.41%; Diploma/VVocational qualification = 8.11%; Bachelor’s Degree =
29.72%; Postgraduate Diploma = 8.11%, Master’s Degree = 32.34%; Doctoral Degree =
10.81%). Ethical approval for the study was obtained from Monash University HREC (No.
1181) and Australian Catholic University (project #2017-222R), and written informed
consent was obtained from each subject prior to testing. All testing was carried out in
accordance with The Code of Ethics of the World Medical Association (Declaration of

Helsinki).

4.2.4.2 Processing Speed

Global-Local Task

The global-local task (Navon, 1977) was performed using the computerized
Psychological Experimental Building Language test battery (Mueller & Piper, 2014) on a
Dell Inspiron 15-3537 laptop (response latency=80ms; refresh rate=60Hz; stimulus display
was synchronised to device refresh rate). Participants were instructed to respond as quickly as

possible to either the global (large) or local (small) level of the stimuli-either an “S” or “H”
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as illustrated in Figure 1(a)-using the left or right shift keys of the laptop keyboard. The task
consisted of neutral, congruent, and incongruent conditions to measure processing speed
across different levels of interference. Neutral trials consisted of rectangular blocks made of
local letters, or a global letter made of white rectangles (see panels i and ii). For congruent
trials both levels of the stimuli matched (see panels iii and iv), and for the incongruent trials
the global and local elements of the stimulus did not match (see panels v and vi). First, 60
practise trials were presented as a single local letter (30 trials of each letter). All subsequent
trials (N=240) were grouped into 3 blocks (see Figure 1(b)); (1) neutral trials (n=80); (2)
congruent trials (n=80); and (3) incongruent trials (n=80). Within each block, participants
were instructed to respond to either the global or local level of the stimulus. Participants were
to respond as quickly as possible, however there was no time limit on trials. Overall, the task
took on average 9:20mins to complete (the mean reaction time for each trial was 545ms,
intertrial interval was 775ms). Reaction times for incongruent, congruent, and neutral trials
were recorded separately, in milliseconds. One subject failed to complete the task, and one
subject was identified as an extreme outlier (average response time was >2.5 standard
deviations slower than the mean); these two subjects were excluded from further analyses.
All trials regardless of accuracy were included in the analysis (average accuracy rate for all

participants was 95.89%).
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Figure 1.

Global-Local Task Stimuli
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Note: (a) Example stimuli from the global-local task executed in the Psychological Experimental Building
Language (Mueller & Piper, 2014); (i) and (ii) are neutral stimuli; (iii) and (iv) are congruent stimuli; and (v)
and (vi) are incongruent stimuli; (b) Block design was structured by condition (neutral, congruent, incongruent)

and trial type (global or local).
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Drift diffusion modelling of the Global-local data

The hierarchical Bayesian drift diffusion model was used to obtain a sensitive
measure of decision-making time from the processing speed data of the global-local task
(Wiecki et al., 2013; see Appendix Table 1 for definitions, interpretations, and a schematic of
the general drift diffusion model). Reaction times and trial conditions (congruent,
incongruent, and neutral) for each participant were entered into to the model in python (v2.7)
package ‘HDDM v0.6.0” (Wiecki et al., 2013). Based on a comparison of drift diffusion
models performed by Wiecki et al., we opted for the hierarchical drift diffusion model,
which requires fewer data points (~50-60 trials per block) compared to other standard
maximum-likelihood drift diffusion models (which require ~100 trials per block). Moreover,
Wiecki et al. advocate the use of the Bayesian model, as it enables quantification of
uncertainty around the estimate of each parameter. The drift rate (v) was estimated for each
trial, resulting in a distribution of drift rates for each participant and for each condition. We
excluded individual trials that were in the furthest 5% from the mean reaction time, according
to recommendations from the authors (Wiecki et al., 2013). An optimal estimate of v (defined
as the highest point on the drift rate posterior distribution) was calculated per individual for
each condition. This estimate was used in the correlation analyses as an apparent measure of

that individual’s processing speed.

Table 1

Definitions and Interpretations of Parameters from the Drift Diffusion Model

Name Definition Interpretation

A large value can be interpreted as the
process needing to accumulate more
information before reaching a limit
and initiating a response.

The threshold is the distance between
a Threshold the upper and lower boundaries.
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Name Definition Interpretation

The non-decision time is the time not A larger non-decision time means a

¢ Non-decision measured by the diffusion process longer amount of time needed to
time (e.g., motor processing and encoding perform non-decision relating
before coming to a decision). processing tasks.

A larger bias towards the upper
threshold indicates that less
information is needed to initiate a
response towards that threshold.

The bias is the starting point of the
z Bias diffusion process (i.e., closer to either
the upper or lower threshold).

The drift rate is the change over time in
v Drift rate the approach towards either the upper
or lower threshold.

A higher drift rate indicates a faster
decision-making speed.

4.2.4.3 Structural Connectome

MRI data

MRI data were acquired on a Siemens 3T Skyra scanner using a 32-channel head coil
at the Monash Biomedical Imaging facilities in Clayton, Victoria, Australia. A 3D T1-
weighted image was acquired for each subject with a magnetisation-prepared rapid gradient-
echo (MPRAGE) sequence, 192 sagittal slices, FOV = 256mm, voxel size = 1.0mm isotropic,
TR =2300ms, TE = 2.07ms, flip angle = 9°, and a total acquisition time of 3:52min.
Diffusion MRI (dMRI) data were acquired using a single-shot echo planar imaging sequence
(twice-reinforced spin echo) and 60 contiguous sagittal slices, FOV = 220mm, voxel size =
2.5mm isotropic, TR = 10100ms, TE = 101ms, and right-to-left phase encoding direction.

The data were acquired using a high angular resolution diffusion imaging (HARDI) gradient

scheme with 66 non-collinear gradient directions, a b-value of 3000s/mm?, and seven b=0
images interspersed throughout the HARDI scheme. A pair of reverse phase-encoded b=0
images was also collected to allow for correction of susceptibility induced echo planar

imaging distortions. The total acquisition time of the entire dMRI data was 13:26mins.
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Quality Assessment

Visual quality assessment for movement and radio frequency artefacts in the
anatomical and diffusion scans was performed using the viewer in MRtrix (v3.0_rc3;
Tournier et al., 2019). Two subjects were excluded from all subsequent analyses, one due to
exceptional susceptibility artefacts and one due to incidental findings. The dMRI data of four
subjects had incorrect phase encoding and were also removed from further analyses. The

sample for all remaining analyses included 37 subjects.

Pre-processing

Raw dMRI data were processed using MRtrix3Tissue (v5.2.8;
https://3tissue.github.io), a fork of MRtrix3 (Tournier et al., 2019). A schematic overview of
our tractography pipeline (Figure 2) can be seen below. First, noise (Cordero-Grande et al.,
2019; Veraart et al., 2016), Gibbs ringing artefacts (Kellner et al., 2016), and motion, eddy
current distortions and susceptibility induced (EPI) distortions were corrected (Andersson et
al., 2003; Andersson & Sotiropoulos, 2016; Skare & Bammer, 2010). At this stage we also
(1) removed outlier slices (mean=1.17%, maximum=2.46% of slices were removed across
participants); and examined (2) motion across volumes (meanms=0.517,
maximumms=1.068); and (3) translation (x=0.405mm, y=0.137mm, z=0.276mm) and
rotation (x=0.286°, y=0.172°, z=0.177°) parameters across volumes. These values were below
the voxel size of image acquisition for this sample (2.5mm?). Next, average response
functions for white matter, grey matter, and cerebrospinal fluid were estimated from the
dMRI data themselves using an automated unsupervised approach (Dhollander et al., 2019;
Dhollander et al., 2016). Pre-processed data were up-sampled to a voxel size of 1.3mm
isotropic to improve anatomical details and image registration before binary masks were

created for the up-sampled images (Tournier et al., 2019). To estimate the white matter fibre
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orientation distributions (FODs) in each voxel, single-shell 3-tissue constrained spherical
deconvolution (SS3T-CSD) was performed (Dhollander & Connelly, 2016). Finally, the
resulting FODs were corrected for intensity inhomogeneity and global intensity level
differences (Raffelt et al., 2017). Quality checks were performed throughout the pre-
processing pipeline: residuals were checked after denoising; the pre-processed image was
checked for residual geometric distortions; and the brain masks were checked for holes. Hole
filling was performed for five subjects by dilating the mask and filling in empty voxels that

were surrounded by masked voxels.
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The advanced normalization tools package (ANTS; Avants et al., 2009) was used to
remove non-brain structures from the T1 weighted images for white matter extraction (Zhang
et al., 2001). Next, FSL FLIRT (Jenkinson et al., 2002; Jenkinson & Smith, 2001) was used
to perform the boundary-based registration between brain-extracted anatomical and diffusion
images. For best results, the (upsampled) 1.3mm isotropic resolution diffusion b=0 images
were registered to the 1.0mm isotropic resolution T1w images, and then were inverse
transformed to bring the structural images back into the space of the dMRI data. MRtrix’s 5
tissue-type segmentation script was then used on the T1w images in dMRI space to create the

relevant masks for tractography.

Connectomics

Next, we implemented a series of steps as recommended by Yeh et al. (2020), to
reconstruct structural connectomes for all subjects. To this end, whole brain anatomically
constrained tractography was performed, guided by the FODs of each subject (Smith et al.,
2012). The FOD cut-off threshold, step size, and angle were carefully determined to attain a
reasonable trade-off between false negatives and false positives (seed points=dynamic;
maximum length=250mm; minimum length=5mm; step size=1.25; angle=45"; FOD
amplitude cut-off threshold = 0.08). Twenty-two million streamlines were generated to keep
connectome variability low enough for SIFT2 to be relatively stable (Yeh et al., 2018). Next,
the SIFT2 algorithm was applied to match the density of the reconstructed streamlines to that
of the underlying white matter structures (Smith et al., 2015a). A proportionality coefficient p
was also calculated for each participant to be later applied to the connectome edge weights to
ensure these are proportional to the apparent fibre density in each subject (Smith et al.,
2015b). Anatomical images were parcellated using Freesurfer’s ‘recon-all’ function (6.0;

http://surfer.nmr.mgh.harvard.edu/), as described in previous publications (e.g., Fischl &
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Dale, 2000). In brief, for all anatomical images subcortical grey-matter structures were
segmented (Fischl et al., 2002); image intensity normalised (Sled et al., 1998); pial surfaces
and the grey-white matter boundaries estimated (Dale et al., 1999); and the entire brain
“inflated” to smooth the gyri and sulci (Fischl et al., 1999). On this surface model the
automated cortical parcellation of 82 regions was generated using the Desikan-Killiany atlas
(Desikan et al., 2006). While there is no consensus on the optimal choice of parcellation
scheme (Sotiropoulos & Zalesky, 2019; Yeh et al., 2020; Zalesky et al., 2010), we utilized
the Desikan-Killiany atlas for the following reasons: This atlas is (i) one of the most
commonly used parcellation schemes and shows good test-retest reliability in structural
connectome analysis (e.g., Buchanan et al., 2014); (ii) uses surface-based definition of gyri to
register landmarks, indicating that the algorithms used to determine streamline termination
are also compatible with brain parcellation (Yeh et al., 2018); and (iii) has previously shown
functionally relevant links between brain and behaviour (e.g., Dhamala et al., 2020; Jolly et
al., 2020) and includes subcortical structures, which facilitates the region of interest
definition for the subnetwork analysis (e.g., Metzler-Baddeley et al., 2016). The robustness of
results across multiple parcellation schemes was also examined by performing a control
analysis utilizing the Destrieux atlas (164 regions; Destrieux et al., 2010), which is another
commonly used atlas from the Freesurfer software (e.g., Buchanan et al., 2014). The
Destrieux atlas has the same strengths as the Desikan-Killiany atlas listed above, albeit with a
higher number of nodes. Quality checks were performed by inspecting output of the
Freesurfer pipeline at each stage. In addition to a whole-brain network resulting from the
parcellation, we also constructed a task-specific subnetwork by selecting 28 regions, forming
a fronto-parietal subnetwork that are purported to be important for the global-local task (for a
full list of these regions and their supporting citations, see Table 2). Connectivity matrices for

whole-brain and fronto-parietal networks were generated using the summed streamline
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weights and the cortical and subcortical regions from node parcellation. To explore the effect
of area size normalisation on the main results, we conducted a control analysis utilizing
streamline counts scaled to the inverse of the volumes of the two nodes they connect
(Hagmann et al., 2008). We checked that the connectivity matrices for each individual were
non-fragmented, to avoid problems with disconnected nodes that can confound calculation of
communication measures. As a sanity check, group average whole-brain connectome (see
Figure 3) demonstrated small-world properties when compared to the random connectome
(0=1.0649), and edge weights followed a power law distribution according to Bullmore and

Sporns (2012).

Table 2

List of Regions Included in the Global-Local Task-Specific Subnetwork

Node Region Citation
7 L.inferiorparietal Hedden & Gabrieli, 2010; salmon et al., 2010
10 L.lateraloccipital Gadgil et al., 2013
14 L.middletemporal Hedden & Gabrieli, 2010
18 L.parsorbitalis Hedden & Gabrieli, 2010
19 L.parstriangularis Hedden & Gabrieli, 2010
21 L.postcentral Han et al., 2004
29 L.posteriorcingulate  Gadgil et al., 2013
23 L.precentral Gadgil et al., 2013
24 L.precuneus Han et al., 2004; Hedden & Gabrieli, 2011
27 L.superiorfrontal Gadgil et al., 2013
28 L.superiorparietal Gadgil et al., 2013; Liddell et al., 2015; Salmon et al.,
2010
29 L.superiortemporal  Han et al., 2004
30 L.supramarginal Han et al., 2004; Hedden & Gabrieli, 2010
35 L.thalamus
42 R.thalamus
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Node

Region

Citation

55
58
62
66
67
69
70
71
72
75
76

77
78

R.inferiorparietal
R.lateraloccipital
R.middletemporal
R.parsorbitalis
R.parstriangularis
R.postcentral
R.posteriorcingulate
R.precentral
R.precuneus
R.superiorfrontal
R.superiorparietal

R.superiortemporal
R.supramarginal

Hedden & Gabrieli, 2010; Salmon et al., 2010
Gadgil etal., 2013

Hedden & Gabrieli, 2010

Hedden & Gabrieli, 2010

Hedden & Gabrieli, 2010

Han et al., 2004

Gadgil etal., 2013

Gadgil etal., 2013

Han et al., 2004; Hedden & Gabrieli, 2011
Gadgil etal., 2013

Gadgil et al., 2013; Liddell et al., 2015; Salmon et al.,
2010

Han et al., 2004
Han et al., 2004; Hedden & Gabrieli, 2010
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Figure 3

The Group Average Whole-Brain Connectome
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Graph Measures

The Brain Connectivity Toolbox (Rubinov & Sporns, 2010) was used to calculate
network communication measures (for full definitions, see Table 3). Two communication
measures were based on shortest-path routing: i.e., characteristic path length, defined as the
average shortest path length between all node pairs in a network (Watts & Strogatz, 1998),
and global efficiency, which is the average inverse of the shortest path length to characterise
parallel network communication (Latora & Marchiori, 2001). Shortest path-based routing
assumes that each node has a centralized knowledge of the network, in that information
travels via the fastest possible route between any two nodes. The third measure, i.e.,
navigation efficiency, was calculated using the navigation-based routing and is defined as the
average navigation path efficiency between all node pairs in a network (Seguin et al., 2018).
Navigation-based routing strategies do not assume that each node has a centralized
knowledge of the network — instead, navigation models information transfer using a
decentralized, geometrically greedy heuristic (Boguna et al., 2009). Information travels from
the starting node, to the next node in line that is geometrically closest to the target node —
which may not necessarily be the fastest and most direct path. Greater capacity for efficient
integration is indicated by higher values of navigation efficiency and global efficiency, and

lower values of characteristic path length.

Table 3

Definition of Communication Measures used in the Current Study

Metric Definition Calculation Interpretation

The shortest path is the
Characteristic  fastest and most direct
path length  communication pathway
(CPL) between two network
nodes. The shortest path

A higher CPL
indicates that the
fastest communication
pathways between
regions are, on

More specifically, let L €

RM*N denote the matrix of
connection lengths between

N regions, where L measures the
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Metric Definition Calculation Interpretation
length denotes the length or  length of the connection between average, longer and
signalling cost associated regions i and j. Region pairs that less efficient.
with the shortest path. CPL  do not share a direct connection
is defined as the average have L;; = co. The shortest path
shortest path length length between regions i and j is
between all node pairsina  defined as A= L+ + Ly,
network (Watts & Strogatz,  \yhere {y, ..., v} is the sequence of
1998). intermediate regions comprising

the shortest path. The characteristic

path length is defined as:

1
CPLzNZ_NZA;j
i,jEN

The average shortest path - . A higher global
efficiency between all ggfrir::(ljlye/l;global Sl ez efficiency will
possible pairs of nodes in a ' indicate a greater
network, where efficiency 1 1 capacity for efficient
is computed as the inverse Egion = N2 —N Z N integration of

Global of shortest the pa_th I_ength LifEy information (in

efficiency (Lat_ora & Marchl_orl, 2091). parallel) across the

(Eqion) While CPL describes serial network.

glob information transfer, global
efficiency characterizes
massively parallel network
communication, which may
better reflect neural
signalling.
Navigation paths are use a — .. Higher navigation
decentralized and ;[)hfen?(\)/r:gaitslzneﬁﬁtegtfggZ]sr?glll(())?/vls efficiency indicates
geometrically greedy Iden?ify V\J/hich of i"s neighbours is. greater capacity for
heuristic (Bogund et al., closest (shortest Euclidegn efficient integration of
2009). While navigation dist to i and toit. E information across the
paths are not the fastest and IAEIEE) 0] and progress 10 IL. FOr o york | without the
most direct routes in a each new V!f'.t(?d reglgn(,j repeat this assumption of
network, their computation ?srl?gs::s?ﬂl“n f!l\;isgr:t?gn; or a region centralized
Sgﬁfrgl?;ggal?r? ;J\?I edge of is revisited (failed_ navigati_on)._ Let TR g

Navigation  the network. Navigation A dﬁTOte tﬂe rlr:cattzlx o na\;lfg@:l%n
efficiency (E) efficiency is defined as the [EIED BT, 7S EE o NS

average navigation path
efficiency between all
possible pairs of nodes in a
network (Seguin et al.,
2018).

navigation from i to j, A;j= oo.
Otherwise, A;j= Ly, + =+ + Ly,
where {u, ..., v}is the sequence of
nodes visited during navigation.
Analogous the global efficiency of
shortest paths, navigation
efficiency is defined as:

1 1
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First, the weighted connectivity matrix (W) of each individual participant was
normalised between 0 and 1, by dividing each weight by the sum of the maximum plus the
minimum value (W/Wmax+Wnmin). For characteristic path length and global efficiency,
weight-to-length remapping was performed according to methods outlined in Rubinov and
Sporns (2010) by calculating the inverse of the connectivity matrix (1/W; Floyd, 1962;
Warshall, 1962). For navigation efficiency weights were remapped logarithmically (-
log10[W]) according to procedures outlined in Seguin et al. (2018). The weight-length
remapping procedures differed between the communication metrics so as to remain consistent
with previous methods (path length: Caeyenberghs et al., 2014; Rubinov & Sporns, 2010;
Wen et al., 2011) (navigation: Seguin et al., 2020; Seguin et al., 2018). Nevertheless, a
control analysis was also performed to examine the sensitivity of results under the different
normalisation procedures. In this analysis, navigation is calculated using the inverse method
(1/W), and characteristic path length and global efficiency are calculated using the logarithm
method (-log10[W]), and results are compared. All three communication measures were

calculated for the whole-brain and the task-specific fronto-parietal subnetwork.

4.2.4.4 Statistical analyses

A one-way analysis of variance (ANOVA) was conducted to examine the effect of
condition (neutral, congruent, incongruent) on drift rate. Partial correlation analyses were
performed in Matlab (R2019b) to examine the relationships between the communication
measures and processing speed. We performed these analyses separately for the whole brain
and subnetwork levels, controlling for the effect of age (as a covariate). Moreover, correction
for six comparisons (between the three communication measures and drift rates for each
condition) was performed using the false discovery rate (FDR<0.05, critical value p<0.016)

(Benjamini & Yekutieli, 2001). For each of the exploratory control analyses (parcellation
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scheme, area size normalisation, and weight-length remapping alternatives), the critical FDR
value was identical to the main analysis (p<0.016). To explore the influence of brain size and
movement in the scanner, a control analysis was performed whereby these two variables were
also included as covariates in the model. Brain size (volume inside the skull) was measured
using estimated Total Intracranial Volume (elTV), which is a fast automated procedure for
head size correction provided by the Freesurfer software (Buckner et al., 2004). Movement in
the scanner was measured as the square root of the displacement per voxel averaged across
each volume, using output from FSL’s motion correction algorithm (Andersson &
Sotiropoulos, 2016).

To test for the specificity of our findings, we evaluated the model against a null
model, similar to previous works (e.g., Poudel et al., 2020; Poudel et al., 2019). We randomly
selected subnetworks of 28 regions each (to preserve the number of nodes) 10,000 times.
Communication measures were calculated for each of these 10,000 random subnetworks,
which were then correlated with drift rate to form a distribution of 10,000 correlation values.
The frequency of each correlation value was fitted to a Gaussian distribution, and the
observed correlation value from the task-specific subnetwork analysis was then plotted
against this distribution. Using a standard z test, the likelihood of observing the task-specific
subnetwork correlation from the distribution of randomly permuted subnetwork correlations

was calculated as a p-value.

4.2.5 Results

4.2.5.1  Global-local results and HDDM analysis
With respect to assumption testing, drift rates of the incongruent (M=2.25, SD=0.29,
range=1.26), congruent (M=2.82, SD=0.31, range=1.08), and neutral conditions (M=2.77,

SD=0.30, range=1.08) had similar ranges and equivalent variances (all F>0.87, p>0.68).
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Sample skewness of the drift rates for each condition were between -0.5 and 0.5 and thus not
significantly skewed (gincongruent=-0,04; gcongruent=-0.17; and gneutrai=0.33) (Bulmer, 1979).
The omnibus ANOVA comparing mean drift rate of incongruent, congruent, and neutral
conditions was significant (mean sum of squares=3.74, F=41.25, p<0.001, see Figure 4).
Post-hoc analyses revealed that drift rate was significantly lower in the incongruent trials
compared to the congruent (MD=0.57, p<0.001, gHedges=2.60) (Hedges & Olkin, 2014) and
neutral trials (MD=0.52, p<0.001, gHedges=2.36) with lower drift rate indicating slower
processing speed. Because the congruent and neutral conditions did not differ significantly
(MD=0.05, p=0.48, gHedges=0.22), only drift rates from congruent and incongruent trials were

included in subsequent analyses to minimise the number of comparisons.
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Figure 4

Drift Rate for Incongruent, Congruent, and Neutral Conditions of the Global-Local Task

(a)

.5 1 3.5
Dirift Rate

[

1.5

(b | il
249

2.8
2.7
2.6
2.5
2.4
23
2.2

Congruent Incongruent Neutral

Notes: (a) distribution of individual mean drift rates for each condition; and (b) average drift rate for each
condition, including error bars (standard error of the mean, SEM). * indicates average drift rate was significantly
different between conditions.

-~

Mean Drift Rate

133



4.2.5.2  Whole-brain communication analysis

Partial correlation analysis revealed that navigation efficiency was positively
correlated with faster processing speeds on incongruent trials (r=0.427, p=0.009; see Figure
5), but not on congruent trials (r=0.213, p=0.213), when controlling for the effect of age. This
remained significant after correction for multiple comparisons (FDR critical p-value=0.016).
We failed to observe significant correlations between drift rate and whole-brain
communication based on shortest-path algorithms i.e., characteristic path length or global

efficiency (see Table 4).

Table 4

Correlations Between Communication Measures and Incongruent and Congruent Drift Rate

Communication measure Incongruent drift rate Congruent drift rate

(a) Whole brain analysis
Navigation efficiency r=0.427; p= 0.009 r=0.213; p=0.213
Characteristic path length r=-0.158; p=0.358 r=-0.169; p=0.325
Global efficiency r=0.110; p=0.522 r=0.212; p=0.215

(b) Subnetwork analysis
Navigation efficiency r=0.417; p=0.011 r=0.274; p=0.105
Characteristic path length r=-0.239; p=0.160 r=-0.399; p=0.016
Global efficiency r=0.129; p=0.452 r=0.266; p=0.117
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Figure 5

Results of the Whole Brain Analysis
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4.2.5.3

Task-relevant subnetwork analysis

Results of the subnetwork correlation analysis revealed that navigation efficiency was

positively correlated with drift rate on the incongruent trials (r=0.417; p=0.01) when

controlling for the effect of age, indicating that higher navigation efficiency in the fronto-

parietal network was related to faster processing speed on the global-local task. In addition,

characteristic path length of the subnetwork was negatively correlated with drift rate on the
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congruent trials (r=-0.399; p=0.016) when controlling for the effect of age, indicating that
longer, less efficient shortest paths in the fronto-parietal network coincided with slower
processing speed (see Figure 6a and b). Both findings remained significant after FDR
correction (FDR critical p-value=0.016). Global efficiency of the subnetwork was not related

to drift rate of either condition of the global-local task (see Table 4).
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Figure 6

Results of the Subnetwork Analysis
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4.2.5.4  Control Analyses

Parcellation scheme
No significant (FDR corrected) results were obtained utilizing the Destrieux

parcellation scheme (see Table 5a).

Table 5a
Correlations Between Whole Brain Communication Measures, and Incongruent and

Congruent Drift Rate with Alternative Parcellation Scheme

Communication measure Incongruent drift rate Congruent drift rate
(a) Whole brain analysis*
Navigation efficiency r=0.124; p= 0.473 r=0.279; p=0.099
Characteristic path length r=-0.076; p=0.664 r=-0.012; p=0.945
Global efficiency r=0.091; p=0.596 r=0.183; p=0.286

Note: Subnetwork analyses were not replicated for this control.

Area size normalisation
No significant (FDR corrected) results were obtained at the whole-brain or

subnetwork level when area size normalisation was applied (see Table 5b).

Table 5b
Correlations Between Whole Brain and Fronto-Parietal Subnetwork Communication

Measures, and Incongruent and Congruent Drift Rate with Alternative Streamline Weight

Communication measure Incongruent drift rate Congruent drift rate

(a) Whole brain analysis
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Communication measure Incongruent drift rate Congruent drift rate

Navigation efficiency r=0.357.; p=0.033 r=0.174; p=0.311
Characteristic path length r=-0.114; p=0.508 r=-0.064; p=0.710
Global efficiency r=0.047; p=0.784 r=0.019; p=0.913

(b) Subnetwork analysis
Navigation efficiency r=0.277; p= 0.102 r=0.176; p=0.305
Characteristic path length r=-0.111; p=0.519 r=-0.124; p=0.472
Global efficiency r=-0.01; p=0.953 r=0.050; p=0.770

Weight-length remapping procedures
No correlations met the FDR threshold for significance at either the whole-brain or

subnetwork level for the different weight-length remapping procedures (see Table 5c).

Table 5¢
Correlations Between Whole Brain and Fronto-Parietal Subnetwork Communication
Measures, and Incongruent and Congruent Drift Rate with Alternative Weight-Length

Remapping

Communication measure Incongruent drift rate Congruent drift rate

(a) Whole brain analysis

Navigation efficiency r=0.147; p= 0.391 r=0.244; p=0.152
Characteristic path length r=-0.331; p=0.049 r=-0.104; p=0.546
Global efficiency r=0.355; p=0.033 r=0.157; p=0.362

(b) Subnetwork analysis

Navigation efficiency r=0.156; p= 0.365 r=0.266; p=0.117

Brain size and head motion
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The results remained largely the same when brain size and head movement were
included as covariates in the analysis (see Table 5d). A significant positive correlation was
observed between incongruent processing speed and navigation efficiency at the whole-brain
level (r=0.449; p=0.007), and at the subnetwork level (r=0.420; p=0.012) (FDR corrected).
The negative correlation between congruent processing speed and characteristic path length
of the task-relevant subnetwork did not remain significant at the FDR corrected level (r=-

0.337; p=0.048).

Table 5d
Correlations Between Whole Brain and Fronto-Parietal Subnetwork Communication
Measures, and Incongruent and Congruent Drift Rate, Controlling for the Effect of Brain

Size and Head Movement

Communication measure Incongruent drift rate Congruent drift rate

(a) Whole brain analysis
Navigation efficiency r=0.449; p=0.007 r=0.110; p=0.530
Characteristic path length r=-0.043; p=0.808 r=-0.136; p=0.437
Global efficiency r=0.036; p=0.836 r=0.178; p=0.306

(b) Subnetwork analysis
Navigation efficiency r=0.420; p=0.012 r=0.182; p=0.295
Characteristic path length r=-0.209; p=0.229 r=-0.337; p=0.048
Global efficiency r=0.090; p=0.608 r=0.212; p=0.222

Comparison against null model subnetworks

The comparison against null models demonstrated that the findings of the task-
specific subnetwork analysis are unlikely to be due to chance. The observed correlation

between navigation efficiency of the fronto-parietal subnetwork and drift rate of the
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incongruent trials (r = 0.417) was 2.2 standard deviations above the mean of the distribution
of random subnetwork correlation values (p=0.0077; see Figure 6¢). Similarly, the observed
correlation between characteristic path length of the fronto-parietal subnetwork and drift rate

of the congruent trials (r = -0.399) was 2.18 standard deviations below the mean (p=0.0078).

4.2.6 Discussion

In the present study, we examined whether individual differences in processing speed
are related to measures of network communication in healthy adults. Communication
efficiency was quantified using shortest path length-based metrics as well as a novel routing
strategy, navigation efficiency (Seguin et al., 2018), across both whole-brain and subnetwork
levels. We found that measuring processing speed as “drift rate’ provides estimates of
decision-making time that are relevant to underlying white matter organisation. Our findings
further reveal that navigation efficiency of the whole brain network is related to faster
decision-making speeds. Finally, we also show that navigation efficiency and shorter
characteristic path length of the fronto-parietal subnetwork are related to faster decision-

making on the global-local task.

4.2.6.1  Drift rate is slower during incongruent trials

We observed normally distributed inter-individual variability in drift rate, with
equivalent variances across the conditions of the global-local task, supporting our hypothesis
that drift rate can effectively be used parametrically to examine individual differences in
decision-making time. Decision-making requires top-down control of attention and
necessitates longer processing times compared to visual perception and/or motor response
time (Lamme, 2003; Posner & Boies, 1971). By examining the decision-making time

separately from the overall reaction time, our results should arguably be more specific to
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individual differences in global-local processing speed. This supports previous studies that
also found drift rate to be more reliable than reaction time alone (Poudel et al., 2017; Powell
etal., 2019).

We found that information accumulation is slower when stimuli are incongruent,
compared with trials where stimuli have no distracting features. This observation is likely due
to the effect of global interference (e.g., Gerlach & Poirel, 2018; Kimchi, 2015). According to
Weissman et al. (2006), the response to the global letter in incongruent trials must be
inhibited in order to give a correct answer, thereby slowing the rate of information
accumulation. Our results are consistent with a previous study that used an accumulator
model to examine global-local processing in healthy adults (Hibner, 2014). Furthermore, our
findings support recent clinical research that has used drift rate to measure processing speed
in autism and Parkinson’s disease (e.g., Powell et al., 2019; Zhang et al., 2016). For instance,
Powell et al. (2019) found lower drift rate in individuals with autism compared with healthy
controls; and Zhang et al. (2016) identified slower drift rates in Parkinson’s patients
compared to controls, which they interpreted as a detrimental effect of the disease on the rate
of information accumulation. Our findings highlight the utility of drift-diffusion model based

decision-making time as a sensitive measure of cognitive processing.

4.2.6.2 Processing speed is associated with whole-brain navigation

efficiency
Our whole-brain analysis revealed that higher navigation efficiency — a measure of
network communication — was related to faster decision-making on incongruent trials of the
global-local task. This finding supports the idea that more ‘navigable’ white matter topology
increases the capacity to perform higher-order cognitive tasks more efficiently (Seguin et al.,

2020; Wang et al., 2019). Incongruent trials of the global-local task require greater top-down
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cognitive control to avoid interference from conflicting information (Posner & DiGirolamo,
1998). Top-down control of responses rely on a broad range of temporary neural pathways
across the whole brain (not just the fronto-parietal attention network), including regions that
are important for guiding controlled responses such as the cortico-basal ganglia structures
(Hikosaka & Isoda, 2010; Leunissen et al., 2016) and fronto-striato-thalamic circuits
(Leunissen et al., 2014). The results of the whole-brain analysis suggest a relationship
between whole brain networks that are navigable with a shorter average Euclidean distance,
and faster decision-making time when top-down cognitive control is required.

An individual with higher navigation efficiency tends to have stronger edge weights
in the pathways characterised by the navigation heuristic (Seguin et al., 2018). Using the
SIFT2 approach, this edge weight is roughly proportional to the apparent fibre density (Smith
et al., 2015a). Thus, the tempting explanation for the correlation between network
communication and processing speed is that there is higher axon density or cross-sectional
area in the brain networks of people with faster processing speed, indicating faster signal
transmission. However, it is still unclear whether graph metrics based on tractography alone
can predict the speed of information transfer (for review, see Jones, 2010a; Lynn & Bassett,
2019), as conduction velocity has been shown to be more related more to axon diameter and
g-ratio (Drakesmith et al., 2019). Additional measures of white matter organisation therefore
may have stronger and more direct links to signal transmission speed, like g-ratio (Mancini,
2017) or myelination (Caeyenberghs et al., 2016). In the current work, we use the SIFT2
method to relate edge weights to apparent fibre density via the streamline tractogram (Smith
et al., 2015a). It is still being explored how well the assumptions of the SIFT2 method
assumptions hold in the presence of a large proportion of false positive streamlines, which are
common for whole brain probabilistic tractograms (Maier-Hein et al., 2017): the SIFT2

approach optimises all connection weights globally, meaning in false positives may impact
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directly on genuine connection weights and should be used with some degree of caution
(Zalesky et al., 2020). Nevertheless, we do not argue that neural transmission speed can be
directly inferred from communication measures. Instead, we suggest that navigation
efficiency might quantify network topology in a way that reflects the capacity of a neural
network to shift information around efficiently — in this capacity it may have value as a

potential biomarker.

4.2.6.3 Processing speed and communication in the fronto-parietal

subnetwork

The subnetwork analyses revealed that individual differences in decision-making time
are also related to characteristic path length and navigation efficiency of fronto-parietal
structures. In accordance with previous literature, the control analysis indicated that
communication within this fronto-parietal subnetwork is more strongly correlated with
global-local decision-making time than other subnetworks in the brain. This finding was
expected as previous work suggests that processing speed on the global-local task relies on
the fronto-parietal attention network to focus attention on the target stimuli (Gadgil et al.,
2013; Han et al., 2004; Hedden & Gabrieli, 2010; Liddell et al., 2015; Weissman &
Woldorff, 2005). For example, Han et al. (2004) found that attention to global elements of the
stimuli elicited activation in temporal regions of the subnetwork, and local elements were
related to parietal activation. Hedden and Gabrieli (2010) found that switching attention and
inhibiting responses were reliant upon bilateral prefrontal, parietal, and basal ganglia
structures. Our work further demonstrates that the structural constraints of this broad
frontoparietal attention network are related to the speed of decision-making on the global-

local task.
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Interestingly, our study indicates that characteristic path length and navigation
efficiency are related to decision-making time on different trial types—congruent and
incongruent, respectively. This may be related to the dual processing theory of automatic and
controlled processing (Schneider & Chein, 2003). Congruent trials require less attention than
incongruent trials, as there is no distracting information; therefore, responses might occur
more automatically via a relatively permanent set of neural connections (Banich, 2009;
Banich et al., 2000; Schneider & Shiffrin, 1977). Given that characteristic path length
represents an ‘optimal’ pathway between two regions, it would follow that this model of
communication relates to automatic responses that have been performed many times before.
By comparison, navigation efficiency correlated with decision-making time on incongruent
trials, which require greater top-down cognitive control and attention (Posner & DiGirolamo,
1998). It may therefore be reliant on a more temporary set of neural pathways—perhaps those
that show differential neural activation patterns in the parietal and occipito-temporal regions
compared to controlled response activation patterns (Banich et al., 2000). Because navigation
routing includes deviations from the optimum pathways, it may more closely model these
temporary neural pathways. It is therefore logical that navigation efficiency is related to
incongruent trials, and that responses to these stimuli require longer processing times to
control attention. In other words, different behavioural contexts might be facilitated by
special underlying patterns of neural signalling, which would in turn be better captured by
different network measures of communication. To test this theory, future studies could
investigate whether the correlation between navigation efficiency and processing speed on
incongruent trials disappears with as the response becomes well-learned and automated.

We expected that examining communication within a task-specific subnetwork with
strong links to performance on the global-local task would increase the specificity of our

analyses, similar to previous graph theory studies (e.g., Roman et al., 2017). This was the
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case for characteristic path length, which negatively correlated with processing speed at the
subnetwork level only. Surprisingly, however, navigation efficiency was sensitive to
processing speed on both the subnetwork and whole-brain level. One possible explanation for
this discrepancy again stems from the fact that characteristic path length and navigation
efficiency were related to processing speed on different conditions. Given that characteristic
path length represented communication for automatic tasks with predefined routes, it follows
that only the subnetwork required for the task at hand was related to decision-making time.
By comparison, navigation efficiency was related to trials that demanded greater top-down
control of responses and might therefore be reliant on fronto-parietal topology as well as
other distributed regions of the whole-brain network. Alternatively, navigation might be
overall a more suitable model of neural signalling, which picks up on differences in

processing speed even when not computed on the task-relevant subnetwork.

4.2.6.4  Strengths, Limitations and Future Directions

A causal link between brain structure and behaviour cannot be identified by
correlation analyses alone (Woo et al., 2017). The main purpose of relating white matter
organisation to individual variability in cognitive performance is ultimately to develop a
‘diagnostic biomarker’, a neuroimaging metric that is indicative of behaviour (e.g., Imms et
al., 2019). To this end, the use of techniques such as multivariate pattern-recognition and
machine learning in future investigations will better enable prediction of behavioural
outcomes from graph metrics (e.g., Dhamala et al., 2020; Jolly et al., 2020). An important
limitation of the present study is the relatively small sample size. Compared with previous
network communication studies utilizing data from the Human Connectome Project (e.g.,
Seguin et al., 2020), conclusions drawn from the current study are limited by the moderate

sample size and lack of a validation dataset. We observed significant results at an FDR-
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corrected level, indicating sufficient power; nevertheless, larger samples would enable
machine learning techniques to examine whether communication measures can be used to
predict processing speed in individuals. Furthermore, the cause-effect relationship between
brain structure and behaviour can be better understood by longitudinal studies that investigate
changes in response to training. For example, Caeyenberghs et al. (2016) found that improved
cognitive performance with adaptive working memory training was associated with increased
global efficiency in healthy adults, indicating that graph metrics are sensitive to neuroplastic
changes over time. A longitudinal examination could be the next step towards using
communication measures to predict inter-individual variation in processing speed through
healthy development (Kail & Salthouse, 1994) and aging (Kerchner et al., 2012).
Connectome analyses can be heavily influenced by methodological choices in the
processing pipeline (for reviews, see Sotiropoulos & Zalesky, 2019; Yeh et al., 2020; Zalesky
et al., 2010). Thus, the interpretation of results from the current study are mitigated by the
specific graph construction parameters employed during analysis. These effects were
explored in the present study using control analyses, whereby we examined the robustness of
results across different methodological choices, including parcellation scheme and
normalization procedures. For instance, we did not observe significant correlations using the
higher-resolution Destrieux atlas (164 regions, Destrieux et al., 2010). Zalesky et al. (2010)
found that network parameters such as path length vary as spatial scale of the parcellation
scheme increases, and thus findings should be reported with reference to the scale of the
parcellation used. The fact that significant relationships were observed only under the lower-
resolution Desikan-Killiany parcellation scheme (82 regions, Desikan et al., 2006) reflects the
idea that parcellation granularity does impact the sensitivity of communication measures to
individual differences. In the case of processing speed on the global-local task, our results

suggest a lower-resolution representation of brain regions seems to be important.
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Also, both the Desikan-Killiany and the Destrieux atlases have differently sized
parcels designed to reflect neuroanatomy (Desikan et al., 2006; Destrieux et al., 2010). While
this makes these atlases potentially more neurobiologically relevant, differently sized parcels
are a mathematical confound given larger regions are bound to have stronger weights due to
the size of the nodes. In an effort to minimise the number of control analyses, the current
study does not evaluate measures across a range of parcellation schemes of equally sized
nodes as was done in a larger sample size (N=889) by Seguin et al. (2020). Instead, we
conducted a control analysis utilizing the streamline weighting scaled to the volume of each
node, which revealed no significant correlations at the FDR corrected level. This implies that
communication is related to processing speed when node volume differences are not taken
into account. While this is a confounding factor, it may also suggest that the variance in node
size is an interesting feature of the human brain network when using edge weights based on
SIFT2 (Smith, Raffelt, et al., 2020).

We also observed no significant correlations at the FDR corrected level when using
different remapping procedures. We chose to use the standard remapping procedure for each
communication measure according to key publications (e.g., Rubinov & Sporns, 2010;
Seguin et al., 2018). However, this does introduce a limitation in that variance in the
distribution of edge weights may be a confounding factor. Because there is no ‘best practice’
method for this step, there is a need for thorough investigation of performance of
communication measures for predicting behaviour under these different remapping
procedures (e.g., Avena-Koenigsberger et al., 2018). Finally, we observed that controlling for
the effect of brain size and head movement had little impact on the results of the analysis
(apart from characteristic path length) probably due to the nature of our sample (healthy
cohort). However, these variables will play an important role in connectome studies in

paediatric and/or clinical populations (Makowski et al., 2019).
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With these limitations in mind, promising relationships are emerging between
cognitive processing speed and macroscale brain network communication. A strength of the
current analysis lies in the diffusion MRI modelling approaches that were used to overcome
some known limitations of earlier tensor-based techniques (for reviews, see Jeurissen et al.,
2013; Jones, 2010a). We used single-shell 3 tissue constrained spherical deconvolution to
avoid overestimating the amount of diffusion signal attributed to white matter in the presence
of partial voluming with other tissues (Dhollander et al., 2016); anatomically constrained
tractography to generate streamlines from the grey-white matter boundary (Smith et al.,
2012); and attempted to avoid reconstruction biases and make the streamline tractography
measures proportional to the underlying apparent fibre density, using SIFT2 (Smith et al.,
2015a). We also measured processing speed more specifically, using cognitive models that go
beyond basic reaction time and that are sensitive to individual differences (Ratcliff &
McKoon, 2008; Wiecki et al., 2013). Finally, we used a new measure of communication
(navigation efficiency) that relies on more biologically realistic assumptions than shortest

path length (Seguin et al., 2018).

4.2.7 Conclusion

Our analysis revealed a relationship between the white matter constraints of the
macroscale healthy brain network and the speed of cognitive decision-making processes.
Navigation is emerging as a more biologically grounded alternative to shortest path-based
approaches at the whole-brain level, making it potentially useful as a marker of processing
speed in healthy adults. Furthermore, by investigating the fronto-parietal subnetwork more
specifically, we also found evidence that navigation efficiency and characteristic path length
are differentially related to controlled and automatic processing speeds respectively. This

opens up a new set of possible theories about how different communication models relate to
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processing speed under different levels of cognitive demand. Overall, these results indicate
that communication measures may have interpretive value in healthy adults, with higher
communication efficiency (especially when calculated using the navigation heuristic) relating
to faster processing speed on executive functioning tasks requiring cognitive control-bringing

us closer to bridging the gap between graph theory and cognition.
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Chapter 5: Study 3 - Personalised structural connectome mapping in

Traumatic Brain Injury
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5.1 Preface

The purpose of Study 3 was to investigate alterations in brain network structure and
cognition in a series of six moderate-severe TBI patients who are in the chronic phase post
injury: thus, advancing the use of graph theory in the study of brain injury. Building on the
insights of the Study 1, this study addresses three main issues in the use of graph theory: 1)
representing heterogeneity in the TBI population (5.1.1), 2) the rationale behind choice of
graph metrics to examine (5.1.2), and 3) methodological considerations for graph analysis in
patients with lesions (5.1.3). As well, an updated review of the literature published since the
final systematic literature search conducted in Study 1 is provided (i.e., post April 2018)
(Imms et al., 2019).

A personalised connectomics approach uses the structural connectome as a
‘fingerprint’ of an individual’s brain network (e.g., Sanz Leon et al., 2013; Schirner et al.,
2015). The vast majority of personalised connectomics research has focussed on the
functional network profiles of healthy adults using fMRI (Finn et al., 2015; Gratton et al.,
2018; Miranda-Dominguez et al., 2014; Satterthwaite et al., 2018). However, as argued by
Irimia and colleagues (Irimia, Chambers, et al., 2012; Irimia, Wang, et al., 2012), there is a
need for individual-level structural connectome analysis of TBI patients; where the structure
that entails the function of the brain is studied to determine how network organisation is
rewired following trauma. Nevertheless, structural network differences between groups of
TBI patients and healthy controls remained the dominant method of evaluation (Imms et al.,
2019) and the role of personalised structural connectomics is still undervalued, especially in

chronic patients.

5.1.1 How should heterogeneity in TBI patients be addressed?
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In Study 1 it was noted that patients with TBI are diverse and vary in severity, time
since injury, age at injury, method of injury, type of lesion, and other characteristics. Most
research examining the link between brain structure and cognition has adopted group-level
analyses that average TBI patient data regardless of this undeniable variability. While group-
level analysis is essential for statistical evaluation, the TBI population is notoriously
heterogeneous in terms of their lesion characteristics and cognitive outcomes; as such, group-
level results are not necessarily applicable to individual patients (Mant, 1999). Instead, there
is impetus for the use of single-subject profiling approaches to investigate the cognitive and
neurological consequences of brain injury (e.g., Irimia, Chambers, et al., 2012; Irimia, Wang,
et al., 2012). Therefore, this study develops and implements a framework for evaluating a
profile of graph metrics, including the communication metrics investigated in Study 2,
enhancing the applicability of the approach to any patient with TBI.

Another important gap in the TBI field is methods to improve segmentation of
patients with large lesions, so that they are not excluded from connectome analyses. It has
been an unfortunate fact that, to increase the homogeneity of the TBI group, studies often
discard patients with large lesions as ‘outliers’, meaning these patients are not being
represented in the literature. This is often done because the altered signal intensity of the
structural pathology causes failures in anatomical segmentation and streamline generation.
However, newly available lesion filling techniques may allow for automated processing of
these patients, allowing their inclusion in connectome analyses (i.e., "Virtual Brain Grafting’;
Radwan et al., 2021). Hence, Study 3 advances the use of a profile of graph metrics at the
individual level, including new brain imaging tools to facilitate segmentation in the presence

of large, bilateral lesions.

5.1.2 Which graph metrics should be examined in TBI?
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The meta-analytic study (Study 1) was used to define which graph metrics were
selected for Study 3, and to inform predictions about whether they were expected to be higher
or lower in the TBI patients compared with healthy controls. This profiling approach is a
major advance in the theoretical reasoning behind the use of graph theory to understand TBI.
Previous graph theoretical studies of TBI patient groups were generally exploratory, with no
clear rationale behind the selection of graph metrics for analysis, and no theoretically
informed hypotheses about group differences. For example, (Yuan, Wade, et al., 2017)
predicted that metrics would be abnormal in TBI patients compared with healthy controls,
and that following training they would normalise. However, normality was not defined in
reference to the graph metrics. This is, perhaps, understandable given the exploratory nature
of the field and lack of available evidence upon which to base a hypothesis. The meta-
analysis in Study 1 provides a comprehensive summary of the graph metric findings in TBI
populations compared with healthy controls, providing a foundation for selecting graph
metrics and predictions for profiling in Study 3.

Since publication of Study 1, a number of new studies have explored brain alterations
in TBI patients using graph theory (see Table 1 for an updated summary of the demographics
and processing techniques, and Table 2 for an updated summary of graph metric alterations in
TBI). Overall, eight graph metrics were found to be frequently different between TBI patients
and healthy controls: strength, global efficiency, characteristic path length, local efficiency,
normalised clustering coefficient, clustering coefficient, betweenness centrality, and small-
worldness. These same metrics were therefore selected in Study 3, with one exception;
small-worldness was not selected because it is a summary statistic of normalised clustering
coefficient and normalised path length and, therefore, redundant. Another metric, navigation
efficiency (Study 2) (Seguin et al., 2018) was included because it is showing promise as a

more specific measure of network communication.
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5.1.3 What methods should be used to create the connectome?

As noted in Study 1, due to inherent limitations in tractography it is difficult to
directly relate ‘edge’ properties to white matter organisation. The studies included in the
meta-analysis were mostly conducted between 2012 and 2017, during which time
tractography was largely deterministic and few options were available to address crossing
fibres (with the exception of van der Horn et al., 2017; Verhelst et al., 2018). Furthermore,
dMRI acquisition was slower and generally had lower b values (750-1200), which means the
signal-to-noise ratio was poorer than is available currently. In Study 2 a state-of-the-art
diffusion and connectome processing pipeline is described that includes advances in post
processing and a short, 6-minute single-shell dMRI acquisition (b=3000) (Dhollander &
Connelly, 2016; Dhollander et al., 2019; Dhollander et al., 2016; Smith et al., 2015a; Smith et
al., 2012, 2015b). The length of the acquisition was important because it is often difficult for
TBI patients to remain still in the scanner for long periods of time. This acquisition and
processing pipeline follow very recent guidelines approved by experts in the field (Yeh et al.,
2020). The benefits and rationale behind the pipeline are outlined in detail in Study 2 (and in
section 6.2.4) and are carried forward in Study 3. While no imaging or processing technique
is perfect or future-proof, the methods in this thesis (arguably) represent the best of the

current connectome analysis techniques.

5.1.4 Summary

In summary, Study 3 addresses themes raised in the meta-analytic study (Study 1) and
employs the methodological advances used in Study 2. Taken together, the findings from
these previous two studies are used to inform a novel approach to single-subject profiling of
moderate-severe TBI patients in the chronic phase of their injury. This study addresses Aim

3, Research Questions 1, 2, and 3: to facilitate visual comparison of graph metric alterations
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in TBI patients compared to healthy controls; observe variability in graph metrics and
cognitive performance; and establish the role of graph metrics as biomarkers of TBI. The
technique implemented in Study 3 demonstrates a high level of heterogeneity in the six TBI
patients included, regardless of their similarities in severity, lesion location and lesion size.
Thus, single-subject profiling approaches may allow researchers to capture the range of

network alteration patterns in TBI patients.
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5.2.2 Abstract

Graph theoretical analyses of the structural connectome have successfully been used
to characterise brain network alterations in Traumatic Brain Injury (TBI). However, the
population of moderate-severe TBI patients is heterogeneous with regards to cognitive
function and neurological outcome, and group-level analyses tend to cancel out variability
between subjects. Single-subject profiling approaches can instead be utilised to better
represent individual patients. The current study examines cognitive and neurological
impairments in six chronic moderate-severe TBI patients who underwent an MRI scan and
completed a cognitive test battery. We develop a single-subject graph metric and cognitive
profile for each patient comprising their i) cognitive performance, ii) lesion characteristics,
iii) personalised connectome, and iv) regional brain network alterations. The individual
profiles are compared with a healthy reference group to facilitate interpretation of graph
metrics and cognitive performance. We show that cognitive and brain network alterations are
highly variable across patients. This customised profile based on clinical manifestations and
injuries provides new insights into how a profile of graph metrics, rather than a single metric,
can be used to represent structural network alterations in TBI; and devise neuroimaging-

guided rehabilitation.
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5.2.3 Introduction

Traumatic Brain Injury (TBI) is one of the leading causes of death and disability
worldwide, with approximately 27 million new cases recorded every year (James et al.,
2019). TBI severity (mild, moderate, or severe) is determined by a combination of factors,
including the duration of loss of consciousness, length of post-traumatic amnesia, as well as
lesions identified using neuroimaging techniques (Hannawi & Stevens, 2016; Maas et al.,
2008; Poudel et al., 2020). Moderate-severe TBI can result in diverse and long-term cognitive
impairments including slow processing speed, poor attention and memory, and difficulties
with communication and visuospatial processing, leading to significant decline in overall
intellectual ability (Rabinowitz & Levin, 2014; Wallace et al., 2018). These impairments can
persist for years following injury, interfering with the performance of daily tasks that are
essential for independent living.

White matter pathology is strongly considered to be a major cause of cognitive
impairment following brain injury (Bressler & Menon, 2010). Executive functions that rely
on broadly distributed regions of the brain are hindered due to disruptions to the axonal
pathways (Catani & Ffytche, 2005; Hampshire et al., 2016). Numerous studies utilising
structural connectomics using diffusion weighted MRI have linked cognitive deficits to
different graph theoretical properties of brain networks in TBI patients (e.g., Caeyenberghs et
al., 2014; Kim et al., 2014a; Raizman et al., 2020; van der Horn et al., 2017) supporting the
disconnectivity theory of TBI-related impairment (e.g., Haberg et al., 2015; Hannawi &
Stevens, 2016; Hulkower et al., 2013). For example, Kim et al. (2014a) found not only that
the average path length was longer in TBI patients compared to controls but also that it was
associated with poorer executive functioning and verbal learning. More recently, in a meta-
analysis of studies that used graph theory to examine TBI, our group found that only few

graph metrics were robustly identified to be altered in TBI across studies — namely,
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characteristic path length and normalised clustering coefficient (for review, see Imms et al.,
2019). We suggested that this finding reflects, at least in part, the heterogeneous nature of
TBI (represented in individual variation in lesion location, severity of injury, time since
injury, age, etc.). Because of degeneracy (the brain’s ability to attain the same function with
different structures; see Mason et al., 2015; Price & Friston, 2002) in response to injury,
different graph metrics may be altered across different individuals. As such, examining a
profile of graph metric alterations — a literature-driven selection of measures that represent
integration, segregation, and centrality — holds promise for capturing the range of individual
network alterations caused by brain injury.

As chronic TBI patients are heterogeneous, group-level comparisons do not represent
intra-patient variance in brain network topography: thus, they cannot capture individual-
specific features (Mant, 1999). There is impetus for the use of individual-level approaches to
enable individual diagnosis and treatment planning (e.g., Icometrix:
https://icometrix.com/services/icobrain-tbi) (Irimia, Chambers, et al., 2012; Irimia, Wang, et
al., 2012; Jolly et al., 2021). Recent studies have exploited this heterogeneity with the aim of
individualising tract-level comparisons of fractional anisotropy (FA), cortical thickness (CT),
and streamline count (Attyeé et al., 2020; Jolly et al., 2021; Lv et al., 2020). For example, in
their study of Schizophrenia patients, Lv et al. (2020) examined alterations FA and CT in 48
white matter and 68 cortical regions. They found that overall, the Schizophrenia group
demonstrated reductions in structural FA and CT. However, the anatomical locations of
changes at the individual level were highly inconsistent, and as such group-level maps were
not representative of individuals. In a separate study, Jolly et al. (2021) used individual
examination of FA in TBI patients in the chronic (>6 months) and subacute (10 days —
6weeks) phases to develop a structural connectivity pipeline for diagnosing diffuse axonal

injury (DAI). Patients who were deemed to have DAI were also significantly more likely to
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show cognitive impairment or poorer functional outcome. Despite these promising findings,
these studies failed to analyse individuals’ brain networks, which is possible using
personalised connectomics (Irimia, Wang, et al., 2012).

Personalised connectomics allow for an individual’s brain network to be used as a
‘“fingerprint” — analogous to genotyping (e.g., The Virtual Brain; Sanz Leon et al., 2013;
Schirner et al., 2015). Irimia, Wang, et al. (2012) introduced the idea of personalised
structural connectomics for TBI patients as a way to visualise trauma-related white matter
atrophy. In particular, they exemplify the need for techniques that allow clinicians to rapidly
compare changes in structural connectivity profiles to create personalised rehabilitation
programs (Irimia, Chambers, et al., 2012). They characterised white matter atrophy from the
acute stage (1-day post-injury) to the chronic stage (7-months post injury) in moderate-severe
TBI patients, using a circular graph which highlights the tracts that show evidence of
degeneration based on decreases in white matter fibre density. This enabled clinicians to
track the location of white matter atrophy over time for each TBI patient. To date, however,
no approach has examined an individualised profile of network alterations using graph
metrics in TBI patients — whereby a literature-driven selection of graph metrics that
summarise segregation, integration, and centrality (Rubinov & Sporns, 2010) are represented
for each individual patient. Not only do graph metrics summarise network properties that
show relationships with cognitive outcome in TBI patients, but they are also potentially more
reproducible than FA and CT across scanning protocols and subjects (Vaessen et al., 2010).
This approach could provide valuable information to clinicians leading to neuroimaging
guided strategies that help understand and improve outcomes for chronic TBI patients.

In the present study, we describe a novel framework to produce a detailed subject-
specific characterisation of cognitive impairments and brain network metrics in moderate-

severe TBI patients. Patients underwent an MRI scan and completed a cognitive test battery
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that assesses the core domains affected in chronic moderate-severe TBI. Next, single-subject
analyses of cognitive data and structural MRI scans were used to provide the following
output: (i) a spider plot for the assessment of processing speed, attention, memory and
planning (Rabinowitz & Levin, 2014; Ruff et al., 1993) — compared against reference scores
in healthy controls to provide information about the magnitude of impairment; (ii) a lesion
mask alongside the lesion load derived from the anatomical MRI scan, to identify the brain
regions affected in the individual patient; (iii) color-coded segmentation of grey matter
regions using the newly available Virtual Brain Grafting toolbox, which performs virtual
repair of lesioned brains to improve segmentation and parcellation for structural connectome
analyses (VBG; Radwan et al., 2021); (iv) graphical representation of the large-scale
connectome, i.e. Graph Metrics profile (GraphMe) plot to elucidate subject-specific changes
in global integration, functional segregation, and centrality (also compared with a reference
sample); and finally v) regional assessment of the hub regions and edge alterations in each
TBI patient. We test this single-subject profile in moderate-severe TBI patients with
heterogeneous lesions loads, ages, and types of injuries to highlight the translational potential

of our individual-level patient structural networks.

5.2.4 Methods

5.2.4.1 Traumatic Brain Injury Cases

Six patients with chronic, moderate-severe TBI were recruited from St Vincent’s
Hospital in Melbourne. The TBI patients had sustained closed head injuries due to sports or
motor-vehicle accidents >6 months prior to testing. Participants were diagnosed with
moderate-severe TBI, with clinical factors and initial presentations according to the following
criteria: (i) Glasgow Coma Scale score between 3-12 (Teasdale & Jennett, 1974); (ii) loss of

consciousness longer than 30 minutes; (iii) post traumatic amnesia longer than 24 hours
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(Rabinowitz & Levin, 2014):and (iv) anatomical features of their brain injury including DAI
and lesion extent and location (Table 1) as per evaluation by a neuroradiologist (PB).
Informed written consent was obtained from each subject in accordance with the Helsinki
declaration, and ethical approval was granted by the St Vincent’s Hospital Melbourne ethics

committee for human research (project #250/17).

5.2.4.2 Reference population

The resulting individual profiles of cognitive impairments and brain networks need to
be evaluated against a reference population of healthy controls. Without this contextual
information, it is difficult to meaningfully assess and interpret cognitive impairment and
network alterations in single subjects. We therefore also obtained data from 12 healthy
controls to be used as a reference cohort in this study (see Table 1). Healthy controls were
recruited from the general population using flyers and had to be (a) aged between 18 to 65
years; (b) generally healthy with no history of head injury; and (c) fluent in English, with (d)
no history of psychiatric illness (moderate levels of depression and anxiety not included), and

(e) no contra-indications for MRI.

Table 1

Summary of Demographics and Clinical Characteristics of the Participants.

ID Age  Sex TSI? Cause Pathology (at testing)? DAI®  1Q* NFI®
HC 35.7+ M=4 - - - - 119+ 134
114 F=8 9 15
TBI1 45y, M 21y, Car accident Small area of encephalomalaciain 0 101 133
3m Om the (R) precentral gyrus
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ID Age  Sex TSI? Cause Pathology (at testing)? DAI  1Q* NFIP®
TBI2 49y, M 15y, Motorbike Large areas of encephalomalacia 2 106 102
10m 6m accident involving both ant. F and inf. F

lobes, (R) T lobe and (R)
parietotemporal region extending
to the (R) post. F lobe. Focal T,
hypointensities in the
anteromedial aspect of the (L)
thalamus. Volume loss and T
hypointensity on the ant. body
and genu of the corpus callosum.

TBI3 49y, F 3y, 8m  Horse riding Bilateral ant. and inf. F 2 95 234
8m accident encephalomalacia, (R) greater
than (L), and (R) ant. T
encephalomalacia. Small deep
white matter T hyperintensities
med. (R) P lobe. Small focal T*
hypointensity in the ant. body of
the corpus callosum.
TBI4 29y, F 15y, Horse riding Bilateral inf. Fand (L) ant. T 0/1 91 218
5m 6m accident encephalomalacia. Small area of
encephalomalacia (L) sup. F
gyrus. (R) F burr hole with
underlying ventricular drain tract.

TBI5 50y, M 18y, Car accident Two small nonspecific deep white 0 104 123
2m Im matter T, hyperintensities in the
(R) P lobe (within normal limits
for age).
TBI6 29y, F 5y, Horse riding Small T1 hypointensity in 2 120 120
7m 10m accident splenium of corpus callosum.

Scattered punctate T,
hyperintensities in both cerebral
hemispheres (approx. 6).

Note: ! TSI=Time since injury (years, months). 2Abbreviations: (R) = right, (L) = left, ant. = anterior, post. =
posterior, inf. = inferior, mid. = middle, med. = medial, sup. = superior, F = frontal, P = parietal, O = occipital,
T = temporal. 3Grading of diffuse axonal injury (DAI) occurred according to Adams et al. (1989); a grade of ‘0’
indicates no confirmed DA present, ‘1" indicates DAI present in white matter of cerebral hemispheres, corpus
callosum, brainstem, cerebellum; ‘2’ indicates there is also a focal lesion in corpus callosum; and 3’ identifies
an additional lesion in dorsolateral quadrants of brainstem.*IQ was measured using the Weschler Abbreviated
Scale of Intelligence Vocabulary and Matrix Reasoning subtests (Revised edition; WASI-II; Weschler, 1999;
“Superior” = >130; “Very high” = 120-129; “Bright normal” = 110-119; “Average” = 90-109; “Low average” =
80-89; “Borderline mental functioning” = 70-79). 5The Neurobehavioural Functioning Index (NFI) is a measure
of self-reported daily life cognitive function, where scores above 157 (in bold) indicate ‘abnormal’ cognitive
function (Kreutzer, Seel, & Marwitz, 1999).
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5.2.4.3 Cognitive testing

Eight cognitive tasks from the computerised Psychological Experimental Building
Language test battery (Mueller & Piper, 2014) were used to evaluate core cognitive domains
that are commonly affected in chronic moderate-severe TBI patients (Rabinowitz & Levin,
2014; Ruff et al., 1993), including The Go/No-Go task (response inhibition), Vigilance
(sustained attention), the Corsi Blocks task (visuospatial working memory), the Digit Span
task (verbal working memory span), Letter Digit Substitution (processing speed),
Connections (mental flexibility), the Global-Local Task (decision making speed), and the
Tower of London task (planning). These tasks have also been recommended by the
ENIGMA-TBI consortium (Olsen et al., 2020). For full descriptions of the tasks, see
Supplementary Table 2. Cognitive data were acquired using a Dell Inspiron 15-3537 laptop
(response latency=80ms; refresh rate=60Hz; stimulus display was synchronised to device

refresh rate).

5.2.4.4 MRI data acquisition

MRI scans were performed at the Royal Children’s Hospital 3T Siemen’s PRISMA
64-channel head coil scanner. Diffusion MRI (dMRI) data were acquired using a single-shot
echo planar imaging sequence (twice-reinforced spin echo, multi-band acceleration factor of
2, 70 contiguous sagittal slices) and a high angular resolution diffusion imaging (HARDI)
gradient scheme with 66 non-collinear gradient directions (b=3000s/mm?, R>>L, FOV =
260mm?, voxel size = 2.3mm isotropic, TR = 3500ms, TE = 67ms). Seven b=0 images were
interspersed throughout the HARDI scheme, and two reverse phase-encoded b=0 images
were also collected to allow for correction of susceptibility induced echo planar imaging
distortions. The total acquisition time of the entire dMRI data was 6:17mins. T1-weighted

images were also acquired for each participant with magnetisation-prepared rapid gradient-
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echo acquisition (208 contiguous slices, FOV = 256mm?, voxel size = 0.8mm isotropic, TR =

2100ms, TE = 2.22ms, flip angle = 8°), with a total acquisition time of 5:48min.

5.2.4.5 Lesion masking

Manual lesion delineation for computation of lesion load and for improvement of
anatomical segmentation was performed by a blinded assessor (ED), who was trained in
lesion identification by neuroradiologist (PB). Lesions were drawn in the T1 native space
using Fsleyes version 0.27.3 in FSL version 6.0.1 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). An
in-house systematic search method and lesion identification protocol was developed by JD,
KC, ED, and PB to ensure accurate lesion delineation. Abnormalities resulting in tissue loss,
such as regions of encephalomalacia or gliosis and damage as a result of surgical drainage
tracts were included in binarised lesion masks. Enlarged ventricles and hyperintensities often
occurring in proximity to the skull (e.g., as a result of surgical craniotomies) were not
included in the lesion masks. Lesion load was computed (in cm?®) as the total volume of the

binary lesion masks in FSL.

5.2.4.6 Personalised connectome construction

Preprocessing: An overview of our connectome processing pipeline can be seen in
Figure 1. Raw dMRI data were processed using MRtrix3Tissue (v5.2.8;
https://3tissue.github.io), a fork of MRtrix3 (Tournier et al., 2019). First, noise (Cordero-
Grande et al., 2019; Veraart et al., 2016), Gibbs ringing artefacts (Kellner et al., 2016), and
motion, eddy current distortions and susceptibility induced (EPI) distortions were detected
and corrected (Andersson et al., 2003; Andersson & Sotiropoulos, 2016). Slices that were
greater than two standard deviations from the average were replaced automatically by FSL’s
outlier correction (Andersson et al., 2016). After outlier correction, motion values were
below the voxel size of image acquisition for each patient except TBI2 (TBI2rms=5.41mm;
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see Figure 2); this patient was excluded from subsequent diffusion imaging analyses. Next,
average response functions for white matter, grey matter, and cerebrospinal fluid were

estimated from the dMRI data using an automated unsupervised approach (Dhollander et al.,

2019; Dhollander et al., 2016).
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Figure 2

Head Motion Summary for Six TBI Patients

Percentage of Outlier Slices Corrected Total Movement
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Note: Outlier slices are corrected by eddy motion correct, by removing and replacing with
corrected slices; Data points are in the Total Movement plot represent the root mean square
movement for each volume (n=67).

Edge reconstruction: Pre-processed data were up-sampled to a voxel size of 1.3mm?3
to improve spatial resolution for image registration before binary masks were created. To
estimate the white matter fibre orientation distributions (FODs) in each voxel, single-shell 3-
tissue constrained spherical deconvolution (SS3T-CSD) was performed on the upsampled
data (Dhollander & Connelly, 2016). SS3T-CSD preserves the angular information of the
GM- and CSF-like signal, removing contributions from these components to increase the
specificity of the WM FODs, while avoiding over estimation into GM and CSF signal from
the lesioned area (Khan et al., 2020). Finally, the resulting FODs were corrected for intensity
inhomogeneity and global intensity level differences (Raffelt et al., 2017).

The advanced normalisation tools package (ANTS; Avants et al., 2009) was used to

remove non-brain structures from the T1 weighted images for white matter extraction (Zhang
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etal., 2011). Next, FSL FLIRT (Jenkinson et al., 2002; Jenkinson & Smith, 2001) was used
to perform the boundary-based registration between brain-extracted anatomical and diffusion
images. MRtrix’s 5 tissue-type segmentation script was then used on the T1 images in dMRI
space to create the relevant masks for tractography (Smith et al., 2012).

Next, we performed whole brain anatomically constrained tractography (Smith et al.,
2012). The FOD cut-off threshold, step size, and angle were carefully determined to attain a
reasonable trade-off between false negatives and false positives (seed points=dynamic;
maximum length=250mm; minimum length=5mm; step size=1.25; angle=45°; FOD
amplitude cut-off threshold = 0.08). Twenty-two million streamlines were generated to keep
connectome variability low enough for SIFT2 to be relatively stable (Yeh et al., 2018). Next,
the SIFT2 algorithm was applied to match the density of the reconstructed streamlines to that
of the underlying white matter structures (Smith et al., 2015a; Smith et al., 2015b; Yeh et al.,
2018). A proportionality coefficient y was also calculated for each participant to be later
applied to the connectome edge weights to ensure these are proportional to the apparent fibre
density.

Node reconstruction: Anatomical images were parcellated using Freesurfer’s recon-
all function (v6.0; http://surfer.nmr.mgh.harvard.edu/), as described in previous publications
(e.g., Fischl & Dale, 2000). In brief, for all anatomical images subcortical grey-matter
structures were segmented (Fischl et al., 2002); image intensity normalised (Sled et al.,
1998); pial surfaces and the grey-white matter boundaries estimated (Dale et al., 1999); and
the entire brain “inflated” to smooth the gyri and sulci (Fischl et al., 1999). On this surface
model the automated cortical and subcortical parcellation of 84 regions was generated using
the Desikan-Killiany atlas (Desikan et al., 2006). Quality control was performed by

inspecting output of the Freesurfer pipeline at each stage using stringent ENIGMA guidelines
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(http://enigma.usc.edu/). Two patients (TBI3 and TBI14) did not pass the ENIGMA Freesurfer
quality checks, due to significant segmentation failures in the presence of pathology. These
patients were therefore run utilising the new virtual brain grafting (VBG v0.37) image
processing pipeline to improve segmentation (Radwan et al., 2021). In brief, lesions are filled
with healthy tissue from synthetic ‘donor brain’ images — either leveraging tissue from the
native non-lesioned hemisphere for unilateral lesions, or a healthy synthetic donor brain for
bilateral lesions. The resulting lesion free patient image is then passed through the Freesurfer
recon-all pipeline, enabling improved segmentation in the absence of any structural
pathology. VBG Freesurfer output for these three patients was again checked against
ENIGMA quality control guidelines and any remaining errors were then corrected using
control points in Freesurfer (Fischl, 2012). Finally, connectivity matrices were generated
using the streamline weights from SIFT2, and area size normalisation occurred by scaling

weights to the inverse of the volumes of the nodes they connect (Hagmann et al., 2008).

5.2.4.7  Graph Theoretical Analysis

We quantified the network architecture in terms of strength, global efficiency,
characteristic path length, navigation efficiency, local efficiency, clustering coefficient,
normalised clustering coefficient, and betweenness centrality (Table 3), using the Brain
Connectivity Toolbox (Rubinov & Sporns, 2010). We selected these graph metrics, as they
have previously been found to be significantly altered in moderate-severe TBI populations
(Imms et al., 2019). Graph normalisation occurred by 1) normalising edge weights between 0
and 1, and 2) weight-to-length remapping using -log transformation (for global efficiency,
characteristic path length, local efficiency, and navigation efficiency only). Graph metrics
were calculated for each TBI patient individually. Graph metrics were also computed from

the group connectivity matrix of the 12 healthy control subjects; and 95% confidence
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intervals for the healthy control graph metrics was used as an estimation of variability in the

absence of injury.

Table 3

Graph Metric Descriptions, Interpretations, and Evidence from Previous TBI Studies

Previous studies

Graph Metric Description Higher values mean...
(Adult moderate-severe TBI)
Integration

Characteristic The shortest path is the fastest A higher characteristic Higher CPL

Path Length and most direct path length indicates that ~ (Caeyenberghs et al.,
communication pathway the fastest communication  2014; Hellyer et al.,
between two network nodes. pathways between regions  2015; Kim et al., 2014)
Characteristic path length is are, on average, longer

Global Efficiency

Navigation
Efficiency

defined as the average shortest and less efficient.
path length between all node

pairs in a network (Watts &

Strogatz, 1998).

The inverse average shortest A higher global efficiency

path efficiency between all will indicate a greater
possible pairs of nodes in a capacity for efficient
network, where efficiency is integration of information
computed as the inverse of (in parallel) across the
shortest the path length network.

(Latora & Marchiori, 2001).

Navigation paths are use a Higher navigation
decentralised and efficiency indicates
geometrically greedy heuristic  greater capacity for
(Bogund et al., 2009). efficient integration of
Navigation efficiency is information across the
defined as the average network.

navigation path efficiency
between all possible pairs of
nodes in a network (Seguin et
al., 2018).

Lower global efficiency
(Caeyenberghs et al.,
2014)

Not yet investigated, but
lower navigation
efficiency observed in
stroke patients (Wang et
al., 2019)

Segregation
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Graph Metric

Description

Higher values mean...

Previous studies

(Adult moderate-severe TBI)

Clustering
Coefficient

Normalised
Clustering
Coefficient

Local Efficiency

The number of existing
connections between the
neighbours of a node, divided
by all the possible
connections, calculated for
each node individually and
averaged across the entire
network (Watts & Strogatz,
1998).

Clustering coefficient of the
network normalised to a
random network.

The local efficiency is the
average of inverse shortest
path length in a local area.
Mean local efficiency is taken
as the efficiency of each node
in the network averaged over
the total number of nodes
(Latora & Marchiori, 2001).

A higher average
clustering coefficient
means that a greater
proportion of connections
are made between nodes
neighbours, compared to
the connections possible,
and indicates more
clustered connectivity
around individual nodes.

Higher normalised
clustering indicates
higher local
specialisation, with a
value of 1 being
equivalent to a random
network. If greater than 1,
the network has greater
than random clustering.
There may be a point of
diminishing returns,
where greater local
specialisation comes at the
cost of communication
efficiency.

A higher local efficiency
means greater capacity
for integration between
the immediate neighbours
of a given node.

Lower clustering
coefficient (Hellyer et
al., 2015; Raizman et al.,
2020).

Higher normalised
clustering
(Caeyenberghs et al.,
2012; Verhelst et al.,
2018)*

Higher local efficiency
(Jolly et al., 2020);
AND/OR lower local
efficiency
(Caeyenberghs et al.,
2012)*

Centrality

Strength

The strength of a node is the
sum of the weights of its
edges. Mean strength is the
average of all the normalised
strength values across each
node of the network.

A higher strength
indicates a greater
average edge weight for
each node.
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Previous studies

Graph Metric Description Higher values mean...
(Adult moderate-severe TBI)
Betweenness The proportion of shortest Higher betweenness Higher betweenness
Centrality paths that pass-through node i centrality means that node  centrality (Caeyenberghs
between its neighboring nodes, lies on more shortest paths et al., 2012)*
calculated for each node and in the network pass
averaged across the network through it, and this that
(Freeman, 1978). node is more central and

important to the network.
A high network/average
betweenness centrality
indicates a high number of
nodes that are central to
shortest paths.

* Note: this study is of young adults and children with TBI — no adult TBI study found significant alterations or
examined this metric.

5.2.4.8 Cognitive and Network Profiles

Two Spiderplots were used to efficiently represent TBI patients’ results: one for
cognitive performance and another one for brain network metrics (GraphMe plots). Each axis
of the plot represents a cognitive task or a graph metric. Response averages from the healthy
controls are represented on the Spiderplot as a 95% confidence interval for visual
comparison. Importantly, measures are recoded so that lower scores on any measure indicate
worse performance or brain structure, by using the inverse of the scores (for cognitive
performance: Tower of London, Letter Digit Substitution, and Vigilance; for graph metrics:
characteristic path length, normalised clustering coefficient, and betweenness centrality — see
Table 3). This facilitates rapid comprehension of the Spiderplot, where the smaller area of the
TBI patient scores compared to the healthy cohort is indicative of worse cognitive
performance or brain network structure. Scores were categorised as normal (within the 95%
confidence interval); supra-normal (higher than the 95% confidence interval); or infra-

normal (lower than the 95% confidence interval) (Lv et al., 2020).
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5.2.49 Regional analyses

Alongside the graph analysis, we compared the *hub’ nodes identified in the TBI
patients vs. in the healthy controls, using steps outlined in Fagerholm et al. (2015) and
Raizman et al. (2020). We used betweenness centrality to identify the brain regions that are
most crucial for communication within the brain network (Freeman, 1978; Rubinov &
Sporns, 2010). Betweenness centrality was calculated for each of the 84 nodes, and the top
10% (n=8) highest scoring nodes were identified as “hubs’. Hubs were visualised using
NeuroMArVL (https://immersive.erc.monash.edu/neuromarvl/). The healthy control

comparison hubs are shown in Figure 3.
Figure 3

Healthy Control Hub Regions

* *
Thalamus* Precentral* Superior parietal
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Note: Healthy control hub regions (top 10% of nodes with highest betweenness centrality), in light blue. Larger
nodes represent higher betweenness centrality values. The strongest edges are also shown (0.5 percentile,
0.002% of edges, 18 edges shown), coloured by strength (yellow=weaker; red=stronger).

Edge analysis was performed to examine in greater detail the specific connections that
were driving overall differences in the network properties. A z-score matrix Z; ; was derived,

which describes the distance from the healthy control mean, divided by the healthy control
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standard deviation, between each subject’s connectivity matrix T; ; and the controls H; ;

according to equations given for an edgewise analysis in Wills and Meyer (2020):

7 Ti; —u(H; )
+ o(H;;)

Positive scores represent stronger edges in the TBI patient compared to controls,
while negative scores represent weaker edges. To visualise the z-score matrix, only edges
with a score >4 (i.e., edges 4 standard deviations from the healthy control mean, representing
a highly stringent 99.99% confidence interval) remain while all other edges are discarded.
These edges are shown as a visual representation of graph differences between healthy

controls and the TBI case.

5.2.5 Results

Presented below are the personalised profiles for six TBI patients as follows: (A)
Cognitive profiles of planning, processing speed, memory, and attention domains, and NFI
and 1Q scores (see Table 1 for relevant scales). (B) Lesion maps drawn in mricroGL by ED,
resulting lesion load and DAI score. (C) Quality assessment of the connectome pipeline
including segmentation of cortical and subcortical parcels in Freesurfer (6.0; Fischl, 2012),
fibre orientation distributions from single-shell 3 tissue constrained spherical deconvolution
(mrtrix3tissue; Dhollander et al., 2019) and 5 tissue-type image for streamline generation,
and registration of anatomically constrained tractography (Smith et al., 2012) with labelled
subcortical and cortical parcels of the Desikan-Killianey atlas (Desikan et al., 2006). (D)
GraphMe plot including healthy average with 95% confidence interval (blue), and TBI

patient (red). (E) Regional and hub analyses including (i) healthy control hub nodes in pink
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and TBI patient hub nodes in green, with strongest 0.5th percentile of edges represented
(yellow = weaker edges; red = stronger edges), and (ii) comparison of edge weights from the
z-score matrix (blue = edges lower than the healthy control average; red = edges stronger
than the healthy control average; and thicker edges = larger number of standard deviations

away from the healthy mean).
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5.2.51 TBI1

Summary: TBI1 (45yo, TSI=21y) self-reported a normal level of cognitive
complaints (NFI=133); and had intelligence score within the normal range (1Q=101).
However, their cognitive profile demonstrates slow decision-making and processing speed,
poor planning, and short visuospatial working memory capacity compared to healthy controls
(see Figure 4a). This patient has a small lesion load and a DAI grade of 0. The GraphMe plot
indicates that TBI1 has slightly weaker integration than healthy controls, in particular longer
path lengths and lower navigation efficiency. Interestingly, the right superior frontal gyrus
(perilesional) was a hub node in the healthy controls but was not a hub node in TBI1. We also
observed many weaker edges in TBI1 compared to the healthy controls, in particular

connecting the bilateral frontal poles and left temporal regions (especially the left temporal

pole).
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Figure 4a

Personalised Connectome Profile for TBI1
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Note: Cognitive profile: Infra-normal performance on four cognitive tests, including processing speed, planning
and memory (panel A); Lesion profile: Small lesion (load=0.75¢cmd) in the right precentral gyrus (panel B);
Quality Assessment: There were no failures in the Freesurfer pipeline, no manual edits were made and there
was no need for virtual brain grafting (panel C). FODs were generated at the site of the lesion (see red arrow)
but did not meet streamline criteria for ACT. Registration between structural and diffusion images was
unaffected by this lesion; Personalised connectome profile: The GraphMe plot (panel D) shows very similar
global graph metric properties compared to the healthy cohort. Navigation efficiency and path length were infra-
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normal; Regional analysis: Four alterations in the hub arrangement for TBI1 were observed (panel E(i)),
whereby the bilateral accumbens (BCiex=1570; BCignv=1546), palladium (BCes:=1382; BCign:=978) and right
putamen were hubs (BCiigh:=1578), and the bilateral precentral gyri, thalamic, and right superior frontal gyrus
did not meet the hub threshold. Weaker edges (n=43; panel E(ii)) were observed projecting across frontal,
parietal, temporal, and subcortical areas, in particular the edges left posterior cingulate to right frontal pole (z=-
8.32), the left superior temporal to left frontal pole (z=-6.66), the left lateral orbitofrontal to left temporal pole
(z=-7.98) and the left medial frontal to left temporal pole (z=-6.90; panel E(ii)). Some stronger edges (n=4) were
also observed, including the connection between the right superior temporal to right temporal pole (z=5.92).

5.2.5.2 TBI2

Summary: TBI2 (49yo, TSI=15y) self-reported a normal level of cognitive complaints
(NFI=102) and had intelligence scores within the normal range (1Q=106). However, this
patient showed severe cognitive deficits in processing speed, planning, and working memory
(see Figure 4b). Demonstrating a clear lack of insight, this patient had the lowest self-
reported level of cognitive complaints on the NFI, well below the healthy control cohort
average. TBI2 also had a very large lesion load and a DAI grade of 2. Quality assessment of
VBG performance demonstrated that VBG repaired 15 nodes for parcellation/segmentation.

Note: personalised connectome analysis not performed due to excessive head motion.
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Figure 4b

Personalised Cognitive Profile for TBI2.
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Note: Cognitive profile: Infra-normal performance on five cognitive tests, including processing speed, planning
and memory domains (panel A); Lesion profile: Extensive bilateral frontal, and right parietal and temporal
lesions (load=163cm?; panel B), as well as focal hypointensities in the left thalamus and body and genu of the
corpus callosum; Quality Assessment: Prior to VBG, 22 nodes failed the quality assessment (panel C). VBG
improved segmentation in 15 nodes. The remaining 7 nodes are located predominantly in lesioned areas.
Constrained spherical deconvolution based on the single-shell 3 tissue FODs was not generated at the site of the
lesions (see red arrow in panel C), and registration between VBG reconstructed nodes and streamlines show that
streamlines were not assigned to lesioned nodes.
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5.2.5.3 TBI3

Summary: TBI3 (49yo, TSI=3y) had intelligence scores within the normal range
(1Q=95) but self-reported a high level of cognitive complaints (NFI=234). Accordingly, this
patient demonstrated poor performance in all cognitive domains (processing speed, planning,
memory, and attention; see Figure 4c). This patient had moderate-large lesion load involving
frontal and anterior temporal regions predominantly, and a DAI grade of 2. VBG improved
parcellation and segmentation from “‘poor’ to “acceptable’, allowing the inclusion of this patient
with moderate-large lesion load in the connectome pipeline. TBI3 showed reductions in all
network domains, with the exception of normalised clustering (supra-normal); and centrality
and strength (normal). Finally, this patient showed 62 weaker edges, in particular projecting
bilaterally from the frontal cortex to the subcortical regions such as the accumbens, caudate,

and amygdala.
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Figure 4c

Personalised Connectome Profile for TBI3.
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Note: Cognitive profile: Infra-normal performance on five cognitive tests including processing speed, planning,
memory, and attention domains (panel A); Lesion profile: Moderate-large lesion load (load=17.59¢cm?®)
including bilateral frontal and right temporal lesions (panel B), white matter hyperintensities in the medial right
parietal lobe and the corpus callosum; Quality Assessment: Prior to VBG, 10 nodes failed the quality
assessment (panel C). VBG repaired 9 nodes for parcellation. Registration between VBG reconstructed nodes
and streamlines show that streamlines were not assigned to lesioned nodes; Personalised connectome profile:
The GraphMe plot (panel D) demonstrates a mixed graph metric profile, with infra-normal integration and both
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infra- and supra-normal segregation measures. Specifically, less efficient network communication as measured
by both path length and navigation routing models; poorer segregation as indicated by lower clustering, but also
lower normalised clustering; Regional analysis: Two hub alterations were observed (panel E(i)), whereby the
bilateral putamen (BCer=871; BCigrv=932) were hubs, and the bilateral precentral gyri were not hubs. Weaker
edges (n=62; panel E(ii)) projected across the whole brain, in particular in the frontal regions including the left
frontal pole to the left middle temporal (z=8.45), right superior frontal (z=8.12), right lateral orbitofrontal
(z=8.17), and right putamen (z=8.41); left medial orbitofrontal to left amygdala (z=8.67); right lateral
orbitofrontal to the right accumbens (z=8.03) and right caudate (z=8.33); and the right pars orbitalis to right
lingual (z=8.10). No stronger edges were observed.

5.2.5.4 TBI4

Summary: TBI4 (29yo, TSI=15y) had intelligence scores within the normal range
(1Q=91) but self-reported a high level of cognitive complaints (NFI=218). Accordingly, this
patient was infra-normal in the processing speed, planning, and memory domains (see Figure
4d). They had moderate-large lesion load involving frontal and anterior temporal regions
predominantly, though their DAI grade was low (0/1). This patient showed minimal deviation
from the healthy control network profile, in fact showing supra-normal strength indicating
stronger edge weights relative to node size. Overall, the network analysis portrays a relatively
good neurological outcome for TBI4, despite their cognitive complaints. They had only 26
weaker edges in left temporal and parietal regions, coinciding with the location of the lesions

in the left anterior temporal lobe and left inferior and superior frontal gyrus.
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Figure 4d

Personalised Connectome Profile for TBI4
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Note: Cognitive profile: Infra-normal performance on six cognitive tests, including processing speed, planning
and memory domains (panel A); Lesion profile: Moderate-large lesion load (load=17.59cm?), including bilateral
lesions in the superior frontal, the left temporal pole and inferior temporal regions, as well as a smaller lesion in
the left precentral gyrus (panel B); Quality Assessment: Prior to VBG, 9 nodes failed the quality assessment
(panel C). VBG repaired all nodes for parcellation. Constrained spherical deconvolution based on the single-
shell 3 tissue generated no FODs at the site of the lesions, and streamlines were not assigned to lesioned nodes.
Personalised connectome profile: The GraphMe plot (panel D) demonstrates normal global graph metric
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properties, although strength was supra-normal; Regional analysis: Four alterations in the hub arrangement
were observed (panel E(i)), whereby the bilateral putamen (BCier=2246; BCighy=1550), left palladium
(BClet=1210) and left inferior parietal (BC:ignt=902) were hubs, and the bilateral precentral gyri and thalamic
regions were not hubs. Weaker edges (n=26; panel E(ii)) projected across the left hemisphere, in particular the
entorhinal to the lingual gyrus (z=10.87), pericalcarine (z=9.55), superior parietal (z=9.46), and lateral occipital
regions (z=9.33); the temporal pole to the insula (z=9.37); and the accumbens to the posterior cingulate (z=6.71),
insula (z=6.30), and rostral anterior cingulate (z=5.98). Some stronger edges (n=4) were also observed in the
right hemisphere, including the pars triangularis to post central (z=5.92), putamen to lateral orbitofrontal
(z=4.86), pallidum to thalamus (z=4.24); and the left pallidum to amygdala (z=4.55).

5.2.5.5 TBI5

Summary: TBI5 self-reported a normal level of cognitive complaints (NFI1=123) and
had intelligence scores within the normal range (1Q=104). This patient also showed no lesion
load and DAI grade of 0. However, cognitive testing revealed reduced processing speed, poor
response inhibition, and short verbal working memory (see Figure 4e). While their hub
arrangement was largely similar to the healthy controls, TBI5 demonstrated a wide array of
weaker edges connecting the parietal, temporal, and subcortical hemispheres. Accordingly,
they showed deviation from the healthy cohort in terms of integration, as these longer distance
connections are important for efficient communication. However, their weakest edges
(compared to healthy controls) were short-distance connections contained in the left
hemisphere, connecting subcortical regions such as the amygdala and hippocampus with

temporal regions such as the inferior temporal gyrus and the temporal pole.
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Figure 4e

Personalised Connectome Profile for TBI5
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Note: Cognitive profile: Infra-normal performance on five cognitive tests, in the processing speed, planning,
attention, and memory domains (panel A); Lesion profile: No masked lesion load on the T1 image (Iload=0cm?;
panel B); Quality Assessment: there were no failures in the Freesurfer pipeline, and no manual edits were made
(panel C). FODs were generated correctly and registration between segmentation and tractography was clean;
Personalised connectome profile: The GraphMe plot (panel D) demonstrates infra-normal global connectivity
properties, with the exception of centrality and strength. Global efficiency, navigation efficiency and path length
are infra-normal, indicating less efficient network communication; and local efficiency, clustering, and
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normalised clustering are also infra-normal indicating altered segregation; Regional analysis: Two alterations in
the hub arrangement were observed (panel E(i)), whereby the bilateral putamen were hubs (BCex=1182;
BCign=1110), while the bilateral thalamic regions were not hubs. Weaker edges (n=33; panel E(ii)) projected
inter-hemispherically in parietal, temporal, and subcortical areas. The weakest edges (compared to healthy
controls) were in the left hemisphere, from the amygdala to the temporal pole (z=-7.19); the amygdala to the
inferior temporal gyrus (z=-7.80); the inferior temporal gyrus to the hippocampus (z=-6.11); and the inferior
temporal gyrus to the thalamus (z=-6.40). Some stronger edges (n=3) were also observed, including the
connection from the left post central gyrus to the left lateral occipital gyrus (z=5.87).

5.2.5.6 TBI6
Summary: TBI6 (29yo, TSI=5y) self-reported a normal level of cognitive complaints
(NFI=120); and had a “very high’ intelligence score (1Q=120). They had a small lesion in the
splenium of the corpus callosum, which is one of the most common locations for DAI (Park et
al., 2017; Uchino et al., 2006) — symptoms are often relatively mild in lesions of this type (Park
et al., 2014) — and a DAI grade of 2. Quality assessment revealed no parcellation errors (see
Figure 4f). This patient showed only slightly reduced response inhibition and very strong

memory scores, a normal GraphMe plot, and no weaker edges than the healthy controls.
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Figure 4f

Personalised Connectome Profile for TBI6
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Note: Cognitive profile: Infra-normal performance on only one cognitive test, in the attention domain (panel A);
Lesion profile: TBI6 had a lesion (load=0.5cm?) in the splenium of the corpus callosum (panel B); Quality
Assessment: There were no failures in the Freesurfer pipeline, and no manual edits were made (panel C). FODs
were generated at the site of the lesion but did not meet streamline criteria for ACT; Personalised connectome
profile: The GraphMe plot (panel D) shows no significant alteration in the graph metric profile — global
connectivity properties of TBI6 are normal except for global efficiency, local efficiency and clustering which
are marginally supra-normal. Regional analysis: Three hub alterations were observed (panel E(i)), whereby the
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right caudate (BCrign=722), right hippocampus (BCigh:=606) and right inferior parietal gyrus (BCiign:=680)
were hubs, and the bilateral precentral and right superior parietal regions were not hubs. No edges met the
stringent threshold of being +4 standard deviations from the healthy control mean (panel E(ii)).

5.2.6 Discussion

In this paper, we present a novel approach to connectomics and cognitive profiling
illustrated in six adult patients with chronic moderate-severe TBI. Here, we discuss the
benefits of personalised connectomics, and how examination of individual TBI patients
facilitates interpretation of unique disconnectivity profiles. First, we detail observations from
our single-subject profiles; next, we examine how our single-subject profiling approach adds
to the field of personalised connectomics in the care of chronic TBI patients; and finally, we
explore the next steps in improving our methods for personalised structural connectome

analyses in individuals with TBI.

5.2.6.1 Single-subject cognitive and network profiling observations

Our observations highlight an important caveat in the search for a single graph metric
‘biomarker’ that can represent alterations in the structural network of all TBI patients. Like
Lv et al. (2020) in their study of FA and CT in Schizophrenia patients, the pattern of
alterations we observed was not homologous. As expected, due to the heterogeneity of
moderate-severe TBI patients, we observed that each TBI patient had a unique pattern of
cognitive and graph metric alterations. This observation is underscored by the fact that
patients with relatively similar lesion loads, and severities show clearly distinct profiles of
network alterations. For example, TBI1 and TBI6 both have small lesion loads, but TBI1
shows slowed processing speed and planning, and less efficient network communication
measures. Meanwhile, TBI6 shows minimal deviation from the normal range for both

cognitive and brain network measures. Similarly, TBI3 and TBI14 both have moderate-large
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lesion loads and infra-normal cognitive performance, but TBI3’s brain network profile shows
infra-normal integration and segregation measures while TBI4’s brain network was normal.
This indicates that there may not be a single graph metric that can capture the range of
changes caused by TBI — highlighting the importance of this individual profiling approach.

This study also broaches an often discussed but rarely addressed problem — that TBI
patients are neurologically and cognitively heterogeneous. Many earlier studies using a graph
theoretical analysis deal with this heterogeneity by separating TBI patients according to their
diagnosed severity (mild, or moderate-severe; for review, see Imms et al., 2019). Grouping
by injury severity in this way is common in graph theoretical studies (e.g., Hellyer et al.,
2015; Konigs et al., 2017; Raizman et al., 2020; Watson et al., 2019). These studies then
purport to have found a graph metric that may serve as a ‘biomarker’ of a particular severity
of TBI. However, the examples outlined above demonstrate that separating by diagnosed
severity or even lesion load may not be sufficient to control for heterogeneity in this
population. In contrast, our single-subject network profiles suggest that TBI patients of
similar severities can exhibit vastly different patterns in hub and edge arrangements due to
other injury and personal characteristics.

Another interesting case is TBI5, who had only two small age-appropriate
hyperintensities in the right parietal lobe, and a lesion load of Omm?3. This patient, however,
shows impairments in processing speed, planning, verbal working memory, and inhibition, as
well as infra-normal integration and segregation properties. This supports the disconnectivity
theory of TBI — where executive functions are impaired due to disruptions to the axonal
pathways they rely on (Catani & Ffytche, 2005) — and thus the presence or absence of focal
grey-matter lesions does not always explain ongoing cognitive deficits. This patient

exemplifies the fact that using diffusion-based graph metric analysis can reveal brain network
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alterations where T1 anatomical scans do not (for review, see Hulkower et al., 2013). Overall,
these five TBI patients reinforce the benefits of using network profiling to characterise TBI
patients in the years following their injury — revealing individual differences in cognition and
brain network topology that may otherwise have been overlooked.

Finally, our six chronic patients all showed ongoing but different cognitive
impairments across core cognitive domains. This raises the importance of continued cognitive
assessment and intervention for patients with TBI, even years post-injury. While most
patients demonstrated good insight into the extent of their injuries and their impact, some
(i.e., TBI2) rated their neurobehavioral functioning as better than normal despite showing
poorer cognitive performance on almost the entire cognitive testing battery. This patient had
extensive areas of encephalomalacia in the frontal regions, which may explain this lack of
insight and poor cognition (Milner, 1982; Owen et al., 1990). This reiterates the need to not
rely on self-report in TBI patients (for a review of evidence-based cognitive rehabilition

practices for TBI patients, see Stephens et al., 2015).

5.2.6.2 Informing clinical assessment and rehabilitation programs using

personalised connectomics

We illustrate that a personalised connectomics approach has a role for assessing TBI
patients in three main ways: First, connectome maps can be used as a profile of the patient’s
brain network topography, providing researchers and clinicians a quick visual summary of
network disruption, asymmetry, hub alterations, and overall reductions in strength. Second,
by comparing the brain network of an individual patient to healthy control data, we can
observe areas of the network that are topologically altered beyond the site of the focal lesion.
For example, although TBI1 had focal lesions in the right precentral gyrus, their connectome

also revealed weaker edges in left frontal and temporal regions in comparison to healthy
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controls. Finally, we can observe these alterations longitudinally to assess network-based
alterations over the time course of the injury and in response to treatment regimens, as the
brain undergoes progressive secondary damage and structural and functional reorganisation
(e.g., Meningher et al., 2020; Osmanlioglu et al., 2019). Examination of GraphMe plots over
the course of the acute to chronic period could be used to examine whether dedicated
customised neurorehabilitation improves network connectivity longitudinally, akin to the
longitudinal assessment of white matter atrophy performed by Irimia, Chambers, et al.
(2012). This exploratory work enables us to progress towards a personalised medicine
approach, which, alongside group-based comparisons of patients against controls, is essential
for translating structural MRI to evidence-based practice.

The current study builds on the work of Irimia, Chambers, et al. (2012), who
introduced the idea of personalised structural connectomics to create personalised
rehabilitation programs. There is evidence that individual network- and connectivity-based
profiles can inform neuroimaging-guided rehabilitation (Dichter et al., 2012; Stoeckel et al.,
2014; Wing et al., 2017), and assist health professionals to design personalised cognitive
training and rehabilitation programs. The ultimate goal is to help clinicians better understand
individual patients and potentially lead to personalised therapies to help improve chronic
outcomes. For example, TBI1 (45yo male, TSI=21y, 1Q=101, NFI=133) presented with a
0.75cm? lesion in the right precentral gyrus, and showed (i) reduced processing speed,
planning, and working memory, in the presence of (ii) longer path lengths and lower
navigation efficiency; weaker edges projecting from frontal regions to parietal, temporal, and
subcortical regions; and loss of frontal and thalamic hubs (Figure 4a). With further validation

(see below), this assessment profile could indicate that TBI1 may benefit from an attention,
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planning, and working memory neurorehabilitation program targeting white matter

projections from the right superior frontal regions to the precentral gyrus and thalamus.

5.2.6.3 Improving methods for personalised connectomics

Our cognitive- and network-based approach demonstrates structural connectivity
alterations in TBI patients and provides an assessment of individual profiles of graph metrics.
Before the graph metric profiling approach can be considered for clinical application, the
GraphMe plots require validation and assessment of test-retest reliability. Indeed, we
emphasise that any comparison between an individual TBI patient and the healthy control
reference group (N=12) is done as a proof of concept, as was done in a similar design by
Attyé et al. (2020) with N=20 healthy controls. As a preliminary step, normative analysis
with large sample sizes of healthy individuals would allow for stronger statistical inferences
to be made using techniques like quartile regression, as seen in Lv et al. (2020) and Jolly et
al. (2021).

We also highlight the need for statistical methods for individual-level analyses that do
not violate assumptions of statistical models (Mycroft et al., 2002). We used 95% confidence
intervals to determine if cognitive performance or graph metrics were infra- or supra-normal.
However, this method only models variation in the healthy cohort but not in the TBI patients.
Keeping in mind that the purpose of this study is to demonstrate the use of personalised
connectomics in a handful of cases, improvements to this technique will involve reference
intervals (the range of values deemed ‘normal’) designed to perform individual comparisons
to group-level normative datasets (approximately N>100; Hansen et al., 2007) — a technique
that has recently been used and does not violate statistical assumptions (Lv et al., 2020).

The use of VBG should be encouraged in the efforts to advance personalised

connectomics, as it avoids the exclusion of cases with large focal lesions that fail Freesurfer
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segmentation (e.g., TBI3 and TBI14). Often, studies will use lesion masks and manual edits of
the white matter volume mid-way through the Freesurfer pipeline (e.g., Siegel et al., 2017), to
re-align the segmentation and labelling of nodes. However, these methods are time-
consuming and not reproducible across labs (Beelen et al., 2020). Instead, the implemented
approach proposed by Radwan et al. (2021) utilises a novel method for automatic filling of
uni- and bilaterally lesioned brains using healthy synthetic donor tissue, to improve
segmentation without manual edits. Our implementation of the personalised connectomics
approach therefore represents an important step in developing a framework for retaining TBI
cases that are otherwise being excluded. Further steps towards improving this approach
include incorporating other imaging modalities for lesion identification such as FLAIR or
susceptibility weighted imaging (we used only T1 images, thus it is possible we missed some
WM pathology); and validating VBG using the healthy donor image against true bilateral
lesions (Radwan et al., 2021).

Finally, we observed that the single-shell 3 tissue model for CSD (SS3T-CSD)
(Dhollander et al., 2020; Dhollander et al., 2019) was suitable for constructing connectomes
in the presence of lesions with TBI lesions. SS3T-CSD preserves the angular information of
the GM- and CSF-like signal, removing contributions from these components to increase the
specificity of the WM FODs, while avoiding over-estimation into GM and CSF signal from
the lesioned area (Khan et al., 2020). Combined with anatomically constrained tractography
(Smith et al., 2012), streamlines were not generated in lesioned areas, meaning anatomically
disconnected regions were not removed from the connectivity matrix. This allows us to
calculate graph metrics from connectivity matrices that are the same size (84x84) as those of

the healthy controls, making comparisons more interpretable.
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5.2.6.4 Conclusions

Observations from these six cases reinforce the need for single-subject analyses to be
re-evaluated in the context of network alterations following brain injury. Profiling individual
patients based on their unique injury presentation provides insights into the heterogeneity of
network-based alterations in moderate-severe TBI patients. This can help identify patterns or
subgroups (otherwise obscured by group-level approaches) that can then be further explored
in group-level studies. Finally, this study provides clinicians with a novel framework for
using graph metrics to characterise cognitive performance and brain network structure. Future
development of GraphMe plots can augment assessment and planning of cognitive training
programs in conjunction with conventional approaches, by providing clinicians with

personalised structural network alteration profiles for individual TBI patients.
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5.2.7 Supplementary Materials

Supplementary Table 2

Detailed Description of the PEBL Test Battery

Name Task Description Cognitive Variables Reference/link to
Ability Wiki
Go/No-Go A simple continuous Attention Number and Go/No-go Task
performance task. For the first Response average reaction
part of the test, the participant inhibition time (RT) of Bezdjian, S. Baker,
must respond to P’s (Go trials), correct and L. A., Lozano, D. |
but not R’s (No-Go trials). There incorrect & Raine, A. (2009).
are more P’s than R’s. In the responses, for  Assessing inattention
second part, responses to R’s (Go go and no-go and impulsivity in
trials), not P’s (No-Go trials) trials. children during the
must be made. There are less R’s Go/NoGo task. BrJ
than P’s. Dev Psychol. 2009
June 1; 27(2): 365—
383
Tower of Traditional problem Planning Total Tower of London
London solving/planning task. Tests Problem movements and
ability to make and follow plans | solving RT for overall Shallice T. (1982),
in problem solving task. task, mean Philosophical
Participants must match the movements and | Transactions of the
pattern of stacked discs in as few RT per trail. Royal Society of
moves as possible. The pattern London, B, 298,
must be matched on colour, 199-209.
stack, and position of the disc
within the stack.
Corsi Blocks = An implementation of the classic =~ Memory Longest Corsi Blocks
spatial working memory test. The = Visuospatial —sequence
participant must reproduce the working correctly Corsi, P. M. (1972).
sequence of blocks after they memory remembered. Human memory and
light up by clicking on the box, span the medial temporal
in the correct order. Number of region of the brain.
locations to reproduce increases Dissertation
with success. Abstracts
International, 34,
819B.
Digit Span The task is to reproduce the Memory Longest Digit Span
sequence of numbers heard, in Verbal sequence
the correct order. If the working correctly Croschere, J.,
participant completes two correct = memory remembered. Dupey, L., Hilliard,
trials of a particular length, span M., Koehn, H., &

sequence length increases by one
digit.
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Mayra, K. (2012).
The effects of time
of day and practice
on cognitive
abilities: Forward
and backward Corsi
block test and digit
span. PEBL
Technical Report


https://nam04.safelinks.protection.outlook.com/?url=http%3A%2F%2Fpebl.sourceforge.net%2Fwiki%2Findex.php%2FGo%2FNo-go_Task&data=02%7C01%7Cphoebe.imms%40myacu.edu.au%7C8f85c030334d4dfd455a08d7b6339025%7C7c36a78e1602438c8e811e13ed494a5d%7C0%7C0%7C637178204984785275&sdata=FPuSz3IqiYCgTrJ9ggqATrMVZxEj7oYaw9%2Fxpw2rs%2Fw%3D&reserved=0
https://nam04.safelinks.protection.outlook.com/?url=http%3A%2F%2Fpebl.sourceforge.net%2Fwiki%2Findex.php%2FGo%2FNo-go_Task&data=02%7C01%7Cphoebe.imms%40myacu.edu.au%7C8f85c030334d4dfd455a08d7b6339025%7C7c36a78e1602438c8e811e13ed494a5d%7C0%7C0%7C637178204984785275&sdata=FPuSz3IqiYCgTrJ9ggqATrMVZxEj7oYaw9%2Fxpw2rs%2Fw%3D&reserved=0
https://nam04.safelinks.protection.outlook.com/?url=http%3A%2F%2Fpebl.sourceforge.net%2Fwiki%2Findex.php%2FTower_of_London&data=02%7C01%7Cphoebe.imms%40myacu.edu.au%7C8f85c030334d4dfd455a08d7b6339025%7C7c36a78e1602438c8e811e13ed494a5d%7C0%7C0%7C637178204984805270&sdata=u9x0nJ61nWopl9u%2FJWyolVQzYwHMfrbU7Fe3mSANTGo%3D&reserved=0
https://nam04.safelinks.protection.outlook.com/?url=http%3A%2F%2Fpebl.sourceforge.net%2Fwiki%2Findex.php%2FCorsi_Blocks&data=02%7C01%7Cphoebe.imms%40myacu.edu.au%7C8f85c030334d4dfd455a08d7b6339025%7C7c36a78e1602438c8e811e13ed494a5d%7C0%7C0%7C637178204984795270&sdata=tH%2FSdk3XfuNpg8vKzbfQtc9xkNerVsqKVi20MdgTVKU%3D&reserved=0
https://nam04.safelinks.protection.outlook.com/?url=http%3A%2F%2Fpebl.sourceforge.net%2Fwiki%2Findex.php%2FDigit_Span&data=02%7C01%7Cphoebe.imms%40myacu.edu.au%7C8f85c030334d4dfd455a08d7b6339025%7C7c36a78e1602438c8e811e13ed494a5d%7C0%7C0%7C637178204984775281&sdata=l8Qk8w5tMnNwTRGjymBjGBgOhRjvSFG9IhYadL6NOfs%3D&reserved=0

Name Task Description Cognitive Variables Reference/link to
Ability Wiki
Series [On-line],
#2012-03.
Letter-Digit A 9-option version of the ‘code Processing ~ Number and RT = Letter-Digit Task
Substitution substitution' task. Participants are = speed of correctly Perez, W. A.,
asked to match the letter that identified codes. Masline, P. J.,
appears on the screen with its Ramsey, E. G. and
corresponding number, according Urban, K. E. (1987).
to the code. Unified Tri-services
cognitive
performance
assessment battery:
Review and
methodology, DTIC
Document
ADA181697
Connections = A trail-making test based on Processing = Mean length Connections
Salthouse et al. (2000), originally = speed and accuracy of
based on Zahlen Verbindsungs Mental sequences. Salthouse, T. A.,
Test. In the control trials, the flexibility Toth, J., Daniels, K.,
participant has 20 seconds to Parks, C., Pak, R.,
create as large a trail as possible Wolbrette, M., et al.
by connecting letters or digits (as (2000). Effects of
directed). In the switch trials, the aging on the
trials alternate between letters efficiency of task
and digits (e.g., A-1-B-2). switching in a
variant of the Trail
Making Test.
Neuropsychology,
14, 102-111.
Global Local = A basic version of Navon's Processing ~ Number of Global Local
Task (1977) global-local task. The speed correct/incorrect
participant must respond to either = Decision- stimuli, and RT  Navon, D. (1977).
the large (global) or small (local) =~ making of neutral, Forest before trees:
stimuli, an *S” or ‘H’, as directed. = time congruent, and  The precedence of
Stimuli are both congruent (e.g., incongruent global features in
a large S’ made of small “s’s) or trials.

incongruent (e.g., a large ‘S’
made of small “h’s).
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visual perception.
Cognitive
Psychology, 9(3),
353-383.


https://nam04.safelinks.protection.outlook.com/?url=http%3A%2F%2Fpebl.sourceforge.net%2Fwiki%2Findex.php%2FLetter-Digit_Task&data=02%7C01%7Cphoebe.imms%40myacu.edu.au%7C8f85c030334d4dfd455a08d7b6339025%7C7c36a78e1602438c8e811e13ed494a5d%7C0%7C0%7C637178204984805270&sdata=FD127yisIor87KXWOc%2FML7q5EZvKrTWwhszhxp0aU2I%3D&reserved=0
https://nam04.safelinks.protection.outlook.com/?url=http%3A%2F%2Fpebl.sourceforge.net%2Fwiki%2Findex.php%2FConnections&data=02%7C01%7Cphoebe.imms%40myacu.edu.au%7C8f85c030334d4dfd455a08d7b6339025%7C7c36a78e1602438c8e811e13ed494a5d%7C0%7C0%7C637178204984765285&sdata=99f7E20t3BTaILNWakbC%2FCNg4z6CmZTcpwd7i2BMPI8%3D&reserved=0
https://nam04.safelinks.protection.outlook.com/?url=http%3A%2F%2Fpebl.sourceforge.net%2Fwiki%2Findex.php%2FGlobal_Local&data=02%7C01%7Cphoebe.imms%40myacu.edu.au%7C8f85c030334d4dfd455a08d7b6339025%7C7c36a78e1602438c8e811e13ed494a5d%7C0%7C0%7C637178204984785275&sdata=P0y6XGiLFKB9yD6DlttHw1%2BHwBhqtyUyjrIBGVF1Pl8%3D&reserved=0

Name Task Description Cognitive Variables Reference/link to
Ability Wiki
Vigilance A novel vigilance task requiring  Attention RT to X trials. PEBL Vigilance
both rest and vigilance periods Sustained Task
(similar to standard Test of attention

Attentional Vigilance). The
participant must wait for an X to
appear in the circle. A cross
appears before each trial, to alert
the participant that a response
will be required soon. When the
X appears in the circle, the
participant must respond as fast
as possible. If the letter is not an
X, the participant must not
respond.

Forbes, G. B. (1998).
Clinical Utility of
the Test of Variables
of Attention (TOVA)
in the Diagnosis of
Attention-
Deficit/Hyperactivity
Disorder. Journal of
Clinical Psychology,
54 (4), 461-476.
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https://nam04.safelinks.protection.outlook.com/?url=http%3A%2F%2Fpebl.sourceforge.net%2Fwiki%2Findex.php%3Ftitle%3DPEBL_Vigilance_Task%26action%3Dedit%26redlink%3D1&data=02%7C01%7Cphoebe.imms%40myacu.edu.au%7C8f85c030334d4dfd455a08d7b6339025%7C7c36a78e1602438c8e811e13ed494a5d%7C0%7C0%7C637178204984765285&sdata=4PMtJe1oi1g%2F6%2F2pF%2FoYa2ucEV%2FH7tSBTWXj6Woi1a4%3D&reserved=0
https://nam04.safelinks.protection.outlook.com/?url=http%3A%2F%2Fpebl.sourceforge.net%2Fwiki%2Findex.php%3Ftitle%3DPEBL_Vigilance_Task%26action%3Dedit%26redlink%3D1&data=02%7C01%7Cphoebe.imms%40myacu.edu.au%7C8f85c030334d4dfd455a08d7b6339025%7C7c36a78e1602438c8e811e13ed494a5d%7C0%7C0%7C637178204984765285&sdata=4PMtJe1oi1g%2F6%2F2pF%2FoYa2ucEV%2FH7tSBTWXj6Woi1a4%3D&reserved=0

Chapter 6: General Discussion and Conclusions
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6.1 Restatement of the Research Aims and Main Findings
6.1.1 Summary by chapter

The purpose of this dissertation was to investigate the relationship between brain
injury with cognitive symptoms and disruptions in the brain network using graph theory.
First, a systematic review and meta-analysis of studies of adults with moderate-severe
injuries was conducted. Next, the behavioural relevance of graph metrics was explored in a
proof-of-concept study in healthy adults, where the relationship between measures of network
communication and processing speed was used to evaluate whether graph metrics can be
interpreted in terms of cognitive performance. Finally, a novel visualisation approach was
developed to analyse the profile of graph metric alterations in single-subject TBI patients
compared to healthy controls.

In Study 1 (Chapter 2), a systematic review and meta-analysis assessed the
consistency of recent graph theoretical studies of TBI (Imms et al., 2019). Findings suggested
that normalized clustering coefficient and characteristic path length are altered in TBI
patients compared to healthy controls: characteristic path length was also robust across
studies and subgroups. The meta-analysis revealed evidence that the TBI brain network is
closer to a regular lattice structure than healthy controls and that graph metrics have potential
as diagnostic and prognostic biomarkers. Study 1 also raised pertinent issues prevalent in the
TBI graph theory literature that became the focus of the remaining empirical chapters. These
issues included over-interpretation of the relationship between graph metrics such as
characteristic path-length and the “efficiency’ of cognitive processes — leading to an empirical
report studying this relationship in more detail (Study 2). Finally, limitations of the group-
level analyses that combine heterogeneous patient samples and discard patients with large

lesions were discussed, forming the rationale for Study 3.
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In Study 2 the relationship between graph metrics and cognitive performance was
explored, by examining whether inter-individual differences in decision-making time are
related to network communication in healthy adults. Communication efficiency was
measured using traditional path length-based metrics as well as a novel routing strategy
(navigation efficiency; Seguin et al., 2018), across both the whole-brain and the fronto-
parietal subnetwork. Results support the idea that poor communication efficiency is related to
slowed processing speed. Higher navigation efficiency of the whole brain network, and both
higher navigation efficiency and shorter characteristic path length of the fronto-parietal
subnetwork, were related to faster decision-making time on a global-local task (Wiecki et al.,
2013). Interestingly, navigation efficiency and characteristic path length were differentially
related to decision-making time for controlled and automatic processes respectively. These
findings infer those measures of network communication may reflect behaviour — however,
this relationship is dependent on the specificity of the cognitive process being observed; the
model of communication routing used to measure network efficiency; and the connectome
methodology employed.

Study 3 (Chapter 5) demonstrated unique profiles of graph metric alterations among
moderate-severe TBI patients. The ‘GraphMe’ plots were used to represent alterations in
segregation, integration, and centrality, facilitating interpretation of individual
disconnectivity profiles. This study also employed a new technique Virtual Brain Grafting
(VBG) that allowed the inclusion of patients with extensive focal lesions (Radwan et al.,
2021); and newly available methods that improve the estimation of edges (single-shell 3
tissue constrained spherical deconvolution SS3T_CSD; Dhollander et al., 2019). As expected,
the profile of graph metric alterations was different across the five individuals. Patients who

might normally have been grouped together on the basis of age, severity of injury, and lesion

208



size showed very different network alterations in the GraphMe plots. The renewed emphasis
on single-subject profiling of patients is discussed in relation to providing a patient-specific
perspective to the question of whether graph metrics can be used as biomarkers. Finally,
future directions are suggested for implementing GraphMe plots as a novel method for

clinicians to characterise individual patient’s network alterations following brain injury.

6.1.2 Collective summary of results

Overall, evidence from this thesis indicates that graph metrics display potential for
quantifying structural brain network alterations in TBI patients. First, measures of
segregation and integration are sensitive to brain injury (Imms et al., 2019); and second,
communication metrics can be related to individual differences in processing speed (Imms et
al., 2021), demonstrating that graph metrics may have interpretive value. Study 3 suggests,
however, that a single-subject profiling approach may better capture the ‘fingerprint” of graph
metric alterations, allowing characterisation of TBI patients based on their unique structural
brain network profile. The following sections highlight the novel and original contributions
this thesis provides to the field and details the potential implications of results for future

research.
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6.2 Discussion

6.2.1 Implications for the structural network topology of patients with TBI

6.2.1.1 A regular lattice structure

In Study 1 it is suggested that TBI patients display a brain network that has shifted
towards a lattice structure, compared to healthy controls. The healthy connectome represents
the ideal state of the cellular wiring of a brain, which sits between the highly clustered/poorly
integrated regular lattice and the poorly clustered/highly integrated random graph (Fornito et
al., 2016). Thus, the healthy connectome has a high level of clustering and shorter than
expected path length, facilitating segregation of discrete brain functions in clusters, and
integration of information across spatially distant regions (Watts & Strogatz, 1998). In
contrast, the meta-analysis showed that characteristic path length and normalised clustering
coefficient were both higher across TBI subtypes. This pattern is thought to be caused by loss
of long-distance connections, which are particularly vulnerable in TBI (e.g., the corpus
callosum; Kim et al., 2014a). Damage or loss of long-distance connections leads to longer
paths and inflated measures of clustering. Other articles have made similar observations in
TBI patients: for example, Sharp et al. (2014) also observed a shift in the TBI network, in
particular within the default-mode network and the salience network. Also, a similar pattern
of increased segregation and decreased integration has been observed in Alzheimer’s disease
and Schizophrenia patients (for review, see Griffa et al., 2013). Thus, the findings of Study 1
insinuate that traumatic injury may lead to a more costly network architecture of the brain.

The impact of this less “efficient” network structure is thought to underly the broad
range of impairments in executive function and cognition (Bullmore & Sporns, 2012).
Because the brain is metabolically expensive, its topological organisation is thought to be

driven by the need to minimise these costs (Sporns, 2011). Thus, loss of important
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connections between important hubs of the brain can disrupt this cost-efficiency trade-off
(van den Heuvel & Sporns, 2011) and cause disorders of higher-order cognitive functioning
(Bassett & Bullmore, 2009; Fornito & Bullmore, 2010). Accordingly, topology may be
related to cognitive performance — for example Kim et al. (2014a) found that increased path
length was correlated with poorer executive functioning and slower verbal learning. Thus,
Study 2 presents an in-depth investigation into the relationship between communication
measures and processing speed, to explore whether network topology has implications for
cognition — albeit in healthy adults. Study 2 supports findings from Seguin et al. (2020), who
note that communication measures that summarise capacity for integration are relevant to
behavioural measures. However, there remains an absence of literature specifically
investigating the relationship between topology and cognition in TBI patients. Nevertheless,
results from Study 1 and Study 2 imply that communication measures (i.e., characteristic path
length, global efficiency, and navigation efficiency) are important measures of topology to
examine in TBI patients with regards to cognitive outcome.

In the single-subject profiles of Study 3, it was noted that the topology of two patients
shifted towards regular lattice structure (TBI1 and TBI3), while the others showed a different
pattern of alterations: some patients remained economically balanced (i.e., TBI14 and TBI6)
and others were closer to a random graph (TBI5). Thus, these highly variable patterns of
alterations in each individual TBI patient were observed across all network properties. In
support of Study 1 that purports characteristic path length to be the most robust metric across
studies, it was observed that measures of integration (i.e., path length, global efficiency, and
navigation efficiency) were most often affected: infra-normal in three of the five GraphMe
plots, and normal in the remaining two. However, measures of segregation (i.e., normalised

clustering coefficient, clustering coefficient, and local efficiency) showed mixed results —
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infra-normal in one, normal in two, and supra-normal and infra-normal in the remaining two
patients. This implies that, while at the group level TBI patients display a regular lattice
structure, this does not necessarily translate to individual TBI patients. Similar findings were
reported by Lv et al. (2020) who found that the brain structure of Schizophrenia patients
deviated from healthy controls, but the exact topology of the differences was highly variable
among individuals. Instead of the shift to a regular lattice structure being homogenously
attributable to all TBI patients, results of Study 3 suggest that it will be necessary to stratify
different ‘subgroups’ of personalised connectome profiles. With test-retest validation, the

GraphMe plots show promise as a tool in this process of characterisation.

6.2.1.2  Advanced theoretical reasoning and hypothesis generation

The hypotheses of previous studies, described in detail in Study 1, reflect the
exploratory nature of graph theoretical analysis in TBI — they lack clear rationales regarding
the specific choice of graph metrics. Furthermore, the expected direction of effect was
omitted in most of the studies analysed — only Yuan et al. (2015) and Kdénigs et al. (2017)
justified their choice of each graph metric. A clear rationale concerning the selection of graph
metrics was required: to advance theoretical reasoning in the field, and to minimise
unnecessary multiple comparisons thus reducing chance findings that inflate the false positive
rate. Accordingly, a key outcome from this dissertation can be observed in the formulation of
the GraphMe plots in Study 3. Each graph metric was chosen based on the results of previous
literature — only those metrics that were significantly altered in TBI populations compared to
healthy controls according to the meta-analysis were included in the GraphMe plots.
Furthermore, whether these altered metrics were generally higher or lower than the healthy
controls further informed the visualisation, with graph metrics recoded such that lower values

indicated poorer topological structure (see Table 2 in Chapter 5). In this way, the GraphMe
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plots provide a literature driven guide for investigating topological reorganisation in TBI

patients, to aid in the development of hypotheses for future studies.

6.2.2 Implications for the interpretive value of graph metrics

6.2.21 Biomarkers of TBI?

Biomarkers are a key outcome for the field of translational neuroscience. In their
review, Griffa et al. (2013) state that graph metrics hold potential as neuroimaging
biomarkers of brain disorders, in particular those that demonstrate disconnectivity (including
TBI). However, questions remain around the biological validity of graph metrics, and their
relationships with biological substrates, existing diagnostic criteria, and cognitive
performance. Biomarkers must be able to 1) diagnose a particular brain disorder, and 2)
predict cognitive or other outcomes (Woo et al., 2017). The ultimate goal of biomarkers is to
then engage their use at 3) an individual level, to provide clinicians with tools to diagnose,
prognose, and treat patients.

With regards to the first criteria, the meta-analysis in Study 1 revealed that longer
path lengths are the most robust diagnostic biomarker of TBI across all published studies (see
section 6.2.1.2). With regards to the second criteria, Study 2 found that that communication
measures such as path length and navigation efficiency (not previously studied in this regard)
are related to cognitive outcomes. This study was one of the first ever to look at the direct
interpretive value of communication measures, especially of the novel graph metric
navigation efficiency (Seguin et al., 2018). There is currently no robust, widely used model of
how structural network metrics relate to cognitive performance or capacity. Study 2 therefore
provides a starting point for future studies to build mechanistic models of how network
summary measures relate to cognition; grounds for an evidence-based interpretation of graph

measures; and a framework for forming a priori hypotheses.
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For the third criteria, Study 3 provides a framework for examining individual TBI
patients with cognitive sequela using a profile of graph metrics. This shift away from
searching for one ‘biomarker’ towards a profile of graph metrics enables examination of
heterogeneity in the TBI population, which underscored the lack of robust findings in the
meta-analysis (Imms et al., 2019). As expected, a diverse range of network alterations in the
five moderate-severe participants was observed, which suggests there may not be a global
change caused by TBI that can be robustly captured by a single graph metric. These
observations highlight the importance of looking beyond a single global graph metric as a
‘biomarker’, towards an individual profiling approach. Using the GraphMe plots, these
profiles can be treated as a representation of an individual’s connectome that considers all
network properties (integration, segregation, centrality) — not just one. This type of profiling
approach provides an avenue for future research into graph metric biomarkers of TBI.

In summary, this thesis demonstrates that 1) some graph metrics are robustly linked to
TBI across studies; and 2) communication metrics are related to behaviour. However, this
thesis does not validate this metric as a biomarker — for this, large scale studies testing the
diagnostic and prognostic validity of this metric would be required (see Limitations section,
Woo et al., 2017). Instead, it is argued that a profile of graph metrics might inform clinical

practice by using a single-subject profiling approach.

6.2.2.2  Specific measures of cognition and network structure

Previously, studies that investigated whether graph metrics are biomarkers of TBI
aimed to uncover relationships between network structure and cognition, with various levels
of success. For example, Caeyenberghs et al. (2014) revealed that slower processing speeds
on the GLT corresponded with lower global efficiency in adults with traumatic brain injury.

Kim et al. (2014a) found that the increase in path length in TBI patients was related to poorer
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executive functioning and slower verbal learning. However, they note that given
characteristic path length is a measure of communication efficiency, they expected to see a
relationship with processing speed — which was not significant. In Study 2 it was observed
that these relationships may be improved by using specific measures of cognitive
performance and network structure. By investigating the fronto-parietal subnetwork more
specifically, this thesis found that navigation efficiency and characteristic path length are
differentially related to controlled and automatic processing speeds respectively. This is in
support of work by Roman et al. (2017), who state that investigating task-relevant
subnetworks improved their observed relationship with working memory and engagement.
Furthermore, extracting task-relevant subnetworks and evaluating their relationship with
cognitive performance may better reveal cognition-graph metric relationships.

Equally as essential to linking graph metrics with cognition is the use of specific
measures of cognitive performance. The HDDM was used to extract a specific measure of
decision-making time from the Global-Local task (Wiecki et al., 2013). Importantly,
relationships between communication measures and conditions on the Global-Local task were
then found using these specific measures, which may not have been observed had basic
reaction time been used to measure processing speed (e.g., Kim et al., 2014a). In other words,
results of Study 2 suggest that it may be necessary to examine graph metrics of task-relevant

subnetworks to uncover specific relationships with cognitive outcome.

6.2.3 What can be gained from the use of Personalised Connectomics?

6.2.3.1 Representation of the TBI population
Importantly, understanding the link between cognition and affected neurological
organisation has implications for the management of chronic TBI cases with persistent

cognitive impairments. However, most research examining this link has done so using group-
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level analyses, which average TBI patient neuroimaging and cognitive data to compare to
healthy controls (Imms et al., 2019). While group-level analysis is essential for statistical
evaluation, TBI patients are notoriously heterogeneous in terms of their lesion characteristics
and cognitive outcomes (Rabinowitz & Levin, 2014); meaning important individual
differences are ‘left on the cutting room floor’, and group-level results are not necessarily
applicable to individual patients (Mant, 1999). Instead, there is incentive for the use of
individual-level approaches to investigate the cognitive and neurological facets of brain
injuries in general (e.g., Irimia, Chambers, et al., 2012; Irimia, Wang, et al., 2012; Jolly et al.,
2021; Lv et al., 2020). The single-subject profiles of Study 3 constitute a timely response to
the push for individual-level approaches — they provide a framework for future studies to
examine a profile of cognitive and neurological alterations without averaging individual
differences in TBI patients.

In previous connectome studies of TBI it is common to exclude cases with large focal
lesions that fail Freesurfer segmentation — which was not designed for brain images with
structural pathology. Consequently, results are not representative of the broader TBI
population, and the models based on this data are less likely to be generalisable to real-life
clinical settings (Woo et al., 2017). However, if these patients are discarded, our
understanding of TBI is limited only to patients with smaller lesions. New techniques for
improving image processing of patients with large lesions are currently being developed, that
will allow inclusion of these patients (see section 6.2.4.3). In Study 3 one such technique is
successfully employed (Radwan et al., 2021), enabling the demonstration of the individual
profiling approach in moderate-severe TBI patients, including two with extensive lesions.
Inclusion of these patients is essential for ensuring that the true diversity of the TBI

population is represented in the literature.
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6.2.3.2 A framework for clinical application

Irimia, Wang, et al. (2012) introduced the idea of personalised structural
connectomics for TBI patients, to visualise trauma-related white matter atrophy. In particular,
they assert the need for techniques that allow clinicians to rapidly compare changes in
structural connectivity profiles in order to create personalised rehabilitation programs (Irimia,
Chambers, et al., 2012). There is evidence that individual network- and connectivity-based
profiles are promising in this regard (e.g., Bonilha et al., 2015; Kottaram et al., 2020).
However, few studies have examined personalised connectome approaches in TBI patients
(Irimia, Chambers, et al., 2012). Study 3 demonstrates the usefulness of personalised
structural connectomics in three ways: First, connectome maps can be used as a profile of the
TBI patient’s brain topography, giving researchers and clinicians a quick visual summary of
network asymmetry, hub alterations, and overall reductions in connectivity strength. Second,
by comparing an individual to normative data, areas of the network that are topologically
damaged beyond the site of the focal lesion can be observed. Finally, cognitive symptoms can
be compared to changes in summary network metrics such as path length, navigation
efficiency, and normalised clustering coefficient. Thus, the novel visual representation
‘GraphMe’ plot opens avenues for employing graph metrics in the clinical care of TBI
patients.

Moving forward, this revaluing of single-subject profiling can be used alongside
group-level analyses to inform clinical practice. This approach could be useful longitudinally
to assess network-based alterations over the time course of the injury. There is evidence that
structural connectivity changes over time according to time since injury (e.g., Meningher et
al., 2020; Osmanlioglu et al., 2019). For example, Osmanlioglu et al. (2019) found that

moderate-severe TBI patients were identical to healthy controls immediately after the injury
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and showed greater dissimilarity by three months post injury. Meningher et al. (2020) found
that clustering coefficient dropped in the first week post injury then returned to baseline
within a month in mice, while global efficiency increased in the first week then decreased
over the following month. These fluctuations are likely to be a result of neurobiological
responses to the injury which may continue for up to 6 months post-injury (e.g., Bramlett &
Dietrich, 2015). Examination of multiple GraphMe plots over the course of the acute-chronic
period could provide insights into how these fluctuations occur 1) in comparison to a healthy
cohort, and 2) in comparison to the initial brain network at injury.

Finally, there is evidence that individual network- and connectivity-based profiles are
promising for informing personalised rehabilitation programs (Irimia, Wang, et al., 2012).
Individual profiling approaches can inform neuroimaging-guided rehabilitation (Dichter et
al., 2012; Stoeckel et al., 2014; Wing et al., 2017), and assist health professionals to design
personalized cognitive training and rehabilitation programs. For example, clinicians can
relate the single-subject brain profiles to the cognitive profiles, to design personalized
therapies that take into account damaged connections. Assessment of cognitive and structural
network alterations in comparison to a normative cohort provides essential information to
deliver a compensatory training program that targets specific white matter tracts and

cognitive domains.

6.2.4 Methodological considerations of diffusion-based graph analysis in TBI

6.24.1 Overview

Although recent advances in computational neuroscience and image processing have
been provided that ameliorate the challenges of connectome reconstruction, they are not
always widely used (Yeh et al., 2020). It is important to judiciously select tools and

approaches that minimise biases, as connectome analyses can be heavily influenced by
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methodological choices in the processing pipeline (for reviews, see Sotiropoulos & Zalesky,
2019; Yeh et al., 2020; Zalesky et al., 2010). This is especially true for brain injured cohorts —
as such, the current research program utilised a meticulously crafted connectome pipeline.
Here, the approach to the three major domains of the connectome pipeline is described: 1)
tractography and generation of streamline edge weights; 2) creation of the connectome

matrices and node choice; and 3) performance of the graph analysis.

6.2.4.2 Edges

According to a recent methodological review by Yeh et al. (2020), there are two main
areas in which the generation of streamlines can bias the connectome analysis: 1) the
streamline termination bias, and 2) the streamline quantification bias. The streamline
termination bias infers that a streamline seed and termination point essentially defines which
node that streamline belongs to. These termination criteria are (conventionally) that a
streamline will begin at a randomly generated seed point, and end when the streamline passes
through an area of low FOD amplitude or high curvature (Jeurissen et al., 2019; Tournier et
al., 2011). However, the resulting streamlines are often biologically implausible, ending in
white matter or the CSF. Instead, Smith et al. (2012) propose Anatomically Constrained
Tractography (ACT) which were employed in the current research program. The streamlines
generated were initiated and terminated in the grey matter boundary, using anatomical priors
derived from T1 images, which better reflects the true biological nature of white matter tracts.
In support of this, a recent study by Schilling et al. (2020) found that the best-case scenario
for the accuracy of streamline generation occurred using anatomical priors, which improved
both the sensitivity and specificity to the ground truth.

One concern regarding the use of ACT in the presence of pathology was that

streamlines may incorrectly be terminated and removed as implausible in cases where the
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streamline ends in the lesion. However, recent work by Horbruegger et al. (2019) found that
ACT improved the tractography of patients with Multiple Sclerosis lesions by preventing
implausible tracts. Similarly, in Study 3, the combined effect of ACT and VBG (to improve
image segmentation) produced connectomes that quite accurately reflected the underlying
pathology. Nevertheless, new techniques are currently being crafted to improve the
registration between streamline end-point and anatomy by using more accurate anatomical
constraints (Yeh et al., 2017).

Second, the streamline quantification bias (also referred to as the reconstruction bias)
signifies that streamlines themselves do not actually represent the underlying fibre density
and thus are not biologically relevant (Jones, 2010a; Jones et al., 2013; Smith et al., 2013).
Accordingly, longer pathways are underestimated as there are more opportunities for the
streamline to terminate (Jones, 2010a). Length correction and representation of the fibre
density have been addressed using advances in streamline filtering algorithms, including
COMMIT2 (Schiavi, 2020), LiFE (Pestilli et al., 2014), and SIFT2 (Smith et al., 2015a). In
this thesis SIFT2 was utilised, which alters the streamline count to represent the underlying
tissue microstructural properties inherent in the FODs. This avoids the streamline
quantification bias and has been shown to result in connectomes that have stronger
relationships with cognitive performance (McColgan et al., 2018). SIFT2 may provide greater
confidence in the biological relevance of structural connectomes — however, of note, it also
resulted in a heavy-tailed distribution of edge weights. A recent study by Frigo et al. (2020)
found that filtering techniques such as SIFT?2 alter the topology of TBI brain networks and
can thus influence the measurement of network metrics — while thresholding based on density

has negligible effects on network topology. However, density-based thresholding does not

220



fully overcome the streamline quantification bias, as it does not make the streamlines
proportional to the underlying FOD amplitudes.

It has also been suggested that SIFT2 is not appropriate for brain images where
pathology is present, as the cross-sectional area of an individual fibre bundle may not be
consistent along the length of the bundle in cases of neurodegeneration and lesions (Sarwar et
al., 2019; Smith, Calamante, & Connelly, 2020; Zalesky et al., 2020). Zalesky et al. (2020, p.
793) provide the metaphor a chain is only as strong as its weakest link, and that SIFT2 (by
taking the sum of the weights of the cross-sectional area along the entire bundle, regardless of
the weakest point), does not account for this. In response, Smith, Calamante, Gajamante, et
al. (2020) propose a modification to the SIFT2 method where axonal truncation pathologies
(such as lesions) are taken into account, by ensuring that the streamline density does not
exceed the fibre density estimated by the diffusion model. Unfortunately, this proposed
amendment was not available at the time of analysis; however, this technique shows promise
for mitigating the effects of lesions on the quantification of streamlines in future studies.

Finally, it was observed that the single-shell 3 tissue model for CSD (SS3T-CSD)
inherently dealt well with TBI lesions (Dhollander et al., 2020; Dhollander et al., 2019). CSD
provides an improvement to the tensor model of generating tractography, as it is able to
represent multiple fibre directions in a single voxel, allowing for estimation of crossing fibres
(Jeurissen et al., 2013). Even though CSD is probabilistic, graph metrics calculated from
CSD show excellent reproducibility across iterations (Roine et al., 2019). SS3T-CSD reserves
the angular information of the GM- and CSF-like signal, removing contributions from these
components to increase the specificity of the WM FODs, while avoiding over estimation into
GM and CSF signal from the lesioned area (Khan et al., 2020). Combined with anatomically

constrained tractography (Smith et al., 2012), streamlines were not generated in lesioned
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areas, meaning anatomically disconnected regions were represented as such in the TBI

connectivity matrices.

6.2.4.3 Nodes

The manner in which the ‘nodes’ of the graph analysis are selected have an
undeniable impact on the resulting metrics (Zalesky et al., 2010). While there is no consensus
on the optimal choice of parcellation scheme (Sotiropoulos & Zalesky, 2019; Yeh et al.,
2020; Zalesky et al., 2010) the Desikan-Killiany atlas was used in Study 2 and 3 (Desikan et
al., 2006), as it is one of the most commonly used parcellation schemes and shows good test-
retest reliability in structural connectome analysis (e.g., Buchanan et al., 2014; further
reasons are outlined in Study 2, section 4.2.4.3). The interpretation of results are therefore
mitigated by the specific choice of parcellation scheme (i.e., the Desikan-Killianey atlas has
82 relatively large nodes, thus results are relevant for a more macro-scale understanding of
the structural connectome). Zalesky et al. (2010) found that network parameters such as path
length vary as spatial scale of the parcellation scheme increases, and thus findings should be
reported with reference to the scale of the parcellation used. Therefore, other parcellation
granularities may lead to different results - for instance, in Study 2, significant correlations
using the higher-resolution Destrieux atlas were not observed (164 regions; Destrieux et al.,
2010).

Node definition in patients with large lesions is both problematic and largely ignored
— leading to a biased representation of the TBI population (see section 6.2.3.1). TBI patients
often have lesions that do not cope well with standard segmentation procedures from which
atlases like the Desikan-Killianey and the Destrieux are derived (Fischl et al., 2002). In cases
where large regions of the brain are structurally damaged (e.g., TBI2, TBI3, TBI4), it is

logical to presume that these nodes are disconnected (thus, the weight of the corresponding
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row/column in the connectivity matrix should be set to 0). However, these disconnected
nodes must still be generated to run the connectome analysis. Unsurprisingly, in cases of
severe lesions, automated Freesurfer segmentation was problematic, resulting in inaccurate
streamline assignment — at which point these patients are often excluded. The use of manual
edits to the white matter volume to re-align the segmentation is not feasible for patients with
extensive regions of encephalomalacia, and these methods are time-consuming and
unreproducible across labs (Beelen et al., 2020).

Automated lesion filling or “virtual repair’ methods instead aim to “fill in’ structural
pathologies to aid in segmentation processes. Significant advances have been made for
automatic identification (e.g., Lesion Identification using Neighbourhood Data Analysis;
Pustina et al., 2016) and filling of large unilateral lesions such as those commonly seen in
stroke. Unfortunately, these methods are not suitable for use in all TBI patients as they rely
on leveraging healthy tissue from the contralateral hemisphere to fill a lesion (i.e.,
enantiomorphic normalisation; Nachev et al., 2008), and TBI lesions often occupy
homologous regions of both hemispheres of the brain. This is the first time the approach
proposed by (Radwan et al., 2021), which utilises a novel method for automatic filling of
bilaterally lesioned brains using healthy synthetic donor tissue, has been applied in TBI
research. Study 3 demonstrates that VBG improved segmentation accuracy in TBI patients
with extensive bilateral lesions. As such, this single-subject approach has been beneficial for
piloting approaches for rare TBI cases which may otherwise have been excluded. However, it
is also noted that VBG using the healthy donor image has not yet been validated against a

ground truth — though, this work is currently underway.
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6.2.4.4  Graph analysis

There are many ‘decision points” within the graph theoretical analysis, including: 1)
binary or weighted, 2) thresholding (or not), and 3) weight-length remapping. All studies in
the meta-analysis (Study 1), and empirical Study 2 and 3 used the BCT to run the graph
analysis, which is designed to provide a consistent methodology (Rubinov & Sporns, 2010).
However, the three decisions described above are not prescribed by the BCT, such that every
step taken will alter the outcome of the analysis. The benefits of each decision are laid out in
Yeh et al. (2020) — here, justification is provided for the methodology used in this thesis.

First, a weighted connectome was used, as this has been shown to provide a stronger
representation of the properties of the brain network (Bassett & Bullmore, 2017). Given the
use of SIFT2 to ensure the generated streamlines represented the underlying fibre orientation
density, the edge weights were as biologically representative as possible (Smith et al., 2015a).
This choice is also recommended for connectomes of patients with neurological pathology
such as Alzheimer’s disease (Mito et al., 2018) and by extension TBI, where reduced but not
absent connectivity is important to the interpretation of altered network properties. Second,
the use of SIFT2 also meant that no thresholding was necessary, as very weak edges were
given an extremely low edge weight — meaning their impact on resulting metrics was almost
non-existent (Civier et al., 2019). However, the third decision (weight-length remapping) was
more contentious. In Study 2, a series of control analyses were performed, changing the
method of remapping between -log(10) and 1/W. The resulting communication measures and
subsequent correlations with processing speed changed depending on the procedure used.
There is no best practice method prescribed for this step in the BCT — however, this step
needs to be synchronised, as this study (and others: e.g., Avena-Koenigsberger et al., 2018)

found that this step can impact the distribution of edge weights.
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6.2.4.5 Summary

In summary, up-to-date processing techniques were utilised to ensure the biological
validity and replicability of the connectome pipeline. While the application of some methods
to patients with structural pathology are still being debated (e.g., SIFT2 and ACT), advances
are being made relativity quickly in these areas. Furthermore, the use of new methods that
allow better representation of neurodiversity in the TBI literature are demonstrated (i.e.,
VBG; Radwan et al., 2021). Finally, currently accepted and standardised methods for graph
theoretical analysis were employed wherever possible (Rubinov & Sporns, 2010), and
methods that require further investigation (i.e., weight-length remapping) were highlighted to

improve the robustness and reproducibility of graph analyses.

6.3 Strengths, Limitations and Future Directions

6.3.1 Limitations and future directions

6.3.1.1  Correlational analysis

It is important that biomarkers are able to predict cognitive outcome (Woo et al.,
2017) — which was not examined by the correlational study in Chapter 4. Instead, Study 2
provides insights into the potential mechanisms of graph metric-cognition relationships. It is
noted that while communication metrics are related to processing speed, this relationship is
highly dependent on the measures being used (see section 6.2.2.2). There is now a
subsequent, ongoing investigation using a previously published dataset with a sample size of
N=92 TBI patients (Jolly et al., 2020). Using a machine-learning approach, an algorithm will
be trained on a subset of the TBI cohort to determine if slow processing speed can be
predicted using navigation efficiency and path length measures. This would enable the

predictive validity of navigation efficiency to be more directly examined in TBI patients. This
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next step in biomarker development is essential to establish which injury-related changes in

the brain network are behaviourally relevant.

6.3.1.2  Structural versus functional connectivity

The scope of this research program was limited to the use of structural connectivity to
investigate TBI related alterations in patients with cognitive sequela. Structural connectivity
represents the network architecture, the circuitry and wiring that brain function relies upon
(Sporns et al., 2005). There is strong evidence that brain structural connectivity is related to
functional connectivity (Straathof et al., 2019), in both healthy adults (Honey et al., 2009)
and TBI patients (for review in preprint, see Parsons et al., 2020, December 3). Utilising
multimodal measures of connectivity (i.e., pairing structural and functional connectivity) may
improve the capacity to observe the relationship between properties of the brain network and
cognitive performance (Dhamala et al., 2020; Seguin et al., 2020). For example, Seguin et al.
(2020) found that communication measures calculated on functional connectomes are better
indicators of cognitive performance than structural measures alone. The idea of coupling
structural-functional connectivity for connectome analysis is rising in popularity (Sarwar et
al., 2020). Future iterations of the GraphMe plots could include functional plots alongside the
structural, to examine 1) whether the pattern of alterations is similar across domains in an
individual patient, and 2) whether the combination of modalities provides a more informed

perspective of the patient’s brain network that better reflects their unique cognitive outcome.

6.3.1.3 Normative data
Individual level analyses require a comparison of 1 subject to N controls. This
individual approach to neuroimaging biomarker studies has flourished in recent months (e.g.,

Attye et al., 2020; Garcia-Rudolph et al., 2020; Jolly et al., 2021; Lv et al., 2020). Compared
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to Study 3 the sample size of the healthy cohort in these attribution studies is much larger —
minimum N=103 (Jolly et al., 2021). Normative analysis with large sample sizes of healthy
individuals allows for stronger statistical inferences to be made using such techniques as
quartile regression, as was done by Lv et al. (2020) and Jolly et al. (2021). Normative data
approaches are limited by access to substantial healthy control cohorts scanned with the same
sequence at the same site — as results from tractography and connectome analyses are not
robust to differences in image acquisition and processing (Sotiropoulos & Zalesky, 2019;
Yeh et al., 2020). However, with the use of data harmonisation techniques (for review, see
Pinto et al., 2020) this limitation could potentially be overcome in the near future, allowing

larger normative datasets to be more easily created.

6.3.2 Strengths

One of the main strengths of this research program is its inclusivity — no patients were
discarded for having large lesions. As such, this thesis constitutes an important step towards
addressing the problems of heterogeneity in the TBI population, made possible by the up-to-
date connectome pipeline that was employed (see section 6.2.4) (Radwan et al., 2021; Smith
et al., 2015a; Smith et al., 2012). Specific measures of cognition (Wiecki et al., 2013) and
network communication (Seguin et al., 2018) were also used to uncover relationships
between graph metrics and cognition (see section 6.2.2.2). An ongoing area of investigation
before graph metrics can be considered as ‘biomarkers’ is whether they have interpretive
value, and specific measures such as those utilised in Study 2 may provide opportunities for a
more mechanistic understanding of this link. Finally, this research provides new, clinician
targeted output for assessing TBI patients, particularly those with chronic, ongoing disability

who are often under-represented and unable to access ongoing rehabilitation.
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6.4 Conclusions

This thesis provides a substantive critical evaluation of the use of graph metrics in the
study of patients with TBI. The three empirical studies form a body of work that examines
the robustness (Study 1), behavioural relevance (Study 2), and applicability at the single-
subject level (Study 3) of graph theoretical approaches to studying brain injury. It was found
that brain network communication is often altered across different TBI groups (Imms et al.,
2019); which may also be related to cognitive processing speed (Imms et al., 2021).
However, the pattern of graph metric alterations varies extensively in individual patients,
depending on their age, lesion size, and lesion location. Therefore, future graph theoretical
studies of TBI must adopt a profiling approach to better characterise network alterations that
consider the unique “disconnectivity’ of each patient. In this way, graph theoretical analysis
holds promise as a means of characterising and informing treatment decisions for patients

with TBI.
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Appendix E. Flyer for recruitment of healthy adults (MBI)

HEALTHY CONTROLS NEEDED FOR A
COGNITIVE TRAINING & MRI STUDY

WE NEED HEALTHY CONTROLS TO PARTICIPATE IN COGNITIVE TESTING

Patients may be eligible if they,

Participation involves taking part in

There is no cost to the participants for any of the testing or scanning
procedures.

AND A STRUCTURAL MRI SCAN

are 18-65 years

are right-handed

have no history of serious head injuries

are currently not taking medications for psychotic/psychiatric illness
have no contra-indications for MRI (such as metal implants)

neuropsychological testing (1 hour), brain scan (1 hour), and surveys (25
minutes) at Monash Biomedical Imaging lab (Clayton)

FOR INFORMATION, PLEASE CONTACT ADAM (e: adam.clemente@myacu.edu.au), PHOEBE (e:
phoebe.imms@myacu.edu.au) OR HANNAH (e:hanny.r93@gmail.com)

Principal Investigator: Karen Caeyenberghs, Ph.D. :

P~
School of Psychology | Faculty of Health Sciences IT ”w,
Australian Catholic University . 4

115 Victoria Pde., Melbourne VIC 3065 AUSTRALIAN CATHOUC Unversiry  CE€DDR

ACU HREC: 2017-222R
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Appendix F. Screening form for healthy adults (MBI)

Healthy Control Screening Questionnaire — Please do via the phone

Date:

Check with parficipant that they have 10-15 minufes fo spend with you on the phone.

Name: Gender:

DOB: First MRI: Y f N
Right handed: Y I N

Fluent in English: Y ! N Details:
Pregnant: Y ! N

Braces/Orthodontics: Y I N Details:
Piercings: Y ! N Details:

Tattoos: Y I N Details:

Head Injury: Y ! N Details:

Psychotic lliness: Y ! N Details:

Psychiatric Disorder: Y ! N Details:
History of epilepsy: Y ! N Details:

Recent Surgeries: Y ! N Details:

Any implants (not just metal): Y ! N Details:

Injuries caused by metal (esp. eye): Y ! N Details:
Ear, eye, heart, or brain surgeries: Y ! N Defails:
Electronic or wire implants including...
Pacemakers: Y ! N Details:
Implanted Confraceptive Devices: Y ! N Details:

Anything in your body: wires, clips, stents, sutures, screws, rods, cochlear
implants, valves, prosthetics? Y ! N Details:

If N fo everything, book scanner session with participant using the Arin sysfem.
OK to participate: Y f N

Date and Time of Session:

MRI and testing room booked: Y { N MRI time:

Version 1, last updated 14/08/2017
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Healthy Control Screening Questionnaire — Please do via the phone

If Y to something, use screening form on the next page fo darily, then check with Karen and
the team, or email Richard, and call back.

Have you ever had any eye imjury caused by metal?...... NO / YES
If yes, did you see a doctor at the time?...... NO/ YES

Did they remove the foreign body?.............. NO/YES
Did they tell you that they got it all out?........_. NO/YES
‘Was this the last injury involving metal?........____. NO/YES

Are you pregnant, suspect you may be pregnant or breastfeeding?....... NO / YES

Do You Have (Or Have Y ou Ever Had):
A Cardiac Pacemaker/stent/defibrillator/wire.......... NO/YES

Any heart operation or valve replacement.........._.... NO/YES

Any Brain operation ..._.__._._____._....._ ... NO /YES

Abdominal Aneurysm repair or IVC filter ......._.__. NO/YES

Bramm Ancurysm Clips. ... NO/YES
Deep Brain Stimulator... ... NO/YES

Brain Shunt Tube.. ... NO/YES

If YES, is it programmable ... NO/YES

Any Ear operations /cochlear or stapes implants........... NO/YES
Implanted drug infusion devices. ... NO /YES
Neuro or Bone growth stimulator..... ....NO/YES

Shrapnel, bullet, gunshot ... ... . NO/YES

Any stents, vascular, ocsophageal orbiliary.................._.. ... NO/YES

Any Surgical clips/wire sutures/screws/mesh/prosthesis ... NO/YES
Joint Replacement or Prosthesis..........ooooooooo e NO/YES
Do You Have: Ocular prosthesis (eye implants) ... NO/YES

A Swan-Ganz Catheter..... ... NO/YES

Have You
Had an operation or procedure within the last 8 wecks NO/YES
What? / When?_..... oo
Had a history of seizures or epilepsy NO/YES
What? / When? ...
OK to participate: Y I N

Date and Time of Session:

MRI and testing room booked: Y I N MRItime:

Version 1, last updated 14/08/2017 2
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Appendix G. MRI screening form (MBI)

% MONASH University Phone: 03 9905 0100 manager.mbi@monash.edu

Biomedical Imaging

MRI Screening & Information Form

Please complete BEFORE scan and bring with you to MBI on the day of the scan
PQMS3-MBI-FRM-CO01-V1

................................................. PostCode..............DateofBirth: .._____._./_ ___.____/f ...
Age.......... Phone..........................

Your MRI appointment has been scheduled for: Date:_..._...... ... ... I ¥
Amival time: .._......__..........._ am/pm Scantime: ._.......__........._..am/pm

PG LR L AL S
WHAT IS MRI? ARE THERE ANY RISKS?

Magnetic Resonance Imaging (MRI) uses radio waves and very strong magnetic fields to make detailed pictures of the
inside of your body.

There are no known hamful effects, from the either the radio waves or the magnetic field, on your body.

However, some people have electronic devices (such as cardiac pacemakers), metal fragments in the eye, or surgically
implanted metal objects, which coukd be badly affected by the strong magnetic field. Attached is a detailled safety
questionnaire about such objects, to help us decide if there would be any risk to you during an MRI scan.

N I T 8 W IO Ry

PREPARATION

No special preparation is necessary — please eat, drink and take usual medications nomally.

Please do not use makeup or hairspray if you are having a scan of the head, face, or neck.

WHAT WILL HAPPEN?
We will review the questionnaire sheet with you, to double-check any possible risks.

We will then explain the scanning procedure to you, and wil be happy to answer any questions you may have.
You can also ring us in advance — 9905 0100

Before you enter the MRI scan room, you wil be asked to take off your watch and any metallic jewellery. Occasionally
you may be asked to change into a hospital-style gown. tems such as CREDIT CARDS, PAGERS, and MOBILE
PHONES MUST NOT be brought into the scan room — they may be severely damaged, and may also be hazardous to
other persons in the room. A locker will be provided for safekeeping of such objects, other valuables, and dlothing.

The MRI machine looks like a large metal doughnut The table on which you lie passes through the middle of the
doughnut; the part of the body being scanned must be positioned at the centre of the doughnut. Cushions and pillows will
be provided to make you comfortable on the table, and mirrors wil allow you to see out of the "doughnut™.

During the scan, it is mportant that you keep as stil as possible - particularly when the scanner is making noises. You wil
hear various dicking, tapping, buzzing and banging noises during the scan - these are quite normal. They are sometimes
quite loud, and headphones or earplugs will be provided to protect your ears. If you wish, music of your choice can be
played through the headphones during some scans. The scan wil take between 15 and 45 minutes. At all times, you wil
be able to talk to us through an intercom system built into the MRI machine. We will speak to you periodically, through
this system, throughout the scan.

AFTER THE TEST

Once the scan is completed, you wil be free to get dressed and go. There wil be no after-effects from the scan. Although
the MRI scans are setup for the individual research projects and not chosen to show clinical information, they will be
viewed and reported by an MRI radiologist.

MRl Screening & Information Form PQMS3-MBI-FRM-C001-V1 Page 1of 2
Date of issue: 0710672016
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;Qq MONASH University Phone: 03 9905 0100 manager.mbi@monash.edu

Biomedical Imaging

i =Y . | « | =

Weight oo Kg (L] Date of Birth: ! /

DARIS Number (fo be filled in by researcheron thedayofsean) ... ... i
TO ENSURE YOUR SAFETY & COMFORT PLEASE ANSWER THE FOLLOWING:

Have you ever had any eye injury caused by metal? NO /YES
fyes, did you see a doctor at the time? NO /YES
Did they remove the foreign body? NO /YES
Did they tell you that they got it all out? NO /YES
Was this the last injury involving metal? NO /YES
Are you pregnant, suspect you may be pregnant or breastfeeding? NO /YES
Do You Have (Or Have You Ever Had):
A Cardiac Pacemaker/stent/defibrillator/wire NO /YES
Any heart operation or valve replacement NO /YES
ANy Brain Operation ... e e em e e mmem o emn e o e e m e e NO/YES
Abdominal Aneurysm repair or VC filter NO /YES
Brain Aneurysm Clips NO /YES
Deep Brain Stimulator NO /YES
Brain Shunt Tube , NO /YES
If YES, is it programmable NO /YES
Any Ear operations /cochlear or stapes implants NO /YES
Implanted drug infusion devices NO /YES
Neuro or Bone growth stimulator NO /YES
Shrapnal, bullet, gunshot NO /YES
Any stents, vascular, oesophageal or biliary NO /YES
Any Surgical clips/wire sutures/screws/mesh/prosthesis NO /YES
Joint Replacement or Prosthesis NO /YES
Do You Have:
Ocular prosthesis (eye implants) NO /YES
A Swan-Ganz Catheter. NO /YES
Skin patches NO /YES
Intrauterine device (IUD} NO /YES
A penile prosthesis NO /YES
Any other implant, or breast tissue expander NO /YES
Tattooed eyelids or tattoos NO /YES
Hearing Aid NO /YES
Removable dentures NO /YES
Have You: What? / When?
Had an operation or procedure within the last 8 weeks NO /YES
Had a history of seizures or epilepsy NO /YES

IF YOU ANSWERED YES TO ANY OF THE ABOVE QUESTIONS PLEASE PHONE MRI RECEPTION
ON 99050100 BEFORE ATTENDING
Have you had a previous MRI NO /YES

PNt N . e e ee e e mm e

Signature . Date
If not completed by Subject, the name of the person completing the form ____..
Relationship to the Subject
Contact number {(mobie)

MBI / MRI Staff

Printname...... ..o Signature ... Date ...... loodo. ..
MRl Screening & Information Form POMS3-MBI-FRM-C001-v1 Page 2 of 2
Date of issue: 07/062016

FPrnted copies of this document are unconimolled copies. For cument o refer hitpsiic e-vre_its. monash edu awf
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Appendix H. Outline of what to expect on the testing day (MBI)

Cognitive Training and Brain Structure

Cognitive function and brain structure: A longitudinal MRI study

Healthy corirols are needed for one time poirt, as a basis of comparison fo our clinical
population (pafients with Traumalic Brain Injury, “TBF)

If you are interested in participating, please respond to the
expenimenter with your phone number so we can go through a

screening questionnaire with you, to ensure your eligibility.

Participants who are Right Handed only. Please let your experimenter know if you
are left handed.

Please also let your experimenter know if you have ever had a head injury,
psychotic illness or psychiatric disorder; or if you have any possible contraindications
for MRI scanning such as metal im plants, piercings, injuries caused by metal, recent
surgeries, electronic or wire implants including pacemakers, implanted
contraceplive devices, or metal flakes in the eye.

If you would like, you can bring your own movie with subtitles on a usb - G, PG or
MA only please.

TOTAL TIME FOR EXPERIMENT: approximately 3 hours.

O Surveys, screening forms, and consent forms, 25 - 30 minutes;
= Simple surveys of your daily life functioning and participation
O Scan, 1 hourtotal
= See next pages for more details
0 Cognitive and Motor testing, 1 hour
= The cognitive testing involves a number of simple computer games
and manual dexterity games that are designed to test your cognitive
and motor abilities - such as response inhibition and processing
speed.

Version 1, last updated 14/08/2017 1
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Cognitive Training and Brain Structure

MBI SCREENING FORM: Have a read through this form, and let us know if

(o]
you have any questions. You will fill this form out at MBI before the scan, so

no need to bring it with you.
hitps:{iplatforms.monash.edu/mbifimagesfstories/Forms policies/pgms3-mbi-fim-

c001%20mri%20screening %20% 20information %20form.pdf

SCANNER WEBSITE: For some information about the MBI and the MRI

(o]

scanner
hitps{iplatforms.monash.edu/mbifindex php?option=com_conteni&view=article&id=9

2&temid=205

Scanner Location: Monash University {Clayton)
Monash Biomedical Imaging

762-772 Blackbum Road
Building 220 Monash University,

Clayton, VIC 3800
g o = w
g £ LN * k
Femtres gy, K E - 5
= 2 J
(1]
t Femiroe Cujy g
(=] be 3 .
Gateway on
- s : o MuuuslHul:In . @
= = @ > g
Oakleigh East Lot Notiing Hi
Nermangy o © Communtty Family Co...

& Bayvien o L] “
é i Monash Residential
) Monash University - =aCl, Wy Services Clayton Campus

Princes 52 N1 Carpark

Highway L

Reseive

STy I o Borsy @ S 8 § @MeoneshDakleigh Morash Biomedical T
ALK St [l Legal Service Imaging Research Cantre.

Nort
o OM™Ad e nonald's Clayion i ey
on S jonasl ducation

9 m

Clayton

© Mannix College o
Clayton Monash s
Motor Inn & Serviced... = N u =
». Google @ Wellingion

m

Transport: Phoebe or Adam can pick up and drop off from Clayton train station, if

transport is inconvenient for you.

Version 1, last updated 14/08/2017
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Cognitive Training and Brain Structure

MRI scan details (from MBI screening form)

WHAT IS MRI? ARE THERE ANY RISKS?

Magnetic Resonance Imaging (MRI) uses radio waves and very strong magnetic
fields to make detailed pictures of the inside of your body. There are no known harmful
effects, from the either the radio waves or the magnetic field, on your body. However, some
people have electronic devices (such as cardiac pacemakers), metal fragments in the eye,
or surgically implanted metal objects, which could be badly affected by the strong magnetic
field. Attached is a detailed safety questionnaire about such objects, to help us decide if
there would be any risk to you during an MRI scan.

During the scan, sometimes you may feel hot or tingly in one part of your body. This
may be uncomfortable but is a very normal, harmless side effect. There is no need to be
alarmed if you feel this. However, if you are in discomfort or would like to stop, there will be a
squeeze that you can squeeze, and the scan will stop and the radiographer will talk to you.

PREPARATION

No special preparation is necessary — please eat, drink and take usual medications
nomally. Please do not use makeup or hairspray if you are having a scan of the head, face,
or neck. Try to avoid wearing jewellery and if necessary/possible remove piercings from the

face area, and any orthodontic plates.
WHAT WILL HAPPEN?

We will review the questionnaire sheet with you, to doublecheck any possible risks.
We will then explain the scanning procedure to you, and will be happy to answer any
questions you may have. You can also ring us in advance — 9905 0100. Before you enter the
MRI scan room, you will be asked to take off your watch and any metallic jewellery.
Occasionally you may be asked to change into a hospital-style gown — normally though you
can wear your own clothes into the scanner. ltems such as credit cards, pagers, and
mobile phones must not go into the scan room — they may be severely damaged, and may
also be hazardous to other persons in the room. A locker will be provided for safekeeping of
such objects, other valuables, and clothing.

The MRI machine looks like a large metal doughnut. The table on which you lie
passes through the middle of the doughnut; the part of the body being scanned must be

Version 1, last updated 14/08/2017 3
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Cognitive Training and Brain Structure

positioned at the centre of the doughnut. Cushions and pillows will be provided to make you
comfortable on the table, and mirrors will allow you to see out of the "doughnut™. During the
scan, it is important that you keep as still as possible - particularly when the scanner is
making noises. You will hear various clicking, tapping, buzzing and banging noises during
the scan - these are quite normal. They are sometimes quite loud, and headphones or
earplugs will be provided to protect your ears. If you wish, you can bring with you on a USB
a movie of your choice (G, PG, or MA only please) with subtitles for us to play to you during
your scan. The scan will take between 50 minutes to an hour. At all times, you will be able to
talk to us through an intercom system built into the MRI machine. We will speak to you
periodically, through this system, throughout the scan.

AFTER THE TEST
Once the scan is completed, you will complete the cognitive testing and surveys, if
you haven't already done so. There will be no after-effects from the scan. Although the MRI
scans are setup for the individual research projects and not chosen to show clinical
information, they will be viewed and reported by an MRI radiologist.

Total scan time: 59 mins 36 secs

- Localiser: This scan will go for 13 seconds. The main role of this scan is to localise and
plan the sequences for the rest of the MRI scans.

- T1 scan: This scan will go for 3 minutes and 52 seconds. This scan is used to identify
differences in brain tissue and provides a clear, high resolution image of the whole brain.

- This scan will go for 4 minutes and 52 seconds. This scan focuses on
detecting any lesions that may be present in the brain tissue.

- SF scans: These three scans will go for approximately 13 minutes and 22 seconds. These
three scans look at the white matter of the brain. White matter is involved in carrying
information between nerve cells in the brain.

- Multi-flip, Irspgr, Multi-flip phase 180, MultiHlip phase 0: These four scans will go for a total
of approximately 15 minutes. These four scans work together to measure the myelin in the
brain. Myelin surrounds parts of neurons and is necessary for the processing of information
in the brain. During this scan sequence, you may feel some sensations such as tingling or
heat in your arms, legs and/or fingers. This is completely normal but if you feel
uncomfortable at any time please let us know and we can stop the scan and get you out.

- T2 swi, Gre-field, QSM, REST scans: These three scans will go for approximately 22
minutes and 45 seconds. Together these scans look at the blood flow within the different
brain regions.

Version 1, last updated 14/08/2017 4
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Cognitive Training and Brain Structure

Scan type Duration

Localiser 13 seconds

T1_mprgase sag p3 iso 1_ADMNI 3 minutes 52 seconds
T2 _spe dafi_sag p3 iso 1.0 4 minutes 52 seconds
SF_1RL_ep2d_diff _dir_66_inter 42 seconds
SF_1L-R_ep2d_diff _dir_66_inter 42 seconds
SF_1R-_ep2d_diff_3000_dir_66_inter 11 minutes 49 seconds
multiflipSPGR_tr53 8fa18 4 minutes 37 seconds
Irspgr_tr53 6450 pe96 59 seconds
multiflipSSFP_trod_8fa55 phase180 4 minutes 42 seconds
multiflipSSFP_tr54_8fab5 phasel 4 minutes 42 seconds
T2swidd axial p2 1.8mm 5 minutes 47 seconds
Gre-field_mapping_3mm 1 minute 24 seconds
QSM_p2_1x1x1mm_3echo (NEW SCAN) 9 minutes 59 seconds
REST cmrmm_mbep2d_bold mat64 5 minutes 16 seconds

Contact Details:

PhD students, your first point of contact if you have any questions or concerns.

Adam Clemente — adam_clemente@myacu.edu.au

Phoebe Imms — phoebe.imms@myacu._edu_au

Cl, lead researcher and PhD supervisor.

Dr. Karen Caeyenberghs — Karen.Caeyenberghs@acu.edu.au

Project Honours student.

Emma Lawrence - emma.lawrence@myacu.edu.au

Project research assistant

Hannah Richards — hanny.ra3@gmail.com

Version 1, last updated 14/08/2017
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Appendix I. Explanatory statement provided to healthy adults (MBI)

MONASH University

EXPLANATORY STATEMENT

Control Group
Project: Cognitive function and brain structure
Chief Investigator's name: Student’s names:
Karen Caeyenberghs Adam Clemente
Department of Psychological Scences email: adam.clemente@myacu.edu.au

Phone: (03) 92308067

email: Karen.caeyenberghs@acu.edu.au Phoebe Imms

email: phoebe.imms@myacu.edu.au

Emma Lawrence
email: emma.lawrence@myacu.edu.au

You are invited to take part in this study. Please read this Explanatory Statement in full before deciding whether or
not to participate in this research. If you would like further information regarding any aspect of this project, you are
encouraged to contact the researchers via the phone numbers or email addresses listed above.

What does the research involve?

This research project investigates cognitive functioning. Many daily life activities are involved in acquiring
information, including listening, watching, reading, searching out information, or just paying attention to things
around you. In all cases, you are using your cognitive functions to gather information. Cognitive functions indude
attention, memory, language, perception, decision making, and problem solving. This study aims to examine the
relationship between cognitive function and brain structure.

Participation involves taking part in (1) a session of tests of cognitive functioning, motor performance, and
questionnaires (2) one MRI brain scan at Monash Biomedical Imaging lab. All of this is done at no cost to you. This
study will take approximately 2 hours to complete {cognitive testing session: 1 hour and MRl scanning session: 1
hour).

Cognitive fundtioning

You will complete a series of tests of cognitive functioning. The testing will consist mainly of tests of memory,
processing speed and other cognitive functions. For example, during one task you are presented with a 4x4 grid and
are instructed to remember and reproduce a sequence of flashing boxes presented on the screen. This testing is not
tedious and most participants find it enjoyable as the tests are in the format of computer games.

Questionnaires

You will complete 3 separate self-report questionnaires measuring subjective experience of attention/executive
functioning in everyday life situations, as well as everyday life participation levels. For example, one question
regarding attention experiences may be "do you often forget yesterday's events?" and one question regarding daily
life participation levels may be "In a typical week, how many hours do you spend in active homemaking, including
deaning, cooking, and raising children?".

Motor Performance

You will be partaking in measures of motor performance of upper limb deficits. These measures will give an
indication of both your manual and bimanual dexterity. These tests do not require rigorous physical activity, and are
engaging tasks such as throwing cubes over a barrier into a box.
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MRI scan

The third and final part of the study will include an MRI scan of the brain to examine the path ways between your
brain regions. Scanning will take approximately 1 hour, you are encouraged to bring along your favourite mavie to
watch while you are being scanned.

Tests of cognitive functioning and the MRI scanning will take place at Manash Biomedical Imaging lab located in
Clayton. Taxi vouchers will be provided to eliminate the possible costs of transport. After reading this explanatory
statement you will be provided with a consent form so you can provide written consent for participation in this
study.

Why were you chosen for this research?

Your participation in this study will assist us to obtain control data of healthy individuals, which will be compared
with the cognitive function and brain structure of individuals who have sustained brain injury due to traffic accident
or sport injury.

Consenting to participate in the project and withdrawing from the research

Prior to participation in the study, you will be provided with a consent form. If you are willing to participate, you
need to sign the form and return it to the researcher. Participation in this study is completely voluntary. You are not
under any obligation to participate. If you agree to participate, you can withdraw from the study at any time without
adverse consequences. You are free to withdraw from the study without giving any reason.

Possible benefits and risks to participants

By obtaining your data and comparing it with the cognitive function and brain structure of individuals who have
sustained brain injury due to traffic accident or sport injury, you will be providing us with valuable information that
may assist with the rehabilitation for those with brain injuries.

The research is not expected to have any risks; however, the study does involve you undergoing magnetic resonance
imaging (MRI) testing which can be anxiety provoking. MRl is a safe and non-invasive procedure used to take brain
images. Before undergoing the scan, you will be thoroughly screened to ensure you are able to have the scan.
Screening will involve completion of a checklist consisting of questions such as whether you have any metal implants
in your body, e.g. pacemakers and/or piercings (metal disrupts the scans) or whether you experience daustrophobia
(fear of confined spaces). A radiographer will be present during scanning to assist in the administration of the scans.
The scanner requires you to be in a confined space for approximately 1 hour and can be quite loud. However, you
will be pravided with ear plugs and a rubber ball containing a buzzer that you can squeeze at any time during the
scan if you are feeling anxious. If you squeeze the rubber ball the scan will be stopped immediately and a staff
member will come and get you out.

Research involving diagnostic testing or possible incidental findings

As the study involves an MRI brain scan, the scan will be examined by a neuroradiologist. Before testing begins, you
will be asked to indicate whether you wish to be informed of i) any diagnostic findings, ii) all incidental findings (any
finding that may require treatment, or have implications on your future health), iii) only those adverse findings
{findings that would normally lead to prompt) in relation to the MRI brain scan. You will be asked whether you would
like any diagnostic/incidental/adverse findings to be discussed with them by their usual General Practitioner (GP),
anather doctor of their choice, or by a member of the research team. After reading this explanatory statement you
will be pravided with a consent form so you can provide written consent for potential incidental findings during the
MRI brain scan.
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Services on offer if adversely affected

Currently there are no known adverse effects of MRl magnetic fields and radio waves on humans. Some people
{approximately 3-5%) find lying in the MRI scanner causes claustrophobia. if you are aware that you suffer from
claustrophabia, you can choose not to participate in this study. While participating, if you do experience discomfort
during your scan, you will be able to communicate immediately with radiographer or researcher to ask to be
removed from the scanner. Some people may notice warmth and/or minor tingling during some scans. This is
nothing to worry about, and is caused by the magnetic fields generated by the scanner. Once again, if you feel
uncomfortable, you can ask to be removed from the scanner.

MRI scans performed at Monash Biomedical Imaging are formally reported by a Radiologist, in order to identify any
unexpected abnarmalities that might affect either your health, or the results of the research study. These reports are
held securely at Monash Biomedical Imaging. In general, we will not contact you about the scan results unless there
is an abnarmality (‘'no news is good news’). Very occasionally {in approximately 2% of cases), the images of normal
participants may show anatomical abnormalities. It may be necessary to do further tests to establish whether an
abnormality is truly present. Some findings may have no negative implications for your health, and are called
incidental. However, in about 1% of scans, the imaging abnormality may represent a risk to your health, and is called
an adverse finding. In many cases, there are effective treatments available for adverse findings, but sometimes there
are adverse findings for which no effective treatment is currently available. Therefare, if any abnormalities are found
as a result of the MRI brain scan, you will be contacted, if you consent to do so.

Confidentiality / Use of data for other purposes

All individual results will remain confidential, and anything that you say or do during the session will not be
communicated to anyone in a way that could identify you. Personal identifying data such as names will not be
connectad to the results obtained. The results of this study will be published in the form of an honours thesis and
may be published in an academic journal and/or conference proceedings. Again, individual participants will not be
able to be identified as being part of the study.

Storage of data

All records will be kept for 7 years within the lacked office of the leading chief investigator located at Australian
Catholic University. The data will be accessed by the chief investigator if required.

Results

Following the completion of your participation, you can register your interest in the results of the study with the
researcher. You will be sent a summary of the de-identified group results approximately 12 months later.

Complaints

Shauld you have any concerns or complaints about the conduct of the project, you are welcome to contact the
Executive Officer, Manash University Human Research Ethics (MUHREC):

Executive Officer

Monash University Human Research Ethics Committee (MUHREC)
Room 111, Chancellery Building E,

24 Sports Walk, Clayton Campus

Research Office

Monash University VIC 3800

Tel: +61 3 9905 2052 Email: muhrec@meonash.edu Fax: +61 3 9905 3831
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Thank you,

Karen Caeyenberghs
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Appendix J. Consent form provided to healthy adults (MBI)

% MONASH University
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Appendix K. Letter of invitation to TBI participants (RCH)

Associate Professor Wendyl D’Souza Suite 8, Level 6,
MBChB, MPH, FRACP, PhD 55 Victoria Parade
Neurologist, Epilepsy & Epidemiology Fitzroy 3065
Provider No. 211773G.J} Ph: 9419 1007

Fax: 2486 0017
{For all appointments & referrals)

Dear [individuals name],

I am inviting you to participate in a research project to improve recovery fiom past head injury. We are
resending this information as a reminder. as you may have overlooked our last letter in your busy live and

might want to reconsider.

Specifically, we have started a trial on patients with a brain injury, as a result of a trmuma to the head Some
people unlucky encugh to have a trammatic brain injury (TBI) can have problems that contine even years
after their injury. For example, problems with thinking, difficulty concenirating, processing things slowly,
amd trouble with hand and arm movements. These sorts of problems restrict someone’s ability to have a
nomal life, to cook meals, drive a car, or to be able to fimction nomally at work.

Onur research is in helping people who have had a TBI to recover and repair from these problems. Our team
have found new ways to deliver therapy by combining brain training and physical exercises in a meaning fial,
fim and intensive form, on a tablet (e_g., iPad) that can be used at home. This therapy is called CogMo. We
would like to investigate whether this new brain training program can improve your daily life fiuncti omng,
memory, concentration and hand/arm fimetion. While we do this, we would also like to analyse the brain to
see whether it changes as well. This is called bmain plasticity, which is basically the bmain’s ability to repair
with training. Ultimately, we hope if successful 1t may be possible to implement positive results in future
rehabilitation programs for patients with a brain ijury.

If you are interested or would like more information, please read the encl osed Participant Information Sheet
and other information provided. You will be reimbanrsed for iravel expenses and for your time participating
with us. The collected data will be treated strictly confidentially. If you have any questions about the research
or if you would like to participate in cur research project, you can contact the research team by phone (03
9230 8426). You can also contact the lead researcher (Karen Caeyenberphs) or the research assistant (Hannah
Richands) via email (details on the Participant Information Sheet). Or, you can fill in the short form below
and mail this letter using the envelope provided, we will contact you for more information and to make an

appointment.
Yes, I would like to hear
from the research team
We wish you all the best and about this study
hope to hear from you soon, Full Name
Kind regards, Phone Number
Email
Wendyl D’Souza
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Appendix L. Participant information form for TBI participants (RCH)

Wl ST VINCENT'S

@ HOSPITAL

Participant Information Sheet/Consent Form
Interventional Study - Aduit providing own consent
The effects of tablet-based home interventions on
brain structure, cognitive functioning, motor
Title performance, and daily life participation in patients
with Traumatic Brain Injury.

Home-based interventions for brain-injured

Short Title patients

Principal Investigators A/Prof Karen Caeyenberghs
Prof Mark Cook
A/Prof Wendyl D'Souza

Mr Adam Clemente, Ms Phoebe Imms, Ms Evelyn
Deutscher, Ms Annalee Cobden, Mr Nicholas

Associate Investigator(s) Parsons, Dr Hamed Akhlaghi,, Mr Rakesh
Patibanda, Dr Jonathan Duckworth, and Prof
Peter H. Wilson
Ms Hannah Richards, Ms Alexandra Armstrong

Research Assistants and Ms Honey Baseri

Location St Vincent's Hospital, Melboume

Part1 What does my participation involve?

1 Introduction
You are invited to take part in this research project because you have acquired a Traumatic
Brain Injury (TBI) in the past. The research project is testing rehabilitation interventions for TBL.

This Participant Information Sheet/Consent Form tells you about the research project. It
explains the tests and treatments involved. Knowing what is involved will help you decide if you
want to take part in the research.

Please read this information carefully. Ask a member of the research team questions about
anything that you don’t understand or want to know more about. Before deciding whether or not
to take part, you might want to talk about it with a relative, friend, your local doctor, or a member
of the research team.

Participation in this research is voluntary. If you don’t wish to take part, you dont have to. You
will receive the best possible care whether or not you take part.

If you decide you want to take part in the research project, you will be asked to sign the consent
section. By signing it you are telling us that you:

« Understand what you have read

« Consent to take part in the research project

« Consent to have the tests and treatments that are described

SVHM PICF V5.0 Date 18 Oct 2019 Page 1 of 10
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= Consent to use your personal and health (medical files) information as described.

You will be given a copy of this Participant Information and Consent Form to keep.
2 What is the purpose of this research?

This research project investigates the effect of home-based rehabilitation interventions for
various symptoms experienced by patients with Traumatic Brain Injury (TBI). This study aims to
examine whether a home-based tablet intervention can promote improvements across the many
symptoms of TBI. This includes deficits of cognitive functions (e g., forgetting tasks to do, or
problems concentrating for long periods of time), motor problems (e.g., problems with hand grip,
or writing), and daily functional behaviours (e.g., lack of social life since brain injury). You will
have 2 MRI scans of your brain. One at the start of the study and the other at the end. This is to
see if the home-based rehabilitation has made any changes to the structure of your brain.

This research has been initiated by researcher, Associate Professor Karen Caeyenberghs, from
the School of Psychology at Australian Cathalic University (ACU). The research has been
funded by intemal ACU research funding. The results will be used by the associate researchers
Mr Adam Clemente and Ms Phoebe Imms to obtain a PhD degree. Further, your data obtained
for this study may also be shared with other researchers for the purpose of future research
through online databases that are available to the public. This data will not contain identifiable
information such as your name and address, which will remain confidential.

3 What does participation in this research involve?

You will be participating in a randomised controlled research project. To find out the effects of
tablet-based training programs, we need to compare the effects of them compared to no
training. We will assign participants into groups, and provide the training groups with one of the
two available training programs. The Delayed Treatment group will continue their daily routine
as normal. The results are compared to identify the benefits of the treatment. To try to make
sure the groups are the same, each participant is put into a group by chance (random).

As a participant in this study, you will be taking part in a rehabilitation program using a novel
tablet-based (e.g., iPad) application BrainGames or CogMo, or be part of the Delayed
Treatment group. You will be randomly assigned to one of these three groups. In addition, we
will administer pre- and post- rehabilitation intervention measures of cognitive functioning, motor
control, daily life functiona behaviours, and a brain MRI scan. All groups will undergo these two
testing sessions (i.e., pre- and post- intervention testing) at Murdoch Children’s Research
Institute (MCRI) in Parkville, Melbourme. These two sessions will occur six weeks apart from
each other. This will accompany the training rehabilitation if you are in one of the training
groups. You will be randomly assigned into one of the groups during your first round of testing
and MRI scans.
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Intervention:

Immediate Treatment

For the Inmediate Treatment groups (BrainGames and CogMo), participation involves taking
part in one of two rehabilitation programs at home for 6 weeks immediately after your first test
session. Following the 6 weeks of training you will undergo your second test session.

Delayed Treatment
For the Delayed Treatment group, you will undergo two rounds of cognitive testing and MRI

scans six weeks apart. Following these two rounds, you will then be able to take part in a
training rehabilitation program at home for six weeks.

Training Interventions

Training interventions will involve the use of an electronic touch screen tablet that can be used
at home. Training will take approximately 30-40 minutes and will need to be done 4 times a
week for 6 weeks. Dependant on the training intervention assigned, we will provide an iPad
(mini 2) or Microsoft Surface Pro which will have the brain training program installed, allowing
you to complete the training in the comfort of your own home situation. During training,
researchers will contact with you via phone call or email to ask how your training is going.

“BrainGames” is an iPad application comprising eight games designed to train different aspects
of attention and working memory. For example, one game involves moles popping-up
successively at different locations in a four-by-four grid and you will be asked to reproduce the
same sequence. In another game, you have to prepare ice cream cones according to the orders
they receive. You have to keep track of multiple ice cream stations at the same time and need
to react quickly so the ice cream does not melt. Difficulty level of the games will increase with
better performance over the training period.

“CogMo” is a multimodal tool comprising five games to train different aspects of cognition and
motor control. For example, in one game you will be asked to place objects as accurate and
timely as possible, depending on the colour or shape of the targets. In another game, you will
see shapes with laser beams coming from them, and you will need to move the shapes so that
the beams fit through tunnels and shine out the other end. As with BrainGames, difficulty levels
ofthe games will also increase with better performance over the training period.

Testing:
nitive testin

Pre- and post- training intervention, you will complete a series of tests of cognitive functioning.
Testing will take approximately 1 hour and will consist mainly of tests of memory, processing
speed and other cognitive functions. For example, during one task participants are presented
with a set of circles that are labelled with numbers and/ or letters. In different trials of the task,
you will connect them by clicking the mouse based on a sequence of numbers (1-2-3-4), letters
(A-B-C-D) or an altemating sequence (1-A-2-B). You will have 30 seconds to respond to as
many stimuli in the sequence as possible. During another task nine blue squares will appear on
the screen. On each trial, the squares will light up one at a time. Once the sequence is finished,
you will then respond to each square and reproduce the sequence in the same order they were
presented. This testing is not tedious and most participants find it enjoyable as the tests are in
the format of computer games. You will be provided with breaks in between each of the tests (if
necessary). You will also complete a brief task-based 1Q test prior to the commencement of
your training.
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Motor performance tests

There will be three measures of bimanual (j.e., tasks involving the use of both hands) and
unimanual (i.e., tasks involving the use of a single hand) dexterity. For example, you will be
asked to twist a screw into a nut as fast as you can. Also, you will be asked to move as many
cubes as possible over a vertical wooden barrier in 60 seconds, one at a time, using one hand.
These measures are not intensive or rigorous forms of physical activity and will provide
beneficia information of any potential improvements in upper limb deficits as a result of the
training interventions.

Measures of daily life functioning

A selfreport questionnaire measuring subjective experience of attention/executive functioning in
everyday life situations will also be administered. For example, one question may be ‘do you
often forget yesterday’s events? Two other questionnaires measuring the extent to which your
lifestyle (e g., time spent socialising) may have changed as a result of brain injury and also to
investigate any improvements as a result of the training intervention.

Tablet-based application experience

During and following your participation in one of the tablet-based applications, you will be given
some questionnaires on your experience with the application to measure your motivations to
take part in the training and your experience with the games setting. For example, one question
may be 1 enjoyed this activity very much”.

MRI scan

Before and after the training, we will administer a non-invasive Magnetic Resonance Imaging
(MRI) scan to examine the effects of the training on the patient’s brain. MRl is a scan used fora
medical imaging procedure. It uses a magnetic field and radio waves to take pictures inside the
body. It is especially helpful to collect pictures of soft tissue, including the brain, which does not
show up on x-ray examinations. Scanning will take approximately 50 minutes. Participants will
be encouraged to bring along their favourite movie to watch while they are being scanned.

Time commitment:

Training:

This study will take 6 weeks to complete. This includes 6 weeks of cognitive training which you
will do at home (30-40 minutes each session, four times a week for six weeks). Before your first
day of training and after your final day of training, you will undergo a session of cognitive and
motor testing (approximately 60 minutes each session), daily functional behaviour surveys
(approximately 20-30 minutes each session) and an MRI scanning session (50 minutes each
session). Both the cognitive testing and MRI scanning will be completed on the same day at
MCRI which will take approximately three to four hours to complete including breaks. If you
believe that completing the MRI scan and testing on the same day is too long, it can be
omganised to do this over two days. The researchers can come to the comfort of your own home
to complete the cognitive testing and you can come to MCRI to do the scans on a separate day.
If you feel like this may be more beneficial to you, please let the researchers know to organise
this.

To summarise, your overall time commitment is a three hour session of cognitive testing,
surveys, and MRI scanning prior to the beginning of your training. Following this, you will
undergo approximately 12-14 hours of training across the 6 weeks. Once fraining is completed,
you will finish off with a final three hour session of cognitive testing, surveys, and MRI scanning.
Overall, the study will take approximately 18-20 hours of your time over an 6 week period.

If you decide to take part in the research project, you will first be given a questionnaire via
telephone to determine if you are able to have an MRI. If the screening questionnaire shows
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that you may have an MRI safely, then you will be able to start the research project. If the
screening questionnaire shows that you cannot be in the research project, the research
coordinator will discuss other options with you.

For participating in this research, you will be reimbursed $50 per scanftesting session ($100in
total for the pre- and post-training scan and testing sessions) to cover your travel costs and
time, and $150 for the 6 weeks of training. In total, you will be reimbursed $250.

Baseline only: If you feel that completing the training intervention would not be feasible, there is
an option to complete a single baseline assessment only. The baseline assessment requires
you to complete measures of cognitive functioning, motor control, daily life functional
behaviours, and undergo a brain MRI scan. The details are the same as listed above. This
testing session will be conducted at Murdoch Children’s Research Institute (MCRI) in Parkville,
Melboume. You will be reimbursed $50 for your travel costs and time.

4 What do | have to do?

To participate in this study, you are still able to go about your daily routines and take your usual
medications. However, if you are taking part in any cognitive training interventions (e.g., the
Lumosity application), these need to be stopped during the 6 weeks of your participation.

5 Other relevant information about the research project

Approximately 45 other people will be taking part in this research project, and they all, like you,
have been living with TBI for at least six months. Results of all measures will be compared
between the different rehabilitation programs to provide an assessment of different rehabilitation
types that may be beneficial for patients with TBl. Comparisons will also be made between the
groups who received training and the group that didn't to evaluate the benefits of training
following TBL

6 Do | have to take part in this research project?

Participation in any research project is voluntary. If you do not wish to take part, you do not have
to. If you decide to take part and later change your mind, you are free to withdraw from the
project at any stage.

If you do decide to take part, you will be given this Participant Information and Consent Form to
sign and you will be given a copy to keep.

Your decision whether to take part or not to take part, or to take part and then withdraw, will not
affect your routine care, your relationship with professional staff or your relationship with St
Vincent's Hospital and Australian Catholic University.

7 What are the alternatives to participation?

You do not have to take part in this research project to receive treatment at St Vincent's
Hospital. Other options are available; these include physiotherapy. Your study doctor will
discuss these options with you before you decide whether or not to take part in this research
project. You can also discuss the options with your local doctor.

) What are the possible benefits of taking part?

We cannot guarantee or promise that you will receive any benefits from this research; however,
if you choose to take part in the training, possible benefits may include improved cognitive
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function and upper limb motor deficits that will lead to improved daily life functioning. Though
there may be no clear benefit to you from your participation in this research, results of the
research may be used to improve rehabilitation services to people with TBI.

9 What are the possible risks and disadvantages of taking part?

You may feel that some of the questions in the questionnaires we ask are stressful or upsetting.
If you do not wish to answer a question, you may skip it and go to the next question, or you may
stop immediately. If you become upset or distressed as a result of your participation in the
research project, the research team will be able to arange for counselling or other appropriate
support. Any counselling or support will be provided by qualified staff who are not members of
the research team. This counselling will be provided free of charge. There are no associated
risks involved with the tablet-based rehabilitation training programs.

MRI stands for magnetic resonance imaging. An MRI scanner is a machine that uses
electromagnetic radiation (radio waves) in a strong magnetic field to take clear pictures of the
inside ofthe body. Electromagnetic radiation is not the same as ionising radiation used, for
example, in X-rays. The pictures taken by the machine are called MRI scans.

We will ask you to lie on a table inside the MRI scanner. The scanner will record information
about your brain. It is very important that you keep very still during the scanning. When you lie
on the table, we will provide you wish cushions to make sure you are in a comfortable position
so that you can keep still. The scanner is very noisy and we can give you some earplugs to
reduce the noise. Some people may experience symptoms of claustrophobia from lying in a
confined space. If you do experience discomfort at any time during the scan, you will be able to
alert staff by pressing on a call button provided to you.

There are no proven long-term risks related to MRI scans as used in this research project. MRI
is considered to be safe when performed at a centre with appropriate procedures. However, the
magnetic attraction for some metal objects can pose a safety risk, so it is important that metal
objects (e.g., phone, earrings, keys) are not taken into the scanner room.

We will thoroughly examine you to make sure we are safe to proceed with the study. You must
tell us if you have metal implanted in your body, such as a pacemaker or metal pins.

The scans we are taking are for research purposes. They are not intended to be used like scans
taken for a full dinical examination. The scans will not be used to help diagnose, treat or
manage TBI. A neuroradiologist will look at your MRI scans for features relevant to the research
project

10 What if new information arises during this research project?

Sometimes during the course of a research project, new information becomes available about
the treatment that is being studied. If this happens, your study doctor will tell you about it and
discuss with you whether you want to continue in the research project. If you decide to
withdraw, your study doctor will make arrangements for your regular health care to continue. If
you decide to continue in the research project you will be asked to sign an updated consent
form.

Also, on receiving new information, your study doctor might consider it to be in your best
interests to withdraw you from the research project. If this happens, hef she will explain the
reasons and arrange for your regular health care to continue.

11 Can | have other treatments during this research project?

Whilst you are participating in this research prgect, you may not be able to take part in other

online cognitive training rehabilitation programs. You should also tell your study doctor about
any changes to training programs during your participation in the research project
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12 What if | withdraw from this research project?

If you do consent to participate, you may withdraw at any time. If you decide to withdraw from
the project, please notify a member of the research team before you withdraw_. A member of the
research team will inform you ifthere are any specia requirements linked to withdrawing. If you
do withdraw, you will be asked to complete and sign a "Withdrawal of Consent’ form; this will be
provided to you by the research team.

If you decide to leave the research project, the researchers will not collect additional personal
information from you, although personal information already collected will be retained to ensure
that the results of the research project can be measured properly and to comply with law. You
should be aware that data collected up to the time you withdraw will form part of the research
project results. If you do not want your data to be included, you must tell the researchers when
you withdraw from the research project

13 Could this research project be stopped unexpectedly?

This research project may be stopped unexpectedly for a variety of reasons. These may include
reasons such as:

« The rehabilitation program is being shown not to be effective.

« The rehabilitation program is being shown to work and not need further testing.

« Loss of funding.
In these events, all participants will be notified immediately and made aware of how their data
will be stored before being destroyed after the 7-year duration required by HREC institutions.

14 What happens when the research project ends?

All individua results will remain confidential, and anything that you say or do during the session
will not be communicated to anyone in a way that could identify you. Personal identifying data
such as names will not be connected to the obtained results. De-identified results of this study
will be published in the form of a PhD thesis and may be published in an academic journal
and/or conference proceedings which you can access and read if you would like to do so by
contacting a member of the research team. Again, individual participants will not be able to be
identified as being part of the study.

There is an opportunity for you to participate in a study about neuroinflammation after TBI. The
aim of this study is to determine the role that overactivity of the brain's immune system may play
in the brain degeneration that occurs in TBI. This study will involve one session of ~3 hours. In
this session, you will do some surveys and cognitive testing, and have blood and saliva samples
taken. Then, you will have fluid tracer injected into your arm prior to 1.5 hours in the PET-MRI
scanner. If you would like to be contacted in the future about participation in this study, please
tick the box at the bottom of the consent form that says "I give permission for this lab to contact
me in the future about participation in other ethically approved research studies". If you tick this
box, we may not contact you for a few months. Ticking this box does not mean that you have to
participate in any way, only that we will call you and ask if you want to participate.

Part 2 How is the research project being conducted?

15 What will happen to information about me?
By signing the consent form you consent to the research team collecting and using personal

information about you for the research project Any information obtained in connection with this
research project that can identify you will remain confidential. Your information will only be used
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for the purpose of this research project and it will only be disclosed with your permission, except
as required by law.

All individual results will remain confidential, and anything that you say or do during the session
will not be communicated to anyone in a way that could identify you. Personal identifying data
such as names will not be connected to the obtained results. it is anticipated that the results of
this research project will be published and/or presented in a variety of forums (e_g., academic
joumnals, conference proceedings). In any publication and/or presentation, information will be
provided in such a way that you cannot be identified, except with your express permission.
Again, individua participants will not be able to be identified as being part of the study. All
records will be securely stored in the locked office of the principle investigator at Australian
Catholic University. These records will be kept for 7 years following publication in keeping with
the hospital research and ethics procedures.

The personal information that the research team collect and use is name, age, gender, medical
history and psychological history. Information about you may be obtained from your medical
records held at this and other health organisations for the purpose of this research. By signing
the consent form you agree to the research team accessing health records if they are relevant
to your participation in this research project.

In accordance with relevant Australian and/or Victorian privacy and other relevant laws, you
have the right to request access to the information about you that is collected and stored by the
research team. Please inform the research team member named at the end of this document if
you would like to access your information.

16 Complaints and com pensation

Although there are no risks involved with participation in this research project, if you suffer any
injuries or complications as a result of this research project, you should contact the study team
as soon as possible and you will be assisted with arranging appropriate medical treatment. If
you suffer an injury as a result of participating in this research project, hospital care and
treatment will be provided by St Vincent’s Hospital. Altematively, if you are eligible for Medicare,
you can receive any medical treatment required to treat the injury or complication, free of
charge, as a public patient in any Australian public hospital.

17 Who is organising and funding the research?

This prgject is being conducted by Associate Professor Karen Caeyenberghs (Australian
Catholic University) and Professor Mark Cook (St Vincent's Hospital), funded by internal
ACURF grants. You will not benefit financially from your involvement in this research project No
member of the research team will receive personal financial benefit from your involvement in
this project (other than ordinary wages).

18 Who has reviewed the research project?

All research in Australia involving humans is reviewed by an independent group of people called
a Human Research Ethics Committee (HREC).

The ethical aspects of this research project have been approved by the HREC of St Vincent's
hospital.

This project will be carried out according to the Nafional Staternent on Ethical Conduct in
Human Research (2007). This statement has been developed to protect the interests of people
who agree to participate in human research studies.

19 Further information and who to contact
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The person you may need to contact will depend on the nature of your query. If you want any
further information conceming this project or if you have any problems which may be related to
your involvement in the project, please contact a member of the research team.

The principle investigator responsible for this project is:
Associate Professor Karen Caeyenberghs (Karen.Caeyenberghs@acu_edu.au)
03 9230 8067

You may also contact the research assistant:
Ms Hannah Richards (hannahrichards09@gmail.com)

If you have any complaints about any aspect of the project or the way in which it is being
conducted you may contact the Patient Liaison Officer at St Vincent’s Hospital (Melbourme) on
Telephone: (03) 9288 3108. You will need to tell the Patient Liaison Officer the name of the
person who is noted above as the principal investigator.

If you have any questions about your rights as a research participant, then you may contact the
Executive Officer Research at St Vincent’s Hospital (Melboume) on Telephone: (03) 9288 3930
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Appendix M. Phone recruitment script for TBI participants (RCH)

'0‘ ST VINCENT'S

0‘7& HOSPITAL

Phone Recruitment Script
for HREC250.17 titled:

“The effects of tablet-based home interventions on brain
structure, cognitive functioning, motor performance,
and daily life participation in patients with Traumatic
Brain Injury”

Version 2

18M11/201%
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Hello, | am calling on behalf of A/Prof Karen Caeyenberghs from the Australian Catholic
University who does research in conjunction with St Vincent’s Hospital here in Melbourne. We
have received your name from St Vincent’s Hospital emergency department outpatient lists
because you might be eligible to take part in our study because of your head injury in
[MONTH/YEAR]. We are calling to see if you might be interested in our project looking at
rehabilitation after a head injury. The study involves participating in several tests about your
everyday functioning as well as undergoing home-based training . We would like to tell you
more about the study and ask a few questions to see if you are interested and eligible for
participation. Is that okay?

[Iif NO, thank them for their time, and ask them if they would like to be notified about future
studies. If NO, shred their contact information.]

[F YES, ..] We are currently recruiting participants for a research project that looks at the effect
of home-based rehabilitation for symptoms experienced by patients with head injuries. We are
interested in the effects of training in people who are more than 6 months past their time of
injury.

This study looks at whether home-based tablet games, like on an iPad, can help improve the
symptoms of head injuries like forgetting to do tasks, or problems concentrating for long periods
of time, motor problems (e_g., problems with hand grip, or writing), and daily life (e.g.,
socialising).

We cannat guarantee that you will receive any benefits from this training; however, possible
benefits may include improved concentration and thinking, and improved hand movement

abilities that will lead to improved participation in every day tasks. The results of the research
may also be used to improve rehabilitation services to people with head injuries.

There are no costs associated with participating in this research project. You will be reimbursed
for your time and travel costs associated with this research project up to $250.

Are you interested in participating? Would you like to know more about what is involved in the
study?

[Iif NO, thank them for their time, and shred their contact information_]

[f YES,...] We are testing training-based apps, called BrainGames and CogMo that our
research team have developed. This training will take place in your home at your convenience
and will take about 30-40 minutes per session. We aim to complete the training 4 times per
week, for 6 weeks.

We will provide tablet, like an iPad, with the training program installed, allowing you to complete
the training in the comfort of your own home.

In addition, we will test your concentration and attention skills, how well you use your hands and

participation in every day tasks before and after the training. This wil be done at the Murdoch
Children’s Research Institute (MCRI) at the Royal Children’s Hospital in Parkville, Melboume.
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You will also have 2 MRI scans of your brain. One at the start of the study and the other at the

end. This is to see if the home-based rehabilitation has made any changes to the structure of
your brain.

To find out the effects of tablet-based training programs, we need to compare the effects of
training to a group of participants who do no training. Therefore, some participants will be in a
control group. They will do the testing and MRI scan, and then continue their daily routine as
normal for 6 weeks. After this, they will again do the testing and MRI scan, and then will be
offered the training at the end of the study instead.

To try to make sure the groups are the same, each participant is put into a group by chance
(random). This will be completed after consent. Is this something you may be interested in?

[If NO, thank them for their ime and shred their contact information_]
[If YES, you need to screen the participant to ensure that they are eligible for the study.]

Before we send you information about the study, we need to ask you some questions to see if
you are eligible to participate:

Are you fluent in English?

What is your age and date of birth?

What is your current home address and email address?

Are you or is there a chance that you may be pregnant?

Do you have a history of psychiatric illness (not induding moderate levels of depression
and anxiety)?

Are you currently taking any prescribed medications?

Have you had a diagnosed TBI before the cumrent one?

Do you have a history of seizures or epilepsy?

[If YES to the above__.] Did you have epilepsy before your TBI? What type of epilepsy is
it? When was your last seizure? What was it triggered by?

10. Are you able to get around by yourself or do you require a carer?

11. Are you currently taking part in any treatments, therapies, or training for mental
disorders, physical or cognitive problems?

PEND RN

[Iif THEY ANSWER YES TO ANY OF THE EXCLUSION QUESTIONS GO DIRECTLY TO THIS
SECTION] Because we are looking for very specific conditions, unfortunately, you are not
eligible to participate in this research study at this time. I'd like to thank you for your time. Have
a great day. Goodbye.

[if THEY ANSWER NO TO ALL QUESTIONS] Okay great, it seems that you may be eligible to
participate in this research study. Before we can send you the information letter for the study,
we need to make sure you are MRI safe. | have some more questions regarding MRI safety.

1. Have you had an MRI before?

2. [ YES...] when was your last MRI?

3. Do you have braces/orthodontics/dentures (brace on the back teeth ok, most
fillings/caps/dentures are ok - full braces are not ok)?
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Do you have any piercings?

Do you have any tattoos?

Have you ever had any eye injury caused by metal?

Is there anything in your body: wires, screws, implants, prosthetics?

Have you ever had a brain operation?

. Do you have any clips or wires in your brain?

10. Do you have a deep brain stimulator?

11. Do you have a brain shunt tube?

12. [fYES.. ] Is it programmable?

13. Have you had any ear operations/icochlear or stapes implants?

14. Do you have a hearing aid?

15. Do you have a cardiac pacemaker?

16. Have you ever had any heart operations, pacemaker, stents, defib, or wires on the
heart?

17. Do you have any implanted devices in your body (metal or otherwise)?

18. Do you have any shrapnel, gunshot wounds?

19. Do you have any Sumgical dipsfwire sutures/screws/mesh?

20. Do you have any joint replacement or prosthesis?

21. Have you had an operation or procedure within the last 8 weeks (take note of what the
surgeries were and ask if there is any chance that there are staples or wires still in the
body)?

22_[If YES...] What was the operation? And when was the operation?

OEND A

[if PARTICIPANT IS NOT MRI SAFE] We can only recruit participants who can undergo an MRI
scan, unfortunately, you are not eligible to participate in this research study at this time due to
not being able to be scanned. I'd like to thank you for your time. Have a great day. Goodbye.
[Shred their contact information.].

[Iif PARTICIPANT IS MRI SAFE] We will send you the participant information letter, via email or
to your home address. Please have a read of this and we will confirm if you are interested, if so,
we can book in a time for you to come in. Final consent for participation will happen when you
come in. Can you please give us your email address or home address? [record address].

[if PARTICIPANT IS NOT INTERESTED TO PARTICIPATE, thank them for their ime and shred
their contact information ]

[if PARTICIPANT IS INTERESTED TO PARTICIPATE. Are you available to come in at this [X

date] at [Y time]?
[Continue to arrange times]
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Appendix N. Screening form for TBI participants (Royal Children’s Hospital)

TBI Screening - do via the phone Date:
Exclusion criteria screening
Question Yes | No Details Info
Name:
Name of Neurologist Need this info for the MCRI
" screening form - scans will be
{Wendyl D'Souza or Mark centto their neurclogist
Cook)
Sex/Gender: Al gendersfsex ok.
DOB: Age criteria: 18— 65. Anyone

born before 1953 is ineligible.

Date of Injury:

Right handed:

Left-handed participants are not
necessarily exdluded at this
moment.

Fluent in English:

Second language is ok, but they
need to be fluent in English for
testing/ftraining to make sense.

Are you
ambulant/findependently
mobile:

Due to difficulties getting in and
out of the MRI. Ask about major
physical disabilities.

Would you like us to also be
in contact with a
carer/parent/guardian/ffriend
Jrelative (and grab their
number}

To make sure we aren’t excluding
anyone who needs to know
about their involvement - the RP
effect.

Have you ever had a
diagnosed TBI before this
current one:

Check with Karen, but generally
exdude those that have had a TBI
before the current one.

Are you currently taking any
prescribed medication:

Check the medications with
Karen. Anti-depressants/anti-
anxiety meds are exdusion
criteria. In general, no ‘brain

Itering drugs’.

Are you currently
participating in any
treatments, therapies, or
training for mental disorders,
physical or cognitive
symptoms:

Cannot be doing cognitive
training. Otherwise just take a
note of their therapy programs.

What suburb do you live in:

If more than 2 hours away;,
maybe not possible to deliver the
tablet

Are you taking medications
for a psychiatric illness:

Participants with moderate levels
of depressionfamdety (not taking
meds) are ok to indude.

Do you have a history of
epilepsy or seizures:
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TBi Screening - do vig the phone Date:

If yes: Take as much detail as possible,

. . tell them we will get back to
Did you have epilepsy before them after discussing with our

your TBI? lead researchers.
What type of epilepsy is it (e.g.,
focal or generalised)? Subtype?
When was your last seizure?

OK to participate: Move on to MRI screening

MR{ screening — ANY CONCERNS check with radiographer before including the

participant

Haveyouhadan MRI before? ... NO/YES

If Yes, whenwas your last MRI?. ... NO/YES
Braces/Orthodontics/Dentures (brace on the back tecth ok, most fillings/caps/dentures are ok
- full braces are not ok): Y / N Details:
Piercings: Y / N Details:
Tattoos: Y / N Details:
Have you ever had any eye imjury causedbymetal?........... ... ... NO/YES
Are you pregnant, suspect you may be pregnant or breastfeeding?.........._..._____ NO/YES

Any Brain operation . ...
Brain Aneurysm Clips..........

Deep Brain Stimulator ..
Brain Shunt Tube........ooooooo

Any heart operation, pacemaker, stents, defib, wires on the heart .________ NO/YES
Implanted devices (metal or otherwise)
Shrapnel, gunshot wounds. ...

Any Surgical clips/wire sutures/screws/mesh/prosthesis_... ... NO/YES
Joint Replacement or Prosthesis.............. ... NO /YES

Have Y o
Had an operation or procedure within the last 8 weeks (iake note of what the surgeries were

Had a history of seizures or epilepsy.. ... NO/YES
When was your lastseizare. ...
What was it tnggered by .
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TBi Screening - do vig the phone

OK to participate: Y / N
The next step will be to organise a scan time and date for both scan dates.

Date and Time of scan:

MRI and testing room bhooked: Y / N MRI time:
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Appendix O. Participant information form for Healthy Controls (Royal
Children’s Hospital)

ST VINCENT'S
IPRIVATE HOSPITAL

MELBOURN

Participant Information Sheet/Consent Form
Nomnterventional Study - Adult providing own consent

The effects of tablet-based home interventions

Title on brain structure, cognitive functioning, motor
performance, and daily life participation in
healthy adults.

Home-based interventions for brain-injured

Short Title patients

AJ/Prof Karen Caeyenberghs Prof Mark Cook

Coordinating Principal Investigator/ and A/Prof Wendyl D'Souza

Principal Investigator

Assodate Investigator(s) Mr Adam Clemente, Ms Phoebe Imms, Ms
Evelyn Deutscher, Ms Annalee Cobden, Mr
Thomas Bowen, Ms Eva Mezei, Prof Peter H.
Wilson, Dr Jonathan Duckworth, and Mr.
Rakesh Patibanda.

Miss Hannah Richards, Ms Alexandra

Research Assistants Ammstrong
Location St. Vincent's Hospital, Melboume
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Part 1 What does my participation involve?

1 Introduction

You are invited to take part in this research project, the effects of fablet-based home
inferventions on brain structure, cognitive functioning, mofor performance, and daily fife
parficipation. This is because we are interested in the structure and function of the human brain.
The research project is aiming to investigate whether a tablet-based home intervention can
improve the brain structure, cognitive functioning, motor performance, and daily life participation
of healthy adults.

This Participant Information Sheet/Consent Form tells you about the research project. It
explains the tests and research involved. Knowing what is involved will help you decide if you
want to take part in the research.

Please read this information carefully. Ask questions about anything that you don’t understand
or want to know more about. Before deciding whether or not to take part, you might want to talk
about it with a relative, friend or local doctor.

Participation in this research is voluntary. If you don't wish to take part, you don’t have to. You
will receive the best possible care whether or not you take part.

If you decide you want to take part in the research project, you will be asked to sign the consent
section. By signing it you are telling us that you:

= Understand what you have read

= Consent to take part in the research project

« Consent to the tests and research that are described

= Consent to the use of your personal and health information as described.

You will be given a copy of this Participant Information and Consent Form to keep.

2 What is the purpose of this research?

This research project investigates cognitive functioning. Many daily life activities are involved in
acquiring information, including listening, watching, reading, searching out information, or just
paying attention to things around you. In all cases, you are using your cognitive functions to
gather information. Cognitive functions include attention, memory, language, perception,
decision making, and problem solving. This study aims to examine the relationship between
cognitive function and brain structure.

This research has been initiated by researcher, Associate Professor Karen Caeyenberghs, from
the School of Psychology at Australian Catholic University (ACU). The research has been
funded by internal ACU research funding. The results will be used by the associate researchers
Mr Adam Clemente and Ms Phoebe Imms to obtain a PhD degree. Further, your data obtained
for this study may also be shared with other researchers for the purpose of future research
through online databases that are available to the public. This data will not contain identifiable
information such as your name and address, which will remain confidential.

3 What does participation in this research involve?

Baseline only. You will be participating in a research project to find out the links between
cognition, motor ability, and daily-ife functioning and the structure of your brain. As a participant
in this study, we will administer measures of cognitive functioning, motor control, daily life
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functional behaviours, and a brain MRI scan. This testing session will be conducted at Murdoch
Children’s Research Institute (MCRI) in Parkville, Melboume. You will be reimbursed $50 for
your travel costs and time.

Training: If you choose to participate further, you can also complete 6 weeks of cognitivefmotor
training on a tablet that you can take home, to examine the effects of a tablet-based training
program on structural brain changes. If you complete the training part of this study, you will take
part in a program using a novel tablet-based application called CogMo. You will still do the
measures and brain scan oullined above at the first session, but you will also complete these
same measures at the end of the 6 weeks of training. To summarise, you will undergo baseline
testing (a MRI brain scan and a testing session). Following this, you will do six weeks of CogMo
training in your own home. Once completed, you will undergo a final testing session (brain scan
and various tests). For this, you will be reimbursed $50 per testing session and $150 for the six
weeks oftraining. In total, you will be reimbursed $250.

Intervention:
Training Interventions — will not be completed by participants who choose to do baseline only.

If you choose to do so, training interventions will involve the use of an electronic touch screen
tablet that can be used at home. Training will take approximately 30-40 minutes and will need to
be done 4 times a week for 6 weeks. We will provide you with a Microsoft Surface Pro which will
have the brain training program installed, allowing you to complete the training in the comfort of
your own home situation. During training, researchers will contact you via phone call or email to
ask how your training is going.

“CogMo” is a multimodal tool comprising five games to train different aspects of cognition and
motor control. For example, in one game you will be asked to place objects as accurate and
timely as possible, depending on the colour or shape of the targets. In another game, you will
see shapes with laser beams coming from them, and you will need to move the shapes so that
the beams fit through tunnels and shine out the other end. Difficulty levels of the games will also
increase with better performance over the training period.

Testing:
nitive testin

In the first testing session (and at the post-training session if you so choose), you will complete
a series of tests of cognitive functioning. Testing will take approximately 1 hour and will consist
mainly of tests of memory, processing speed and other cognitive functions. For example, during
one task participants are presented with a set of circles that are labelled with numbers and/ or
letters. In different trials of the task, you will connect them by clicking the mouse based on a
sequence of numbers (1-2-34), letters (A-B-C-D) or an altemating sequence (1-A-2-B). You will
have 30 seconds to respond to as many stimuli in the sequence as possible. During another
task nine blue squares will appear on the screen. On each trial, the squares will light up one at a
time. Once the sequence is finished, you will then respond to each square and reproduce the
sequence in the same order they were presented. This testing is not tedious and most
participants find it enjoyable as the tests are in the format of computer games. You will be
provided with breaks in belween each of the tests (if necessary). You will also complete a brief
task-based 1Q test prior to the commencement of your training.

Motor performance tests

In the first testing session (and at the post-training session if you so choose), you will undertake
three measures of bimanual (i.e., tasks involving the use of both hands) and unimanual (i.e.,
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tasks involving the use of a single hand) dexterity. For example, you will be asked to twist a
screw into a nut as fast as you can. Also, you will be asked to move as many cubes as possible
over a vertical wooden barrier in 60 seconds, one at a time, using one hand. Ancther test
involves moving pegs from hole to hole. These measures are not intensive or rigorous forms of
physical activity and will provide beneficial information of any potential improvements in upper
limb deficits as a result of the training interventions.

Measures of daily life functioning

A self-report questionnaire measuring subjective experience of attention/executive functioning in
everyday life situations will also be administered in the first session. For example, one question
may be ‘do you often forget yesterday's events? Two other questionnaires measuring the
extent to which your lifestyle (e g., time spent socialising) may have changed as a result of brain
injury and also to investigate any improvements as a result of the training intervention.

MRI scan

Before or after the training, we will administer a non-invasive Magnetic Resonance Imaging
(MRI) scan to examine the effects of the training on the patient’s brain. MRl is a scan used for a
medical imaging procedure. It uses a magnetic field and radio waves to take pictures inside the
body. It is especially helpful to collect pictures of soft tissue, induding the brain, which does not
show up on x-ray examinations. Scanning will take approximately 50 minutes. Participants will
be encouraged to bring along their favourite movie to watch while they are being scanned.

Tablet-based application experience

During and following your participation in one of the tablet-based applications, you will be given
some questionnaires on your experience with the application to measure your motivations to
take part in the training and your experience with the games setting. For example, one question
may be “l enjoyed this activity very much”.

Time commitment:

If you choose to do baseline only, your overall time commitment is a three hour session of
cognitive testing, surveys, and MRI scanning.

If you choose to do the training component of this study, it will take 6-8 weeks to complete. This
includes 6 weeks of cognitive training which you will do at home (30-40 minutes each session,
four times a week for six weeks). Before your first day of training and after your final day of
training, you will undergo a session of cognitive and motor testing {(approximately 60 minutes
each session), daily functional behaviour surveys (approximately 20-30 minutes each session)
and an MRI scanning session (50 minutes: only before training). Both the cognitive testing and
MRI scanning will be completed on the same day at MCRI which will take approximately three to
four hours to complete incuding breaks. If you believe that completing the MRI scan and testing
on the same day is too long, it can be organised to do this over two days. The researchers can
come to the comfort of your own home to complete the cognitive testing and you can come to
MCRI to do the scans on a separate day. If you feel like this may be more beneficia to you,
please let the researchers know to organise this.

To summarise, your overall ime commitment is a three hour session of cognitive testing,
surveys, and MRI scanning prior to the beginning of your training. Following this, if you choose
to do the training, you will undergo approximately 20 hours of training across the 6 weeks. Once
training is completed, you will finish off with a final three hour session of cognitive testing and
surveys. Overall, the study would then take approximately 26 hours of your time over an 8 week
period.
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If you decide to take part in either part of the research project, you will first be given a
questionnaire via telephone to determine if you are able to have an MRI. If the screening
questionnaire shows that you may have an MRI safely, then you will be able to start the
research project. If the screening questionnaire shows that you cannot be in the research
project, the research coordinator will discuss other options with you.

There are no costs associated with participating in this research project, nor will you be paid.
4 What do | have to do?

To participate in the training part of this study, you are still able to go about your daily routines
and take your usual medications. However, if you are taking part in any cognitive training
interventions (e.g., the Lumosity application), these need to be stopped during the 6 weeks of
your participation.

5 Do | have to take part in this research project?

Participation in any research project is voluntary. If you do not wish to take part, you do not have
to. If you decide to take part and later change your mind, you are free to withdraw from the
project at any stage.

Participation in the training part of this program is entirely voluntary, and you are under no
obligation to complete the training portion of the study if you choose to take part in the baseline
portion of the study.

If you do decide to take part, you will be given this Participant Information and Consent Form to
sign and you will be given a copy to keep.

Y our decision whether to take part or not to take part, or to take part and then withdraw, will not
affect your relationship with professional staff or your relationship with St Vincent's Hospital and
Australian Catholic University.

6 What are the possible benefits of taking part?

We cannot guarantee or promise that you will receive any benefits from this research; however,
possible benefits may include improved cognitive function and upper limb motor deficits that will
lead to improved daily life functioning. Though there may be no clear benefit to you from your
participation in this research, results of the research may be used to improve rehabilitation
services to other people.

7 What are the possible risks and disadvantages of taking part?

You may feel that some of the questions in the questionnaires we ask are stressful or upsetting.
If you do not wish to answer a question, you may skip it and go to the next question, or you may
stop immediately. If you become upset or distressed as a result of your participation in the
research project, the research team will be able to arrange for counselling or other appropriate
support. Any counselling or support will be provided by qualified staff who are not members of
the research team. This counselling will be provided free of charge. There are no associated
risks involved with the tablet-based rehabilitation training programs.
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MRI stands for magnetic resonance imaging. An MRI scanner is a machine that uses
electromagnetic radiation (radio waves) in a strong magnetic field to take dlear pictures of the
inside of the body. Electromagnetic radiation is not the same as ionising radiation used, for
example, in X-rays. The pictures taken by the machine are called MRI scans.

We will ask you to lie on a table inside the MRI scanner. The scanner will record information
about your brain. It is very important that you keep very still during the scanning. When you lie
on the table, we will provide you wish cushions to make sure you are in a comfortable position
so that you can keep still. The scanner is very noisy and we can give you some earplugs to
reduce the noise. Some people may experience symptoms of claustrophobia from lying in a
confined space. If you do experience discomfort at any time during the scan, you will be able to
alert staff by pressing on a call button provided to you.

There are no proven long-term risks related to MRI scans as used in this research project MRI
is considered to be safe when performed at a centre with appropriate procedures. However, the
magnetic attraction for some metal objects can pose a safety risk, so it is important that metal
objects (e.g., phone, earrings, keys) are not taken into the scanner room.

We will thoroughly examine you to make sure we are safe to proceed with the study. You must
tell us if you have metal implanted in your body, such as a pacemaker or metal pins.

The scans we are taking are for research purposes. They are not intended to be used like scans
taken for a full clinical examination. A neuroradiologist will look at your MRI scans for features
relevant to the research project.

) What if new information arises during this research project?

Sometimes during the course of a research project, new information becomes available about
the treatment that is being studied. If this happens, your study doctor will tell you about it and
discuss with you whether you want to continue in the research project. If you decide to
withdraw, your study doctor will make arrangements for your regular health care to continue. If
you decide to continue in the research project you will be asked to sign an updated consent
form.

Also, on receiving new information, your study doctor might consider it to be in your best
interests to withdraw you from the research project. If this happens, hef she will explain the
reasons and arrange for your regular health care to continue.

9 Can | have other treatments during this research project?

Whilst you are participating in this research project, you may not be able to take part in other
online cognitive training rehabilitation programs. You should also tell your study doctor about
any changes to training programs during your participation in the research project

10 What if | withdraw from this research project?

If you do consent to participate, you may withdraw at any time. If you decide to withdraw from
the project, please notify a member of the research team before you withdraw. A member of the
research team will inform you if there are any special requirements linked to withdrawing. If you
do withdraw, you will be asked to complete and sign a ‘Withdrawal of Consent’ form; this will be
provided to you by the research team.

If you decide to leave the research project, the researchers will not collect additional personal
information from you, although personal information already collected will be retained to ensure
that the results of the research project can be measured properly and to comply with law. You
should be aware that data collected up to the time you withdraw will form part of the research
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project results. If you do not want your data to be induded, you must tell the researchers when
you withdraw from the research project

11 Could this research project be stopped unexpectedly?

This research project may be stopped unexpectedly for a variety of reasons. These may include
reasons such as:

. The training program is being shown not to be effective.

. The training program is being shown to work and not need further testing.

. Loss of funding.

In these events, all participants will be notified immediately and made aware of how their data
will be stored before being destroyed after the 7-year duration required by HREC institutions.

12 What happens when the research project ends?

All individual results will remain confidential, and anything that you say or do during the session
will not be communicated to anyone in a way that could identify you. Personal identifying data
such as names will not be connected to the obtained results. De-identified results of this study
will be published in the form of a PhD thesis and may be published in an academic joumnal
and/or conference proceedings which you can access and read if you would like to do so by
contacting a member of the research team. Again, individual participants will not be able to be
identified as being part of the study.

Part 2 How is the research project being conducted?
13 What will happen to information about me?

By signing the consent form you consent to the research team collecting and using personal
information about you for the research project. Any information obtained in connection with this
research project that can identify you will remain confidential. Your information will only be used
for the purpose of this research project and it will only be disclosed with your permission, except
as required by law.

All individual results will remain confidential, and anything that you say or do during the session
will not be communicated to anyone in a way that could identify you. Personal identifying data
such as names will not be connected to the obtained results. It is anticipated that the results of
this research project will be published and/or presented in a variety of forums (e g., academic
journals, conference proceedings). In any publication and/or presentation, information will be
provided in such a way that you cannot be identified, except with your express permission.
Again, individual participants will not be able to be identified as being part of the study. All
records will be securely stored in the locked office of the principle investigator at Australian
Catholic University. These records will be kept for 7 years following publication in keeping with
the hospital research and ethics procedures.

The personal information that the research team collect and use is name, age, gender, medical
history and psychological history. Information about you may be obtained from your medical
records held at this and other health organisations for the purpose of this research. By signing
the consent form you agree to the research team accessing health records if they are relevant
to your participation in this research project

In accordance with relevant Australian andfor Victorian privacy and other relevant laws, you
have the right to request access to the information about you that is collected and stored by the
research team. Please inform the research team member named at the end of this document if
you would like to access your information.
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14 Complaints and compensation

Although there are no risks involved with participation in this research project, if you suffer any
injuries or complications as a result of this research project, you should contact the study team
as soon as possible and you will be assisted with arranging appropriate medical treatment. If
you suffer an injury as a result of participating in this research project, hospital care and
treatment will be provided by St Vincent's Hospital. Akernatively, if you are eligible for Medicare,
you can receive any medical treatment required to treat the injury or complication, free of
charge, as a public patient in any Australian public hospital.

15 Who is organising and funding the research?

This project is being conducted by Associate Professor Karen Caeyenberghs (Australian
Catholic University) and Professor Mark Cook (St Vincent's Hospital), funded by intemal
ACURF grants. You will not benefit financially from your involvement in this research project. No
member of the research team will receive personal financial benefit from your involvement in
this project (other than ordinary wages).

16 Who has reviewed the research project?

All research in Australia involving humans is reviewed by an independent group of people called
a Human Research Ethics Committee (HREC).

The ethical aspects of this research project have been approved by the HREC of St Vincent's
hospital.

This project will be carried out according to the National Statement on Ethical Conduct in
Human Research (2007). This statement has been developed to protect the interests of people
who agree to participate in human research studies.

17 Further information and who to contact

The person you may need to contact will depend on the nature of your query. If you want any
further information conceming this project or if you have any problems which may be related to
your involvement in the project, please contact a member of the research team.

The principle investigator responsible for this project is:

Associate Professor Karen Caeyenberghs (Karen.Caeyenberghs@acu_edu.au)

03 9230 8067

You may also contact the research assistant:

Ms Hannah Richards (hannahrichards09@gmail.com)

If you have any questions about your rights as a research participant, then you may contact the
Executive Officer Research at St Vincent's Hospital (Melboumne) on Telephone: (03) 9288 3930
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Appendix P. Screening checklist for Healthy Controls (RCH)

HC Screening - do via the phone Date:
Exciusion criteria screening
- Ye .
Question s No Details Info

Name:

Sex/Gender: Al genders/sex ok.

DOB: Age criteria: 18— 65. Anyone
born befare 1953 isineligible.

Ever had a brain injury? Make sure participants are
eligible 1o be healthy controls

Right handed: Left-handed participants are not
necessarily excluded at this
moment.

Fluent in English: Second language isok, but they
need to be fluent in English for
testing/training to make sense.

Are you Due to difficulties getting in and

bula tl. d dentl out of the MRL Ask about major
ambulant/independently physical disabiities.

mobile:

Are you currently taking any Check the medications with

ibed dication: Karen. Anti-depressantsfanti-
prescri medication: anxiely meds are exclusion
criteria. In general, no ‘brain
Iering drugs’.
Are you currently participating Cannot be doing cognitive

in any treatments, therapies,
or training for mental
disorders, physical or cognitive
symptoms:

training. Otherwise just take a
note of their therapy programs.

What suburb do you live in:

If more than 2 hours away,
maybe not possible to deliver the
tablet

Are you taking medications for
a psychiatric illness:

Participants with moderate levels
of depressionfandety [not taking
meds) are ok to indude.

Do you have a history of
epilepsy or seizures:

If yes:

What type of epilepsy is it (e.g.,
focal or generalised)? Subtype?
When was your last seizure?

Take as much detal as possible,
tell them we will get backto
them after discussing with our
lead researchers —excduded as
HCsif they have had epilepsy

OK to participate:

Move on to MRI screening

MR screening — ANY CONCERNS check with radiographer before including the
participant

Version 2, updated 18/09/2018
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HC Screening - do via the phone Date:

Haveyouhad an MRI before? ... s NO /YES

If Yes, whenwas yourlast MRI?.. ... .. e NO/YES
Braces/Orthodontics/Dentures (brace on the back teeth ok, most fillings/caps/dentures are ok
- full braces are not ok): Y / N Details:
Piercings: Y / N Details:
Tattoos: Y / N Details:
Have you ever had any eye injury caused by metal?.._.. ... . NO /YES
Are you pregnant, suspect you may be pregnant or breastfeeding?................... NO/YES

Any Brain operation ... ... NO /YES
Brain Aneurysm CHps. ... NO/YES
Deep Brain Stmulator. ... NO/YES
Brain Shunt Tube..... ... NO/YES

IHfYES,isit programmable ... . NO/YES
Any Ear operations/cochlear or stapes implants...__.__.__._..._._.._.______ NO/YES
Hearing Aid ... s NO/YES
A Cardiac Pacemaker/stent/defibrillator/wire_.__.__.____._____ NO/YES
Any heart operation, pacemaker, stents, defib, wires on the heart. .. NO/YES
Implanted devices (metal or otherwise)............. oo NO/YES
Shrapnel, gunshot wounds. ... ... ool NO/YES
Any Surgical clips/wire sutures/screws/mesh/prosthesis...................... NO/YES
Joint Replacement or Prosthesis........ .o NO/YES

Have Y ou:

Had an operation or procedure within the last 8 weeks (take note of what the surgeries were
and ask ifthere is any chance that there are staples or wires still inthe body)................... NO/YES

Had a history of seizures or epilepsy
When was your last seizure...........oooooooeeeee e
What was it tiggered by...._ ...

OK to participate: Y / N
The next step will be to organise a scan time and date for both scan dates.

Date and Time of scan:

MRI and testing room bhooked: Y / N MRI time:
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Appendix Q. Consent form for TBI participants (RCH)

Consent Form - Aduit providing own consent

The effects of tablet-based home interventions
on brain structure, cognitive functioning, motor

Title performance, and daily life participation in
patients with Traumatic Brain Injury.

Home-based interventions for brain-injured

Short Title patients

Protocol Number HREC 25017

Principal Investigators A/Prof Karen Caeyenberghs
Prof Mark Cook
AfProf Wendyl D'Souza

Mr. Adam Clemente, Ms. Phoebe Imms, Ms
Evelyn Deutscher, Ms Annalee Cobden, Mr

Associate Investigator(s} Nicholas Parsons, Dr Hamed Akhlaghi,
Rakesh Patibanda, Dr Jonathan Duckworth,
and Prof Peter H. Wilson

Ms Hannah Richards, Ms Alexandra
Research Assistants Amstrong and Ms Honey Baseri

Location St Vincent's Hospital, Melboume
Declaration by Participant

| have read the Participant Information Sheet or someone has read it to me in a language that |
understand.

I understand the purposes, procedures and risks of the research described in the project

| give permission for my doctors, other health professionals, hospitals or laboratories outside
this hospital to release information to Australian Catholic University conceming my disease and
treatment for the purposes of this project. | understand that such information will remain
confidential.

| have had an opportunity to ask questions and | am satisfied with the answers | have received.

| freely agree to participate in this research project as described and understand that | am free
to withdraw at any time during the study without affecting my future health care.

I understand that | will be given a signed copy of this document to keep.

1 choose to take part in the (tick one)

Baseline only study (time commitment of 3 hours)
Training study (time commitment of 18-20 hours over a 6 week period)
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Name of Participant (piease print

Signature Date

[ I give permission for this lab to contact me in the future about participation in other ethically
approved research studies

Name of Witness* to
Participant’s Signature (i print)

Signature Date

* Witness is not to be the invesligator, a member of the siudy ieam or their delegate. In the event that an
interpreter is used, the interpreter may not act as a witness to the consent process. Wiiness must be 18 years or
dider.

Declaration by Study Doctor/Senior Researcher!

| have given a verbal explanation of the research prgect, its procedures and risks and | believe
that the participant has understood that explanation.

Name of Study Doctor/
Senior Researcher’ please prinf)

Signature Date

T A senior member of the research team must provide the explanation of, and information conceming, the research

project.
Note: All parties signing the consent section must date their own signature.
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Appendix R. Consent form for Healthy Controls (RCH)

ST VINCENT'S
PRIVATE HOSPITAL

Consent Form - Aqutt providing own consent

Title

Short Title
Protocol Number

Coordinating Principal Investigator/
Principal Investigator

Associate Investigator{s})

Research Assistants

Location

Consent Agreement

The effects of tablet-based home interventions on
brain structure, cognitive functioning, motor
performance, and daily life participation in healthy
adults.

Home-based interventions for brain-injured
patients

AJ/Prof Karen Caeyenberghs, Prof Mark Cook and
A/Prof Wendyl D'Souza,

Mr Adam Clemente, Ms Phoebe Imms, Ms Evelyn
Deutscher, Ms Annalee Cobden, Mr Thomas
Bowen, Ms Eva Mezei, Prof Peter H. Wilson, Dr
Jonathan Duckworth, Ross Eldridge and Rakesh
Patibanda

Miss Hannah Richards, Ms Alexandra Armstrong

St Vincent's Hospital, Melboumne

I have read the Participant Information Sheet or someone has read it to me in a language that |

understand.

I understand the purposes, procedures and risks of the research described in the project.
I have had an opportunity to ask questions and 1 am satisfied with the answers | have received.
| freely agree to participate in this research project as described and understand that | am free

to withdraw at any time during the project.

1 understand that | will be given a signed copy of this document to keep.

1 choose to take part in the {circle one)

Baseline only study (time commitment of 3 hours)

Training study (time commitment of 26 hours over an § week period)
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Declaration by Participant — for participants who have read the information

Name of Participant please print)

Signature Date

Declaration by Study Doctor/Senior Researcher!

I have given a verbal explanation of the research project, its procedures and risks and | believe
that the participant has understood that explanation.

Name of Study Doctor/
Senior Researcher! (piease print)

Signature Date

t A senior member of the research team must provide the explanation of, and information conceming, the research

project.
Note: All parties signing the consent section must date their own signature.
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Appendix S. Survey of demographic information

Participant #:
Demographic Questionnaire
Next of Kin/Carer information:
Name:
Relationship:
Phone:
Email:
Gender: Age and Date of Birth: Level of Education (Please tick one):
0 MALE Years. [ Less than year 12 or equivalent
0 FEMALE ! /19 .0 Year 12 or equivalent

0 Diploma/Vocational qualification
0 Bachelor Degree (Including Honours)
0 Postgraduate Diploma
0 Master’s Degree
0 Doctorate
‘What is your dominant hand:
0 Tam right handed

0 Iam left handed

‘Which hand do you prefer to use when:

Writing: Left I ; No Preference 1 ; Right [

Drawing: Left  ; No Preference 1 ; Right [

Throwing: Left 1 ; No Preference I ; Right

Using Scissors: Left 1 ; No Preference I ; Right [I

Using a Toothbrush: Left 1 ; No Preference I ; Right [I

Using a Knife (without a fork): Left I ; No Preference [ ; Right [
Using a Spoon: Left 1 ; No Preference 1 ; Right I

Using a Broom (upper hand): Left [ ; No Preference [1 ; Right I
Striking a Match: Left 1 ; No Preference I ; Right [I

Opening a Box (holding lid): Left 0 ; No Preference I ; Right [
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Appendix T. The Neurobehavioural Functioning Inventory

DiRpnosis:

Neurobehavioral Functioning Inventory

Duration of uncansciousness at time of injury/iliness {if applicable):

How often do you currently have any of the following problems? Please circle/check the number under the label Never, Rarely,
Sometimes, Often, or Always. If you wish to change your answer, put an X through it and fill in your new choice.

NEVER RARELY SOMETIMES OFTEN ALWAYS
1 Blackout spells 1 2 3 4 5
2 Sefzures 1 2 3 4 5
3 Threaten to hurt yourself 1 2 3 4 5
4 Cannot be left at home alone 1 2 3 4 5
NEVER RARELY SOMETIMES OFTEN ALWAYS
5 Miss or cannot attend work/school 1 2 3 4 5
6 Double or blurred vision 1 2 3 4 5
7 Feel hopeless 1 2 3 4 5
8 Stomach hurts 1 2 3 4 5
9 Forget yesterday’s events 1 2 3 4 5
10 Difficulty pronoundng words 1 2 3 4 5
11 Curse at others 1 2 3 4 5
12 Difficulty lifting heavy objects 1 2 3 4 5
13 Feel worthless 1 2 3 4 5
14 Nauseous 1 2 3 4 5
15 Forget if you have done things 1 2 3 4 5
16 Write slowly 1 2 3 4 5
17 Hit or push others 1 2 3 4 5
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NEVER RARELY SOMETIMES OFTEN ALWAYS
18 Move slowly 1 2 3 4 5
19 Sad, blue 1 2 3 4 5
20 Headaches 1 2 3 4 5
21 Forget or miss appointments 1 2 3 4 5
2 Trouble understanding conversation 1 2 3 4 5
23 Argue 1 2 3 4 5
24 Lose balance 1 2 3 4 5
25 Lonely 1 2 3 4 5
26 Dizzy 1 2 3 4 5
27 Forget people’s names 1 2 3 4 5
28 Make spelling mistakes 1 2 3 4 5
29 Inappropriate comments ar behaviour 1 2 3 4 5
30 Weak 1 2 3 4 5
NEVER RARELY SOMETIMES OFTEN ALWAYS
31 No confidence 1 2 3 4 5
32 Stomach bloated 1 2 3 4 5
33 Forget what you read 1 2 3 4 5
34 Difficulty thinking of the right word 1 2 3 4 5
35 Break or throw things 1 2 3 4 5
36 Drop things 1 2 3 4 5
37 Frustrated 1 2 3 4 5
38 Nightmares 1 2 3 4 5
39 Lose track of time, day, or date 1 2 3 4 5
40 Difficulty making conversation 1 2 3 4 5
41 Scream or yell 1 2 3 4 5
92 Muscles tingle or twitch 1 2 3 4 5
43 Sit with nothing to do 1 2 3 4 5
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NEVER RARELY SOMETIMES OFTEN ALWAYS
a4 Ringing in ears 1 2 3 4 5
45 Forget to do chores or work 1 2 3 4 5
a6 Speech doesn’t make sense 1 2 3 4 5
47 Rude to others 1 2 3 4 5
48 Difficulty performing chores 1 2 3 4 5
49 Scared or frightened 1 2 3 4 5
50 Poor appetite 1 2 3 4 5
51 Misplace things 1 2 3 4 5
52 My writing is hard to read 1 2 3 4 5
53 Threaten to hurt others 1 2 3 4 5
54 Trip over things 1 2 3 4 5
55 Concentration is poor 1 2 3 4 5
56 Lose train of thought 1 2 3 4 5
NEVER RARELY SOMETIMES OFTEN ALWAYS
57 Forget phone numbers 1 2 3 4 5
58 Lose way, get lost 1 2 3 4 5
59 Bored 1 2 3 4 5
60 Confused 1 2 3 4 5
61 Read slowly 1 2 3 4 5
62 Easily distracted 1 2 3 4 5
63 Talk too fast or slow 1 2 3 1 5
64 Forget to turn off appliances 1 2 3 4 5
65 Difficulty enjoying activities 1 2 3 4 5
66 Trouble folowing instructions 1 2 3 4 5
67 Uncomfortable around others 1 2 3 4 5
68 Curse at yourself 1 2 3 4 5
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69

71

73

74

75

76

NEVER

Forget to take medication 1
(if none prescribed, respond ‘never’)

Can’t get mind off certain thoughts 1
Disorganised 1
Restless 1
Late for appointments 1
Trouble falling adeep 1
Trouble hearing 1
Food doesn’t taste right 1

RARELY

SOMETIMES

OFTEN

ALWAYS
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Appendix U. MRI scan running sheet

Daie: Time:

MRI Scan Running Sheet

Participant II/First Name:

Last Name: ACU TBI

1. Check with reception upon armrival at MCRI that the scan session is still going ahead on time.

2. The MCRI MRI screening form should be completed by the participant immediately afier the consent form
is signed in the testing room.

a.  In the top right-hand comer, their First Name should be their participant IT) (without the time-point
idertifier, i.e, no ‘T’ gr T2°) and their Last Name is “ACU TBI".

b. Also write their full name and DOB for the radiographers” records.

c. Youshould also write the name of the neurologist to whom the report should be sent.

3. The screening form should be taken to the radiographers {ring buzzer) 5-10 mmnutes before the scan —not
given to reception.

4. While dropping the screening form off, grab the list of movies from the wall-mommt behind the
radiographers’ desk and bring it to the participant to choose a movie.

a. At this time, also ask them to emove jewellery and use the bathroom.

5. Wait with the participant in the waiting room until the radiographer comes out to get you While you are
waiting, ask the participant if they have any questions about the scan. Let them kncw things like a) how
long the scan will take, b) what they can expect to experience while in the scanner, ) comfort and assure
them, let them know you'1l be just outside the room the whole time.

6.  'When the radiographer comes, let them take charge ofthe participant and puiting them into the scanmer.

a.  While they are domg this, you can get the participant’s mavie set up (in the “Videos” folder on the
desktop), and the KSS PowerPoint minimised (in the *“ACU_TBI” folder on the desktop, called
*ACU_TBI resting state scriptppix’).

7. Sit behind the radiographer’s desk and fill out this form. Write down any big movements that you notice in

the notes section for each scan.

ACU team member/s present:

Radiographer/s name:

Report sent to (neorlogist):

Fiducial marker placed on RIGHT temple: Y ! N
A>>P alignment Y / N
FOV covers full brain (cerebellum and top of brain not cut off): Y ! N
Other notes:
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Time:

Sequence Duration Completed Notes (eg, fi upted)
satifacinmily
‘AAHcad_Scout_32ch-head-coil 014 Y N
T1-weighted imaging (MPRAGE)
3D MPRAGE ‘ 0548 ‘ Y [/ N
Diffusion Weighted Imaging (HARDI)

Blip_U 23mm 00:50 Y N

Blip_D 2 3mm 0050 Y N

DWIB3000 CMT 66Dir SEg 0437 Y N

Free Wave Form (FWF)

a ep 3:00

2d dff fwuf STE sl Y / N
aep 3:00

2d_&fF fwf_ LTH_s1 Y / N
Blip_ 020

U 23 fwf ASP Y / N
Blip_ 020

Ufwef PoA Yy / N

Quantitative Suscepfibility Mapping (QSM)
3D SWI Hi-res QSM ‘ 843 Y N ‘
T2-weighted imaging (FLAIR)
3D FLAIR SPACE ‘ 07:20 ‘ Y N
Field maps

SpinEchoFieldMap AP flipped 00:32

AP _flipp ‘ ‘ Y /4 N

Gre_fidd mapping_2 Smm ‘ 02:01 ‘ Y N ‘

Pause — display instructions for the resting state to the participant using the Powerpoint provided

Resting State IMRI
Tral rsfMRI - eyes open 07:48
‘ ‘ Y / N
Karolinska Sleepiness Scale
1 —Extremely alert 4 —Rather alert 7 — Sleepy, but no effort to keep

awalke

2 —Very alert

5 —Neither alert nor sleepy

8 — Sleepy, but some effort to
keep awake

3—Alert

6 — Some signs of sleepiness

9 —Very sleepy, great effort to
keep awake

Total Scan Time

Data saving

K-space (meas) data on vins-checked NTFS USB (~7.5GB, 20 mins):

DICOM data pushed to Marc Seal’s node (DFBI DICOMY:

All data buned to VD and collected on day of scan (30 mins)

Y / N
Y / N
Y / N

Exira Notes (eg., participant mood, any comments made by the radiogr aphers or partidpants, technical
Taults or improvements that can be made to the protocol):
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Appendix V. MatLab script for Graph Theoretical Analysis

2/02/21 12:33 PM_ /Volumes/.../Graph_Analysis_Published.m 1 of 6

% RUN GRAPH ANALYSIS ON STRUCTURAL CONNECTOMES
%%% Last updated December 1st, 2020 %%%%%
5%% Phoebe Imms; phoebe.imms@gmail.com %%

o° of

clear all

%%%% MAKE REQUIRED CHANGES HERE %%%%

subjectdir='../rawData/TBI/VBG_connectomes/'; % Folder where subjects connectome *.csv¢
files are stored

GROUP= {'TBI_DK_84_noareasize_VBG/'}; % name of the group being analysed
subjects={'CMTO5_T1', 'CMTO6_T1', 'CMTO7_T1'};

%%%% LEAVE EVERYTHING ELSE %%%%

datamaindir='../Data/';
datadir=char(strcat(datamaindir,GROUP));
mkdir(datadir);

for i=1:length(subjects) %iterating (starting at step 1) over the length of thev
vector for all the subjects

sub=subjects{i};

testl=load( [subjectdir sub '.csv']l);

test2=1oad( [subjectdir sub '.txt']);

test3=test2xtestl;

test3=test3+triu(test3,1)'; %makes the conmat symmetrical

test3(35,:)=[]; test3(83,:)=[];test3(:,35)=[];test3(:,83)=[]; %removes all rowsv«
and columns containing the cerebellar structures

sl=char(datadir);

s2=sub;

s3='_mu_sym_82.csv"';

%sdest=[s1 num2str(s2) s3];

dest=strcat(sl1,s2,s3);

writematrix(test3,dest);
end

for i=1:length(subjects) %iterating (starting at step 1) over the length of thev
vector for all the subjects

sub=subjects{i};
testl=load([subjectdir sub '.csv']);
test2=1load([subjectdir sub '.txt']);
test3=test2xtestl;
test3=test3+triu(test3,1)'; %makes the conmat symmetrical
%test3(35,:)=[]; test3(83,:)=[];test3(:,35)=[];test3(:,83)=[]; %removes all rowsv
and columns containing the cerebellar structures
sl=char(datadir);
s2=sub;
s3='_mu_sym_84.csv"';
%sdest=[s1 num2str(s2) s3];
dest=strcat(s1,s2,s3);
writematrix(test3,dest);
end

mkdir([datadir '82/'1);
mkdir([datadir '84/'1);

% Create directories for anaylses
GROUP=char (GROUP) ;
organisedir=char(['../Results/' GROUP]);
mkdir([organisedir ‘gmscorr'l);
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mkdir([organisedir 'indCMs'l);
mkdir([organisedir 'Neuromarvl']);
mkdir([organisedir 'nodalGMs']);
mkdir([organisedir 'boxplotGMs']);
mkdir([organisedir 'savedfiles']);

clear all;

close all;

n=1; m=n+l; n=m; % set figure labelling counter
grp=['TBI']; % MBI, CON, or TBI or TB2

if grp=="'MBI'
GROUP = {'HC82/'}; % N=37
subjects=v¢

{'HCO2_mu_sym', 'HCO4_mu_sym", '"HCO5_mu_sym', '"HCO6_mu_sym', 'HCO7_mu_sym', 'HCO8_mu_sym', '«
HCO9_mu_sym', '"HC10_mu_sym"', "HC11_mu_sym', '"HC12_mu_sym"', "HC13_mu_sym', 'HC14_mu_sym', 'HC¥¢
16_mu_sym', '"HC17_mu_sym"', "HC20_mu_sym', '"HC21_mu_sym"', "HC22_mu_sym"', "HC23_mu_sym', 'HC24«
_mu_sym"', "HC25_mu_sym"', "HC27_mu_sym', '"HC28_mu_sym"', "HC29_mu_sym', '"HC30_mu_sym"', '"HC31_m«
u_sym', "HC32_mu_sym', '"HC33_mu_sym', 'HC34_mu_sym"', 'HC35_mu_sym', "HC36_mu_sym', '"HC37_mu_v
sym', 'HC38_mu_sym', '"HC40_mu_sym', '"HC41_mu_sym', '"HC42_mu_sym', 'HC43_mu_sym"', 'HC45_mu_sy¥
m'};
elseif grp=="CON'

GROUP = {'CON_DK_84_noareasize/84/'}; % N=12

subjects=v
{'CON@1_mu_sym"', 'CON@2_mu_sym"', 'CONO3_mu_sym", 'CON@4_mu_sym', 'CONO5_mu_sym"', 'CONOG6_mu_v
sym', 'CON@7_mu_sym', 'CON@8_mu_sym"', 'CON@9_mu_sym', 'CON1@_mu_sym', 'CON11_mu_sym', 'CON12«
_mu_sym'};
elseif grp=='TBI'

GROUP = {'TBI_DK_84_noareasize_VBG/84/'}; % N=6

subjects={'CMTO5_T1_mu_sym', 'CMT06_T1_mu_sym','CMTO7_T1_mu_sym'};
else grp=='TB2"'

GROUP = {'TB2/'}; % N=4 time point 2 TBI patients

subjects={'CMT0O5_T2_mu_sym', ¢
'CMTO6_T2_mu_sym', 'CMT@O7_T2_mu_sym', 'DTCO1_T2_mu_sym'};
end

datadir='../Data/"';
resultsmaindir="../Results/"';
subjectdir=char(strcat(datadir,GROUP));
resultsdir=char(strcat(resultsmaindir,GROUP));

conmat_all=[1;
%degree_check %check the degree of each CM
%strengths_check % check the strength of each CM

for i=1:length(subjects)

sub=subjects{i};

conmat=load( [subjectdir sub '.csv']); %load each subjects matrix into a conmat file
n=n+1; figure(n); imagesc(conmat);

colorbar

savefig([resultsdir 'indCMs/' sub '.fig'l);

csvwrite([resultsdir 'indCMs/' sub '.csv'l, conmat);

conmat_all(:,:,i)=conmat; %loads the conmat files from each iteration (subject) intov¢
the group conmat file

csvwrite([resultsdir 'indCMs/conmat_all.csv'], conmat_all);

end

%SAVERAGE CONMAT

average_conmat=mean(conmat_all,3);
m=n+1; figure(n); imagesc(average_conmat)
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3 0f 6

colorbar
savefig([resultsdir ‘'averageconmat.fig'l);

csvwrite([resultsdir 'average_conmat.csv'], average_conmat);

%CHECK DISTRIBUTION OF WEIGHTS
wx=reshape(average_conmat, [1, 84x%84]);
wx_sort=sort(wx);

m=n+1; figure(n); plot(wx_sort)
savefig([resultsdir 'distweights.fig'l);

%RUN GRAPH ANALYSIS FOR EACH SUBJECT
glob_gms_all=[]1;

deg=I[1;
str=[1;
BC=[];
cc=I[1;
Eloc=I[];

load('D_euc.mat'); %euclidean distance matrix for Navigability, if using 84 nodes¥
change to D_euc.mat

for i=1:length(subjects)
sub=subjects{i};
W=1load( [subjectdir sub '.csv'l);

for k=1:10

ITER=k;

W_rand=W;
W_rand(W_rand<0.0001)=0;

[R,effl=randmio_und(W_rand,ITER); %make sure R is different to W
end

[
]
o

“

P
W
n:
W_norm = W./(max(W(:)) + min(W(W>0))
R_norm
L_norm

RELIMINARY SETTINGS FOR BRAIN CONNECTIVITY TOOLBOX
= threshold_proportional(W, 0.3);

length(W);

)I
R./(max(R(:)) + min(R(R>0)));
1./W_norm;

L_R = 1./R_norm;
L_log = -logl@(W./(max(W(:)) + 1)); %log transform and normalise (set between ~0v

and 1, by dividing by maximum plus small

navigability
L_log(L_log == Inf) = 0; %set diagonals Inf to @

% RUN BCT SCRIPTS
% Basics (raw connectivity matrices)

o o°

% Degree - deg_ave(stat) and deg(vector)
[deg]l = degrees_und(W);

deg=deg"';

deg_ave = mean(deg);

% Strength — str_ave(stat) and str(vector)
str = sum(W);

str=str';

str_ave = mean(str);

Integration - weight-length remapping is within the script and is
/W

Characteristic Path Length - lambda(stat)
Global Efficiency - efficiency(stat)

[D] = distance_wei_floyd(L_norm);

329

minimum to avoid @s) from Caio forv¢

; snormalise for everything but navigation



2/02/21 12:33 PM_ /Volumes/.../Graph_Analysis Published.m 4 of 6

[lambda,efficiency] = charpath(D);

% Normalised characteristic path length - L_norm(stat)
[D_R] = distance_wei_floyd(L_R);

[lambda_R] = charpath(D_R);
lambda_norm=1lambda/lambda_R;

% Local efficiency - Eloc(vector)

Eloc = efficiency_wei(W_norm,2);

Eloc_ave=mean(Eloc);

% Navigation - Nav(stat) and er_wei(stat) and sr(stat)
[D_log, hops_log] = distance_wei_floyd(L_log);

[sr, ~, PL_wei_log] = navigation_wu(L_log, D_euc);
PL_wei_log(1l:n+l:end) = NaN;

Nav = nanmean(1l./PL_wei_log(:));

er_wei = nanmean(nanmean(hops_log./PL_wei_log));

% Segregation
% Clustering coefficient - CC_ave(stat) and CC_W(vector)
CC=clustering_coef_wu(W_norm);
CC_ave=mean(CC);
% Normalised clustering coefficient - CC_norm(stat)
C_R=clustering_coef_wu(R_norm);
CC_R=mean(C_R);
CC_norm=CC_ave/CC_R;
% Transitivity - T(stat)
T=transitivity_wu(W_norm);

% Modularity - Q(stat)
gamma=1;
[Ci,Ql=modularity_und(W,gamma);

% Centrality Betweenness Centrality) - BC_ave(stat) and BC(vector)
BC = betweenness_wei(L_norm);
BC_ave = mean(BC);

% Resilience - Assortativity - A(stat)
r = assortativity_wei(W_norm,0);

% Small-worldness (if greater than 1, network is small world)
sw=1lambda_norm/CC_norm;

%STORE GLOBAL METRICS IN A TABLE FOR ALL SUBJECTS

sub_str=string(sub);

gms=table(sub_str, deg_ave, str_ave, efficiency, lambda, lambda_norm, Nav, er_wei,v¢
sr, Eloc_ave, CC_ave, CC_norm, sw, T, Q, BC_ave, r);

glob_gms_all=vertcat(glob_gms_all,gms);

nodal=table(deg, str, CC, BC, Eloc, Ci);

writetable(nodal, [resultsdir 'nodalGMs/nodal_gms_' sub '.x1s']);

end

%SAVE GLOBAL METRICS TABLE IN DATA FOLDER
writetable(glob_gms_all, [resultsdir 'global_graph_analysis_84.x1s']);

%%%%GLOBAL METRICS INTER-RELATIONSHIPS%%%%
efficiency_all=glob_gms_all.efficiency;
lambda_all=glob_gms_all. lambda;
Nav_all=glob_gms_all.Nav;
CCave_all=glob_gms_all.CC_ave;
CCnorm_all=glob_gms_all.CC_norm;
erwei_all=glob_gms_all.er_wei;
T_all=glob_gms_all.T;
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Q_all=glob_gms_all.Q;
sw_all=glob_gms_all.sw;
BCave_all=glob_gms_all.BC_ave;
r_all=glob_gms_all.r;
lambdanorm_all=glob_gms_all. lambda_norm;

% All correlations between all variables, and P values

% from FDR (benjamini H dependent) crit p is 0.000058)

glob_gms_new = removevars(glob_gms_all, {'sub_str','sr','er_wei',"'sw'});
globgmsarray=table2array(glob_gms_new);

[X,P]l=corrcoef(globgmsarray);

[h, crit_p, adj_ci_cvrg, adj_pl=fdr_bh(P,0.05,'dep');

clims=[crit_p crit_p+0.0000000001];

n=n+1; figure(n); imagesc(X); xticks(1:1:12); yticks(1:1:12); xticklabels({'deg"', ¥
'str', 'eglob', 'CPL', 'CPLnorm', 'Nav', 'CC', 'CCnorm', 'T', 'Q', 'BC', 'r'});v¢
yticklabels({'deg', ‘str', 'eglob', 'CPL', 'CPLnorm', ‘Nav', ‘'cC', ‘CCnorm', 'T', 'Q',¥
IBCI, |r|});

colorbar; savefig([resultsdir 'gmscorr/corrcoeffs.fig'l);

n=n+1; figure(n); imagesc(P,clims);

xticks(1:1:12); yticks(1:1:12); xticklabels({'deg', 'str', 'eglob', 'CPL', 'CPLnorm',¥¢
'Nav', 'cc', 'CCnorm', 'T', 'Q', 'BC', 'r'}); yticklabels({'deg', 'str', 'eglob',v¢
'CPL', 'CPLnorm', ‘'Nav', 'cC', 'CCnorm', 'T', 'Q', 'BC', 'r'});

colorbar; savefig([resultsdir 'gmscorr/corrpvals.fig'l);

writematrix(X, [resultsdir 'gmscorr/correlation_coefficients.xls']);
writematrix (P, [resultsdir 'gmscorr/correlation_pvalues.xls']);

%key={'deg_ave', 'str_ave', 'efficiency', 'lambda', 'lambda_norm', 'Nav', 'er_wei', ¢
'sr', 'CC_ave', 'CC_norm', ‘'sw', 'T', 'Q', 'BC_ave', 'r'};

% Scatterplots

m=n+1; figure(n)

scatter(Nav_all, efficiency_all);

[r pl=corr(Nav_all, efficiency_all);

1sline

xlabel('Navigation Efficiency', 'Fontsize', 18);

ylabel('Global Efficiency','Fontsize', 18);

title(['r="', num2str(round(r,3)) ', p=' num2str(round(p,10))]);
set(gca, 'FontSize',14)

savefig([resultsdir 'gmscorr/E_efficiency_corr.fig'l);

m=n+1; figure(n)

scatter(Nav_all, lambda_all);

[r pl=corr(Nav_all, lambda_all);

lsline

xlabel('Navigation Efficiency', 'Fontsize', 18);
ylabel('Characteristic Path Length','Fontsize', 18);
title(['r=", num2str(round(r,3)) ', p=' num2str(round(p,10))]);
set(gca, 'FontSize',14)

savefig([resultsdir ‘'gmscorr/E_lambda.fig']);

m=n+1; figure(n)

scatter(efficiency_all, lambda_all);

[r pl=corr(efficiency_all, lambda_all);

1sline

xlabel('Global Efficiency', 'Fontsize', 18);
ylabel('Characteristic Path Length','Fontsize', 18);
title(['r="', num2str(round(r,3)) ', p=' num2str(round(p,10))]);
set(gca, 'FontSize',14)

savefig([resultsdir 'gmscorr/efficiency_lambda.fig']);

%BOXPLOTS
m=n+1; figure(n); boxplot(efficiency_all, 'label', 'Global Efficiency'); savefigv
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([resultsdir 'boxplotGMs/boxplot_efficiency.fig'l);

m=n+1; figure(n); boxplot(lambda_all, 'label', 'Characteristic Path Length');savefigv
([resultsdir 'boxplotGMs/boxplot_lambda.fig']);

m=n+1; figure(n); boxplot(Nav_all, 'label', 'Navigation Efficiency');savefig([resultsdirv
'boxplotGMs/boxplot_E_log.fig'l);

m=n+1; figure(n); boxplot(CCave_all, 'label','Clustering Coefficient"');savefigv
([resultsdir 'boxplotGMs/boxplot_CCave.fig']);

m=n+1; figure(n); boxplot(CCnorm_all, 'label’, 'Normalised Clustering Coefficient');«
savefig([resultsdir 'boxplotGMs/boxplot_CCnorm.fig'l);

m=n+1; figure(n); boxplot(lambdanorm_all, 'label’, 'Normalised Characteristic Pathv
Length');savefig([resultsdir 'boxplotGMs/boxplot_lambdanorm.fig']);

m=n+1; figure(n); boxplot(erwei_all, 'label', 'Efficiency Ratio');savefig([resultsdiry¥
'boxplotGMs/boxplot_erwei.fig'l);

m=n+1; figure(n); boxplot(T_all, 'label’, 'Transitivity');savefig([resultsdirv
"boxplotGMs/boxplot_T.fig'l1);

m=n+1; figure(n); boxplot(Q_all, 'label’, 'Modularity');savefig([resultsdirv
'boxplotGMs/boxplot_Q.fig'l);

m=n+1; figure(n); boxplot(sw_all, 'label’, 'Small-Worldness"');savefig([resultsdir¥
'"boxplotGMs/boxplot_sw.fig']);

m=n+1; figure(n); boxplot(BCave_all, 'label’, 'Betweenness Centrality');savefigv
([resultsdir 'boxplotGMs/boxplot_BCave.fig'l);

m=n+1; figure(n); boxplot(r_all, 'label’, 'Resilience (Assortativity)');savefigv
([resultsdir 'boxplotGMs/boxplot_r.fig']);

SMALLWORLD - if greater than 1, network is small world
smallworld

o° of

SPIDERPLOT

Set variables
phoebespider
phoebespider_selectedgms

P o° o° o°
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