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Abstract 

Traumatic Brain Injury (TBI) is a leading cause of death and disability globally, 

with survivors often experiencing ongoing and debilitating cognitive impairments (e.g., 

slowed processing speed, poor attention, and executive functioning deficits). These 

impairments are often linked to focal lesions in regions of the cerebral cortex thought to 

uphold each cognitive function. However, the spectrum of impairments experienced by 

individual patients are not fully explained by focal lesions of the grey matter; instead, 

emerging theories suggest that many cognitive burdens result from disconnections in the 

white matter of the brain. With the advent of diffusion MRI (dMRI), new techniques are 

available to study how TBI disrupts the white matter pathways that connect brain regions 

(structural connectomics). Structural connectomics allows the quantification of network 

disruption in TBI patients using graph theoretical analyses, with studies reporting 

alterations in brain network integration and segregation. These studies suggest that graph 

metrics may be used as a ‘biomarker’ for TBI patients’ cognitive impairments, by linking 

changes in brain derived graph metrics to cognitive symptoms. However, challenges remain 

in ascribing behavioural relevance to graph metrics in this newly emerging field.  

This thesis critically evaluates the use of graph theoretical measures of the structural 

connectome in moderate-severe TBI, and their use at a single-subject level. First, a meta-

analysis of studies comparing healthy controls and TBI patients using graph metrics is used 

to demonstrate that communication metrics are most robustly linked to brain injury. This 

review also highlights issues with the over-interpretation of the relationship between graph 

metrics such as path-length and the efficiency of cognitive processes. Second, a study in 
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healthy adults shows that communication metrics are related to processing speed. This 

relationship between cognitive performance and measures of network alteration is 

underpinned by biologically plausible models of cognition and brain structure. Third, a 

profile of graph theoretical properties and alterations in six TBI patients is explored using a 

personalised connectomics approach. Spiderplots are used to represent graph metric 

alterations in each patient compared to healthy controls. Profiling individual patients in this 

way provides new insights into how graph metrics relate to lesion characteristics and TBI 

subtypes. Taken together, this thesis explores 1) how structural network topology is altered 

in patients with TBI, 2) how graph metrics can be interpreted, 3) how a personalised 

connectomics approach to TBI can be implemented, and 4) the methodological 

considerations for studying TBI using graph theory. The collective results of thesis indicate 

that graph metrics display potential for characterising network alterations in patients with 

brain injury; specifically, a profiling approach can account for heterogeneity in the TBI 

population, informing clinical decision making.    
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Overview of Thesis 

The human brain is a dynamic network of ~100 billion neurons, comprising ~100 

trillion connections. Signals travel between neuronal cell bodies which manifest as the grey 

matter, via bundles of axons that form white matter pathways. This complex structure can be 

damaged in many ways, the most common being stroke, Alzheimer’s disease, multiple 

sclerosis, dementia, or trauma. Each method of injury has its own characteristics, aetiology 

and prognosis. While other brain injuries have been relatively well characterised due to their 

more homogenous causes and symptomatology, the mechanisms of Traumatic Brain Injury 

(TBI) are complex and therefore less coherently represented in scientific research. It is 

therefore the goal of this thesis to improve our understanding of the neurological and 

cognitive impacts of TBI. 

Moderate-severe TBI is caused by a large force to the head, resulting in damage to 

brain tissue. TBI has a high incidence rate worldwide and causes widespread, persistent, and 

debilitating cognitive impairment. Patients more than 6 months post injury show a plateau in 

improvements and face a lifetime of disability (Rabinowitz & Levin, 2014). The long-term 

cognitive deficits following TBI are often due to injury in the frontal and temporal brain 

regions and shearing and degradation of the white matter pathways (Bigler, 2013). Diffusion 

MRI (dMRI) is a method that characterises organisation of the white matter pathways in vivo 

and has been used to study how damage to white matter tracts impacts cognitive outcome 

following TBI. However, individual tracts alone do not support brain activity, but instead are 

essential for synchronous integration of activity across brain regions (Bullmore & Sporns, 

2012). As such, recent work has employed a novel framework connectomics to understand 

how TBI impacts the brain network as a whole (e.g., Caeyenberghs, Leemans, De Decker, et 

al., 2012). Connectome studies of traumatic brain injury (TBI) utilise graph theory to evaluate 
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network alterations in comparison to healthy controls, by calculating graph metrics – 

summary statistics of the brain network that represent integration, segregation, and centrality. 

Results suggest that the TBI brain network is altered in comparison to healthy controls; 

however, there is a lack of converging evidence between studies, likely due to the 

heterogeneous nature of TBI patients. Also, the nature of the relationship between graph 

metrics and cognitive performance remains unclear. This thesis aims to address these gaps by 

1) systematically characterising the available literature, 2) identifying relationships between 

brain network measures and cognition, and 3) formulating a new approach to using 

connectomics in individual TBI patients.  

In Study 1, a meta-analysis examines the robust patterns of change in graph metrics 

across the available literature. Ten studies are included in a random-effects meta-analysis of 

global graph metrics (N=429 TBI patients; N=306 healthy controls), and subgroup analyses 

(age, time since injury, severity of injury) to examine confounding effects. The meta-analysis 

reveals significantly higher values of normalised clustering coefficient and characteristic path 

length in TBI patients compared with healthy controls. Longer characteristic path length (less 

efficient network communication) is robust across studies. It is concluded that the pattern of 

change revealed, including increased communication measures (path length) and clustering, 

can be used in the next stages to guide our hypothesis-driven research into the role of graph 

metrics as diagnostic biomarkers of TBI. 

Study 2 examines the relationship between communication measures such as 

characteristic path length and cognitive performance. Processing speed on cognitive tasks 

(which is often affected following brain injury) relies upon efficient communication between 

widespread regions of the brain such as the fronto-parietal attention network. What remains 

unclear is whether there is a direct link between these communication measures and 

processing speed. This relationship is tested in forty-five healthy adults (27 female, Mage = 



3 

 

30.9 years), where processing speed is defined as decision-making time on a Global-Local 

task and measured using drift rate from the hierarchical drift diffusion model. 

Communication measures are calculated for the whole brain structural connectome and for a 

task-relevant fronto-parietal structural subnetwork. A novel and more biologically plausible 

method of quantifying network communication is also included – called navigation 

efficiency. Faster processing speed is found to be correlated with higher navigation efficiency 

(of both the whole-brain and the task-relevant subnetwork). In the task-relevant subnetwork 

only, faster processing speed on trials that require more automatic processing is correlated 

with longer path-length. Overall, findings suggest that there is a relationship between the 

speed of cognitive processing and the structural constraints of the human brain network – 

though, this relationship depends on the specificity of the measures used.   

In Study 3, a novel single-subject profiling approach is used to characterise the graph 

theoretical properties of individual TBI patients. In the search for graph metric ‘biomarkers’, 

group level analyses of TBI patients often average neuroimaging and cognitive data across 

patients regardless of lesion and patient characteristics. Instead, personalised connectomics 

(individual-level analysis of the structural connectome) may allow for an individual’s brain 

network to be used as a ‘fingerprint’, to examine the profile of graph metric alterations in one 

patient compared to healthy controls. In this study, a personalised structural connectome 

analysis is performed using high angular resolution dMRI data from five TBI patients, to 

facilitate interpretation of unique disconnectivity profiles. A large amount of variability is 

observed in the profile of graph metric alterations between patients. Where group analyses 

wipe out variability, individual normative comparisons allow researchers to capture the range 

of network alteration patterns. This renewed emphasis on profiling individual patients based 

on their unique injury presentation provides new insights into how graph metrics relate to 

lesion characteristics and TBI subtypes.  
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Overall, this thesis explores how graph analysis of the structural brain connectome 

adds to our understanding of TBI; whether graph metrics are related to cognitive performance 

in healthy adults and thus have potential as biomarkers of cognitive dysfunction; the benefits 

and limitations of single-subject profiling to study TBI; and the methodological 

considerations of diffusion-based graph analysis in brain injured patients (see Figure 1). The 

role of graph metrics as biomarkers of TBI is critically evaluated by examining the current 

state of the literature (Study 1), the relationship between metrics and measures of cognition 

(Study 2), and the ability of graph metrics to represent an individual patient (Study 3). In the 

review and meta-analysis, communication measures such as path length are longer in TBI 

patients than healthy controls, a finding which was robust across studies and TBI subtypes. In 

the second empirical chapter, these communication measures were related to processing 

speed, albeit when using specific measures of brain structure and cognition. In the third 

empirical chapter a large amount of variability is observed in the graph metric profiles of TBI 

patients. Thus, instead of a singular graph metric biomarker, it is argued that visualising a 

profile of graph metric alterations is a better method for characterising this heterogeneous 

patient group. In conclusion, this thesis represents a critical assessment of the role of graph 

metrics in the comparison of adults with chronic moderate-severe TBI to healthy controls.  
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Figure 1.  

Overview of the Chapters Included in the Thesis 
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Chapter 1: Introduction 
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1.1 Traumatic Brain Injury 

1.1.1 Causes, incidence, and impact 

Traumatic Brain Injury is caused by an external force to the head resulting in damage 

to brain tissue (Kay & Lezak, 1990), often following a traffic accident (61.4%), fall (24.9%), 

or assault (non-gunshot; 7.2%) (Myburgh et al., 2008). In their epidemiological study of TBI, 

Majdan et al. (2011) found that while young men are most likely to experience TBI from 

motor vehicle accidents, older people are also more vulnerable to brain injury from falls. 

Unsurprisingly, the most severe injuries occur from traffic related incidents, such as motor 

vehicle and bicycle accidents – these patients spend on average the longest time in intensive 

care and on ventilation. However, fall related TBIs have the highest percentage of patients 

requiring cranial surgery due to bleeds in brain tissues, and show the poorest expected 

outcomes especially for older patients. Assault related TBI, while less common than falls and 

traffic accidents, is strongly related to being male, especially for men with substance abuse 

and/or financial problems (Schopp et al., 2006; Wagner et al., 2000). In truth, while some 

groups are more at risk than others, what separates TBI from other forms of brain injury is 

that sudden trauma can occur indiscriminately, and with devastating consequences. 

TBI has a high prevalence internationally. The World Health Organisation estimates 

that traffic accidents will be the 3rd leading cause of premature death across all ages by the 

year 2020 (Murray et al., 1996) – a speculation which appears to have merit based on recent 

numbers (James et al., 2019). In 2016 there were 27.08 million new cases of TBI globally, 

with an incidence rate of 369 per 100,000 population (James et al., 2019) – in Australia, the 

incidence of TBI is approximately 100 in a 100, 000 (Tate et al., 1998). In the western world 

TBI accounts for half of the trauma that leads to death and long-term disability (Baxter & 

Wilson, 2012). TBI case numbers are growing, due to increasing use of motor vehicles (Maas 
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et al., 2008) and sport injuries (Dashnaw et al., 2012). Fortunately, life support technologies 

have improved meaning survival is more likely than ever following serious trauma – though 

this does increase the prevalence of people living with debilitating disability for years after an 

injury.  

Living with the consequences of a head injury requires medical, emotional, and 

financial support from workplaces, community support services, family, and friends. 

Consequently, in Australia it is estimated that the total cost of TBI in 2008 was $8.6 billion, 

including both financial costs and burden of disease costs (including medical costs, carer 

salaries, loss of taxable income, etc.; Access Economics Pty Limited, 2009). The 

psychosocial costs of TBI are also high – most TBI survivors live with their family and are 

no longer employed or attending school (for review, see Humphreys et al., 2013). Therefore, 

family members also face social and financial hardship as they rise to the challenge of 

demanding medical costs and long-term caregiving (Kreutzer et al., 2002). In summary, TBI 

has a high incidence rate, a large human cost to both the patient and carer, as well as an 

enormous financial cost to society. 

 

1.1.2 Diagnosis and classification 

There are three widely accepted categories of TBI diagnosis – mild, moderate, or 

severe (see Table 1). Categorisation is performed based on the severity of the symptoms at 

the time of injury, and neuroimaging to identify the extent of the lesions (Hannawi & 

Stevens, 2016; Maas et al., 2008). The latter is accomplished using Computed Tomography 

(CT), or in more serious cases Magnetic Resonance Imaging (MRI), to check for intracranial 

pathologies. The former, the severity of the symptoms, is often assessed using three criteria; 

1) the patient’s level of responsiveness (Teasdale & Jennett, 1974), 2) the amount of time 
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with post traumatic amnesia (PTA; memory loss and confusion) (Russell & Smith, 1961), and 

3) the duration of loss of consciousness (time period in coma/unaware).  

 

Table 1.  

Severity Ratings for Traumatic Brain Injury  

Rating Glasgow Coma Scale Post-Traumatic Amnesia Loss of Consciousness 

Mild 13-15 < 24 hours 0 – 30 minutes 

Moderate 9-12 1 – 7 days 30 minutes – 24 hours 

Severe 3-8 > 7 days > 1 day 

 

Mild TBI is identified by post traumatic amnesia for less than 24 hours, loss of 

consciousness for less than 30 minutes (Rabinowitz & Levin, 2014), and less severe cognitive 

impairments. Neuroimaging, especially CT, often does not demonstrate any injury-related 

abnormalities. Mild TBI is more common than moderate-severe TBI, representing 61.5% of 

cases (Tate et al., 1998). Following mild TBI, improvements in cognitive or motor 

impairments mostly occur within 3-6 months post injury (Belanger & Vanderploeg, 2005; 

Carroll et al., 2004). Conversely, moderate–severe TBI patients immediately suffer loss of 

consciousness for more than half an hour and post traumatic amnesia for longer than a day 

(see Table 1; Rabinowitz & Levin, 2014). For moderate-severe TBI, an MRI or CT scan may 

alert neurologists to a range of findings including (but not limited to) focal lesions, swelling, 

and damage to the grey-white matter boundaries of the brain. Moderate-severe TBI patients 

are less common and less often represented in the literature. However, these are the patients 

that tend to exhibit longer lasting or even permanent disabilities.  
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1.1.3 Pathophysiology over the phases of TBI 

The pathophysiology of TBI is multifaceted and can continue to evolve for months or 

even years following the injury. To characterise the stages of injury progression, researchers 

and clinicians often refer to the acute (<1 month), subacute (1month - 6months), and chronic 

(>6 months) phases of TBI (Rabinowitz & Levin, 2014). At the time of injury and during the 

acute phase, the primary injuries that occurred directly from the external force are treated in 

hospital (Maas et al., 2008). Most often, primary injuries (e.g., hematoma, haemorrhage, and 

oedema) affect the frontal and temporal lobes where bony protuberances of the skull are 

prominent (Bigler, 2013). As the head hits the external surface inertia causes the brain to 

continue its trajectory and hit the inside of the skull at the site of impact (coup), which in turn 

forces the brain to ricochet back to hit the opposite side to the impact (contre coup) (Drew & 

Drew, 2004). At the cellular level, lesions involve the rupturing and necrotic death of neurons 

and glial cells (Kurland et al., 2012). These types of injuries cause tissue loss and are 

collectively referred to as focal lesions (see Figure 2).  

 
Figure 2 

Examples of Focal Lesions Caused by Traumatic Brain Injury 

Example 1 Example 2 Example 3 
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Primary injuries are not confined to the grey matter where physical impact occurred. 

Besides these focal lesions, it is estimated that approximately half of TBI patients also 

present with diffuse injuries in white matter pathways (Hammoud & Wasserman, 2002). 

When the brain experiences rapid acceleration-deceleration forces, the interface between 

tissues of different densities is vulnerable to shearing effects (Meythaler et al., 2001). These 

injuries are particularly evident in high-speed car crashes (Li & Feng, 2009), and are 

generally referred to as Diffuse Axonal Injury (DAI). DAI is evidenced by microlesions in 

the white matter tracts (Currie et al., 2016; Maas et al., 2008), apparent in deep brain white 

matter structures, the corpus callosum, periventricular and hippocampal regions, and the 

brainstem (Hammoud & Wasserman, 2002; Kou et al., 2015). Despite being well-described 

in the scientific literature, DAI is still often missed in clinical settings, due to the fact that the 

CT scans used for diagnosis at the time of injury are inadequate for visualizing microbleeds 

(Currie et al., 2016; Maas et al., 2008). 

Secondary injuries may also occur, evolving over the acute and subacute phases of the 

injury. Secondary injuries are pathophysiological mechanisms triggered by the primary 

injury, as the intracellular substances released by dying neurons and the breakdown products 

of blood are toxic to the nearby cells (Kurland et al., 2012). Secondary injuries can be caused 

by excess neurotransmitter release and inflammation that causes oedema (swelling), ischemia 

(reduced blood flow), hypoxia (reduced oxygen), raising of intracranial pressure, and gliotic 

scarring (Maas et al., 2008). Often TBI leads to chronic excitotoxicity, where neurons and 

oligodendrocytes become vulnerable to glutamate stimulation as the neurotransmitter 

accumulates in brain tissues (Bramlett & Dietrich, 2015; Pekna & Pekny, 2012; Pekna et al., 

2012). Overall, this secondary cascade of injuries leads to inflammation, glial and 

mitochondrial dysfunction, and destruction of vasculature (Maas et al., 2008; Park et al., 

2008). The biochemical cascade can continue for months after the initial injury, causing 
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further damage to axonal pathways (Bramlett & Dietrich, 2015). Treatment of any secondary 

injuries may therefore continue into the subacute phase of TBI, when the patient begins to 

recover lost cognitive and motor functions.  

The subacute phase is also when the patient’s brain will begin the recovery and 

healing processes. Unlike other organs, brain tissue is limited in its ability to regenerate; 

instead, neurons can alter their interconnectivity in response to functional loss to circumvent 

damaged brain tissue – termed neuroplasticity. Upregulation of synaptic markers and axonal 

sprouting occurs during this time (Carmichael, 2003), leading to an increase in the density of 

synapses perilesional or contralateral to the damaged tissue (Pekna & Pekny, 2012). This 

neuroplasticity peaks one to three months post injury (Pekna & Pekny, 2012). In addition, 

during this subacute phase TBI patients begin to experience secondary pathologies that may 

continue well into the chronic phase of their injuries: these pathologies may include seizures, 

sleep disorders, neurodegeneration, neuroendocrine and psychiatric problems (Bramlett & 

Dietrich, 2015). 

Typically, the chronic phase is characterized by a plateau in behavioural and physical 

improvements (Schretlen & Shapiro, 2003), due to the limits of intrinsic neurological repair 

processes. However, there is also evidence from rat and mouse studies that accelerated 

atrophy of grey and white matter occurs months and years after a TBI (Smith et al., 1997), 

potentially due to chronic excitotoxicity (Bramlett & Dietrich, 2015). TBI patients may also 

continue to show reductions in white matter, inflammation, and volume loss even years after 

the injury (e.g., Green, 2016). TBI can be a compounding issue for an individual already 

experiencing neurodegeneration (e.g., older adults) and is a risk factor for the onset of 

Alzheimer’s Disease (e.g., Sivanandam & Thakur, 2012). However, not all outcomes are 

adverse. Recent work in the field of training-induced neuroplasticity shows that behavioural 

and neurological changes are still possible even years after an acquired brain injury (e.g., 
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Caeyenberghs et al., 2018) providing evidence to support continued research into chronic 

TBI.  

 

1.1.4 Chronic cognitive impairments 

Cognitive impairments are the major cause long-term disability in patients with 

moderate-severe TBI. Around 25% of TBI patients cannot return to work for a year post-

injury (Whiteneck et al., 2004), and almost half experience cognitive disability for a period of 

6 months or more (Selassie et al., 2008). Cognitive impairment caused by TBI can impact 

participation in all aspects of life, from housework and hygiene, to schooling and 

employment. Simple tasks such as planning a trip on public transport might become 

impossible or frustratingly slow. The exact symptoms that a person may experience long-

term following a TBI can depend on the severity of the injury, the affected areas of the brain, 

and the type of secondary pathologies that were triggered by the injury. Accurately predicting 

the outcome of an individual is complicated and doing so with precision and confidence is 

beyond the capacity of current medical practices. However, the ability to predict cognitive 

symptoms could enable a patient with TBI to understand what their future might look like.   

One of the major domains of cognitive impairment following moderate to severe TBI 

is executive dysfunction, which occurs in 65% of the chronic TBI population (Rabinowitz & 

Levin, 2014). Executive functioning includes mental control and self-regulation – the set of 

processes by which the brain ‘manages’ itself. Till et al. (2008) found that in 27.3% of their 

TBI cases there was a decline in measures of executive functioning even 5 years after injury. 

Moderate-severe TBI patients often exhibit 1) processing speed, 2) memory, 3) attention, and 

4) planning deficits for years after the injury (Ruff et al., 1989; Ruff et al., 1993). These 

cognitive functions are integral for daily life (Rabinowitz & Levin, 2014). TBI patients may 

experience delay when inhibiting responses, updating, and switching tasks, which are all 
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attributable to poor processing speed (Caeyenberghs et al., 2014). They may also show poor 

prospective and retrospective memory (Shum et al., 2011), and have difficulty organising 

information in a manner that facilitates encoding and retrieval of new memories (Dikmen et 

al., 2009). Sustained attention can be affected when insult occurs to frontoparietal areas, 

meaning the patient may be unable to maintain consistent performance on tasks over time 

(Bonnelle et al., 2011). Planning is also poorer in TBI patients than in healthy adults, with 

TBI patients more likely to take unnecessary extra steps when working towards a goal (Shum 

et al., 2009).  

In particular, slowed processing speed is arguably one of the more persistent and 

influential cognitive complaints following TBI (Battistone et al., 2008). There is strong 

evidence for the relationship between moderate-severe TBI and slower performance on 

cognitive tasks (e.g., Madigan et al., 2000). Evidence suggests that slowed processing speed 

is not specific to one cognitive task, but a global slowing of the capacity for processing 

information and transmitting neural impulses (e.g., Ponsford & Kinsella, 1992), linked to 

diffuse axonal shearing and white matter damage. Furthermore, there is evidence that TBI 

patients can show the same accuracy as healthy counterparts on cognitive tasks when under 

no time constraint (e.g., Capruso & Levin, 1992); however, when asked to respond at a faster 

pace their accuracy decreases (Gronwall & Sampson, 1974). Battistone et al. (2008) found 

that TBI patients showed a slower rate of information accrual, as well as a hesitation to 

respond early. However, the exact mechanism of this slowed rate of information accrual is 

not well understood. 

1.1.5 Heterogeneity in the TBI population 

Studying TBI as a group is problematic as there is no ‘average’ TBI patient (Maas, 

2016). Patients with TBI are diverse, and several clinical and demographic factors (such as 
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severity, age, IQ, race, and time since injury) will impact patient outcome (Roozenbeek et al., 

2012). For example, longer PTA duration (severity) is widely acknowledged to be associated 

with more persistent and extensive cognitive impairment (Donders & Stout, 2019; Novack et 

al., 2001; Rapoport et al., 2002; Rassovsky et al., 2015). In the United States, people of 

colour are less likely to be referred for further care and therefore display worse outcomes 

following moderate-severe TBI, suggesting that race and ethnicity can impact cognitive 

outcome (Brenner et al., 2020). There is also a significant association between older 

age/longer PTA and larger lesion volumes, indicating that older age at injury can worsen the 

impact of TBI on the brain (Schönberger et al., 2009). In terms of cognitive recovery, higher 

IQ and younger age in moderate-severe TBI patients is associated with greater improvements 

in attention, memory, and executive function up to 5 years post injury (Fraser et al., 2019). 

Time since injury is an important factor to consider when comparing patients, as TBI is a 

continuing process involving a cascade of neurotoxic events and the full extent of the lesion 

may not be immediately apparent (Nortje & Menon, 2004).  

Lesion characteristics are another source of heterogeneity that is important to 

consider. Intuitively, there is evidence that larger frontal, parietal, and occipital lesion 

volumes are associated with poorer memory and processing speed impairment (Spitz, Bigler, 

et al., 2013). The location of the injury can also have a large impact on patient outcome. 

Focal frontal and temporal lesions are particularly common in TBI patients and are thought to 

cause a range of impairments in executive functioning, attention, memory, social cognition, 

and processing speed (e.g., Fujiwara et al., 2008; Levine et al., 2008; Spikman et al., 2012). 

However, white matter lesions located in the anterior thalamic radiation and superior 

longitudinal fasciculus have also been associated with poorer executive functioning in a 

lesion-symptom mapping study of brain injury (Biesbroek et al., 2017). The exact link 
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between lesion size and location and cognitive outcome in TBI remains unclear (Lipton et al., 

2008).  

Group-level analyses, which constitute most publications investigating TBI patients, 

involve averaging across patients. Often, patients are grouped according to severity (mild or 

moderate-severe), age (paediatric, adolescent, or adult), and injury type (penetrating, focal, 

diffuse). While large cohort studies are necessary for driving statistical comparisons between 

large scale groups, methods that do not assume an individual patient will fit neatly into a 

group-average estimation of TBI are also needed (Mant, 1999). Instead, case series and 

individual-level analyses may be used to formulate hypotheses about TBI patient recovery 

and cognitive functioning according to lesion characteristics (e.g., Jelcic et al., 2013). Case 

series are essential for trend analysis, health-care planning, and hypothesis generation 

(Grimes & Schulz, 2002). While no cause-effect inferences can be drawn from single-subject 

observations, they do provide a more holistic understanding of the patient and their outcome. 

Pathological profiling of individual cases based on advanced neuroimaging approaches may 

also help with clinical rehabilitation planning (Irimia, Wang, et al., 2012).  

 

1.1.6 Mapping cognitive functions following brain damage 

Localisation of function is the guiding principle of modern lesion studies – where 

cognitive symptoms are matched to specific sites of brain damage following a brain injury or 

insult (notably, Phineas Gage; Henry Molaison and work by Scoville and Milner in 1957; 

“The Man Who Mistook His Wife for a Hat” case study by Oliver Sacks). For instance, 

damage to the left posterior temporal lobe can cause a speech deficit characterised by fluent 

yet meaningless speech (i.e., Wernicke’s aphasia) – and similar damage in the left inferior 

frontal lobe produces an expressive aphasia where the patient can only utter a few words or 

phrases, despite retaining full cognitive faculties (i.e., Broca’s aphasia) (Binder, 2015; 
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Fridriksson et al., 2015). The pursuit of ‘mapping’ cognitive functions such as language, 

memory, even personality to distinct regions of the brain has been the basis of 

neuropsychological research for decades.  

However, it has recently become apparent that the profile of persistent cognitive 

impairments does not always match the location of a focal lesion following TBI (Lipton et 

al., 2008). This is because cognitive and motor functions use broadly distributed networks of 

brain regions to co-ordinate complex patterns of activity (Bressler & Menon, 2010). These 

networks are reliant on the density, myelination, and organisation of white matter pathways 

that connect grey matter areas. DAI can cause disconnection of the pathways between cortical 

and subcortical areas of the brain and may underlie the neurodisabilities following TBI 

(Adams et al., 1982; Kraus et al., 2007). As white matter damage increases so does the 

severity of cognitive and motor deficits (Kraus et al., 2007). As such, TBI is described as a 

disconnection syndrome (Catani & Ffytche, 2005; Griffa et al., 2013).  Therefore, while it is 

necessary to look at the location of a grey matter lesion when examining the symptoms of a 

TBI patient, it is not always sufficient. Based on the disconnection concept of TBI, it is 

essential to unpack how white matter damage impacts the brain network in brain injured 

patients.  

1.2 Neuroimaging  

 

1.2.1 Magnetic Resonance Imaging 

Magnetic Resonance Imaging (MRI) is a diagnostic medical imaging technique that 

leverages magnetic fields and radio frequency pulses to excite the protons of hydrogen atoms 

contained in water molecules. The hydrogen protons rotate on their own axes around a 

magnetic field (see Figure 3, panel 1). When they are placed in a homogenous magnetic field 
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such as in an MRI, their rotational axes align, and they begin to precess together (Figure 3, 

panel 2). A radio frequency pulse forces the precessing protons to flip transverse to their 

aligned position (Figure 3, panel 3). Once the pulse ends, the protons naturally return to 

alignment within the homogenous magnetic field – this is called the longitudinal relaxation 

time (T1; Figure 3, panel 4). When the gradient coils localise the magnetic field on the brain, 

protons in fatty tissue such as myelin relax much faster than protons in free water such as 

cerebral spinal fluid (CSF). The contrast between the longitudinal relaxation time in the CSF 

and trapped water of the fatty tissues provides images of the anatomy brain in vivo. 
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Figure 3 

Magnetisation and Relaxation of Hydrogen Protons in Magnetic Resonance Imaging 

Note: WM = white matter; GM = grey matter; CSF = cerebral spinal fluid.  

 

The current thesis examines the impact of moderate-severe TBI in adults who are 

experiencing ongoing cognitive impairments in the chronic phase of their injury. Of 

particular interest is the white matter of these individuals, which is often damaged following 

TBI. The imaging techniques clinically used to diagnose and manage TBI before diffusion 

imaging was made available 15 years ago (e.g., CT, T1-weighted MRI, FLAIR) were unable 
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to visualise the white matter in a quantifiable way. These traditional neuroimaging techniques 

are tailored to measuring contrasts in signal intensity between fat and water in the brain, 

essential in the diagnosis of focal lesions but insufficient for investigating microstructural 

axonal injuries. Instead, diffusion MRI (dMRI) enables examination of the microstructural 

properties of the white matter (Hulkower et al., 2013).  

 

1.2.2 Diffusion Weighted Magnetic Resonance Imaging  

Recently, dMRI has been used to investigate the microstructural properties and 

architecture of the white matter by characterising the direction of water molecule diffusion in 

the brain (see Figure 4). MRI is sensitive to the magnetic properties of the hydrogen protons 

contained within water molecules (section 1.2.1). According to the properties of Brownian 

motion, water molecules are constantly in motion due to thermal energies and will move 

isotropically – randomly and equally in any direction – if not restricted, such as in the 

cerebrospinal fluid. However, water molecules in the white matter can only move 

anisotropically (longitudinally along the axonal pathway) as the fatty cell walls and myelin 

sheaths of the axonal bundles hinder diffusion in other directions. Thus, the boundaries 

created by the axon bundles restrict the movement of water molecules in the white matter. 

Following injury, the barriers that maintain the direction of water flow can be broken, and the 

differences in water molecule diffusion can be used as evidence of white matter damage 

following TBI. 
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Figure 4.  

Diffusion Properties and Models of the White Matter and the Cerebral Spinal Fluid  

Note: (A) Diffusion is anisotropic in the white matter (i.e., movement is restricted along the white matter tract), 
but isotropic in the cerebral spinal fluid; (B) measurement of the primary direction of diffusion in the x, y, and z 
planes gives rise to; (C) models of brain tissue structure within a given voxel. 

 

The dMRI signal is the T2 signal, or the transverse decay time – the time taken for the 

hydrogen proton spin to return to the low energy state. This T2 signal attenuates differently 

depending on how easily water can diffuse in each tissue type. Thus, dMRI uses the 

properties of water diffusion by applying multiple gradient fields (at least 6, often up to 60) 

alongside the strong b0 magnetic field. Gradient fields are sensitive to the different directions 

of water movement, such that the water molecules that moved during one diffusion gradient 

will have a different magnetisation to those that did not move, forming an image contrast. 

These diffusion sensitising gradients can be applied in x, y, and z axes, or a combination of 

all – the more gradient directions are applied, the more contrast images are attained depicting 

differences in water movement in a particular direction. As water movement is hindered by 

the microstructural tissue geometries in the brain, these images can be used to provide 

information about the physical properties of the white matter bundles, including direction and 

magnitude (for a full description of the principles of diffusion MRI, see Jones, 2010b).  
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Once the diffusion-weighted signal is measured across the whole brain in multiple 

directions, a model can be used to estimate the primary direction and magnitude of water 

diffusion in each voxel (see Figure 5). There are different methods of doing this, including 

the diffusion tensor model (DTI) (for review, see Basser & Jones, 2002) and the fibre 

orientation distribution (FOD) model (Tournier et al., 2004), through the use of constrained 

spherical deconvolution (CSD). The tensor model simply characterises the diffusion-

weighted signal in each voxel using 6 parameters: three representing the magnitude of the 

diffusion, and three representing the direction. Geometrically, this portrays the diffusion 

signal in each voxel as an ellipsoid (Basser et al., 1994), with the longest axis of the tensor 

indicating the direction of the maximum diffusion and thus the primary fibre direction of that 

voxel.  

Figure 5.  

The Diffusion Tensor Model and Constrained Spherical Deconvolution 

 

Note: This cross-section was chosen to highlight the crossing of the corona radiata, superior longitudinal 
fasciculus, corpus callosum, and cingulum bundle.  

 

On the other hand, CSD (Tournier et al., 2007) allows the estimation of multiple fibre 

directions in one voxel, by measuring all fibre orientations and their respective uncertainty 

values within each voxel and representing this as an FOD. Given that 90% of voxels within 

the white matter contain crossing axonal projections (Jeurissen et al., 2013), the FOD model 
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is generally thought to be a more sensitive representation of white matter microstructure than 

the tensor model. It should be noted, other approaches have been proposed that are also 

capable of estimating multiple fibre directions in one voxel, including Q-ball imaging (Tuch, 

2004); diffusion spectrum imaging (DSI; Hsu et al., 2015); composite hindered and restricted 

model of diffusion (CHARMED; Assaf et al., 2004). However, these approaches are less 

feasible for clinical imaging as they require large and multiple b-values, leading to long scan 

times.  

Subsequently, there are divergent methods for analysing the dMRI signal. 

Traditionally diffusion metrics were calculated for each voxel and compared between 

subjects or groups in an area of interest (e.g., Caeyenberghs, Leemans, Geurts, et al., 2011), 

across the whole brain (e.g., Caeyenberghs et al., 2010), or using tractography approaches 

(e.g., Caeyenberghs, Leemans, Coxon, et al., 2011). These diffusion metrics are used to 

quantify the directionality of water movement as a proxy for measuring the integrity of the 

white matter within that voxel, or along a specific tract. The most common diffusion metrics 

are derived from the tensor model, including fractional anisotropy (FA), mean diffusivity 

(MD), axial diffusivity (AD), and radial diffusivity (RD) (Basser et al., 1994). FA represents 

the overall directional coherence of the water molecules within neuronal tissue. On the other 

hand, MD, AD, and RD can be used to represent the direction and magnitude of water 

diffusion more specifically – MD is the total diffusion within a voxel, regardless of the 

direction; AD measures diffusion along only the principal direction of diffusion; and RD is 

the average diffusion across the two minor axes.  

Metrics such as these are often interpreted as a direct measure of axonal integrity, 

with low FA thought to represent alterations in white matter that are consistent with DAI 

(Shenton et al., 2012). However, this is not without pitfalls and challenges (e.g., Jones, 

2010a; Jones & Cercignani, 2010; Le Bihan et al., 2006). FA values can change based on 
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myelination, axon density, or the layout of axons within the voxel (Jones et al., 2013). As 

such is it not a specific marker of any one property of the white matter (Caeyenberghs et al., 

2018; Jones et al., 2013). Increases in FA are sometimes observed when decreases would be 

expected (e.g., Bazarian et al., 2007; Mayer et al., 2010) – while this is hypothesised to be 

caused by cytotoxic oedema (Mayer et al., 2010), the true mechanism remains unclear. 

Recently, algorithms have been created that can estimate and reconstruct the white 

matter tracts of the brain using a technique called tractography. Unlike scalar metrics (e.g., 

voxel-wise FA), tractography is used to measure structural connectivity – how well regions of 

the brain are connected. Tractography uses the diffusion signal described above as the basis 

for an algorithm that reconstructs the white matter tracts, providing estimates of the axon 

pathway orientation and density in living brain tissue (Tournier et al., 2011). In other words, 

tractography is essentially a very complex game of connect-the-dots. The direction and 

magnitude of the tensor or FOD derived from the diffusion signal in each voxel is used by the 

tractography algorithm to generate streamlines. Of course, there are many algorithms 

available to choose from, and selection of the appropriate technique will depend on the 

acquisition parameters of the dMRI data (Jones et al., 2013). Numerous reviews and 

methodological comparisons have been published in this field, debating the appropriateness 

of each tractography technique from data acquisition through to statistical analyses (for 

example, Hutchinson et al., 2018). 

 

1.2.3 Tensors and tractography in TBI  

Diffusion imaging, whether analysed using voxel-wise metrics, region of interest, or 

whole brain tractography, has opened avenues for exploring the properties of the white matter 

in healthy and damaged brain tissue. There is mounting evidence supporting dMRI as a 
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sensitive diagnostic tool in the care of patients with TBI (for reviews, see Delouche et al., 

2016; Hulkower et al., 2013; Hutchinson et al., 2018; Levin et al., 2008; Xiong et al., 2014). 

The relevance of dMRI techniques in the care of patients with TBI has long been 

acknowledged (e.g., Kraus et al., 2007; Rutgers et al., 2008). The first study to examine TBI 

in humans using diffusion imaging was published 18 years ago (Arfanakis et al., 2002) – 

since then, there have been hundreds of publications examining regional and whole brain 

alterations in anisotropy in patients with brain injuries.  

In their seminal review, Hulkower et al. (2013) acknowledge the power of diffusion 

imaging for visualising white matter, which can quantify pathology not detected by other 

imaging modalities such as CT. They show that diffusion imaging can be leveraged to 

distinguish between TBI patients and healthy controls, regardless of time since injury, 

severity of injury, analytical or imaging discrepancies, and sampling characteristics. In 

particular, across the 100 articles included in the review, the most common regions where FA 

was significantly lower (or in some cases, higher) than healthy controls were the corpus 

callosum (e.g., Aoki & Inokuchi, 2016; Caeyenberghs et al., 2010; Mayer et al., 2010; Niogi 

et al., 2008) the posterior limb of the internal capsule (e.g., Caeyenberghs, Leemans, Coxon, 

et al., 2011), the frontal lobe (e.g., Oni et al., 2010), corona radiata (e.g., Bonnelle et al., 

2011), cingulum (e.g., Benson et al., 2007), superior longitudinal fasciculus (e.g., Farbota et 

al., 2012; Spitz, Maller, et al., 2013), and the centrum semiovale (e.g., Huisman et al., 2004; 

Inglese et al., 2005). 

Decreased white matter organization has also been shown to predict poorer outcomes 

in chronic TBI patients of all severity types (Kinnunen et al., 2011; Kraus et al., 2007), and in 

acute mild TBI patients with persistent symptoms (Niogi et al., 2008). Lower FA in the 

subregions of the corpus callosum is associated with poorer bimanual coordination 

(Caeyenberghs, Leemans, Coxon, et al., 2011) and with slower processing speed (e.g., Levin 
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et al., 2008; Wilde et al., 2006), while lower FA in the cerebellum is associated with poorer 

manual dexterity (Caeyenberghs, Leemans, Geurts, et al., 2011) in moderate-severe TBI 

patients. D’souza et al. (2015) found that reduced FA and MD in the corpus callosum, fornix, 

uncinate fasciculus and thalamic radiations are correlated with post-concussion symptom 

scores. Working memory deficits in children with TBI are associated with lower RD of the 

corpus callosum (Treble et al., 2013). Poorer visual motor tracking performance is associated 

with lower FA of tracts important for transmission of information for motor responses to 

visual stimuli, i.e., the cortico-spinal tract, posterior thalamic radiation, and optic radiation, in 

adolescents with TBI (Caeyenberghs et al., 2010). The list goes on – for reviews, see 

Delouche et al. (2016), Hulkower et al. (2013), Hutchinson et al. (2018), and Xiong et al. 

(2014). Importantly, the overwhelming majority of these studies have employed tensor-based 

metrics such as FA or have used tractography to look at tracts of interest.  

 

1.2.4 Advances in tractography 

It is well-known that tractography techniques suffer from several limitations and 

biases, impacting the reliability of findings (Jeurissen et al., 2013; Jones, 2010a). Both 

deterministic and probabilistic tractography algorithms are commonly used to reconstruct 

streamlines, and both have problems with accurately reconstructing voxels with crossing or 

kissing fibres (Jones et al., 2013). After all, tractography is not a direct replication of the 

anatomy of white matter pathways, but a reconstruction based on finite diffusion signals, 

voxel by voxel. Therefore, in order to obtain measures of structural connectivity that are 

robust and interpretable, reconstruction techniques that are as biologically accurate as 

possible must be used (Sporns et al., 2005). In the present research program, a state-of-the art 

diffusion MRI sequence and processing pipeline is employed to avoid biases that may result 
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in false pathways. Many of the studies described in section 1.2.3 that used tractography to 

examine white matter tracts in TBI patients were performed before these techniques became 

available. Three major avenues were explored in this thesis for improving the robustness of 

tractography: minimising false positives, generating streamlines from the grey-white matter 

boundary, and avoiding reconstruction biases.  

First, to minimise false positives by avoiding overestimation of the volume of white 

matter in voxels containing both signal types, a single-shell 3 tissue CSD model with fibre 

orientation distributions estimated in the grey matter, white matter, and CSF is used 

(Jeurissen et al., 2014). To the best of our knowledge, this will be one of the first projects 

using this new multi-tissue method of CSD to estimate white matter tracts in TBI patients. 

Second, when generating tracts, certain termination criteria are required that tell the algorithm 

to discontinue the streamline. However, Smith et al. (2012) showed that these criteria allowed 

streamlines to terminate in the white matter or CSF, which is anatomically implausible. This 

precipitated their development of Anatomically Constrained Tractography (ACT) to 

accurately determine where streamlines should be generated and terminated based on grey 

matter segmentation from structural T1 images. ACT has also been shown to reduce the 

number of biologically implausible streamlines by restricting streamline initiation and 

termination to the grey-white matter boundaries (e.g., Horbruegger et al., 2019).  

Finally, streamline density is often over-estimated in longer fibre pathways – referred 

to as the reconstruction bias. According to Jones et al. (2013), the density of the streamlines 

that are reconstructed are not equivalent to the density of the actual fibre pathways. The 

number of streamlines is an important measure often used to quantify the strength of the 

connection between any two regions of the brain – however, if the tractography is biased 

towards longer streamlines, this measure may not be reliable. To use a measure of streamline 
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density as a proxy for white matter organisation, it is important to use the most biologically 

accurate measure.  

Using the FOD amplitude representing the density of fibres in each voxel, the 

advanced tractography reconstruction technique ‘SIFT’ (Spherical-deconvolution Informed 

Filtering of Tractograms) provides a more accurate representation of streamline count (Smith 

et al., 2013, 2015b; Yeh et al., 2016). SIFT filters the density of the streamlines to match the 

density implied by the FOD from the diffusion signal, by deleting streamlines. However, this 

has the unwanted effect of increasing the computation time, as ~90% of the reconstructed 

streamlines must be discarded. SIFT2 was designed shortly after in response to this concern 

(Smith et al., 2015a). Instead of eliminating streamlines to match the underlying fibre density, 

the FODs are used to determine an appropriate cross-sectional area that is then multiplied by 

the number of streamlines. The resulting streamlines are therefore proportionate to the 

density of the underlying FODs without the need for wasteful deletion processes – and 

therefore should be a closer estimation of the actual underlying white matter density (Smith, 

Raffelt, et al., 2020). Because it is more related to the actual diffusion signal than unfiltered 

structural connectivity measures, using SIFT2 has been shown to have the potential for 

stronger clinical relationships (McColgan et al., 2018), but has not yet been utilised to 

quantify structural connectivity in TBI patients.  

1.3 Connectomics and Network Analysis 

 

1.3.1 Introduction to connectomics 

It is widely acknowledged that cognitive functions rely on broadly distributed 

cognitive networks, and so tract-based approaches such as those described in sections 1.2.2 

and 1.2.3 may form an incomplete perspective of brain connectivity. Rather, the brain 
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operates as a set of interconnected networks in complex arrangements, disseminating 

information across distributed areas (Bressler & Menon, 2010). Connectome analyses have 

provided a novel way to understand communication in brain networks (Bassett & Sporns, 

2017). The connectome is the entire collection of all white matter connections within the 

brain (Sporns et al., 2005) (see Figure 6 for an overview of connectome construction). Based 

on the disconnection concept of TBI, network analysis is highly suited to this topic as it can 

be used to consider the complex, integrated nature of the brain and the impact of both large 

focal lesions and small white matter lesions. 

 
Figure 6 

The Basics of Connectome Construction 

 

Note: (A) Raw diffusion MRI images are pre-processed to remove noise; (B) FODs are estimated for each voxel; 
(C) tractography is performed to generate the streamlines (edges); (D) anatomical T1 scans are used to segment 
brain regions (nodes); (E) the connectome is created by assigning the streamlines from tractography to the brain 
regions from Freesurfer, resulting in; (F) a connectivity matrix where each cell represents the connectivity strength 
between two brain regions.  

 

To generate the structural connectome, the brain is mathematically described as a 

series of ‘nodes’ or regions of grey matter, connected by ‘edges’ that represent the white 

matter connections (Hagmann et al., 2008). The nodes of the graph are delineated from 
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structural T1 images and segmented using ‘atlases’ that describe functionally specialised 

modules of grey matter tissue (e.g., Desikan-Killiany atlas; Desikan et al., 2006). The edges 

are the connections between these brain regions, quantified using either functional (fMRI) or 

tractography (see section 1.2.4). It is important to note that functional and structural imaging 

modalities summarise brain networks differently. In simple terms, the functional network 

summarises how likely two regions of the brain are to be active at the same time; the 

correlations between blood-oxygen-level-dependent (BOLD) signals of two regions indicate 

the likelihood that if one region is active then the other is as well. On the other hand, the 

structural network is an estimation of the microstructural properties of the white matter fibre 

bundles connecting two brain regions. Given white matter damage is a key element of TBI 

(Hulkower et al., 2013), and the questions that remain around whether DAI is an underlying 

cause of ongoing cognitive deficits in chronic patients, the focus of this thesis is on structural 

connectivity (dMRI). However, it should be noted that functional connectivity (fMRI) is 

another (enormous) field entirely and has its own relationship with brain injury. The link 

between the structural connectivity findings of this thesis and how these may relate to 

relevant functional theories is examined in the General Discussion (Chapter 6).   

For the purposes of investigating structural connectivity, nodes and edges can be 

defined in different ways depending on the scale at which one wishes to analyse the network 

(Zalesky et al., 2010). A macroscopic view is normally preferred when studying the human 

connectome in vivo, where nodes are the major cortical and subcortical regions of the brain 

and the edges represent the white matter bundles that connect them (Bassett & Bullmore, 

2009). The simplest way to define edges is using a binary measure of streamline connectivity 

(connection present = 1; connection absent = 0), which avoids problems with diverse 

streamline densities. In cases such as this, a certain threshold is applied to the connectivity 

matrix such that only the top 10% (or so) strongest connections remain. As such, binary 
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connectomes are oversimplified and are dependent on arbitrary density thresholds (Yeh et al., 

2020). Instead, it is argued that the weight of the connection between two regions is 

important to factor in brain network representation. While dMRI cannot provide exact 

measures of the microstructural vasculature that underly information transmission (e.g., axon 

diameter, myelination, or density), it does allow indirect approximations of these biophysical 

properties (for review, see Sotiropoulos & Zalesky, 2019). 

As such, the edges of the brain graph are often represented using weights derived 

from the tractography techniques and diffusion metrics described above (section 1.2.2). Most 

often, the number of streamlines (NOS) – the number of reconstructed streamlines between 

two regions – is used to quantify connectivity between two brain regions. NOS, however, is 

not an indication of the actual number of axons within that bundle, although it can be 

misinterpreted as such (Lazaridou et al., 2013; Schlaug et al., 2009). Instead, NOS can be 

heavily biased by processing of the tractography algorithms as described in section 1.2.4 

(also see Jones & Cercignani, 2010), and it is therefore hard to make biologically meaningful 

interpretations following a change in NOS. Another common method of quantifying edge 

weights in a connectome analysis is using the average FA of all voxels traversed by a 

particular streamline. Again, as described above, FA is a measure of white matter 

organisation that is not specific to any one type of microstructural alteration and is heavily 

influenced by the presence of crossing fibres (Jeurissen et al., 2013). The utility of the 

advanced methods detailed in section 1.2.4 such as SIFT2 to quantify the edge weights in a 

connectome analysis has only just begun to be explored (Civier et al., 2019; Frigo et al., 

2020). 
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1.3.2 Graph theoretical analysis 

In modern-day neuroimaging, graph theoretical analysis is a mathematical tool used 

for summarising network properties of the human connectome. However, graph theory itself 

emerged in 1735, when the Swiss mathematician Leonard Euler answered the question of 

whether it was possible to completely traverse his hometown with seven bridges and four 

land masses using each bridge only once. To solve this geographical problem, Euler 

summarised the information into nodes (landmasses) and edges (bridges) and proved that it 

was not possible. In this instance, the topography (spatial distances between landmasses) was 

unimportant – it was the topology (the layout of the bridges that connected each landmass) 

that allowed Euler to solve the riddle. Since then, graph analysis has become a branch of 

mathematics devoted to describing and quantifying network structures by their topology. In 

the modern world, graph theory is used extensively to understand network properties in social 

sciences, epidemiology, website page rankings and data tracking. In the 1980’s, graph theory 

was first applied to the study of the human brain (Watts & Strogatz, 1998). 

The connectivity matrix (see Figure 6) represents the entire set of nodes and edges of 

the brain in a two-dimensional format, upon which mathematical applications can be 

performed. Each of the axes of the connectivity matrix represents the brain regions, while the 

squares of the matrix represent the connections between those regions. Matrix operations can 

be used to summarise connectivity strength between brain regions in terms of integration and 

segregation, or how central certain nodes are to the graph (Rubinov & Sporns, 2010). These 

summary measures are called graph metrics – Table 2 provides working definitions of the 

most common graph metrics, which are built from four basic matrix properties. These are 

degree (the number of connections for node i), strength (the sum of edge weights for node i), 

shortest path length (the shortest distance or fewest hops between node i and j), and clustering 
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coefficient (the probability that two nodes i and j each connected to a third node k are also 

connected to each other).   

 
Table 2 

Definitions of Basic Graph Metrics  

Graph Metric Description Higher values mean… 

Integration 

Characteristic Path 
Length 

The shortest path is the fastest and 
most direct communication pathway 
between two network nodes. 
Characteristic path length is defined as 
the average shortest path length 
between all node pairs in a network 
(Watts & Strogatz, 1998). 
 

A higher characteristic path length 
indicates that the fastest 
communication pathways between 
regions are, on average, longer and 
less efficient. 

Global Efficiency The inverse average shortest path 
efficiency between all possible pairs 
of nodes in a network, where 
efficiency is computed as the inverse 
of shortest the path length (Latora & 
Marchiori, 2001).  
 

A higher global efficiency will 
indicate a greater capacity for efficient 
integration of information (in parallel) 
across the network. 

Segregation 

Clustering Coefficient The number of existing connections 
between the neighbours of a node, 
divided by all the possible 
connections, calculated for each node 
individually and averaged across the 
entire network (Watts & Strogatz, 
1998). 
 

A higher average clustering 
coefficient means that a greater 
proportion of connections are made 
between nodes neighbours, compared 
to the connections possible, and 
indicates more clustered connectivity 
around individual nodes. 

Local Efficiency The local efficiency is the average of 
inverse shortest path length in a local 
area. Mean local efficiency is taken as 
the efficiency of each node in the 
network averaged over the total 
number of nodes (Latora & Marchiori, 
2001).  
 

A higher local efficiency means 
greater capacity for integration 
between the immediate neighbours of 
a given node.  

Centrality 
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Graph Metric Description Higher values mean… 

Strength The strength of a node is the sum of 
the weights of its edges. Mean 
strength is the average of all the 
normalised strength values across 
each node of the network. 

A higher strength indicates a greater 
average edge weight for each node. 

Betweenness Centrality The proportion of shortest paths that 
pass-through node i between its 
neighboring nodes, calculated for each 
node and averaged across the network 
(Freeman, 1978).  

Higher betweenness centrality means 
that node lies on more shortest paths 
in the network pass through it, and 
this that node is more central and 
important to the network. A high 
network/average betweenness 
centrality indicates a high number of 
nodes that are central to shortest 
paths.  

Summary Measures 

Small-worldness The capacity of a network for an 
energy-efficient balance between 
clustering and short paths, relative to 
an appropriate random network (e.g., 
Maslov & Sneppen, 2002). A small-
world network has normalised 
clustering higher than a random 
network (γ > 1), and normalised 
characteristic path length akin to a 
random network (λ ~ 1) (Humphreys 
& Gurney, 2008).  

If σ > 1, the network is demonstrating 
small-world properties. 

 
The connections in the human brain are predominantly short and weak, connecting 

proximal neighbours very tightly. This means that information can be shared very easily 

between neuronal columns that share similar functions. However, higher order cognition 

relies on signalling between broadly distributed regions to engage attention and execute 

complex actions (Bressler & Menon, 2010). Therefore, the human brain, both functionally 

and structurally, optimises performance by balancing functional segregation and network 

integration (Bullmore & Sporns, 2009).  

Measures of integration are based on path length (e.g., characteristic path length and 

global efficiency) and are also known as communication measures, as they represent how 
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well brain regions can communicate with each other. Segregation is based on clustering and 

measures the decomposition of brain regions into functional modules. This modular structure 

is interspersed with some long-distance connections, via ‘hubs’ such as the thalamus and 

cingulate regions, allowing for information to integrate between modules (Watts & Strogatz, 

1998). Hubs are measured using betweenness centrality, which determines the number of 

‘shortest paths’ that traverse each brain region. This balance between segregation and 

integration, and the presence of hubs, is what is thought to give rise to higher order cognitive 

functions – and what is potentially damaged following brain injury.  

 

1.3.3 Graph metrics and cognition  

It is often assumed that higher order cognitive functions rely on efficient integration 

properties of the structural network (Bullmore & Sporns, 2012). As such, communication 

measures have been suggested to be important measures in graph theoretical analyses 

(Rubinov & Sporns, 2010). Several graph theoretical studies have revealed that 

communication efficiency can predict individual variation in processing speed in older adults 

(e.g., Wen et al., 2011) and clinical populations (e.g., Caeyenberghs et al., 2014; Reijmer, 

Leemans, Caeyenberghs, et al., 2013). For example, Caeyenberghs et al. (2014) revealed that 

slower processing speeds corresponded with lower global efficiency in adults with TBI. 

While these early results are promising, advances in the way we measure brain network 

communication, process diffusion weighted imaging data, and model information processing 

could lend further weight to the link between network efficiency and information processing 

speed. 

Most connectome studies have computed communication metrics based on shortest 

path length – including characteristic path length and global efficiency (based on the seminal 
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article by Rubinov & Sporns, 2010) – to tap into information transfer (for review, see Betzel, 

2020). A network with short path lengths is often interpreted as having efficient information 

transfer between brain regions (Latora & Marchiori, 2001). Similarly, longer path lengths in 

brain networks of brain-injured populations are interpreted in terms of poorer efficiency of 

information transfer (Imms et al., 2019). However, several connectome studies failed to show 

significant associations between processing speed and communication metrics (e.g., Kim et 

al., 2014a; van der Horn et al., 2017). For example, Kim et al. (2014a) found that path length 

was longer in people who had suffered brain injuries – but this increase wasn’t associated 

with slower processing speed. The reason for this may lie in the sensitivity of the 

communication metrics used. Recently, a more biologically realistic routing model for brain 

network communication has been suggested, i.e., navigation efficiency (Seguin et al., 2018). 

Navigation metrics assume that information moves from one node to the next based on the 

distance between that node and the target node – and have been shown to be a plausible way 

of characterising communication in the human brain network (Seguin et al., 2020). The 

relationship between this communication measure and processing speed has yet to be 

examined. Furthermore, this communication measure has never been calculated in TBI 

patients.  

 

1.3.4 Graph metrics: A biomarker of brain injury? 

Graph theoretical analysis has previously been used to compare the connectivity of 

damaged brain networks to healthy connectomes (Griffa et al., 2013), but understanding of 

the brain network of patients with TBI is still emerging (Caeyenberghs & Leemans, 2014; 

Caeyenberghs, Leemans, De Decker, et al., 2012; Caeyenberghs, Leemans, Heitger, et al., 

2012; Yuan, Treble-Barna, et al., 2017). In their seminal review paper, Griffa et al. (2013) 

describe how graph metrics can be used to represent network disruption in ADHD (Cao et al., 
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2013), neurodegenerative diseases like Alzheimer’s disease (Lo et al., 2010) and multiple 

sclerosis (Shu et al., 2011), and psychiatric disorders such as schizophrenia (Fornito et al., 

2012). Griffa et al. state that graph theory provides a unique insight into how damaged neural 

tissue in one local area of the brain can impact the entire network structure – and that graph 

metrics therefore have the potential to be useful biomarkers of brain injury.  

In one of the first structural graph theory studies of TBI, Caeyenberghs, Leemans, De 

Decker, et al. (2012) revealed that young TBI patients have decreased connectivity degree 

within the brain, which correlated significantly with poor balance. Similarly, Kim et al. 

(2014a) found that longer path length in moderate-severe adults with TBI correlated with 

poorer higher-order cognitive processes like executive function and verbal learning. Since 

then, more research has suggested that graph metrics could be ‘biomarkers’ of TBI (Hellyer 

et al., 2015; Yuan et al., 2015; Yuan, Wade, et al., 2017). In TBI, to date, 18 studies have 

been performed comparing graph metrics in TBI patients to healthy controls. The first 

empirical chapter of this thesis is a systematic literature review and meta-analysis of 13 of 

these studies (the remaining 5 studies published after this paper was accepted in January 2019 

are described in linking Chapter 5.1).  

 

1.3.5 Use of graph metrics in individual patients 

TBI patients are heterogeneous (see section 1.1.5) and group-level comparisons 

disregard individual variability (Mant, 1999). Thus, there is a mounting call for the use of 

individual-level approaches to enable the analysis of clinically heterogeneous groups such as 

TBI (Irimia, Chambers, et al., 2012; Jolly et al., 2021) and Schizophrenia (Lv et al., 2020). 

For example, Lv et al. (2020) examined alterations in FA and CT in Schizophrenia patients 

compared to a normative range. They found overall reductions in both measures for the 
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Schizophrenia patients – however, the anatomical location of individual decreases was highly 

inconsistent, and as such group-level maps were not representative of individuals. Another 

study by Jolly et al. (2021) has used individual examination of FA in TBI patients in the 

chronic (>6 months) and subacute (10 days – 6weeks) phases to develop a structural 

connectivity pipeline for diagnosing diffuse axonal injury (DAI). These recent studies, 

however, do not utilise connectomics to represent individual patients.  

The idea of personalised structural connectomics for improving the care of TBI 

patients was introduced by Irimia, Wang, et al. (2012). They produced a visualisation method 

that allows clinicians to rapidly identify white matter atrophy over time, in order to create 

personalised rehabilitation programs (Irimia, Chambers, et al., 2012). There is other evidence 

that individual network- and connectivity-based profiles are promising for patient 

characterisation. For example, individual measures of connectivity (dynamic resting-state of 

the default mode network) predict changes in symptoms in patients with Schizophrenia better 

than grey matter volume/cortical thickness and clinical observations (Kottaram et al., 2020); 

and individual variations in connectome topography have been shown to predict surgical 

outcome in patients with temporal lobe epilepsy (Bonilha et al., 2015). Thus, personalised 

connectomics holds promise as a means for characterising individual patients’ topological 

profiles. To date, however, no study has examined the profile of graph metric alterations in 

individual TBI patients.  

1.4 Aims and Research Questions 

 
The overarching aim of this research program is to interrogate the use of graph 

metrics to study TBI. While there is great interest in the use of graph metrics as a diagnostic 

‘biomarker’ of TBI, there is currently no systematic examination of which graph metric/s are 

specific enough to be given this label (section 1.3.4). In addition, the relationship between 
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graph metrics and measures of cognitive performance is not well understood (section 1.3.3), 

making interpretation of graph metric biomarkers difficult. Finally, the issue of heterogeneity 

in the TBI population (section 1.2.5) is not addressed by current group-level graph theoretical 

approaches. Therefore, this research project constitutes a substantive critical assessment of 

the use of graph metrics as biomarkers of TBI.  

The first aim of this research program is therefore to systematically evaluate the 

current status of structural graph analysis findings in TBI patients. In the first empirical study 

(Study 1), a narrative review of diffusion MRI papers comparing healthy controls using 

global graph metrics – and the first meta-analysis of graph metrics in TBI – is conducted. The 

aim is to identify whether there are systematic differences in graph metric findings between 

TBI subtypes, and to provide a framework for hypotheses in future graph theoretical studies, 

which is currently lacking. The research questions were: 

 

1. Which graph metrics are consistently different between TBI patients and 

healthy controls across all the currently available literature? 

2. Do alterations in graph metrics vary according to time since injury; severity of 

injury; and age at injury?   

3. What are the major methodological challenges associated with investigating 

graph metrics in TBI patients?   

 

The second aim of this research program is to examine whether graph metrics are 

related to measures of cognition. The findings of the meta-analysis were used to decide which 

graph metric to focus on. The second empirical study (Study 2) therefore investigates how 

inter-individual differences in processing speed relates to communication metrics – i.e., 

characteristic path length, navigation, and global efficiency. This analysis is performed in a 
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healthy cohort, as a proof-of-concept for future studies. This study also demonstrates the 

methodology used to overcome the connectome reconstruction challenges raised in the first 

empirical study and in section 1.2.4; and a more specific measure of processing speed called 

drift rate. The research questions were: 

 

1. Can communication metrics be used as a biological marker of inter-individual 

variability in processing speed? 

2. Which communication metrics are the most specific to processing speed? 

 

Finally, the third aim is to develop and implement a personalised structural 

connectome analysis and visualisation approach for a case-series of moderate-severe TBI 

patients. Thus, the third empirical study (Study 3) provides a demonstration of how graph 

metric biomarkers might be used in the care and treatment of heterogeneous TBI patients. 

This includes a profile of graph metrics that are shown to be altered in TBI patients compared 

to healthy controls from Study 1, including a new graph metric navigation efficiency which is 

emerging as a more biologically grounded representation of global network communication 

in Study 2. An extensive cognitive testing battery is also employed, including measures of 

core cognitive domains affected following TBI: processing speed, attention, and working 

memory (section 1.1.4; Rabinowitz & Levin, 2014). Finally, the advanced connectome 

construction pipeline from Study 2 is once again used to overcome known limitations of 

connectome reconstruction in TBI patients (section 1.2.4). The research questions were: 

 

1. How can visual comparisons between TBI patients and healthy controls be 

facilitated using graph metrics? 
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2. What observations can be made regarding the variability in graph metrics and 

cognitive performance across individuals? 

3. Do personalised connectomics have a role in the care and treatment of TBI 

patients – i.e., is using graph metrics as biomarkers of brain injury feasible? 

 

The following three empirical chapters address each of these aims in turn. The first 

empirical chapter (Study 1) consists of a literature review and meta-analysis of all available 

TBI studies that use graph metrics to compare patients to healthy controls. This study 

investigates which graph metrics are consistently different between TBI patients and healthy 

controls, how these alterations change according to injury factors, and the methodological 

challenges that remain to improve connectome construction (Aim 1, Research Questions 1, 2, 

and 3).   
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Chapter 2:  Study 1 - The structural connectome in Traumatic Brain 

Injury: A meta-analysis of graph metrics 
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2.1.2 Abstract 

Although recent structural connectivity studies of traumatic brain injury (TBI) have used 

graph theory to evaluate alterations in global integration and functional segregation, pooled 

analysis is needed to examine the robust patterns of change in graph metrics across studies. 

Following a systematic search, 15 studies met the inclusion criteria for review. Of these, ten 

studies were included in a random-effects meta-analysis of global graph metrics, and subgroup 

analyses examined the confounding effects of severity and time since injury. The meta-analysis 

revealed significantly higher values of normalised clustering coefficient (g=1.445, CI=[0.512, 

2.378], p=0.002) and longer characteristic path length (g=0.514, CI=[0.190, 0.838], p=0.002) in 

TBI patients compared with healthy controls. Our findings suggest that the TBI structural 

network has shifted away from the balanced small-world network towards a regular lattice. 

Therefore, these graph metrics may be useful markers of neurocognitive dysfunction in TBI. We 

conclude that the pattern of change revealed by our analysis should be used to guide hypothesis-

driven research into the role of graph metrics as diagnostic and prognostic biomarkers.  
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2.1.3 Introduction 

Traumatic Brain Injury (TBI) is one of the leading causes of death and disability in young 

people, affecting 10 million people worldwide every year (Humphreys et al., 2013; Hyder et al., 

2007). The severity of a brain injury is typically described as mild, moderate, or severe, based on 

time spent unconscious and/or coma rating score, the duration of post-traumatic amnesia, and 

neuroimaging results. Cognitive deficits (e.g., slow processing speed and poor concentration), 

motor control deficits (e.g., poor manual dexterity, balance deficits), and behavioural problems 

(e.g., impulsivity) are particularly common (Rabinowitz & Levin, 2014; Rossi & Sullivan, 1996). 

Approximately 15-30% of mild TBI cases (Shenton et al., 2012) and up to 65% of moderate-

severe cases (Rabinowitz & Levin, 2014; Selassie et al., 2008) report long-term problems. These 

persistent deficits cause disability and interfere with a patient’s ability to perform day-to-day 

tasks, for example getting dressed, planning ahead, and preparing food (Rabinowitz & Levin, 

2014). Isolating neurological biomarkers holds promise as a means to identify which patients are 

at risk of long-term disability, which has implications for patient management and development 

of economically sustainable treatment options.   

There is mounting evidence supporting diffusion MRI as a sensitive diagnostic tool in the 

care of patients with TBI (for reviews, see Delouche et al., 2016; Hulkower et al., 2013; 

Hutchinson et al., 2018; Xiong et al., 2014). First, changes in white matter organisation 

following TBI have been demonstrated in several important fibre bundles of the brain (Bendlin et 

al., 2008), including the superior longitudinal fasciculus (e.g., Farbota et al., 2012; Spitz, Maller, 

et al., 2013) and the corpus callosum (e.g., Levin et al., 2008; Mayer et al., 2010; Rutgers et al., 

2008). For example, in a meta-analysis of 13 diffusion studies of TBI, significant increases in 



 

49 

 

fractional anisotropy (FA) and decreases in mean diffusivity (MD) were found in the posterior 

parts of the corpus callosum (Aoki & Inokuchi, 2016).  

Second, decreased white matter organization has been shown to predict poorer outcome 

in chronic TBI patients of all severity types (Kinnunen et al., 2011; Kraus et al., 2007), and in 

acute mild TBI patients with persistent symptoms (Niogi et al., 2008). Lower FA in the 

subregions of the corpus callosum has been associated with poorer bimanual coordination 

(Caeyenberghs, Leemans, Coxon, et al., 2011) and slower processing speed (e.g., Levin et al., 

2008; Wilde et al., 2006) in moderate-severe TBI patients. Similarly, lower FA in the cerebellum 

has been associated with poorer manual dexterity (Caeyenberghs, Leemans, Geurts, et al., 2011). 

Despite multiple reports of altered diffusion metrics, the regional analyses reported in these 

studies cannot identify how whole brain networks are affected by white matter damage following 

TBI.  

Because TBI may be considered a ‘disconnection syndrome’, where symptoms are 

accounted for by altered connectivity between regions of the brain, it is important to take global 

network disruption into account (Catani & Ffytche, 2005; Griffa et al., 2013). Where traditional 

diffusion approaches such as those outlined above examine isolated brain regions, graph 

theoretical analysis (GTA) can characterise the global structure of the brain network (or 

‘connectome’; Bullmore & Bassett, 2011; Hagmann et al., 2008; Sporns, 2013). Structural GTA 

represents the brain as a set of ‘edges’ (white matter pathways) that pass between ‘nodes’ (brain 

regions), using the reconstruction of white matter tracts as weights. This graph is then used to 

calculate graph metrics, which estimate network properties such as global integration and 

functional segregation (see Supplementary Material 1 for definitions, interpretations, and 

calculations for the graph metrics included in this review).  
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Connectome analyses have rapidly found applications in the clinical neurosciences 

because the balance between integration and segregation necessary to support complex function 

may be affected by disease or injury. In their seminal review, Griffa et al. (2013) propose that 

graph metrics show promise as biomarkers in neurodevelopmental disorders such as ADHD 

(e.g., Cao et al., 2013), neurodegenerative diseases like Alzheimer’s disease (e.g., Lo et al., 

2010), and psychiatric disorders such as schizophrenia (e.g., Fornito et al., 2012). In one of the 

first structural GTA studies of TBI, Caeyenberghs, Leemans, De Decker, et al. (2012) have 

revealed that young TBI patients have decreased connectivity degree within the brain, which 

correlated significantly with poor balance. Similarly, Kim et al. (2014a) found that longer path 

length in adults with moderate-severe TBI correlated with poorer higher-order cognitive 

processes like executive function and verbal learning. Since then, more research has suggested 

that graph metrics could be ‘biomarkers’ of TBI (e.g., Hellyer et al., 2015; Yuan et al., 2015; 

Yuan, Wade, et al., 2017). 

With recent growth in the use of structural GTA in all types of TBI, there is a need to 

conduct a meta-analytical review to probe consistent patterns of change in graph metrics to see 

which hold promise as biomarkers. In the study presented here, we conduct a narrative review of 

diffusion MRI papers comparing healthy controls (HCs) using GTA, and the first meta-analysis 

to date of graph metrics in TBI. Heterogeneity in patient samples is addressed using subgroup 

analyses. This divides up an already small body of research, and as such the results are for 

hypothesis generation only. It was also our aim to draw inferences from this data about how 

graph metrics might be used as biomarkers in TBI, and to provide a framework for hypotheses in 

future GTA studies.  
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2.1.4 Method 

2.1.4.1 Search and Selection Strategy 

A systematic literature search was conducted using Medline, CINAHL, PsycINFO, and 

Web of Science for all relevant articles published from 1999 until the last search date (4th of 

April 2018; see Figure 1 for PRISMA diagram). The search terms were [((TI OR AB) “traumatic 

brain injur*” OR TBI)) AND ((TI OR AB) connectom* OR “structural connect*” OR “graph 

theor*” OR “graph metric*” OR “graph analys*” OR “network analys*”)] (see Supplementary 

Material 2 for Mesh headings).  

Abstracts and titles of 247 unique papers were returned from this search. The reference 

lists of review papers were searched for additional studies (but none were found). After 

screening titles and abstracts, we excluded studies of functional MRI, electro-encephalography 

(EEG) or magnetoencephalography (MEG), animal models of TBI, and other causes of acquired 

brain injury (such as brain tumours or stroke). Also excluded were studies that did not employ a 

network analysis (for example, tract-based comparisons of FA), any publications that were not 

peer-reviewed (e.g., conference abstracts), and review papers.  
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Figure 1.  
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The remaining 26 articles were examined in full to assess eligibility. Studies that did not 

compare the structural connectomes between TBI patients and HCs, or that did not calculate 

graph metrics or run network-based statistics (NBS) were excluded, leaving 15 studies for 

inclusion in the narrative review. Of these, ten studies were included in the meta-analysis, 

addressing global graph metrics that directly compared the structural connectomes of TBI 

patients and HCs. The five studies not included in the meta-analysis were Fagerholm et al. 

(2015) and Mitra et al. (2016), both of which applied machine learning techniques; Dall'Acqua et 

al. (2016)which employed Network Based Statistics (NBS) for the group comparisons; and 

finally Solmaz et al. (2017) and Caeyenberghs et al. (2013), who only investigated group 

differences in regional graph metrics.  

2.1.4.2 Quality Assessment 

Two authors (PI, AC) assessed the methodological quality of each study independently, 

using a quality checklist for diffusion MRI studies adapted from Strakowski et al. (2000). This 

checklist has been used to measure methodological quality of papers in previous meta-analyses 

on schizophrenia (e.g., Baiano et al., 2007; Shepherd et al., 2012), major depressive disorder 

(e.g., Jiang et al., 2017), and bipolar disorder (Strakowski et al., 2000). As shown in 

Supplementary Material 3, the checklist included three categories: (i) subjects (items 1-4); (ii) 

image acquisition methodology and analysis (items 5-10); and (iii) results and conclusions (items 

11-13). For each item, scores of 1, 0.5, and 0 were assigned (1 = criteria fully met; 0.5 = criteria 

partially met; 0 = not met). Total scores vary from 0 to 13. Currently, there are no established 

cut-off scores for high- and low-quality studies using this tool, however, it was decided by the 

research team that any study with less than half the total score would be excluded from the 
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analysis for poor methodological quality. Disagreements between reviewers were resolved by a 

third review from the senior author (KC). 

2.1.4.3 Data Extraction for Quantitative Synthesis 

Global graph metrics estimating global integration (global efficiency, normalised path 

length, and characteristic path length); functional segregation (normalised clustering coefficient, 

transitivity, mean local efficiency, modularity); centrality, resilience (betweenness centrality, 

small-worldness, assortativity); and basic measures (degree, density, and strength) were 

extracted across studies (see Supplementary Material 1 for comprehensive definitions of these 

graph metrics). To calculate effect sizes, means and standard deviations were extracted from 

published articles, supplementary materials, or via email correspondence with the authors 

(Caeyenberghs et al., 2014; Kim et al., 2014a; van der Horn et al., 2017). In one study, p-values 

and t-scores were used to estimate the effect size (Hellyer et al., 2015). For longitudinal GTA 

studies (Yuan, Treble-Barna, et al., 2017; Yuan, Wade, et al., 2017), only the baseline (‘pre-

training’) comparisons between TBI and HCs were included. Two papers reported TBI 

connectivity data in separate subgroups, one according to severity level (Königs et al., 2017), and 

the other by post-traumatic complaints (van der Horn et al., 2017). The latter provided pooled 

data for the purpose of the overall synthesis via email. For Königs et al. (2017) the averages 

across the TBI group were pooled for the global synthesis in Microsoft Excel (using calculations 

included in Supplementary Material 4). Graph metrics that were calculated at the local or nodal 

level were excluded (i.e., local efficiency, eigenvector centrality, and betweenness centrality of 

singular nodes not averaged across the network) to constrain the scope of the analysis to 

network-level dysfunction. 
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2.1.4.4 Data Analysis for Quantitative Synthesis 

Hedge’s g, the standardised mean difference score between groups, was calculated for 

each outcome variable (i.e., graph metric) using the Comprehensive Meta-Analysis software, and 

analysed using a random-effects model (CMA; Biostat, USA, v2.2.064). In basic terms, a 

separate meta-analysis for each graph metric was run, as each metric should be treated as a 

separate outcome measure. To calculate the overall effect sizes, mean effects of each metric were 

pooled across studies and weighted by sample size and the 95% confidence intervals (CI). A 

positive effect size indicated that the TBI group had a higher mean value of the graph metric 

compared with the HC group, while a negative value indicated higher mean values in the HC 

group. Effect sizes were regarded as small if g ≥0.2, medium if g ≥0.5 and large if g ≥0.8 (Cohen, 

1988). Also, subgroup analyses on graph metrics were conducted for injury severity (mild, 

moderate-severe), chronicity (time since injury) (acute: <6 months post injury; chronic: >6 

months post injury), and age at injury (paediatric: <18 years old; adult: 18-65 years old).  The 

results of our meta-analysis should be considered as hypothesis generation only, as suggested by 

the Cochrane guidelines when the number of studies in the analysis is low (Sambunjak et al., 

2017).  

The I2 statistic was used to index heterogeneity in the data, i.e., the percentage of 

observed variability that is greater than what would be expected by chance or sampling error 

alone. High scores (I2 >75%) suggest heterogeneity due to differences in sample demographics 

(Higgins et al., 2003). Low I2 scores (I2 <50%) represent homogenous data, supporting a real 

effect between HC and TBI groups. Publication bias was assessed using Egger’s test for 

asymmetry in a funnel plot (Egger et al., 1997).  
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Finally, false discovery rate (FDR) correction (p<0.002) was conducted for all analyses 

in accordance with recommendations by Wang and Ware (2013). Interdependencies between 

outcomes were accounted for using the Benjamini-Yekutieli procedure on the Bioinformatics 

toolbox in MATLAB_R2018a (Benjamini & Yekutieli, 2001).  

 

2.1.5 Results 

2.1.5.1 Sample characteristics 

The TBI patient pool included 429 participants, and the HC pool 306, with an age range 

of 8 – 65 years old. Four studies included mTBI patients only, six studies included moderate-

severe TBI patients only, and two studies included both severity types (see Table 1). Chronicity 

varied widely between studies, with TBI groups ranging from acute (e.g., within 96 hours post 

injury; Yuan et al., 2015) to chronic (e.g., 5.91 years post injury, ± 3.1 years; Yuan, Treble-

Barna, et al., 2017). Six studies recruited paediatric TBI patients, two studies included both 

children and young adults, and four studies recruited adult TBI patients. 
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2.1.5.2 Quality Assessment 

Table 2 summarises the quality of the 13 papers according to the diffusion MRI checklist 

categories, ranked according to overall score (maximum score 13). Most papers scored full 

points for describing parameters of the diffusion scanning sequences. Points were often deducted 

for poor description of graph metric calculations and failing to correct for multiple comparisons. 

The ‘subjects’ category of the checklist had the highest average score (3.6/4, 90.5%), followed 

by ‘methodology’ (5.4/6, 89.7%), and ‘results/conclusions’ (2.5/3, 83.3%). Overall, the total 

quality score was high, and varied from 9 to 12.5 points out of a possible 13 (average score: 

11.5/13, 88.5%). The study of Verhelst et al. (2018) had the highest methodological quality. 

There was no significant effect of publication bias (Egger’s regression intercept=1.81, CI: [-1.94, 

5.57], p=0.34), and all studies met the benchmark for inclusion in the meta-analysis, showing 

that the published studies are a good representation of available evidence. 
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2.1.5.3 Meta-Analysis 

Table 3 summarises the differences in global graph metrics between TBI and HC cohorts 

across studies. For each graph metric, the direction of significant group differences between TBI 

and HCs was the same across studies, with the exception of small-worldness and normalised path 

length. The overall effect sizes for normalised clustering coefficient, global efficiency, density, 

and characteristic path length were found to be significant (p<0.05), with moderate to large 

Hedge’s g effect sizes (g >0.5) (see Figure 2, and Supplementary Material 5 for statistics). 

However, only normalised clustering coefficient and characteristic path length remained 

significant following FDR correction (p<0.002). The subgroup analyses revealed longer 

normalised path length in acute/mild patients; higher small-worldness in chronic patients; higher 

small-worldness in paediatric TBI patients; and higher normalised clustering coefficient in 

paediatric TBI patients compared to HCs (FDR corrected, p<0.001, see Table 4). In the next 

paragraphs, we will present the results of key overall effects and subgroup analyses for each 

graph metric that was significant after FDR correction. 
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2.1.5.4 Global Integration 

Four of the ten studies investigated characteristic path length (Caeyenberghs et al., 2014; 

Hellyer et al., 2015; Kim et al., 2014b; Königs et al., 2017). Of the 142 patients in this analysis, 

114 were moderate to severe; 63 acute patients were on average 5.5 months post-injury, while 79 

chronic patients were on average 3.5 years post-injury; and 101 were adults (average age: ~26.9 

years) and 41 were paediatric (average age: ~10.5 years) at injury. Across this entire cohort, 

characteristic path length was longer in the TBI patients compared with HCs (g = 0.514, p = 

0.002, I2 =28.601%). The heterogeneity value of this graph metric was low, indicating that the 

dataset was homogenous.  

Six studies investigated normalized path length (Caeyenberghs, Leemans, De Decker, et 

al., 2012; Caeyenberghs et al., 2014; Verhelst et al., 2018; Yuan, Treble-Barna, et al., 2017; 

Yuan et al., 2015; Yuan, Wade, et al., 2017) with no overall group effect (g = 0.815, p = 0.129, I2 

=92.1%). Of the 112 patients in this analysis, 67 were moderate to severe; 45 acute patients were 

between 96 hours and 4 months post-injury, while 67 chronic patients were on average 4 years 

post-injury; and 21 were adults (average age: ~21.3 years) and 91 were paediatric (average age: 

~12.1 years) at injury. Subgroup analysis revealed that the acute/mild TBI group showed 

significantly increased normalised path length compared with HCs (g =0.965, p <0.001, I2 

=0.0%), with a decreased heterogeneity value. The effect size for the chronic/moderate-severe 

group was not significant.  

2.1.5.5 Functional segregation 

Seven studies calculated normalized clustering coefficient (Caeyenberghs, Leemans, De 

Decker, et al., 2012; Caeyenberghs et al., 2014; van der Horn et al., 2017; Verhelst et al., 2018; 
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Yuan, Treble-Barna, et al., 2017; Yuan et al., 2015; Yuan, Wade, et al., 2017). Of the 165 

patients in this analysis, 67 were moderate to severe; 98 acute patients were between 96 hours 

and 4 months post-injury, while 67 chronic patients were on average 4 years post-injury; and 74 

were adults (average age: ~27.4 years) and 91 were paediatric (average age: ~12.1 years) at 

injury. Normalised clustering coefficient was higher in TBI patients in the overall meta-analysis 

(g =1.445, p =0.002, I2 =91.484). In the chronicity and severity subgroup-analysis, the effect 

remained significant in the chronic/moderate-severe patients only (chronic/moderate-severe: g 

=1.924 p=.014, I2 =92.440%). However, this effect retained a high heterogeneity value. 

Similarly, in the age at injury subgroup analysis, normalised clustering coefficient was 

significantly higher in the paediatric TBI patients than HCs (g = 2.00, p = 0.001, I2 = 89.82). 

This effect was not observed for adult TBI patients. However, grouping by age at injury only 

lowered the observed heterogeneity in normalised clustering coefficient by ~2%. 

2.1.5.6 Small-Worldness 

Six studies reported on small-worldness differences between TBI and HCs 

(Caeyenberghs, Leemans, De Decker, et al., 2012; Caeyenberghs et al., 2014; Hellyer et al., 

2015; Yuan, Treble-Barna, et al., 2017; Yuan et al., 2015; Yuan, Wade, et al., 2017), with no 

significant effect size overall; however, a trend was evident for larger values in TBI patients (g 

=0.794, p =0.06, I2 =89.736%). Of the 158 patients in this analysis, 105 were moderate to 

severe; 108 acute patients were between 96 hours and 5.5 months post-injury, while 50 chronic 

patients were on average 4.6 years post-injury; and 84 were adults (average age: ~26.6 years) and 

74 were paediatric (average age: ~11.8 years) at injury. Subgroup analysis showed a significant 

effect size for chronic patients only, with increased small-worldness in chronic TBI patients 
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compared with HCs (g =0.950, p=.001, I2 =39.536%). Grouping by chronicity also greatly 

reduced heterogeneity in the chronic group. Subgroup analysis by severity revealed larger small 

worldness values for the mild group (g =1.309, p=.020, I2 =81.922%); however, heterogeneity 

remained high and did not survive FDR correction. Finally, small-worldness was significantly 

higher in the paediatric TBI patients (but not adult TBI patients) compared to HCs (g = 1.25, p < 

0.001, I2 = 56.949). Grouping by age at injury reduced the heterogeneity observed in small-

worldness, meaning that age at injury could be explaining some of the differences in small-

worldness between TBI patients and HCs. 

2.1.6 Discussion 

Our study is the first meta-analysis to assess the consistency of recent graph theoretical 

studies of TBI. The overall quality of the papers was high, and all met the benchmark for 

inclusion in the review. Findings suggest that normalized clustering coefficient and 

characteristic path length may be sensitive diagnostic biomarkers to distinguish TBI patients 

from HCs, with the former particularly high in chronic/moderate-severe and paediatric TBI 

patients after subgroup analyses. Furthermore, we suggest that values of normalised path length 

may be increased in acute/mild patients, and small worldness may be higher in chronic and 

paediatric TBI patients. In the following sections we will examine the use of graph metrics from 

a critical view. Specifically, we will discuss the following topics: (4.1) evidence that the TBI 

network is closer to a regular lattice structure than HCs, and (4.2) the use of graph metrics as 

diagnostic and prognostic biomarkers in longitudinal studies. In (4.3) we will also point out 

several methodological issues and provide recommendations for the future study of structural 



 

67 

 

connectomics in TBI. Finally, in (4.4) we will address any limitations of this pooled analysis, 

including heterogeneity in patient samples and parcellation schemes.  

2.1.6.1 Towards a regular network structure in TBI patients 

The hypotheses presented in the research papers reflect the exploratory nature of GTA in 

TBI studies. Clear rationales and a priori hypotheses regarding the specific choice of graph 

metrics (together with the expected direction of effect) were omitted in many of the studies 

analysed. For example, Yuan, Wade, et al. (2017) ambiguously predicted that metrics would be 

“abnormal at baseline but would normalise after training”. Only Yuan et al. (2015) and Königs 

et al. (2017) justified their choice of each graph metric. While exploratory research is necessary, 

a clear rationale concerning the selection of graph metrics will advance theoretical reasoning in 

the field. Furthermore, having a priori hypotheses about the expected direction of effect will 

minimise multiple comparisons, thereby reducing chance findings that inflate the false positive 

rate. The findings from our meta-analysis, outlined in the following paragraphs, can serve as a 

guide in the development of hypotheses for the next generation of GTA studies in TBI.  

Small-worldness is the ratio of normalised clustering coefficient to normalised path 

length, and represents the balance between segregation for local specialization and global 

integration (Watts & Strogatz, 1998). While all studies found that the TBI connectome is still a 

small-world network, there was evidence of a shift towards a regular lattice structure. Small-

worldness values were significantly higher for TBI patients greater than 6 months post injury, 

and for children with TBI. These results suggest a shift in network structure, which is probably 

due to a secondary process of neurodegeneration and/or is specific to those patients injured 

during childhood. However, further research is needed to evaluate the neurobiological 
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mechanisms underlying increases in small-worldness. Yuan et al. (2015) and Yuan, Treble-

Barna, et al. (2017) suggested that higher small-worldness is primarily driven by an increase in 

local clustering. Still, changes in small-worldness alone do not provide insight into the nature of 

the group differences. Instead, researchers could focus on more specific metrics that can 

differentiate between alterations in segregation and integration (Fornito et al., 2013; Papo et al., 

2016), including measures of clustering and path length as described next. 

In line with the observed shift towards a regular network, our review revealed that 

normalised clustering coefficient was significantly higher in the TBI group compared to HCs. 

This result indicates that TBI patients have more ‘closed triangles’ in their network graph 

compared to the controls, denoting greater functional specialisation. We also observed that this 

effect remained significant in the paediatric group but not the adult group. Yuan et al. (2015) 

suggested that this finding in paediatric TBI patients reflected an adaptive response to the injury, 

whereby local connections are increased because they are less vulnerable to damage than long-

range connections. However, we argue that this is a costly adaptation, as it would increase the 

number of steps needed for information to travel between any two regions (Fornito et al., 2016; 

Sporns, 2011). In fact, our meta-analysis also showed that characteristic path length was 

significantly longer in the TBI population compared to the HCs, meaning there are a greater 

number of steps between any two nodes on average in the TBI network than in the HC network. 

Furthermore, the subgroup analysis demonstrated that normalised path length in the acute mild 

TBI group (but not the chronic moderate-severe group) was significantly higher than HCs. 

However due to the paucity of data available, it was impossible to determine whether this effect 

was driven by chronicity or severity. Despite the lack of data, our findings support the idea that 

the TBI network topology departs from the economical random-graph (Sporns, 2011). 
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2.1.6.2 Use of graph metrics as diagnostic and prognostic biomarkers 

The effects described in section 4.1 support the use of normalised clustering coefficient 

and characteristic path length as diagnostic biomarkers to identify group differences between 

TBI patients and HCs. Graph metrics can also be used to detect the presence or absence of 

diffuse axonal injuries (DAI) within TBI patients. Two papers included in the review (Fagerholm 

et al., 2015; Mitra et al., 2016) employed machine learning methods on graph metrics to classify 

patients. Fagerholm and colleagues were able to classify the presence of DAI in TBI patients 

with a high accuracy rate of 93.4% and found that betweenness centrality had the highest ‘feature 

importance’ when differentiating between patients with microbleeds and HCs. Using a similar 

machine learning technique, Mitra et al. found that connectivity strength could differentiate mild 

TBI patients with DAI from HCs with an accuracy rate of 68.16%. These are very promising 

techniques that clearly demonstrate the use of graph metrics as diagnostic biomarkers. 

Another important aspect of evaluating a diagnostic biomarker is the association of the 

metric with behavioural/clinical outcomes, which was done in all studies apart from one (Hellyer 

et al., 2015). For example, longer characteristic path length correlated with worse performance 

on verbal learning task as well as executive dysfunction in moderate-severe TBI patients (Kim et 

al., 2014a). Longer characteristic path length also coincided with lower intelligence scores and 

shorter working memory span in moderate-severe TBI patients (Königs et al., 2017). Lower 

normalised clustering coefficient was found to be associated with slower processing speed in 

mild TBI patients (van der Horn et al., 2017). These significant correlations highlight the 

potential of normalised clustering coefficient and characteristic path length as biomarkers of 

behavioural deficits following TBI. However, reminding us of the preliminary nature of this 

work, several studies did not correct for multiple comparisons when running correlations 
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between graph metrics and behavioural tests (Kim et al., 2014a; Yuan, Treble-Barna, et al., 

2017). While uncorrected thresholds can be useful for exploratory research, correction for 

multiple comparisons would strengthen the validity of these findings. Finally, comparison 

between studies is problematic because different outcome measures were used across studies. 

We recommend the use of a core set of behavioural tests in the future (e.g., Wefel et al., 2011).  

Finally, we wanted to explore whether graph metrics can be used as prognostic 

biomarkers to predict treatment response. Longitudinal studies are necessary to investigate which 

graph metrics change in response to training. Only two GTA studies (by the same group, Yuan, 

Treble-Barna, et al., 2017; Yuan, Wade, et al., 2017) so far have conducted longitudinal training 

studies. Yuan, Treble-Barna, et al. (2017) found that normalised clustering-coefficient and small-

worldness values decreased following 10 weeks of attention and executive function training in 

TBI patients but remained the same in the HCs. In an aerobic training study, Yuan, Wade, et al. 

(2017) found that improved Post-Concussion Symptom Inventory scores following 4 – 16 weeks 

of training correlated with increased global efficiency and lower normalised path length. 

However, this study did not investigate the interaction effect between group and time directly. 

Overall, there is some evidence that network measures can be used as prognostic biomarkers, but 

further longitudinal analyses are needed to investigate the predictive value of graph metrics.  

2.1.6.3 Methodological considerations and further recommendations 

As a tentative conclusion, our meta-analysis showed that normalized clustering 

coefficient and characteristic path length are potential diagnostic biomarkers that may be 

sensitive to group differences between TBI and controls. However, GTA is a mathematical 

framework that has only recently been applied in neuroscience (for a critical review, see Fornito 
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et al., 2013), and the underlying biological mechanism of change (e.g., increase in axon density, 

diameter, myelination, sprouting of synapses) is so far unknown. Due to inherent limitations in 

tractography, we do not know yet whether graph metrics directly reflect white matter integrity 

(e.g., Jones, 2010a). Therefore, it is important to refrain from diagnosing ‘abnormal’ graph 

metrics, when comparing TBI patients to HCs (e.g., Yuan, Wade, et al., 2017), until we know the 

biological mechanisms underpinning graph metrics. Validated neuro-psychometric testing could 

couple structural connectome measures such as graph metrics (and other diffusion-based 

measures) to multimodal data with known information processing properties. Until then, 

structural graph metrics represent the necessary but insufficient properties of the network to 

function (Sporns, 2012). However, we can get a better understanding if we first obtain reliable 

patterns of brain connectivity.   

There are methodological challenges associated with investigating graph metrics in 

patients with TBI. These include applying appropriate MRI acquisition and preprocessing 

techniques, connectome construction, and specifying edge weights (see Table 1 for a summary of 

the methods used in the studies in this review). Future research should (a) utilise advanced 

diffusion sequences (e.g., multishell, not used by any studies in the review) with accelerated 

acquisition speed to accommodate for non-compliance due to poor concentration (e.g., 

multiband/compressive sensing); (b) employ robust estimation approaches for diffusion MRI 

metrics (e.g., Slicewise OutLIer Detection 'SOLID'; Sairanen et al., 2018); and (c) apply a model 

that can resolve crossing fibre orientations (e.g., constrained spherical deconvolution, only used 

by two papers in the current review). Furthermore, although connection density has a noticeable 

impact on graph metrics (van Wijk et al., 2010), only six of the thirteen studies in the quality 

assessment accounted for differences in network density (as suggested by Bullmore & Bassett, 
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2011) when comparing structural networks of TBI and HCs (Caeyenberghs, Leemans, De 

Decker, et al., 2012; Hellyer et al., 2015; Königs et al., 2017; Solmaz et al., 2017; van der Horn 

et al., 2017; Yuan et al., 2015). Similarly, researchers should consider using multiple edge 

weighting and parcellation schemes to examine the robustness of data (Qi et al., 2015; 

Sotiropoulos & Zalesky, 2019), as was done by Caeyenberghs, Leemans, De Decker, et al. 

(2012), Caeyenberghs et al. (2014), Caeyenberghs et al. (2013), Fagerholm et al. (2015), and 

Königs et al. (2017). Finally, future studies should employ advanced measures of white matter 

such as fibre density and cross section (Raffelt et al., 2017) as edge weights, because FA (used 

by three studies) and number of ‘streamlines’ (used by eight studies) lack the microstructural 

specificity to fully characterise the integrity of the structural network. In summary, by using 

more advanced MRI acquisition and pre-processing techniques we can get closer to an 

understanding of the biological underpinnings of the TBI structural connectome.  

2.1.6.4 Limitations of the pooled analysis  

Heterogeneity in parcellation schemes 

One limitation of combining different graph analyses is that it inevitably requires pooling 

data obtained with different parcellation schemes. Differences in the way the cortex is 

parcellated can significantly impact the results of GTA (Zalesky et al., 2010). As shown in Table 

1, five different parcellation schemes (e.g., the Desikan atlas from Freesurfer and the Automated 

Anatomical Labelling atlas) were used across the papers included in the meta-analysis, each with 

a different number of regions of interest or ‘nodes’ (range: 82-164). Parcellation schemes with 

higher resolution (i.e., more nodes) will demonstrate gradual increases in normalised path length 

and reductions in normalised clustering coefficient (Bassett et al., 2011), while measures of 
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network organisation (e.g., small-worldness) will remain largely the same (Qi et al., 2015). 

However, because whole brain node templates in this current study were of similar spatial scales, 

impact on pooled graph metrics should be negligible (Zalesky et al., 2010), and it is therefore 

likely that this effect is small and does not detract from the overall findings.  

Heterogeneity in the TBI samples 

Patients with TBI are diverse, and several clinical and demographic factors (such as 

severity, chronicity, and age at injury) will impact the comparability of patient cohorts across 

studies. In the present meta-analysis, we attempted to address the issue of heterogeneity in our 

pooled TBI population by conducting subgroup analyses. However, the heterogeneity values 

remained above 75% for the majority of the subgroup analyses, indicating that results may still 

have been driven by differences in sample demographics (Higgins et al., 2003). This is not 

surprising given the diversity present in the structure of an injured brain, which may include 

focal lesions, diffuse axonal injury, or both. There were also limited studies that could be 

included in this review, making some subgroup analyses hard to interpret. For example, there 

were no studies of moderate-severe TBI patients in the acute phase, or mild TBI patients in the 

chronic phase that could be included in the normalised path length subgroup analyses (see Table 

4). Therefore, it is impossible to determine whether normalised path length was increased in the 

acute/mild group due to the time since injury, or the severity of the injury. Overall, this meta-

analysis allows us to see universal trends that are present in the structural connectome of TBI 

patients; however more research is needed that span across all TBI subgroups, so that future 

pooled analyses can better distinguish between all TBI populations.  
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2.1.6.5 Conclusion 

Despite the complexity of applying GTA to the heterogeneous TBI population, our meta-

analysis of structural connectivity studies revealed that normalised clustering coefficient and 

characteristic path length can be regarded as diagnostic biomarkers of TBI. These findings 

provide an evidentiary framework for future research. The emerging evidence suggests that 

average path length and clustering is increased in TBI patients, with the overall network more 

closely resembling a regular lattice. Using graph metrics, we are able to differentiate between 

TBI population and healthy controls on the one hand, and the presence/absence of DAI on the 

other hand. Also, there is preliminary evidence that graph metrics predict future response to 

training. Despite the promising results, the biological mechanisms underlying alterations in 

graph metrics is unclear. Future research should employ advanced diffusion MRI tools and 

obtain biologically validated measures of structural connectivity in longitudinal studies. 
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2.1.7 Supplementary Materials 

Supplementary Material 1 

Definition of Graph Metrics  

GRAPH METRIC DEFINITION HIGHER VALUE 
DENOTES 

CALCULATION 

BASIC MEASURES  

k Degree  

Degree k i is the number of 
connections that node i 
has to its neighbours. 
Degree can be calculated 
for weighted or binary 
networks and can also be 
measured separately in 
directed networks as out-
degree, or in-degree 
(number of edges leading 
out/in from a node, 
respectively; for these 
calculations see Rubinov 
& Sporns, 2010 or 
Fornito, Zalesky, & 
Bullmore, 2016). 

A high degree means a 
high level of interaction 
between node i and the 
rest of the network. A 
high number of 
connections on a 
particular node will 
identify that node as a 
‘hub’.  

𝑘𝑘 = �𝐴𝐴𝑖𝑖∈𝑁𝑁

𝑁𝑁

𝑖𝑖∈𝑁𝑁

 

𝐴𝐴𝑖𝑖∈𝑁𝑁 = 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠 𝑏𝑏𝑒𝑒𝑡𝑡𝑏𝑏𝑒𝑒𝑒𝑒𝑐𝑐 𝑐𝑐  
𝑠𝑠𝑐𝑐𝑎𝑎 𝑠𝑠𝑎𝑎𝑎𝑎 𝑐𝑐𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑎𝑎𝑒𝑒𝑠𝑠 𝑐𝑐𝑐𝑐 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑒𝑒𝑡𝑡𝑏𝑏𝑐𝑐𝑒𝑒𝑘𝑘 

D Density 

Density is an estimate of 
the ‘wiring cost’ of the 
network. It is calculated as 
the number of existing 
connections divided by the 
total number of possible 
connections within the 
graph. Sometimes density 
is also calculated by 
summing all the edges in 
individual i's graph, then 
averaging this sum across 
all individuals – perhaps 
more appropriately termed 
as the mean number of 
edges.  

Higher density indicates 
that a greater percentage 
of all the possible 
connections have in fact 
been made between 
regions of the brain. 
Interpretation and 
comparison of density 
should be done with 
care, as calculation of 
density may differ 
between studies.  

 

𝐷𝐷 =
2|𝐸𝐸|

|𝑁𝑁|(|𝑁𝑁| − 1) 

𝑁𝑁 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑒𝑒𝑡𝑡𝑒𝑒 𝑠𝑠𝑒𝑒𝑡𝑡 𝑐𝑐𝑜𝑜 𝑐𝑐𝑐𝑐𝑎𝑎𝑒𝑒𝑠𝑠 𝑐𝑐𝑐𝑐 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑒𝑒𝑡𝑡𝑏𝑏𝑐𝑐𝑒𝑒𝑘𝑘 
𝐸𝐸 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑒𝑒𝑡𝑡𝑒𝑒 𝑠𝑠𝑒𝑒𝑡𝑡 𝑐𝑐𝑜𝑜 𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑠𝑠 𝑐𝑐𝑐𝑐 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑒𝑒𝑡𝑡𝑏𝑏𝑐𝑐𝑒𝑒𝑘𝑘 

s Strength 

Strength is similar to 
degree, but for weighted 
networks. The strength of 
node i is the sum of the 
weights of its edges. The 
average of the edge 
weights connected to node 
i are the normalised 
strength s’. Mean strength 
can be the average of all 

A higher strength 
indicates a greater 
average edge weight for 
each node. The 
interpretation of this 
will vary depending on 
the weighting variable 
(e.g., fractional 
anisotropy or number of 

𝑠𝑠′𝑖𝑖 =
1

𝑁𝑁 − 1�𝑏𝑏𝑖𝑖𝑖𝑖
𝑖𝑖≠𝑖𝑖

 

𝑏𝑏𝑖𝑖𝑖𝑖 = 𝑏𝑏𝑒𝑒𝑐𝑐𝑒𝑒ℎ𝑡𝑡 𝑐𝑐𝑜𝑜 𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑠𝑠 𝑜𝑜𝑒𝑒𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑎𝑎𝑒𝑒𝑠𝑠 𝑐𝑐 𝑡𝑡𝑐𝑐 𝑗𝑗 
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the normalised strength 
values across each node of 
the network. Strength can 
also be measured of 
direction or undirected 
networks and calculated 
separated for positive and 
negative connections (see 
Fornito et al., 2016).  

streamlines) that was 
used.  

l ij Shortest path 
length 

The number of edges or 
sum of weights of edges 
on the shortest possible 
path between any two 
nodes (i.e., the pathway 
between node i and node j 
with the least number of 
edges). 

A higher value indicates 
a longer shortest path 
length – which means 
more connections must 
be passed through in 
order to transfer 
information from node i 
to node j.  

 
𝑎𝑎𝑖𝑖𝑖𝑖 = �𝑏𝑏𝑖𝑖𝑖𝑖

𝑖𝑖→𝑖𝑖

 

GLOBAL INTEGRATION 

L Characteristic 
path length 

The average shortest path 
length between all 
possible pairs of nodes in 
a network (Watts & 
Strogatz, 1998). The 
harmonic characteristic 
path length (L’) takes into 
account nodes with no 
possible path by summing 
the inverse of l ij so that 
they equal 0 (Fornito et al, 
2016). For weighted and 
directed calculations see 
Rubinov & Sporns (2010).  

A higher average 
shortest path length 
indicates a greater 
number of steps is 
required to transmit 
information between 
any two regions.  

𝐿𝐿 =
1

𝑁𝑁(𝑁𝑁 − 1)�𝑎𝑎𝑖𝑖𝑖𝑖
𝑖𝑖≠𝑖𝑖

 

 

𝐿𝐿′ = 𝑁𝑁(𝑁𝑁 − 1) ��
1
𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖

�

−1

 

λ Normalized 
path length  

Characteristic path length 
of the network, relative to 
a random network. Small 
world architecture 
indicates that path lengths 
will be similar to a random 
network, and shorter than 
a regular lattice. 

If λ > 1 there is longer 
average path length than 
a random network, 
indicating worse global 
integration. If λ ~ 1, 
average path length is 
similar to that of a 
random network.  

 

𝜆𝜆 =
𝐿𝐿

〈𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟〉
 

Eglob Global 
efficiency  

Average inverse harmonic 
characteristic path length 
between all pairs of nodes 
in the network. The 
harmonic L’ is normally 
used to calculate Eglob 
rather than L because the 
brain is thought to work as 
a massively parallel 
system, and the harmonic 
better represents a parallel 
(compared to a serial) 

A higher global 
efficiency will indicate 
a greater capacity for 
efficient integration of 
information across the 
network. 

 
 

𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =
1
𝐿𝐿′ 
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system (Latora & 
Marchiori, 2001).  

FUNCTIONAL SEGREGATION 

Cl Clustering 
coefficient  

The number of existing 
connections between the 
neighbours of node i, 
divided by all the possible 
connections, calculated for 
each node individually and 
averaged across the entire 
network (Watts & 
Strogatz, 1998). 

Globally, a higher Cl 
means that a greater 
proportion of 
connections are made 
between nodes 
neighbours, compared 
to the connections 
possible, and indicates 
more clustered 
connectivity around 
individual nodes, with 
all nodes weighted 
equally.  

𝐶𝐶𝑎𝑎 =
1
𝑁𝑁�

2𝑡𝑡𝑖𝑖
𝑘𝑘𝑖𝑖(𝑘𝑘𝑖𝑖 − 1)

𝑖𝑖∈𝑁𝑁

 

 
𝑡𝑡𝑖𝑖 = 𝑐𝑐𝑠𝑠𝑐𝑐𝑏𝑏𝑒𝑒𝑒𝑒 𝑐𝑐𝑜𝑜 𝑐𝑐𝑎𝑎𝑐𝑐𝑠𝑠𝑒𝑒𝑎𝑎 𝑡𝑡𝑒𝑒𝑐𝑐𝑠𝑠𝑐𝑐𝑒𝑒𝑎𝑎𝑒𝑒𝑠𝑠 

T Transitivity 

An alternative to Cl, 
which can be biased by 
inflation from nodes with 
small degree. Transitivity 
uses network-wide 
normalisation that weights 
nodes depending on their 
degree, to estimate the 
probability that any two 
nodes connected to a third 
node are also connected to 
each other (Newman, 
2003). 

A higher value of T 
indicates a greater 
probability that two 
nodes with a shared 
neighbour are also 
connected to each other, 
i.e., the probability of 
finding a closed triangle 
in an entire network.  

 
 

𝑇𝑇 =
∑ 2𝑡𝑡𝑖𝑖𝑖𝑖∈𝑁𝑁

∑ 𝑘𝑘𝑖𝑖(𝑘𝑘𝑖𝑖 − 1)𝑖𝑖∈𝑁𝑁
 

 
 

γ 
Normalized 
clustering 
coefficient 

Clustering coefficient of 
the network normalized to 
a random network. Small 
world architecture 
indicates that the 
clustering will be greater 
than random, comparable 
to a regular lattice.  

Higher local 
specialization. If γ = 1, 
the clustering is similar 
to that of a random 
network, and if γ > 1, 
the network has greater 
than random clustering.  

 

𝛾𝛾 =
𝐶𝐶𝑎𝑎

〈𝐶𝐶𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟〉
 

Eloc 
Local 
efficiency 

The local efficiency is the 
average of the normalised 
sum of the reciprocal of 
the shortest path length 
(e.g., global efficiency), in 
a local area. The 
immediate neighbours of 
node i become a 
‘subgraph’ on which the 
efficiency is calculated, 
once i is removed. Mean 
Eloc is taken as the 
efficiency of each node in 
the network averaged over 
the total number of nodes 

A higher local 
efficiency means greater 
capacity for integration 
between the immediate 
neighbours of a given 
node.  

 

𝐸𝐸𝑔𝑔𝑔𝑔𝑙𝑙(𝑐𝑐) =
1

𝑁𝑁𝐺𝐺𝑖𝑖(𝑁𝑁𝐺𝐺𝑖𝑖 − 1) �
1
𝑎𝑎𝑖𝑖ℎ𝑖𝑖,ℎ∈𝐺𝐺𝑖𝑖

 

 
𝐺𝐺𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑏𝑏𝑒𝑒𝑒𝑒𝑠𝑠𝑐𝑐ℎ 𝑐𝑐𝑜𝑜 𝑐𝑐′𝑠𝑠 𝑐𝑐𝑒𝑒𝑐𝑐𝑒𝑒ℎ𝑏𝑏𝑐𝑐𝑠𝑠𝑒𝑒𝑠𝑠  
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(Latora & Marchiori, 
2001).  

Q Modularity 

The subdivision of the 
network in groups of 
nodes with many 
connections to nodes 
within the group and few 
to nodes outside the group, 
based on the premise that 
some nodes preferentially 
network with one another 
(Newman, 2004). Modular 
networks will mostly show 
small-worldness, in that 
high within module 
connectivity results in 
high clustering, while just 
a few direct links between 
modules is sufficient to 
support short path length 
(Fornito et al., 2016). 

A positive modularity 
value indicates greater 
density of connections 
within modules than 
expected by chance, a 
negative value means it 
lacks modular structure, 
and a zero-value means 
there is no difference 
from the null model.  

 

𝑄𝑄 =
1

2𝐸𝐸�(𝐴𝐴𝑖𝑖𝑖𝑖 − 𝑒𝑒𝑖𝑖𝑖𝑖)𝛿𝛿(𝑐𝑐𝑖𝑖 ,𝑐𝑐𝑖𝑖)
𝑖𝑖𝑖𝑖

 

 
𝛿𝛿�𝑐𝑐𝑖𝑖 ,𝑐𝑐𝑖𝑖�

= 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝑐𝑐𝑒𝑒 𝑐𝑐𝑜𝑜 𝑏𝑏ℎ𝑒𝑒𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑎𝑎𝑒𝑒𝑠𝑠 𝑐𝑐 𝑠𝑠𝑐𝑐𝑎𝑎 𝑗𝑗  
𝑏𝑏𝑒𝑒𝑎𝑎𝑐𝑐𝑐𝑐𝑒𝑒 𝑐𝑐𝑐𝑐 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑐𝑐𝑒𝑒 𝑐𝑐𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑒𝑒 (1 𝑐𝑐𝑜𝑜 𝑦𝑦𝑒𝑒𝑠𝑠, 0 𝑐𝑐𝑜𝑜 𝑐𝑐𝑐𝑐)  

 

CENTRALITY AND RESILIENCE 

b 
Betweenness 
centrality 

The proportion of shortest 
paths that pass through 
node i between its 
neighboring nodes, 
calculated for each node 
and averaged across the 
network (Freeman, 1978).  

A node that lies on 
many shortest paths in 
the network is central 
and important to the 
network. This can be 
used as a way to 
identify hubs. A high 
network betweenness 
centrality indicates a 
high number of nodes 
that are central to 
shortest paths.  

𝑏𝑏𝑖𝑖 =
1

(𝑁𝑁 − 1)(𝑁𝑁 − 2) �
𝜌𝜌ℎ𝑖𝑖(𝑐𝑐)
𝜌𝜌ℎ𝑖𝑖ℎ≠𝑖𝑖,ℎ≠𝑖𝑖,𝑖𝑖≠𝑖𝑖

 

𝜌𝜌ℎ𝑖𝑖(𝑐𝑐) = 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠ℎ𝑐𝑐𝑒𝑒𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡 𝑐𝑐𝑠𝑠𝑡𝑡ℎ𝑠𝑠 
𝑜𝑜𝑒𝑒𝑐𝑐𝑐𝑐 ℎ 𝑡𝑡𝑐𝑐 𝑗𝑗 𝑡𝑡ℎ𝑠𝑠𝑡𝑡 𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒 𝑐𝑐 

σ Small-
worldness  

The capacity of a network 
for an energy-efficient 
balance between 
clustering and short paths, 
relative to an appropriate 
random network (e.g., 
Maslov & Sneppen, 2002). 
A small world network 
will have high levels of 
clustering compared to a 
random network (γ > 1), 
combined with low 
average path length, 
similar to that of a random 
network (λ ~ 1) 
(Humphreys & Gurney, 
2008).  

If σ > 1, the network is 
demonstrating small-
world properties. 

 
𝜎𝜎 =

𝛾𝛾
λ 

 
𝑜𝑜𝑐𝑐𝑒𝑒 𝛾𝛾 𝑠𝑠𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑠𝑠𝑎𝑎𝑐𝑐𝑠𝑠𝑒𝑒𝑎𝑎 𝑐𝑐𝑎𝑎𝑠𝑠𝑠𝑠𝑡𝑡𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒 𝑐𝑐𝑐𝑐𝑒𝑒𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑡𝑡 

𝑜𝑜𝑐𝑐𝑒𝑒 λ 𝑠𝑠𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑠𝑠𝑎𝑎𝑐𝑐𝑠𝑠𝑒𝑒𝑎𝑎 𝑐𝑐𝑠𝑠𝑡𝑡ℎ 𝑎𝑎𝑒𝑒𝑐𝑐𝑒𝑒𝑡𝑡ℎ 
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a Assortativity  

The correlation between 
the ki of connected nodes, 
in other words the 
tendency for nodes with 
similar degrees to be 
connected. Assortativity 
should not be confused 
with rich-club analysis – 
assortativity investigates 
the tendency for similar 
degree nodes to be 
connected, while rich-club 
analysis measures the 
density of connection 
between high degree 
nodes (Fornito et al., 
2016).  

A high Pearson 
correlation for a 
indicates that high 
degree nodes tend to be 
linked to each other and 
low degree nodes tend 
to be link with each 
other – this kind of 
network is termed an 
‘assortative’ network. 
Low values mean that 
high degree nodes tend 
to link with low degree 
nodes and low degree 
nodes link with high.     

𝑠𝑠 =
𝐸𝐸−1 ∑ 𝑗𝑗𝑖𝑖𝑘𝑘𝑖𝑖 − �𝐸𝐸−1 ∑ 1

2 (𝑗𝑗𝑖𝑖 + 𝑘𝑘𝑖𝑖)𝑖𝑖 �
2

𝑖𝑖

𝐸𝐸−1 ∑ 1
2 (𝑗𝑗𝑖𝑖 + 𝑘𝑘𝑖𝑖) − �𝐸𝐸−1 ∑ 1

2 (𝑗𝑗𝑖𝑖+𝑘𝑘𝑖𝑖)𝑖𝑖 �
2

𝑖𝑖

 

 
𝑗𝑗𝑖𝑖 𝑠𝑠𝑐𝑐𝑎𝑎 𝑘𝑘𝑖𝑖 = 𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠 𝑐𝑐𝑜𝑜 𝑐𝑐𝑐𝑐𝑎𝑎𝑒𝑒𝑠𝑠 𝑎𝑎𝑐𝑐𝑐𝑐𝑘𝑘𝑒𝑒𝑎𝑎 𝑏𝑏𝑦𝑦 𝑐𝑐𝑡𝑡ℎ𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒 

Note: Definitions are based on descriptions in Rubinov & Sporns, 2010; Fornito, Zalesky, & Bullmore, 2016. Node 
= brain region; functional segregation = functional specialization within densely interconnected groups of brain 
regions; global integration = the capacity of the network to rapidly combine information from distributed brain 
regions at a global level 
 

Supplementary Material 2.  

Mesh Headings: 

Medline: [MH “Brain Injuries, Chronic” OR “Brain Injuries”] AND [MH “Connectome”] 

PSYCinfo: [DE “Traumatic Brain Injury”] AND [DE “Brain Connectivity”] 

CINAHL: [MH ”Brain Injuries”]  
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Supplementary Material 3.  

Imaging Methodology Quality Assessment Checklist (adapted Strakowski et al., 2000) 

 

Category 1: Subjects           

1. Patients were evaluated prospectively, specific diagnostic criteria were applied, and 

demographic data was reported   

2. Healthy comparison subjects were evaluated prospectively, psychiatric and medical 

illnesses were excluded, and demographic data was reported   

3. Important variables (e.g., illness duration, severity of illness, injury type, drug status, 

handedness) were checked either by stratification or statistically   

4. Sample size per group > 10, and no significant difference in age and sex existed  

5.  

 

Category 2: Methods for image acquisition and analysis  

6. Magnet strength at least 1.5T.  

7. DTI with at least 12 directions was used.  

8. The imaging technique used was clearly described and is reproducible 

9. Parcellation scheme clearly reported, reproducible, and no brain regions were excluded 

from the parcellation scheme (e.g., cerebellum)  

10. Calculation of edge weights were clearly reported and are reproducible 

11. Calculation of graph metrics were clearly described and are reproducible   

 

Category 3: Results and conclusions  

12. Corrections for multiple comparisons (if necessary) 

13. Statistical parameters for significant and important non-significant differences were 

provided  

14. Conclusions were consistent with the results obtained and the limitations were discussed  

 
TOTAL /13 
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Supplementary Material 4  

Calculations of pooled mean and standard deviation. 

 

𝑀𝑀𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑝𝑝𝑟𝑟 = �
𝑀𝑀𝑚𝑚𝑖𝑖𝑔𝑔𝑟𝑟𝑐𝑐𝑚𝑚𝑖𝑖𝑔𝑔𝑟𝑟 + 𝑀𝑀𝑚𝑚𝑔𝑔𝑟𝑟𝑚𝑚𝑝𝑝𝑚𝑚𝑐𝑐𝑚𝑚𝑔𝑔𝑟𝑟𝑚𝑚𝑝𝑝𝑚𝑚

𝑐𝑐𝑚𝑚𝑖𝑖𝑔𝑔𝑟𝑟 + 𝑐𝑐𝑚𝑚𝑔𝑔𝑟𝑟𝑚𝑚𝑝𝑝𝑚𝑚
 

 
 

𝑆𝑆𝐷𝐷𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑝𝑝𝑟𝑟 = �
(𝑐𝑐𝑚𝑚𝑖𝑖𝑔𝑔𝑟𝑟 − 1)𝑆𝑆𝐷𝐷𝑚𝑚𝑖𝑖𝑔𝑔𝑟𝑟

2 + (𝑐𝑐𝑚𝑚𝑔𝑔𝑟𝑟𝑚𝑚𝑝𝑝𝑚𝑚 − 1)𝑆𝑆𝐷𝐷𝑚𝑚𝑔𝑔𝑟𝑟𝑚𝑚𝑝𝑝𝑚𝑚
2

𝑐𝑐𝑚𝑚𝑖𝑖𝑔𝑔𝑟𝑟 + 𝑐𝑐𝑚𝑚𝑔𝑔𝑟𝑟𝑚𝑚𝑝𝑝𝑚𝑚  −  2
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Supplementary Material 5  

Overall Effect Sizes for Graph Metrics  

Note: * Significant at p<0.05; significant at p<*0.002 (FDR corrected) 
a Effect sizes with less than 2 studies are not considered in the meta-analysis  

Graph Metric Number of 
studies Hedge's g Lower limit* Upper limit* z-value p-value I2 (%) 

Assortativity (a) 1a 0.207 -0.287 0.701 0.822 0.411 0 

Betweenness Centrality (b) 3 0.475 -0.186 1.136 1.407 0.159 69.317 

Clustering Coefficient (Cl) 3 -0.108 -0.556 0.34 -0.473 0.636 53.664 

Characteristic Path Length (L) 4 0.514 0.190 0.838 3.109 *0.002 28.601 

Degree (k) 1a -0.790 -1.258 -0.323 -3.313 *0.001 0 

Density (D) 3 -2.706 -5.283 -0.128 -2.057 0.04 95.329 

Global Efficiency (Eglob) 5 -1.144 -2.195 -0.094 -2.136 0.033 91.587 

Local Efficiency (Eloc) 5 -0.453 -1.067 0.161 -1.445 0.148 77.961 

Modularity (Q) 6 0.272 -0.257 0.801 1.007 0.314 78.876 

Strength (s) 2 -0.223 -0.684 0.238 -0.949 0.343 74.466 

Normalised Clustering Coefficient (γ) 7 1.445 0.512 2.378 3.034 *0.002 91.484 

Normalised Path Length (λ) 6 0.815 -0.238 1.868 1.517 0.129 92.1 

Small Worldness (σ) 6 0.794 -0.034 1.623 1.88 0.06 89.736 

Transitivity (T) 2 0.059 -0.494 0.613 0.21 0.833 49.738 
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Chapter 3: General Methods for Data Collection2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
2 This chapter provides a detailed account of the data collection protocol for Study 2 and Study 3. Information 
regarding specific study methods, data processing, and statistical analyses are included separately within each 
publication.  
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3.1 Participants 

3.1.1 Participants for Study 2 (Monash Biomedical Imaging) 

3.1.1.1 Recruitment 

This project was approved by the Monash University Human Research Ethics 

Committee (MUHREC) (Project: #1181, Title: Cognitive Function and Brain Structure, Chief 

Investigator: Karen Caeyenberghs, Expiry: 27/10/2021) and lodged with the ACU Human 

Research Ethics Committee (ACU project #2017-222R). Recruitment of healthy adults 

occurred using flyers and by word of mouth – participants were not offered compensation. 

Flyers were used (Appendix E) to give interested participants an overview of the study. Effort 

was taken to ensure variety of background demographics and equality in gender, age, and 

education level. This was done by recruiting from the general public and targeting under-

represented demographics later in the recruitment phase (e.g., older adults, lower education 

levels). Initial screening occurred via the phone (Appendix F). To be included in the study, 

participants had to be (a) aged between 18 to 65 years; (b) generally healthy with no history 

of head injury; (c) right-hand dominant; and (d) fluent in English. Exclusion criteria included 

(a) history of psychiatric illness (moderate levels of depression and anxiety not included); (b) 

pregnancy; and (c) any contra-indications for MRI as ascertained by the MRI screening and 

information form (Appendix G). Once recruited, participants were sent an outline of what to 

expect on the testing day (Appendix H).  

3.1.1.2 Consent 

A Plain Language Statement was given to each participant prior to testing that 

described the research project in full (Appendix I). Written informed consent was obtained 

from each subject prior to testing; consent was also given with regards to incidental and 

adverse findings (Appendix J). More precisely, participants could choose to be advised of (a) 
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any diagnostic findings (both incidental and adverse); (b) all incidental findings (any finding 

that may require treatment or have implications for future health); or (c) only those adverse 

findings that would usually lead directly to treatment. Communication of these findings could 

either be from their General Practitioner or another doctor, or from a member of the research 

team (at the participants discretion). Participants were informed that they could withdraw at 

any time during the experiment.   

3.1.2 Participants for Study 3 (Royal Children’s Hospital) 

3.1.2.1 Recruitment 

This project was approved by the St Vincent’s Human Research Ethics Committee 

(SVHREC) (Project: #250/17, Title: The effects of tablet-based home interventions on brain 

structure, cognitive functioning, motor performance, and daily life participation in patients 

with Traumatic Brain Injury, Chief Investigator: Karen Caeyenberghs)3. Recruitment of 

patients with a TBI was conducted in association with Professor Mark Cook and Associate 

Professor Wendyl D'Souza of the Neurology department at St. Vincent’s Hospital in 

Melbourne. Medical files of patients both past and present were examined to determine if 

they met the inclusion criteria. Once a patient was deemed to be a potential participant by 

Prof Cook or A/Prof D’Souza, they were contacted by one of the three principal investigators 

of the study (Prof Caeyenberghs, Prof Cook, or A/Prof D’Souza). Patients were provided 

with a letter of invitation to the study (Appendix K), along with the participant information 

form (Appendix L). Following this, if patients were interested in participating, they were 

contacted by researchers via phone using a phone script (Appendix M) and screening form 

(Appendix N). Recruitment also occurred via Dr. Hamed Akhlaghi in the Emergency 

 
3 Recruitment occurred in conjunction with a training study. Only data from the baseline assessment was 
included in this thesis.   
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Department of St Vincent’s Hospital Melbourne. Patient records from more than 6 months 

prior were used to source the contact information of TBI patients who fit the inclusion criteria 

for the study.  

To be included in the study, participants were required to meet the following criteria: 

(a) aged between 18-65 years old; (b) more than 6 months post injury; (c) experienced a 

moderate-severe TBI (determined by Professor Cook and Associate Professor D'Souza); (d) 

speak fluent English; (e) ambulant or independently mobile (able to travel to and from the 

testing location; (f) no previous history of TBI (single TBI); and (g) able to give their own 

informed consent (i.e., able to describe back to the researcher the procedure of the experiment 

in their own words, and demonstrate a clear understanding of the true nature and purpose of 

the study). Professor Cook and Associate Professor D'Souza also gave their own professional 

opinion on whether or not a patient had the capacity to give informed consent. Participants 

were excluded if (a) they had a history of psychiatric illness that they take medication for; (b) 

they were pregnant; or (c) they had any contraindications for the MRI. If the participants 

were eligible after this process, they were invited to participate in the study at a mutually 

convenient time. Participants were offered $50 as compensation for their time.  

Recruitment of healthy adults from the general population occurred using flyers and 

by word of mouth – participants were sent the information letter upon expression of interest 

via email (Appendix O). Effort was taken to ensure equivalence in gender, age, and education 

level in comparison to the TBI participants. This was done by targeting recruitment of 

healthy controls that matched already recruited TBI participants based on age, gender, and 

education. Screening occurred via the phone (Appendix P). To be included in the study, 

control participants had to meet criteria for healthy adult functioning, as outlined in section 

3.1.1.1. Participants were offered $50 as compensation for their time.  
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3.1.2.2 Consent 

A participant information letter was given to every participant prior to testing, which 

described the research project in full. Written informed consent was obtained from each 

subject prior to testing, and a declaration was signed by the study doctor or senior researcher 

verifying that the verbal explanation of the project was understood by the participant (TBI 

patients, Appendix Q; healthy controls, Appendix R). Participants were informed that they 

could withdraw at any time during the experiment.   

3.2 Cognitive and Self-Report Measures 

Study 2 and 3 both included computerised tests of cognitive performance; surveys of 

cognitive complaints, daily-life-participation, and IQ; and structural MRI scans. Measures 

were identical between the two testing sites, with the exception of the IQ test (only 

administered for Study 3). 

3.2.1 Demographics 

Demographic information was acquired via survey (Appendix S), including age, 

gender, education level, and handedness (Edinburgh Handedness Inventory; Oldfield, 1971).  

3.2.2 IQ 

The Weschler Abbreviated Scale of Intelligence (WASI-II) (Revised edition; 

Wechsler, 2011) was administered to TBI patients and healthy controls for Study 3 only. The 

WASI-II consists of four individually administered assessments of intelligence for 

participants aged between 6 and 90 years. Two of the four subtests of the WASI-II 

(vocabulary and matrix reasoning) were used to generate the Full-Scale Intelligence Quotient 

2 (FSIQ-2). Higher scores in both subtests indicate higher IQ.   
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3.2.2.1 Vocabulary  

The Vocabulary subtest consists of three picture items and 28 verbal items (or 31 

items in total). The picture items are only used if the participant incorrectly describes the first 

verbal item (‘shirt’) – then, the participant is asked to name the object that is visually 

presented to them – otherwise only the verbal items are used. The participant must define 

words that are presented to them in written form (words are also verbalised out loud by the 

investigator). Answers are recorded verbatim by the investigator using the WASI-II scoring 

sheet and scored according to the standardised administration protocol. Correct responses are 

given a full score of ‘2’; otherwise, the participant is queried for more information, or given a 

score of ‘1’ or ‘0’. Item administration stops if the participant receives three ‘0’ scores in a 

row, or if they reach the end of the word list.  

3.2.2.2 Matrix Reasoning  

The Matrix Reasoning subtest requires the participant to view sequence of four 

patterns with the fifth missing and select the response option that completes the series. The 

subtest has 30 items that are used to assess fluid intelligence, broad visual intelligence, 

classification and spatial ability, knowledge of part–whole relationships, simultaneous 

processing, and perceptual organisation. The participant is shown the series and asked, 

“Which of these [here] belong [here]”. Participants have four responses to choose from. 

Answers are recorded on the WASI-II scoring sheet. For the Matrix Reasoning task, correct 

responses are given ‘1’, or ‘0’ for incorrect. Testing ends if three ‘0’s is received in a row or 

if the participant reaches the end of the test booklet.  Combined, scores on the Vocabulary 

and Matrix Reasoning subtests provide a single measure of IQ. 

3.2.3 Subjective Cognitive Ability  
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3.2.3.1 Neurobehavioural Functioning Inventory  

The Neurobehavioural Functioning Inventory (NFI) was used to provide an indication 

of self-reported daily life cognitive function (Appendix T). The NFI (Kreutzer et al., 1999) 

contains 76-items that measure the frequency of symptoms that often occur following TBI 

(Sandberg, 2011) such as confusion, headaches, or forgetfulness. The NFI includes six 

subscales; depression (e.g., feeling worthless); somatic complaints (e.g., headaches); 

memory/attention (e.g., forgetting or missing appointments); communication (e.g., difficulty 

making conversation); aggression (e.g., hitting or pushing others); and motor problems (e.g., 

dropping things). In TBI patients, factor analysis found that the internal consistency for each 

individual scale was very high (ICC=0.86 – 0.95), as is that for the total scale (Cronbach’s 

alpha = 0.97). Convergent validity is also very good with each subscale of the NFI correlating 

significantly with other measures of memory, attention, learning, communication, motor and 

cognitive functioning, personality, and psychopathology (Kreutzer et al., 1996). 

3.2.4 Objective Cognition  

3.2.4.1 The Psychological Experiment Building Language  

Objective cognitive ability was assessed using the computerised Psychology 

Experiment Building Language (PEBL) battery (Mueller & Piper, 2014; see Table 1). A Dell 

Inspiron 15” 3537 laptop (response latency=80ms; refresh rate=60Hz) was used to display 

and record responses to the PEBL, with the stimulus display synchronised to device refresh 

rate. A subset of eight tasks were used to measure core domains of cognitive functioning: 

processing speed, memory, attention, and planning. 
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Table 1.  

Example of PEBL Battery Tasks Assessing Objective Cognition 

Name Task Cognition Variables 

Go/No-Go For the first part of the test, the participant must 
respond to the letter “P” (Go trials), but not the 
letter, “R” (No-Go trials) by pressing the ‘shift’ 
key. There are more P’s than R’s. In the second 
section of trials, the participant must respond to the 
letter “R” (Go trials), but not the letter, “P” (No-Go 
trials). There are less R’s than P’s in this section.  
 

Response 
inhibition 

Number and 
average reaction 
time (RT) of 
correct and 
incorrect 
responses, for 
Go and No-Go 
trials. 

Tower of London Participants must match the pattern of stacked discs 
in as few moves as possible, using the mouse to 
drag the tiles in the bottom row to match the tiles in 
the top row. The pattern must be matched on 
colour, location, and position of the disc within the 
stack. 
 

Planning Total number of 
movements and 
RT for all trials. 

Corsi Blocks The participant must reproduce the sequence of 
blocks after they light up by clicking on the box 
using a mouse, in the correct order. After two 
correct trials of a particular length, sequence length 
increases by one box. 
 

Visuospatial 
working 
memory 
span 

Longest 
sequence 
correctly 
remembered 

Digit Span The task is to reproduce the sequence of numbers 
heard and seen, in the correct order. The participant 
hears/sees the sequence, then has as long as they 
need to type out the sequence using the keyboard. 
After two correct trials of a particular length, 
sequence length increases by one digit. 
 

Verbal 
working 
memory 
span 

Longest 
sequence 
correctly 
remembered 

Letter-Digit 
Substitution 

Participants are asked to match the letter that 
appears with its corresponding number, according 
to the code displayed at the top of the screen, by 
pressing the corresponding key on the keyboard. 
 

Processing 
speed 

Number of 
correct responses 
and RT of 
correct 
responses. 

Connections In the non-switch trials (e.g., 1-2-3; or A-B-C), the 
participant has 20 seconds to create as large a trail 
as possible by clicking on letters/digits in sequence 
using a mouse. In the switch trials, the trials 
alternate between letters and digits (e.g., A-1-B-2-
C-3; or 1-A-2-B-3-C). 
 

Mental 
flexibility 

Mean number of 
items per 
sequence 
(separately for 
non-switch and 
switch trials). 

Global Local Task 

 

The participant must respond to either the large 
(global) or small (local) stimuli, an ‘S’ or ‘H’, as 
directed, by pressing either the left or right ‘shift’ 
key (respectively). Stimuli are both congruent (e.g., 
a large ‘S’ made of small ‘s’s) or incongruent (e.g., 
a large ‘S’ made of small ‘h’s). 

Selective 
attention 
and task 
switching 

Number of 
correct/incorrect 
stimuli, and RT 
difference 
between 
congruent and 
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Name Task Cognition Variables 

incongruent 
trials 

Vigilance The participant must wait for an X to appear in the 
circle. A cross appears before each trial, to alert the 
participant that a response will be required soon. 
When the X appears in the circle, the participant 
must respond as fast as possible by pressing the 
space bar. If the letter is not an X, the participant 
must withhold a response. 

Sustained 
attention, 
response 
inhibition 

RT to X trials 

 

3.3 Magnetic Resonance Imaging of the Brain 

The imaging protocol for Study 2 and 3 were largely identical. At each site (MBI and 

RCH) a suite of six scans were acquired – though only the anatomical T1, diffusion, and 

FLAIR scans are used in this thesis. The anatomical T1 and diffusion scans were used to 

perform the structural connectome analyses, and the FLAIR scans of all healthy participants 

were used by neurologists at the respective scan sites to check for the presence of 

hyperintensities and other incidental findings. The T1 and FLAIR scans of the TBI patients 

were sent to neurologist Paul Beech (Alfred Hospital Melbourne) for lesion description. 

Therefore, only these three scans are described in detail. For a full overview of all scans 

acquired (for use in other projects) see Tables 2 and 3.  

3.3.1 MRI for Study 2 (Monash Biomedical Imaging) 

Images were acquired on a Siemens 3T SKYRA, 32-channel head coil, whole-body 

scanner. The entire acquisition time was 53 minutes and 49 seconds (Table 2). 

3.3.1.1 Anatomical scan 

 High resolution 3D T1-weighted imaging was performed with magnetisation-

prepared rapid gradient-echo acquisition (MPRAGE), ADNI protocol with 192 contiguous 
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slices (A>>P), FOV = 256mm, voxel size = 1.0mm isotropic, TR = 2300ms, TE = 2.07ms, 

flip angle = 9º, and a total acquisition time of 3:52min.  

3.3.1.2 Diffusion Weighted Imaging  

Diffusion MRI (dMRI) was performed using single-shot echo planar with twice-

reinforced spin echo and was obtained with 60 contiguous sagittal slices (FOV = 220mm, 

voxel size = 2.5mm isotropic, TR = 10100ms, TE = 101.0ms. A high angular resolution 

diffusion imaging (HARDI) gradient scheme was applied in 66 non-collinear gradient 

directions, b-value of 3000s/mm2, and seven interleaved b0 images. A pair of reverse phase 

encoded b0 images was also collected to correct for geometric distortions (TA = 42 seconds 

each). Total acquisition time was 13:26mins.  

3.3.1.3 FLAIR 

3D fluid-attenuated inversion recovery was performed to assess the presence of 

lesions (192 slices, FOV = 256mm, voxel size = 1mm isotropic, TR = 5000ms, TE = 397ms, 

TI = 1800 ms, TA = 4:52mins).  

 

Table 2.  

Scanning Protocol and Measures from Monash Biomedical Imaging (MBI) 

Scan Measures Toolbox Image Scan Values Time 
(min) 

3D 
MPRAGE 

Anatomy Freesurfer/FSL 

 

MPRAGE (ADNI protocol). 
1mm isotropic, 192 slices. TR 
2300.0ms, TE 2.07ms. FoV 
256mm. 

03:52 

HARDI Tractography MRtrix3 
ExploreDTI 

 

66 directions, maximum b-
value 3000. 2.5mm isotropic, 
60 slices. Ten b0 images. 
Extra LR and RL image for 
dist. correction. Phase 
encoding L>>R. TR 10100ms, 
TE 101.0ms. 

13:26 
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Scan Measures Toolbox Image Scan Values Time 
(min) 

mcDESPOT Myelin 
Mapping 

 QUIT 

 

Four subsequences: SSFP 
phase 0; SSFP phase 180; 
SPGR; and irSPGR. 8 flip 
angles. 

15:00 

QSM Magnetic 
Susceptibility 

Nipype (python) 

 

4 Echo, monopolar, 
0.7x0.7x1.3mm, TR 35.0ms, 
TE 14.80ms, FoV 256mm. 

10:00 

T2 FLAIR  Lesion 
identification 

FSL  

 

1mm isotropic, FoV 256mm. 
TR 5000ms, TE 397.0ms. 

4:52 

fMRI Resting state 
Connectivity 

REST/ICA 
(SPM) 

 

BOLD. 3mm isotropic. 
FoV 190mm. TR 754ms, TE 
21.00ms. Multi-band 
acceleration factor 3, 42 slices, 
400 measurements. 

5:16 

 Total 
53:49 

 

3.3.2 MRI for Study 3 (Royal Children’s Hospital) 

Images were acquired on a Siemens 3T PRISMA, 32-channel head coil whole-body 

scanner. The entire acquisition time was 52 min (Table 3). 

3.3.2.1 Anatomical scan  

High resolution 3D T1-weighted imaging was performed with magnetisation-prepared 

rapid gradient-echo acquisition (MPRAGE), ADNI protocol with 208 contiguous slices 

(A>>P), FOV = 256mm, voxel size = 0.8mm isotropic, TR = 2100ms, TE = 2.22ms, flip 

angle = 8º, and a total acquisition time of 5:48 min.  
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3.3.2.2 Diffusion Weighted Imaging  

Diffusion weighted imaging was performed using single-shot echo planar with twice-

reinforced spin echo, obtained with 70 contiguous transversal slices (FOV = 260mm, voxel 

size = 2.3mm isotropic, TR = 3500ms, TE = 67.0ms. A high angular resolution diffusion 

imaging (HARDI) gradient scheme was applied in 66 non-collinear gradient directions, b-

value of 3000s/mm2, and seven interleaved b0 images. A pair of reverse phase encoded b0 

images (BU and BD) were also collected to correct for geometric distortions (TA = 50 s 

each). Total acquisition time was 6:17 min. 

3.3.2.3 FLAIR 

3D fluid-attenuated inversion recovery was performed to assess the presence of 

lesions (176 slices; FOV = 256mm; voxel size = 0.5x0.5x0.9mm; TR = 6000ms; TE = 

437ms; TI = 2100ms). Total acquisition time was 7:20 min.  

 
Table 3.  

Scanning Protocol from Royal Children’s Hospital (RCH) 

Scan Purpose Toolbox Image Scan Values Time 
(min) 

3D 
MPRAGE 

Anatomy Freesurfer/FSL 

 

MPRAGE 0.8mm isotropic, 208 
slices, TR 2100.0ms, TE 2.22ms, 
FoV 256mm. 

5:48 

HARDI Tractography MRtrix3 
ExploreDTI 

 

66 directions, maximum b-value 
3000, 2.3mm isotropic, 70 slices, 
7 b0 images, phase encoding 
A>>P, TR 3500ms, TE 67ms, 
reverse encoded images for dist. 
correction 

6:17 

QSM Magnetic 
Susceptibility 

Nipype 
(python) 

 

3 Echo, monopolar, 1mm 
isotropic. TR 35.0ms, TE 
14.80ms. FoV 256mm. Readout 
mode bipolar. 

8:43 



 

95 

 

Scan Purpose Toolbox Image Scan Values Time 
(min) 

T2 FLAIR  Lesion 
identification 

FSL  

 

0.5x0.5x0.9mm, FoV 256mm, TR 
6000ms, TE 437.0ms. 

7:20 

FWF Piloting NA NA NA 6:40 

Resting 
state fMRI 

Resting state 
Connectivity 

REST/ICA 
(SPM) 

 

BOLD, 2.5mm isotropic, 
FoV 250mm, TR 1150ms, TE 
37ms, multiband AF 4, 56 slices, 
X volumes. 

7:48 

 Total 
42:36 

 

3.4 Procedure 

The testing session for each participant was three to four hours in total, including 

surveys, cognitive/motor/IQ testing, and MRI scan. The procedure for Study 2 and 3 was 

identical, and as such is described here together.  

3.4.1 Overview of the Testing Session 

The testing session took place in a quiet room with space for the participant and their 

carer or partner (if necessary for the TBI patients), and one investigator. Upon arrival, 

participants were given the plain language/explanatory statement and consent form to sign. 

After this, participants either went to the scanner for their MRI, or completed the surveys and 

cognitive testing. Effort was taken to ensure the participant’s comfort during the testing 

process to minimise fatigue; for instance, breaks were offered after completion of cognitive 

testing, IQ testing, and MRI scanning. Participants were allowed to drink coffee or tea or 

water during the testing process, but food was only consumed during break times. As much 

or as little break time was given depending on the participants’ needs. The length of the 



 

96 

 

testing session varied between participants, depending on their level of proficiency and length 

of their break time/s.   

3.4.2 Details of the Data Collection Process 

Surveys (demographic questionnaire and NFI4) were completed using pen and paper 

with the investigator present to answer any questions or clarify any ambiguities. In total, the 

surveys took approximately 30 min to complete. IQ (WASI-II5) testing took place using pen 

and paper with the investigator acting as scribe according to protocols described fully in the 

manual. The Vocabulary test was administered first with participants asked to describe the 

meaning of a word out loud. For the Matrix Reasoning task, the investigator showed the 

participant the flipbook of matrices and asked the participant to indicate which of five 

multiple choice options was correct. The participant gave their response verbally.   

3.4.2.1 Computerised cognitive testing 

Cognitive testing was completed in the same quiet room, with the investigator present 

to explain each of the eight computerised tasks to the participant if necessary. The Dell 

Inspiron 15” laptop was arranged next to a mouse and mousepad in front of the participant, 

who was seated in an ergonomic chair. The eight-task PEBL test battery was run 

consecutively, with no gap between tasks. The sequence of tasks is as follows: Go/No-Go, 

Tower of London, Corsi Blocks, Digit Span, Letter-Digit Substitution, Connections, Global-

Local, and Vigilance. Tasks were not randomised but ordered so as minimise fatigue by 

interspersing longer more effortful tasks with shorter easier ones. Each task began with an 

instruction screen and a set of practice trials, during which the participant could ask the 

investigator any questions they might have or take a break if necessary. The duration of the 

 
4 also performed were the MASQ, PART-O, and SPRS, though these were not used in this thesis. 
5 NB: the WASI-II was only delivered at the RCH testing site 
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cognitive testing was approximately 50 mins. Raw data were stored directly on the Dell 

laptop once the PEBL was completed. 

3.4.2.2 MRI scan 

MRI data acquisition occurred variably either before or after the testing, depending on 

the convenience of the participant. At both sites, the MRI scans took approximately 1 hour 

and 15 min, including 5-10 min before the scan for the radiographer interview. All 

subsequent preparations were performed by the radiographer – the investigator remained in 

the radiographer’s office taking notes on the sequence of events on the Scan Running Sheet 

(Appendix U). The radiologist first double-checked for contra-indications to the MRI scan by 

going through the MRI screening form at length with the participant. Next, a fiducial marker 

was placed on the participant’s right temple. The participant was then positioned comfortably 

in the scanner using cushions and blankets – this also minimised any movement on the bed. 

Participants were asked not to move during the scans by reminding them that they would be 

given allocated times to move their arms and legs (but preferably not their head). Verbal 

instructions and check-ins were given via the intercom system. A movie was screened for 

them, if requested, during the structural MRI scans. The sequence of scans remained the same 

for all participants, with breaks offered between each scan to enhance comfort during the 

scan. Scans were checked visually by the radiographer and investigator for major movement 

artefacts and performed again if necessary (and if time allowed). Notes were taken of any 

movement or change to the scan protocol on the scan running sheet. Following the 

completion of the MRI scan the participants were extracted from the MRI and left the MRI 

suite with the investigator. 

Once scans were acquired, the FLAIR images were sent to a neuroradiologist to check 

for abnormalities. In the case of abnormalities, the consent form was checked to indicate 
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whether they would like to be informed, and then either their general practitioner was 

contacted, or a senior member of the research team (Prof. Karen Caeyenberghs) contacted the 

participants.  

3.4.3 Confidentiality  

Once the pen and paper testing finished, the surveys and IQ testing forms were 

compiled into a folder labelled with the participants ID (HC##: Healthy Adults at MBI; 

CMT## or DTC##: TBI patients at RCH; CON##: Healthy Controls at RCH). The only 

paperwork that contained both the participants’ name and their ID was the consent form. This 

paperwork was organised into folders depending on testing location and participant ID and 

stored in a locked cabinet at the Mary MacKillop Institute for Health Research, in Prof. 

Karen Caeyenberghs office.  

3.4.4 Data Entry and Security  

Raw data from the pen-and-paper surveys and IQ test were entered into a master 

spreadsheet in Excel (v16.43) which was then saved on a locked hard drive and stored in the 

same locked cabinet as the paperwork. Variables of interest from the cognitive testing were 

entered into the master spreadsheet, and all raw data files from the PEBL were backed up 

onto the same hard drive and removed from the testing computer. The MRI data for Study 2 

(MBI) was downloaded directly from the project’s DARIS (Nov 2016 – Sep 2017) or XNAT 

(Sep 2017 – Apr 2018) server and saved onto the same locked hard drive. The MRI data 

Study 3 was pushed to the DICOM node of Mark Seal, the institute director at the Murdoch 

Children’s’ Research Institute, who then forwarded the downloadable files to the investigator 

via secure links using Cloudstor (Feb 2019 – Jan 2020). Also, the data was saved onto a DVD 

at the time of scanning and transferred onto the hard drive as a back-up while the XNAT data 

was being transferred. All DVDs were stored in the same locked cupboard as the hard drive 
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and paperwork. After January 2020 when the Australian Catholic University’s XNAT server 

went live, data was transferred and downloaded directly from the project’s XNAT. All data 

transfers occurred using secure links.  

3.4.5 General approach to data analysis 

Study 2 and 3 both utilise a graph theoretical analysis (Rubinov & Sporns, 2010) of 

brain imaging data. The details of these analyses are detailed in the empirical chapters. MRI 

data were analysed on MASSIVE using freely available image processing tools, including 

mrtrix3 (v3.0_rc3; Tournier et al., 2019) mrtrix3tissue (v5.2.8; https://3tissue.github.io), 

Freesurfer (6.0; http://surfer.nmr.mgh.harvard.edu/) (Fischl, 2012), and FSL (6.0; Jenkinson 

et al., 2012). Once processing was performed, brain data was downloaded to Matlab in the 

form of connectivity matrices for further analysis. Connectome analyses were performed 

using the Brain Connectivity Toolbox (Rubinov & Sporns, 2010) and in-house built Matlab 

(R2019b) scripts (see Appendix V). Also, cognitive data (demographics, PEBL, NFI, and IQ) 

were stored in an Excel spreadsheet before being imported into Matlab for data analysis. 

  

https://3tissue.github.io/
https://3tissue.github.io/
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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Chapter 4:  Study 2 - Navigating the link between processing speed and 

network communication in the human brain 
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4.1 Preface 

Connectome analyses have recently provided a novel way to understand the 

mechanisms of information transfer in brain networks (Bassett & Sporns, 2017). In Study 1, 

it is substantiated that graph metrics are useful for evaluating structural differences between 

TBI patients and healthy controls (Imms et al., 2019). However, what remains unclear is 

whether graph metrics have interpretive value as biomarkers of brain injury (Woo et al., 

2017). In this regard, it is important to establish whether graph metrics are behaviourally 

relevant – in other words, do they relate to measures of cognition. Thus, the purpose of Study 

2 is to investigate the relationship between graph metrics and cognitive performance in 

healthy adults.  

Rather than investigating the cognitive correlates of all graph metrics, Study 2 

focusses on one important sub-group – communication measures. The rationale for choosing 

communication measures was as such: the meta-analysis (Study 1) revealed that 

characteristic path length showed the most robust alterations in TBI patients. In particular, 

path length was longer on average in TBI patients than healthy controls in three of the four of 

studies where it was measured. Characteristic path length also had the lowest heterogeneity 

value (I2 = 28.60%), supporting the idea of a real effect between TBI patients and healthy 

controls. Finally, path length measures were found to correlate with some measures of 

cognition, such as processing speed and task switching (Caeyenberghs et al., 2014); and 

executive functioning and verbal learning (Kim et al., 2014a). These findings suggest that the 

behavioural relevance of communication within the brain network should be further 

investigated.  

In the discussion of Study 1 it was noted that communication measures such as path 

length and global efficiency are often interpreted in terms of information transfer or 
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processing speed. This is due to an underlying assumption that the speed of executive 

processes relies on efficient integration properties of the structural network to facilitate 

communication within the brain (Bullmore & Sporns, 2012). Several graph theoretical studies 

outside the TBI literature have revealed that network communication is also related to 

individual variation in processing speed in older adults (e.g., Wen et al., 2011) and 

Alzheimer’s Disease (e.g., Caeyenberghs et al., 2014; Reijmer, Leemans, Caeyenberghs, et 

al., 2013). While these early results are promising, advances in connectome reconstruction 

and cognitive modelling could lend further weight to the link between network 

communication and information processing speed. These advanced measures of processing 

speed and network communication should provide more specific estimates of brain structure 

and cognition and thus improve the strength of the observed relationships. 

4.1.1 Advances in measuring processing speed  

In the present study, we apply the hierarchical Bayesian drift diffusion model 

(HDDM; Wiecki et al., 2013) to estimate decision-making time from the overall reaction time 

for each trial. The drift-diffusion model has been successfully used to investigate processing 

speed in Autism (Powell et al., 2019), and neurodegenerative disorders (Zhang et al., 2016). 

By removing the confounding effect of non-decision times, we expect that this measure of 

processing speed should be more sensitive to individual differences in healthy adults (Voss et 

al., 2004). 

4.1.2 Advances in measuring communication 

Most connectome studies have computed communication measures based on shortest 

path length – including characteristic path length and global efficiency (for an overview of 

the definition of global integration metrics used in this study, the interested reader is referred 

to Appendix A). A network with short path lengths is often interpreted as having efficient 
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information transfer between brain regions (Latora & Marchiori, 2001). Similarly, longer 

path lengths in brain-injured populations are often interpreted in terms of poorer efficiency of 

information transfer (see Imms et al., 2019). However, the assumption of information transfer 

under global integration is problematic because it assumes that every node has a global 

‘roadmap’ of the overall network – an assumption which may be biologically implausible. 

Therefore, Study 2 also investigates a new communication measure, called navigation 

efficiency, which has been shown to be a more plausible way of characterising 

communication in the human brain network (Seguin et al., 2018).  

4.1.3 Advances in connectome reconstruction  

It is well-known that diffusion imaging and processing techniques suffer from several 

limitations and biases, impacting the reliability of global integration findings (Jeurissen et al., 

2013; Jones, 2010a). Previous structural connectome studies have used a deterministic 

tractography approach, which can result in false negatives and do not account for crossing 

fibres. Constrained Spherical Deconvolution (CSD) is often used to address these concerns, 

albeit at the expense of accumulating false positives (Thomas et al., 2014). In the present 

study a state-of-the art diffusion MRI sequence and processing pipeline is used to avoid 

biases that may result in false pathways. Specifically, we employ (i) single-shell 3 tissue CSD 

with fibre orientation distributions estimated in the grey matter, white matter, and CSF (to 

avoid overestimating the volume of white matter in voxels containing both signal types) 

(Jeurissen et al., 2014), (ii) Anatomically Constrained Tractography (ACT) to accurately 

determine where streamlines should be generated (Smith et al., 2012), and (iii) an advanced 

tractogram reconstruction SIFT2 technique to provide a more ‘biologically accurate’ 

representation of streamline count (Smith et al., 2015a) with the potential for stronger clinical 

relationships (McColgan et al., 2018).  
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4.1.4 Summary 

In summary, Study 2 examines the relationship between structural brain networks and 

cognitive processing speed in healthy adults, as a proof of concept that communication 

measures are a biomarker of slowed processing speed (Aim 2, Research Questions 1 and 2). 

Innovative measures of network communication and decision-making time are used to 

improve the specificity of the findings. Processing speed is often chronically impaired in TBI 

patients (see section 1.1.4); as such, this proof-of-concept study in healthy adults constitutes 

an important step towards assessing the link between graph metrics and cognitive impairment 

after brain injury. Furthermore, this chapter provides a detailed description of the state-of-the-

art connectome processing pipeline that is also used in Study 3. 
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4.2.2 Abstract  

Processing speed on cognitive tasks relies upon efficient communication between 

widespread regions of the brain. Recently, novel methods of quantifying network 

communication like ‘navigation efficiency’ have emerged, which aim to be more biologically 

plausible compared to traditional shortest path-length based measures. However, it is still 

unclear whether there is a direct link between these communication measures and processing 

speed. We tested this relationship in forty-five healthy adults (27 females), where processing 

speed was defined as decision-making time and measured using drift rate from the 

hierarchical drift diffusion model. Communication measures were calculated from a graph 

theoretical analysis of the whole brain structural connectome and of a task-relevant fronto-

parietal structural subnetwork. We found that faster processing speed on trials that require 

greater cognitive control are correlated with higher navigation efficiency (of both the whole-

brain and the task-relevant subnetwork).  In contrast, faster processing speed on trials that 

require more automatic processing are correlated with shorter path-length within the task-

relevant subnetwork. Our findings reveal that differences in the way communication is 

modelled between shortest path-length and navigation may be sensitive to processing of 

automatic and controlled responses respectively. Further, our findings suggest that there is a 

relationship between the speed of cognitive processing and the structural constraints of the 

human brain network. 
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4.2.3 Introduction 

Processing speed is the time it takes to perform a cognitive task, including identifying, 

manipulating, and responding to information (Holdnack et al., 2015). It plays a central role in 

a broad range of cognitive abilities, in particular top-down control of attention and executive 

functioning (Kail & Salthouse, 1994). Notably, inter-individual variability in processing 

speed is related to intelligence (Sheppard & Vernon, 2008) and is argued to be one of the 

most meaningful ways of measuring mental capacity (Kail & Salthouse, 1994). It is theorized 

that processing speed relies on the topological organisation of white matter pathways that 

connect regions of the brain, allowing for efficient communication between brain regions 

(Bullmore & Sporns, 2012). Consequently, slowed processing speed has been implicated in 

patients with brain injuries (Battistone et al., 2008) and neurodegenerative disorders that 

disrupt these connections (Soloveva et al., 2018). However, few studies have investigated 

whether inter-individual variability in processing speed is directly related to white matter 

connectivity measures, especially in healthy populations. 

Processing speed is thought to be constrained by white matter network organisation, 

since cognitive processes rely on efficient communication along axonal pathways between 

brain regions (Bullmore & Sporns, 2012; Lynn & Bassett, 2019). Cognitive processing is 

slowed if signals must travel via more synaptic connections (Fornito et al., 2016) or via 

connections with poor myelination or low axon density (e.g., Tolhurst & Lewis, 1992). 

Neuroimaging studies have used diffusion MRI to examine the relationship between 

processing speed and properties of specific white matter tracts in healthy populations (e.g., 

Karahan et al., 2019; Turken et al., 2008). For instance, Turken et al. (2008) found that faster 

processing speed is associated with higher connectivity of fronto-parietal and fronto-temporal 

white matter pathways. While these studies suggest that processing speed relies on white 
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matter organisation, they used tract-based approaches that provide an incomplete picture of 

the link between processing speed and brain connectivity. Rather, the brain operates as a set 

of interconnected networks in complex arrangements, disseminating information across 

distributed areas (Bressler & Menon, 2010). Brain organization in terms of these complex 

networks will likely determine processing speed over and above the structure of individual 

brain regions or tracts. 

Network analysis has been used to understand how ensembles of brain regions work 

together in a network, which is crucial for higher-order cognitive processing (Bullmore & 

Sporns, 2009; Sporns, 2010; Sporns et al., 2005). These analyses have rapidly found 

applications in the clinical neurosciences (for reviews, see Fornito et al., 2015; Griffa et al., 

2013; Imms et al., 2019) and have provided several global graph measures to capture the 

different structural properties of the brain (Rubinov & Sporns, 2010). A particular class of 

graph measures is concerned with modelling how the structure of brain networks facilitates 

and constrains large-scale neural signalling (Avena-Koenigsberger et al., 2018; Seguin et al., 

2020). Network communication measures take into account the organization of white matter 

networks to compute the efficiency of putative communication pathways between brain 

regions. Of particular interest are communication measures based on the shortest path 

between brain regions (i.e., characteristic path length and global efficiency; Rubinov & 

Sporns, 2010). There is emerging evidence from clinical populations that suggests slower 

processing speed is associated with longer path length and/or lower global efficiency in aging 

(e.g., Wen et al., 2011), brain injury (e.g., Caeyenberghs et al., 2014), and diabetes (e.g., 

Reijmer, Leemans, Brundel, et al., 2013). For example, Caeyenberghs et al. (2014)found that 

slower processing speed was associated with lower global efficiency in adults with traumatic 

brain injury. This relationship between processing speed and communication measures in 

clinical populations suggests that there may be similar patterns in healthy adults. 
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There has been no dedicated structural connectome analysis examining processing 

speed and graph communication measures in healthy adults, though communication models 

have recently been shown to improve prediction of behaviours, such as overall cognition and 

tobacco use (Seguin et al., 2020). Furthermore, previous clinical studies have only used 

shortest path-based algorithms to measure communication (e.g., Caeyenberghs et al., 2014; 

Reijmer, Leemans, Brundel, et al., 2013; Wen et al., 2011). This is potentially problematic 

because shortest path-based routing relies on the assumption that every brain region has a 

global ‘roadmap’ of the network, which may be biologically implausible (Avena-

Koenigsberger et al., 2019; Goñi et al., 2014). Recently, a more realistic routing model for 

neural communication has been suggested, named “navigation” (Seguin et al., 2018). 

Navigation assumes that neural signalling unfolds based on local knowledge of the spatial 

positioning of brain regions. Therefore, navigation models neural communication as a 

decentralized process, which may be more robust with regards to the biological mechanisms 

of information transfer in the brain. The associated measure “navigation efficiency” has 

shown stronger correlations with resting-state brain activity compared with shortest path-

based routing (Seguin et al., 2018), and is reported to track abnormalities in the functional 

synchronization of brain regions following stroke (Wang et al., 2019). Navigation efficiency 

may therefore represent a more specific marker of how communication is structurally 

facilitated by the brain network. 

The present study aims to investigate how inter-individual differences in processing 

speed relates to communication measures in healthy adults. We employed measures that are 

as specific as possible to individual differences in (1) processing speed and, (2) white matter 

connectivity. First, processing speed is traditionally measured by means of overall reaction 

time on tasks such as the global-local task (which taps into processing speed by asking 

participants to identify either global or local elements of a stimulus while ignoring interfering 
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information) (Navon, 1977). However, theoretical models of cognition suggest that 

processing speed can be divided into three components, including the time taken to (a) 

visually perceive the stimulus, (b) ‘process’ the information and decide how to respond 

(decision-making), and (c) execute the motor response (e.g., Romo & Salinas, 1999). There is 

evidence that decision-making time (b) is relevant to cognitive performance (for review, see 

Forstmann et al., 2016), and is a more specific measure of processing speed (Poudel et al., 

2017; Powell et al., 2019). As such it is useful for investigating the white matter substrates of 

processing speed in healthy adults (Schall, 2001). To extract decision-making time, we 

employ a drift diffusion model where processing speed is operationalised as the rate of 

information accumulation during the decision-making process–“drift rate”–with higher 

values denoting faster decision-making time (Ratcliff & McKoon, 2008; Voss et al., 2004; 

Wiecki et al., 2013). Second, we modelled network communication using both shortest path-

based and navigation-based routing strategies, to examine whether navigation efficiency is 

more strongly correlated with decision-making speed than path-length. Furthermore, we 

computed each communication measure for the whole-brain and for a task-relevant 

subnetwork, as the specificity of these measures can be improved by examining connectivity 

in the subnetwork important for the task at hand (e.g., Román et al., 2017). The global-local 

task is known to elicit specific activation in fronto-parietal regions, the temporal-parietal 

junction, areas of the occipital cortex, and the thalamus (Gadgil et al., 2013; Han et al., 2004; 

Hedden & Gabrieli, 2010; Liddell et al., 2015; Weissman & Woldorff, 2005). These regions 

were therefore selected for the task-relevant subnetwork. 

We hypothesised that drift rate on the global-local task would be lowest (i.e., slow 

processing speed) on incongruent trials where the large and small elements of the stimuli are 

different. On the basis of previous studies (Caeyenberghs et al., 2014; Reijmer, Leemans, 

Brundel, et al., 2013; Wen et al., 2011), we hypothesised that higher drift rate on the global-
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local task would be (i) positively correlated with navigation efficiency, (ii) positively 

correlated with global efficiency, and (iii) negatively correlated with characteristic path 

length.  

4.2.4 Materials and Methods 

4.2.4.1 Participants  

Forty-five healthy adults (27 female) aged 21 – 59 years (mean age=30.9 years, 

SD=11.8 years) participated in this study. All participants were right-handed (average 

Edinburgh Handedness Inventory score: 9.91/10; Oldfield, 1971) and reported no history of 

psychiatric illness or neurological disorders. The majority of participants (94.6%) were high 

school graduates or above (Less than high-school or equivalent = 5.41%; High-school or 

equivalent = 5.41%; Diploma/Vocational qualification = 8.11%; Bachelor’s Degree = 

29.72%; Postgraduate Diploma = 8.11%, Master’s Degree = 32.34%; Doctoral Degree = 

10.81%). Ethical approval for the study was obtained from Monash University HREC (No. 

1181) and Australian Catholic University (project #2017-222R), and written informed 

consent was obtained from each subject prior to testing. All testing was carried out in 

accordance with The Code of Ethics of the World Medical Association (Declaration of 

Helsinki). 

4.2.4.2 Processing Speed  

Global-Local Task 

The global-local task (Navon, 1977) was performed using the computerized 

Psychological Experimental Building Language test battery (Mueller & Piper, 2014) on a 

Dell Inspiron 15-3537 laptop (response latency=80ms; refresh rate=60Hz; stimulus display 

was synchronised to device refresh rate). Participants were instructed to respond as quickly as 

possible to either the global (large) or local (small) level of the stimuli–either an “S” or “H” 



 

116 

 

as illustrated in Figure 1(a)–using the left or right shift keys of the laptop keyboard. The task 

consisted of neutral, congruent, and incongruent conditions to measure processing speed 

across different levels of interference. Neutral trials consisted of rectangular blocks made of 

local letters, or a global letter made of white rectangles (see panels i and ii). For congruent 

trials both levels of the stimuli matched (see panels iii and iv), and for the incongruent trials 

the global and local elements of the stimulus did not match (see panels v and vi). First, 60 

practise trials were presented as a single local letter (30 trials of each letter). All subsequent 

trials (N=240) were grouped into 3 blocks (see Figure 1(b)); (1) neutral trials (n=80); (2) 

congruent trials (n=80); and (3) incongruent trials (n=80). Within each block, participants 

were instructed to respond to either the global or local level of the stimulus. Participants were 

to respond as quickly as possible, however there was no time limit on trials. Overall, the task 

took on average 9:20mins to complete (the mean reaction time for each trial was 545ms, 

intertrial interval was 775ms). Reaction times for incongruent, congruent, and neutral trials 

were recorded separately, in milliseconds. One subject failed to complete the task, and one 

subject was identified as an extreme outlier (average response time was >2.5 standard 

deviations slower than the mean); these two subjects were excluded from further analyses. 

All trials regardless of accuracy were included in the analysis (average accuracy rate for all 

participants was 95.89%). 
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Figure 1. 

Global-Local Task Stimuli  

Note: (a) Example stimuli from the global-local task executed in the Psychological Experimental Building 
Language (Mueller & Piper, 2014); (i) and (ii) are neutral stimuli; (iii) and (iv) are congruent stimuli; and (v) 
and (vi) are incongruent stimuli; (b) Block design was structured by condition (neutral, congruent, incongruent) 
and trial type (global or local). 
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Drift diffusion modelling of the Global-local data 

The hierarchical Bayesian drift diffusion model was used to obtain a sensitive 

measure of decision-making time from the processing speed data of the global-local task 

(Wiecki et al., 2013; see Appendix Table 1 for definitions, interpretations, and a schematic of 

the general drift diffusion model). Reaction times and trial conditions (congruent, 

incongruent, and neutral) for each participant were entered into to the model in python (v2.7) 

package ‘HDDM v0.6.0’ (Wiecki et al., 2013). Based on a comparison of drift diffusion 

models performed by Wiecki et al., we opted for the hierarchical drift diffusion model, 

which requires fewer data points (~50-60 trials per block) compared to other standard 

maximum-likelihood drift diffusion models (which require ~100 trials per block). Moreover, 

Wiecki et al. advocate the use of the Bayesian model, as it enables quantification of 

uncertainty around the estimate of each parameter. The drift rate (v) was estimated for each 

trial, resulting in a distribution of drift rates for each participant and for each condition. We 

excluded individual trials that were in the furthest 5% from the mean reaction time, according 

to recommendations from the authors (Wiecki et al., 2013). An optimal estimate of v (defined 

as the highest point on the drift rate posterior distribution) was calculated per individual for 

each condition. This estimate was used in the correlation analyses as an apparent measure of 

that individual’s processing speed.  

 

Table 1 

Definitions and Interpretations of Parameters from the Drift Diffusion Model 

Name Definition Interpretation 

a Threshold 
The threshold is the distance between 
the upper and lower boundaries. 
 

A large value can be interpreted as the 
process needing to accumulate more 
information before reaching a limit 
and initiating a response. 
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Name Definition Interpretation 

t Non-decision 
time 

The non-decision time is the time not 
measured by the diffusion process 
(e.g., motor processing and encoding 
before coming to a decision). 

A larger non-decision time means a 
longer amount of time needed to 
perform non-decision relating 
processing tasks. 

z Bias 

The bias is the starting point of the 
diffusion process (i.e., closer to either 
the upper or lower threshold). 

A larger bias towards the upper 
threshold indicates that less 
information is needed to initiate a 
response towards that threshold. 

v Drift rate 
The drift rate is the change over time in 
the approach towards either the upper 
or lower threshold. 

A higher drift rate indicates a faster 
decision-making speed. 

 

4.2.4.3 Structural Connectome  

MRI data  

MRI data were acquired on a Siemens 3T Skyra scanner using a 32-channel head coil 

at the Monash Biomedical Imaging facilities in Clayton, Victoria, Australia.  A 3D T1-

weighted image was acquired for each subject with a magnetisation-prepared rapid gradient-

echo (MPRAGE) sequence, 192 sagittal slices, FOV = 256mm, voxel size = 1.0mm isotropic, 

TR = 2300ms, TE = 2.07ms, flip angle = 9º, and a total acquisition time of 3:52min. 

Diffusion MRI (dMRI) data were acquired using a single-shot echo planar imaging sequence 

(twice-reinforced spin echo) and 60 contiguous sagittal slices, FOV = 220mm, voxel size = 

2.5mm isotropic, TR = 10100ms, TE = 101ms, and right-to-left phase encoding direction. 

The data were acquired using a high angular resolution diffusion imaging (HARDI) gradient 

scheme with 66 non-collinear gradient directions, a b-value of 3000s/mm2, and seven b=0 

images interspersed throughout the HARDI scheme. A pair of reverse phase-encoded b=0 

images was also collected to allow for correction of susceptibility induced echo planar 

imaging distortions. The total acquisition time of the entire dMRI data was 13:26mins.  
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Quality Assessment  

Visual quality assessment for movement and radio frequency artefacts in the 

anatomical and diffusion scans was performed using the viewer in MRtrix (v3.0_rc3; 

Tournier et al., 2019). Two subjects were excluded from all subsequent analyses, one due to 

exceptional susceptibility artefacts and one due to incidental findings. The dMRI data of four 

subjects had incorrect phase encoding and were also removed from further analyses. The 

sample for all remaining analyses included 37 subjects.  

Pre-processing 

Raw dMRI data were processed using MRtrix3Tissue (v5.2.8; 

https://3tissue.github.io), a fork of MRtrix3 (Tournier et al., 2019). A schematic overview of 

our tractography pipeline (Figure 2) can be seen below. First, noise (Cordero-Grande et al., 

2019; Veraart et al., 2016), Gibbs ringing artefacts (Kellner et al., 2016), and motion, eddy 

current distortions and susceptibility induced (EPI) distortions were corrected (Andersson et 

al., 2003; Andersson & Sotiropoulos, 2016; Skare & Bammer, 2010). At this stage we also 

(1) removed outlier slices (mean=1.17%, maximum=2.46% of slices were removed across 

participants); and examined (2) motion across volumes (meanrms=0.517, 

maximumrms=1.068); and (3) translation (x=0.405mm, y=0.137mm, z=0.276mm) and 

rotation (x=0.286º, y=0.172º, z=0.177º) parameters across volumes. These values were below 

the voxel size of image acquisition for this sample (2.5mm3). Next, average response 

functions for white matter, grey matter, and cerebrospinal fluid were estimated from the 

dMRI data themselves using an automated unsupervised approach (Dhollander et al., 2019; 

Dhollander et al., 2016). Pre-processed data were up-sampled to a voxel size of 1.3mm 

isotropic to improve anatomical details and image registration before binary masks were 

created for the up-sampled images (Tournier et al., 2019). To estimate the white matter fibre 
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orientation distributions (FODs) in each voxel, single-shell 3-tissue constrained spherical 

deconvolution (SS3T-CSD) was performed (Dhollander & Connelly, 2016). Finally, the 

resulting FODs were corrected for intensity inhomogeneity and global intensity level 

differences (Raffelt et al., 2017). Quality checks were performed throughout the pre-

processing pipeline: residuals were checked after denoising; the pre-processed image was 

checked for residual geometric distortions; and the brain masks were checked for holes. Hole 

filling was performed for five subjects by dilating the mask and filling in empty voxels that 

were surrounded by masked voxels.   
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The advanced normalization tools package (ANTS; Avants et al., 2009) was used to 

remove non-brain structures from the T1 weighted images for white matter extraction (Zhang 

et al., 2001). Next, FSL FLIRT (Jenkinson et al., 2002; Jenkinson & Smith, 2001) was used 

to perform the boundary-based registration between brain-extracted anatomical and diffusion 

images. For best results, the (upsampled) 1.3mm isotropic resolution diffusion b=0 images 

were registered to the 1.0mm isotropic resolution T1w images, and then were inverse 

transformed to bring the structural images back into the space of the dMRI data. MRtrix’s 5 

tissue-type segmentation script was then used on the T1w images in dMRI space to create the 

relevant masks for tractography.  

Connectomics 

Next, we implemented a series of steps as recommended by Yeh et al. (2020), to 

reconstruct structural connectomes for all subjects. To this end, whole brain anatomically 

constrained tractography was performed, guided by the FODs of each subject (Smith et al., 

2012). The FOD cut-off threshold, step size, and angle were carefully determined to attain a 

reasonable trade-off between false negatives and false positives (seed points=dynamic; 

maximum length=250mm; minimum length=5mm; step size=1.25; angle=45˚; FOD 

amplitude cut-off threshold = 0.08). Twenty-two million streamlines were generated to keep 

connectome variability low enough for SIFT2 to be relatively stable (Yeh et al., 2018). Next, 

the SIFT2 algorithm was applied to match the density of the reconstructed streamlines to that 

of the underlying white matter structures (Smith et al., 2015a). A proportionality coefficient µ 

was also calculated for each participant to be later applied to the connectome edge weights to 

ensure these are proportional to the apparent fibre density in each subject (Smith et al., 

2015b). Anatomical images were parcellated using Freesurfer’s ‘recon-all’ function (6.0; 

http://surfer.nmr.mgh.harvard.edu/), as described in previous publications (e.g., Fischl & 

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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Dale, 2000). In brief, for all anatomical images subcortical grey-matter structures were 

segmented (Fischl et al., 2002); image intensity normalised (Sled et al., 1998); pial surfaces 

and the grey-white matter boundaries estimated (Dale et al., 1999); and the entire brain 

“inflated” to smooth the gyri and sulci (Fischl et al., 1999). On this surface model the 

automated cortical parcellation of 82 regions was generated using the Desikan-Killiany atlas 

(Desikan et al., 2006). While there is no consensus on the optimal choice of parcellation 

scheme (Sotiropoulos & Zalesky, 2019; Yeh et al., 2020; Zalesky et al., 2010), we utilized 

the Desikan-Killiany atlas for the following reasons: This atlas is (i) one of the most 

commonly used parcellation schemes and shows good test-retest reliability in structural 

connectome analysis (e.g., Buchanan et al., 2014); (ii) uses surface-based definition of gyri to 

register landmarks, indicating that the algorithms used to determine streamline termination 

are also compatible with brain parcellation (Yeh et al., 2018); and (iii) has previously shown 

functionally relevant links between brain and behaviour (e.g., Dhamala et al., 2020; Jolly et 

al., 2020) and includes subcortical structures, which facilitates the region of interest 

definition for the subnetwork analysis (e.g., Metzler-Baddeley et al., 2016). The robustness of 

results across multiple parcellation schemes was also examined by performing a control 

analysis utilizing the Destrieux atlas (164 regions; Destrieux et al., 2010), which is another 

commonly used atlas from the Freesurfer software (e.g., Buchanan et al., 2014). The 

Destrieux atlas has the same strengths as the Desikan-Killiany atlas listed above, albeit with a 

higher number of nodes. Quality checks were performed by inspecting output of the 

Freesurfer pipeline at each stage. In addition to a whole-brain network resulting from the 

parcellation, we also constructed a task-specific subnetwork by selecting 28 regions, forming 

a fronto-parietal subnetwork that are purported to be important for the global-local task (for a 

full list of these regions and their supporting citations, see Table 2). Connectivity matrices for 

whole-brain and fronto-parietal networks were generated using the summed streamline 
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weights and the cortical and subcortical regions from node parcellation. To explore the effect 

of area size normalisation on the main results, we conducted a control analysis utilizing 

streamline counts scaled to the inverse of the volumes of the two nodes they connect 

(Hagmann et al., 2008). We checked that the connectivity matrices for each individual were 

non-fragmented, to avoid problems with disconnected nodes that can confound calculation of 

communication measures. As a sanity check, group average whole-brain connectome (see 

Figure 3) demonstrated small-world properties when compared to the random connectome 

(σ=1.0649), and edge weights followed a power law distribution according to Bullmore and 

Sporns (2012).  

 

Table 2 

List of Regions Included in the Global-Local Task-Specific Subnetwork 

Node Region Citation 

7 L.inferiorparietal Hedden & Gabrieli, 2010; salmon et al., 2010 

10 L.lateraloccipital Gadgil et al., 2013 

14 L.middletemporal Hedden & Gabrieli, 2010 

18 L.parsorbitalis Hedden & Gabrieli, 2010 

19 L.parstriangularis Hedden & Gabrieli, 2010 

21 L.postcentral Han et al., 2004 

22 L.posteriorcingulate Gadgil et al., 2013 

23 L.precentral Gadgil et al., 2013 

24 L.precuneus Han et al., 2004; Hedden & Gabrieli, 2011 

27 L.superiorfrontal Gadgil et al., 2013 

28 L.superiorparietal Gadgil et al., 2013; Liddell et al., 2015; Salmon et al., 
2010 

29 L.superiortemporal Han et al., 2004 

30 L.supramarginal Han et al., 2004; Hedden & Gabrieli, 2010 

35 L.thalamus  

42 R.thalamus  
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Node Region Citation 

55 R.inferiorparietal Hedden & Gabrieli, 2010; Salmon et al., 2010 

58 R.lateraloccipital Gadgil et al., 2013 

62 R.middletemporal Hedden & Gabrieli, 2010 

66 R.parsorbitalis Hedden & Gabrieli, 2010 

67 R.parstriangularis Hedden & Gabrieli, 2010 

69 R.postcentral Han et al., 2004 

70 R.posteriorcingulate Gadgil et al., 2013 

71 R.precentral Gadgil et al., 2013 

72 R.precuneus Han et al., 2004; Hedden & Gabrieli, 2011 

75 R.superiorfrontal Gadgil et al., 2013 

76 R.superiorparietal Gadgil et al., 2013; Liddell et al., 2015; Salmon et al., 
2010 

77 R.superiortemporal Han et al., 2004 

78 R.supramarginal Han et al., 2004; Hedden & Gabrieli, 2010 
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Figure 3 

The Group Average Whole-Brain Connectome 

Note: Whole brain connectome of the group average connectivity matrix (a) visualized using NeuroMArVL 
(https://immersive.erc.monash.edu/neuromarvl/); (b) and distribution of strengths for all 37 connectivity 
matrices across the whole-brain network (nodes sorted from lowest to highest strength per individual).  
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Graph Measures 

The Brain Connectivity Toolbox (Rubinov & Sporns, 2010) was used to calculate 

network communication measures (for full definitions, see Table 3). Two communication 

measures were based on shortest-path routing: i.e., characteristic path length, defined as the 

average shortest path length between all node pairs in a network (Watts & Strogatz, 1998), 

and global efficiency, which is the average inverse of the shortest path length to characterise 

parallel network communication (Latora & Marchiori, 2001). Shortest path-based routing 

assumes that each node has a centralized knowledge of the network, in that information 

travels via the fastest possible route between any two nodes. The third measure, i.e., 

navigation efficiency, was calculated using the navigation-based routing and is defined as the 

average navigation path efficiency between all node pairs in a network (Seguin et al., 2018). 

Navigation-based routing strategies do not assume that each node has a centralized 

knowledge of the network – instead, navigation models information transfer using a 

decentralized, geometrically greedy heuristic (Boguna et al., 2009). Information travels from 

the starting node, to the next node in line that is geometrically closest to the target node – 

which may not necessarily be the fastest and most direct path. Greater capacity for efficient 

integration is indicated by higher values of navigation efficiency and global efficiency, and 

lower values of characteristic path length.  

 

Table 3 

Definition of Communication Measures used in the Current Study 

Metric Definition Calculation Interpretation 

Characteristic 
path length 

(CPL) 

The shortest path is the 
fastest and most direct 
communication pathway 
between two network 
nodes. The shortest path 

More specifically, let  𝐿𝐿 ∈
ℝ𝑁𝑁×𝑁𝑁 denote the matrix of 
connection lengths between  
𝑁𝑁 regions, where 𝐿𝐿 measures the 

A higher CPL 
indicates that the 
fastest communication 
pathways between 
regions are, on 
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Metric Definition Calculation Interpretation 

length denotes the length or 
signalling cost associated 
with the shortest path. CPL 
is defined as the average 
shortest path length 
between all node pairs in a 
network (Watts & Strogatz, 
1998). 
 

length of the connection between 
regions 𝑐𝑐 and 𝑗𝑗. Region pairs that 
do not share a direct connection 
have 𝐿𝐿𝑖𝑖𝑖𝑖 = ∞. The shortest path 
length between regions 𝑐𝑐 and 𝑗𝑗 is 
defined as ∧𝑖𝑖𝑖𝑖∗ = 𝐿𝐿𝑖𝑖𝑖𝑖 + ⋯+ 𝐿𝐿𝑚𝑚𝑖𝑖, 
where {𝑠𝑠, … , 𝑡𝑡} is the sequence of 
intermediate regions comprising 
the shortest path. The characteristic 
path length is defined as: 

𝐶𝐶𝐶𝐶𝐿𝐿 =
1

𝑁𝑁2 − 𝑁𝑁
�∧𝑖𝑖𝑖𝑖∗

𝑖𝑖,𝑖𝑖∈𝑁𝑁

 

average, longer and 
less efficient. 
 
 

Global 
efficiency 

(Eglob) 

The average shortest path 
efficiency between all 
possible pairs of nodes in a 
network, where efficiency 
is computed as the inverse 
of shortest the path length 
(Latora & Marchiori, 2001). 
While CPL describes serial 
information transfer, global 
efficiency characterizes 
massively parallel network 
communication, which may 
better reflect neural 
signalling. 

Formally, global efficiency is 
defined as:  

𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =
1

𝑁𝑁2 − 𝑁𝑁
�

1
∧𝑖𝑖𝑖𝑖∗𝑖𝑖,𝑖𝑖∈𝑁𝑁

 

A higher global 
efficiency will 
indicate a greater 
capacity for efficient 
integration of 
information (in 
parallel) across the 
network. 

Navigation 
efficiency (E) 

Navigation paths are use a 
decentralized and 
geometrically greedy 
heuristic (Bogunã et al., 
2009). While navigation 
paths are not the fastest and 
most direct routes in a 
network, their computation 
does not mandate 
centralized knowledge of 
the network. Navigation 
efficiency is defined as the 
average navigation path 
efficiency between all 
possible pairs of nodes in a 
network (Seguin et al., 
2018). 

The navigation path from region 𝑐𝑐 
to region j is delineated as follows. 
Identify which of i’s neighbours is 
closest (shortest Euclidean 
distance) to j and progress to it. For 
each new visited region, repeat this 
process until j is reached 
(successful navigation) or a region 
is revisited (failed navigation). Let 
∧ denote the matrix of navigation 
path lengths. If the case of failed 
navigation from i to j, ∧𝑖𝑖𝑖𝑖= ∞. 
Otherwise, ∧𝑖𝑖𝑖𝑖= 𝐿𝐿𝑖𝑖𝑖𝑖 + ⋯+ 𝐿𝐿𝑚𝑚𝑖𝑖, 
where {𝑠𝑠, … , 𝑡𝑡}is the sequence of 
nodes visited during navigation. 
Analogous the global efficiency of 
shortest paths, navigation 
efficiency is defined as:  

𝐸𝐸 =
1

𝑁𝑁2 − 𝑁𝑁
�

1
∧𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖∈𝑁𝑁

 

Higher navigation 
efficiency indicates 
greater capacity for 
efficient integration of 
information across the 
network, without the 
assumption of 
centralized 
knowledge. 
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First, the weighted connectivity matrix (W) of each individual participant was 

normalised between 0 and 1, by dividing each weight by the sum of the maximum plus the 

minimum value (W/Wmax+Wmin). For characteristic path length and global efficiency, 

weight-to-length remapping was performed according to methods outlined in Rubinov and 

Sporns (2010) by calculating the inverse of the connectivity matrix (1/W; Floyd, 1962; 

Warshall, 1962). For navigation efficiency weights were remapped logarithmically (-

log10[W]) according to procedures outlined in Seguin et al. (2018). The weight-length 

remapping procedures differed between the communication metrics so as to remain consistent 

with previous methods (path length: Caeyenberghs et al., 2014; Rubinov & Sporns, 2010; 

Wen et al., 2011) (navigation: Seguin et al., 2020; Seguin et al., 2018). Nevertheless, a 

control analysis was also performed to examine the sensitivity of results under the different 

normalisation procedures. In this analysis, navigation is calculated using the inverse method 

(1/W), and characteristic path length and global efficiency are calculated using the logarithm 

method (-log10[W]), and results are compared. All three communication measures were 

calculated for the whole-brain and the task-specific fronto-parietal subnetwork.  

4.2.4.4 Statistical analyses 

A one-way analysis of variance (ANOVA) was conducted to examine the effect of 

condition (neutral, congruent, incongruent) on drift rate. Partial correlation analyses were 

performed in Matlab (R2019b) to examine the relationships between the communication 

measures and processing speed. We performed these analyses separately for the whole brain 

and subnetwork levels, controlling for the effect of age (as a covariate). Moreover, correction 

for six comparisons (between the three communication measures and drift rates for each 

condition) was performed using the false discovery rate (FDR<0.05, critical value p<0.016) 

(Benjamini & Yekutieli, 2001). For each of the exploratory control analyses (parcellation 
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scheme, area size normalisation, and weight-length remapping alternatives), the critical FDR 

value was identical to the main analysis (p<0.016). To explore the influence of brain size and 

movement in the scanner, a control analysis was performed whereby these two variables were 

also included as covariates in the model. Brain size (volume inside the skull) was measured 

using estimated Total Intracranial Volume (eITV), which is a fast automated procedure for 

head size correction provided by the Freesurfer software (Buckner et al., 2004). Movement in 

the scanner was measured as the square root of the displacement per voxel averaged across 

each volume, using output from FSL’s motion correction algorithm (Andersson & 

Sotiropoulos, 2016).  

To test for the specificity of our findings, we evaluated the model against a null 

model, similar to previous works (e.g., Poudel et al., 2020; Poudel et al., 2019). We randomly 

selected subnetworks of 28 regions each (to preserve the number of nodes) 10,000 times. 

Communication measures were calculated for each of these 10,000 random subnetworks, 

which were then correlated with drift rate to form a distribution of 10,000 correlation values. 

The frequency of each correlation value was fitted to a Gaussian distribution, and the 

observed correlation value from the task-specific subnetwork analysis was then plotted 

against this distribution. Using a standard z test, the likelihood of observing the task-specific 

subnetwork correlation from the distribution of randomly permuted subnetwork correlations 

was calculated as a p-value.     

4.2.5 Results 

4.2.5.1 Global-local results and HDDM analysis 

With respect to assumption testing, drift rates of the incongruent (M=2.25, SD=0.29, 

range=1.26), congruent (M=2.82, SD=0.31, range=1.08), and neutral conditions (M=2.77, 

SD=0.30, range=1.08) had similar ranges and equivalent variances (all F>0.87, p>0.68). 
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Sample skewness of the drift rates for each condition were between -0.5 and 0.5 and thus not 

significantly skewed (gincongruent=-0,04; gcongruent=-0.17; and gneutral=0.33) (Bulmer, 1979). 

The omnibus ANOVA comparing mean drift rate of incongruent, congruent, and neutral 

conditions was significant (mean sum of squares=3.74, F=41.25, p<0.001, see Figure 4). 

Post-hoc analyses revealed that drift rate was significantly lower in the incongruent trials 

compared to the congruent (MD=0.57, p<0.001, gHedges=2.60) (Hedges & Olkin, 2014) and 

neutral trials (MD=0.52, p<0.001, gHedges=2.36) with lower drift rate indicating slower 

processing speed. Because the congruent and neutral conditions did not differ significantly 

(MD=0.05, p=0.48, gHedges=0.22), only drift rates from congruent and incongruent trials were 

included in subsequent analyses to minimise the number of comparisons. 
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Figure 4 

Drift Rate for Incongruent, Congruent, and Neutral Conditions of the Global-Local Task 

Notes: (a) distribution of individual mean drift rates for each condition; and (b) average drift rate for each 
condition, including error bars (standard error of the mean, SEM). * indicates average drift rate was significantly 
different between conditions.
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4.2.5.2 Whole-brain communication analysis 

Partial correlation analysis revealed that navigation efficiency was positively 

correlated with faster processing speeds on incongruent trials (r=0.427, p=0.009; see Figure 

5), but not on congruent trials (r=0.213, p=0.213), when controlling for the effect of age. This 

remained significant after correction for multiple comparisons (FDR critical p-value=0.016). 

We failed to observe significant correlations between drift rate and whole-brain 

communication based on shortest-path algorithms i.e., characteristic path length or global 

efficiency (see Table 4). 

 

Table 4 

Correlations Between Communication Measures and Incongruent and Congruent Drift Rate  

Communication measure Incongruent drift rate Congruent drift rate 

(a) Whole brain analysis   

Navigation efficiency r=0.427; p= 0.009 r=0.213; p=0.213 

Characteristic path length r=-0.158; p=0.358 r=-0.169; p=0.325 

Global efficiency r=0.110; p=0.522 r=0.212; p=0.215 

(b) Subnetwork analysis   

Navigation efficiency r=0.417; p= 0.011 r=0.274; p=0.105 

Characteristic path length r=-0.239; p=0.160 r=-0.399; p=0.016 

Global efficiency r=0.129; p=0.452 r=0.266; p=0.117 
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Figure 5 

Results of the Whole Brain Analysis 

 

Notes: Results of the whole brain analysis, including a) the 82 regions of the whole brain network, and b) added 
variable plot of whole-brain navigation efficiency and incongruent drift rate including r- and p-values for the 
partial correlation (controlling for age) 

 

4.2.5.3 Task-relevant subnetwork analysis 

Results of the subnetwork correlation analysis revealed that navigation efficiency was 

positively correlated with drift rate on the incongruent trials (r=0.417; p=0.01) when 

controlling for the effect of age, indicating that higher navigation efficiency in the fronto-

parietal network was related to faster processing speed on the global-local task. In addition, 

characteristic path length of the subnetwork was negatively correlated with drift rate on the 
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congruent trials (r=-0.399; p=0.016) when controlling for the effect of age, indicating that 

longer, less efficient shortest paths in the fronto-parietal network coincided with slower 

processing speed (see Figure 6a and b). Both findings remained significant after FDR 

correction (FDR critical p-value=0.016). Global efficiency of the subnetwork was not related 

to drift rate of either condition of the global-local task (see Table 4). 
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Figure 6 

Results of the Subnetwork Analysis 

Notes: (a) the 28 regions of the Desikan-Killiany atlas (Desikan et al., 2006) that comprise the global-local task-
relevant subnetwork, including fronto-parietal regions, the temporal-parietal junction, lateral occipital regions, 
and the thalamus; (b) added variable plots for the two significant correlations found, and (c) frequency 
histograms for the correlations between processing speed (congruent for characteristic path length, and 
incongruent for navigation efficiency) and the 10,000 randomly permuted subnetworks. The red vertical line 
indicates the observed correlation between the task-relevant subnetwork and processing speed
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4.2.5.4 Control Analyses 

Parcellation scheme 

No significant (FDR corrected) results were obtained utilizing the Destrieux 

parcellation scheme (see Table 5a). 

 

Table 5a 

Correlations Between Whole Brain Communication Measures, and Incongruent and 

Congruent Drift Rate with Alternative Parcellation Scheme  

Communication measure Incongruent drift rate Congruent drift rate 

(a) Whole brain analysis*   

Navigation efficiency r=0.124; p= 0.473 r=0.279; p=0.099 

Characteristic path length r=-0.076; p=0.664 r=-0.012; p=0.945 

Global efficiency r=0.091; p=0.596 r=0.183; p=0.286 

Note: Subnetwork analyses were not replicated for this control.  

 

Area size normalisation 

No significant (FDR corrected) results were obtained at the whole-brain or 

subnetwork level when area size normalisation was applied (see Table 5b). 

 

Table 5b 

Correlations Between Whole Brain and Fronto-Parietal Subnetwork Communication 

Measures, and Incongruent and Congruent Drift Rate with Alternative Streamline Weight  

 
Communication measure Incongruent drift rate Congruent drift rate 

(a) Whole brain analysis   
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Communication measure Incongruent drift rate Congruent drift rate 

Navigation efficiency r=0.357.; p= 0.033 r=0.174; p=0.311 

Characteristic path length r=-0.114; p=0.508 r=-0.064; p=0.710 

Global efficiency r=0.047; p=0.784 r=0.019; p=0.913 

(b) Subnetwork analysis   

Navigation efficiency r=0.277; p= 0.102 r=0.176; p=0.305 

Characteristic path length r=-0.111; p=0.519 r=-0.124; p=0.472 

Global efficiency r=-0.01; p=0.953 r=0.050; p=0.770 

 

Weight-length remapping procedures 

No correlations met the FDR threshold for significance at either the whole-brain or 

subnetwork level for the different weight-length remapping procedures (see Table 5c). 

 

Table 5c 

Correlations Between Whole Brain and Fronto-Parietal Subnetwork Communication 

Measures, and Incongruent and Congruent Drift Rate with Alternative Weight-Length 

Remapping 

Communication measure Incongruent drift rate Congruent drift rate 

(a) Whole brain analysis   

Navigation efficiency r=0.147; p= 0.391 r=0.244; p=0.152 

Characteristic path length r=-0.331; p=0.049 r=-0.104; p=0.546 

Global efficiency r=0.355; p=0.033 r=0.157; p=0.362 

(b) Subnetwork analysis   

Navigation efficiency r=0.156; p= 0.365 r=0.266; p=0.117 

 

Brain size and head motion 
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The results remained largely the same when brain size and head movement were 

included as covariates in the analysis (see Table 5d). A significant positive correlation was 

observed between incongruent processing speed and navigation efficiency at the whole-brain 

level (r=0.449; p=0.007), and at the subnetwork level (r=0.420; p= 0.012) (FDR corrected). 

The negative correlation between congruent processing speed and characteristic path length 

of the task-relevant subnetwork did not remain significant at the FDR corrected level (r=-

0.337; p=0.048). 

 

Table 5d 

Correlations Between Whole Brain and Fronto-Parietal Subnetwork Communication 

Measures, and Incongruent and Congruent Drift Rate, Controlling for the Effect of Brain 

Size and Head Movement  

Communication measure Incongruent drift rate Congruent drift rate 

(a) Whole brain analysis   

Navigation efficiency r=0.449; p=0.007 r=0.110; p=0.530 

Characteristic path length r=-0.043; p=0.808 r=-0.136; p=0.437 

Global efficiency r=0.036; p=0.836 r=0.178; p=0.306 

(b) Subnetwork analysis   

Navigation efficiency r=0.420; p= 0.012 r=0.182; p=0.295 

Characteristic path length r=-0.209; p=0.229 r=-0.337; p=0.048 

Global efficiency r=0.090; p=0.608 r=0.212; p=0.222 

 

Comparison against null model subnetworks 

The comparison against null models demonstrated that the findings of the task-

specific subnetwork analysis are unlikely to be due to chance. The observed correlation 

between navigation efficiency of the fronto-parietal subnetwork and drift rate of the 
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incongruent trials (r = 0.417) was 2.2 standard deviations above the mean of the distribution 

of random subnetwork correlation values (p=0.0077; see Figure 6c). Similarly, the observed 

correlation between characteristic path length of the fronto-parietal subnetwork and drift rate 

of the congruent trials (r = -0.399) was 2.18 standard deviations below the mean (p=0.0078).  

 

4.2.6 Discussion 

In the present study, we examined whether individual differences in processing speed 

are related to measures of network communication in healthy adults. Communication 

efficiency was quantified using shortest path length-based metrics as well as a novel routing 

strategy, navigation efficiency (Seguin et al., 2018), across both whole-brain and subnetwork 

levels. We found that measuring processing speed as ‘drift rate’ provides estimates of 

decision-making time that are relevant to underlying white matter organisation. Our findings 

further reveal that navigation efficiency of the whole brain network is related to faster 

decision-making speeds. Finally, we also show that navigation efficiency and shorter 

characteristic path length of the fronto-parietal subnetwork are related to faster decision-

making on the global-local task.  

4.2.6.1 Drift rate is slower during incongruent trials 

We observed normally distributed inter-individual variability in drift rate, with 

equivalent variances across the conditions of the global-local task, supporting our hypothesis 

that drift rate can effectively be used parametrically to examine individual differences in 

decision-making time. Decision-making requires top-down control of attention and 

necessitates longer processing times compared to visual perception and/or motor response 

time (Lamme, 2003; Posner & Boies, 1971). By examining the decision-making time 

separately from the overall reaction time, our results should arguably be more specific to 
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individual differences in global-local processing speed. This supports previous studies that 

also found drift rate to be more reliable than reaction time alone (Poudel et al., 2017; Powell 

et al., 2019).  

We found that information accumulation is slower when stimuli are incongruent, 

compared with trials where stimuli have no distracting features. This observation is likely due 

to the effect of global interference (e.g., Gerlach & Poirel, 2018; Kimchi, 2015). According to 

Weissman et al. (2006), the response to the global letter in incongruent trials must be 

inhibited in order to give a correct answer, thereby slowing the rate of information 

accumulation. Our results are consistent with a previous study that used an accumulator 

model to examine global-local processing in healthy adults (Hübner, 2014). Furthermore, our 

findings support recent clinical research that has used drift rate to measure processing speed 

in autism and Parkinson’s disease (e.g., Powell et al., 2019; Zhang et al., 2016). For instance, 

Powell et al. (2019) found lower drift rate in individuals with autism compared with healthy 

controls; and Zhang et al. (2016) identified slower drift rates in Parkinson’s patients 

compared to controls, which they interpreted as a detrimental effect of the disease on the rate 

of information accumulation. Our findings highlight the utility of drift-diffusion model based 

decision-making time as a sensitive measure of cognitive processing.  

4.2.6.2 Processing speed is associated with whole-brain navigation 

efficiency 

Our whole-brain analysis revealed that higher navigation efficiency – a measure of 

network communication – was related to faster decision-making on incongruent trials of the 

global-local task. This finding supports the idea that more ‘navigable’ white matter topology 

increases the capacity to perform higher-order cognitive tasks more efficiently (Seguin et al., 

2020; Wang et al., 2019). Incongruent trials of the global-local task require greater top-down 
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cognitive control to avoid interference from conflicting information (Posner & DiGirolamo, 

1998). Top-down control of responses rely on a broad range of temporary neural pathways 

across the whole brain (not just the fronto-parietal attention network), including regions that 

are important for guiding controlled responses such as the cortico-basal ganglia structures 

(Hikosaka & Isoda, 2010; Leunissen et al., 2016) and fronto-striato-thalamic circuits 

(Leunissen et al., 2014). The results of the whole-brain analysis suggest a relationship 

between whole brain networks that are navigable with a shorter average Euclidean distance, 

and faster decision-making time when top-down cognitive control is required.  

An individual with higher navigation efficiency tends to have stronger edge weights 

in the pathways characterised by the navigation heuristic (Seguin et al., 2018). Using the 

SIFT2 approach, this edge weight is roughly proportional to the apparent fibre density (Smith 

et al., 2015a). Thus, the tempting explanation for the correlation between network 

communication and processing speed is that there is higher axon density or cross-sectional 

area in the brain networks of people with faster processing speed, indicating faster signal 

transmission. However, it is still unclear whether graph metrics based on tractography alone 

can predict the speed of information transfer (for review, see Jones, 2010a; Lynn & Bassett, 

2019), as conduction velocity has been shown to be more related more to axon diameter and 

g-ratio (Drakesmith et al., 2019). Additional measures of white matter organisation therefore 

may have stronger and more direct links to signal transmission speed, like g-ratio (Mancini, 

2017) or myelination (Caeyenberghs et al., 2016). In the current work, we use the SIFT2 

method to relate edge weights to apparent fibre density via the streamline tractogram (Smith 

et al., 2015a). It is still being explored how well the assumptions of the SIFT2 method 

assumptions hold in the presence of a large proportion of false positive streamlines, which are 

common for whole brain probabilistic tractograms (Maier-Hein et al., 2017): the SIFT2 

approach optimises all connection weights globally, meaning in false positives may impact 
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directly on genuine connection weights and should be used with some degree of caution 

(Zalesky et al., 2020). Nevertheless, we do not argue that neural transmission speed can be 

directly inferred from communication measures. Instead, we suggest that navigation 

efficiency might quantify network topology in a way that reflects the capacity of a neural 

network to shift information around efficiently – in this capacity it may have value as a 

potential biomarker. 

4.2.6.3 Processing speed and communication in the fronto-parietal 

subnetwork   

The subnetwork analyses revealed that individual differences in decision-making time 

are also related to characteristic path length and navigation efficiency of fronto-parietal 

structures. In accordance with previous literature, the control analysis indicated that 

communication within this fronto-parietal subnetwork is more strongly correlated with 

global-local decision-making time than other subnetworks in the brain. This finding was 

expected as previous work suggests that processing speed on the global-local task relies on 

the fronto-parietal attention network to focus attention on the target stimuli (Gadgil et al., 

2013; Han et al., 2004; Hedden & Gabrieli, 2010; Liddell et al., 2015; Weissman & 

Woldorff, 2005). For example, Han et al. (2004) found that attention to global elements of the 

stimuli elicited activation in temporal regions of the subnetwork, and local elements were 

related to parietal activation. Hedden and Gabrieli (2010) found that switching attention and 

inhibiting responses were reliant upon bilateral prefrontal, parietal, and basal ganglia 

structures. Our work further demonstrates that the structural constraints of this broad 

frontoparietal attention network are related to the speed of decision-making on the global-

local task.  
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Interestingly, our study indicates that characteristic path length and navigation 

efficiency are related to decision-making time on different trial types–congruent and 

incongruent, respectively. This may be related to the dual processing theory of automatic and 

controlled processing (Schneider & Chein, 2003). Congruent trials require less attention than 

incongruent trials, as there is no distracting information; therefore, responses might occur 

more automatically via a relatively permanent set of neural connections (Banich, 2009; 

Banich et al., 2000; Schneider & Shiffrin, 1977). Given that characteristic path length 

represents an ‘optimal’ pathway between two regions, it would follow that this model of 

communication relates to automatic responses that have been performed many times before. 

By comparison, navigation efficiency correlated with decision-making time on incongruent 

trials, which require greater top-down cognitive control and attention (Posner & DiGirolamo, 

1998). It may therefore be reliant on a more temporary set of neural pathways–perhaps those 

that show differential neural activation patterns in the parietal and occipito-temporal regions 

compared to controlled response activation patterns (Banich et al., 2000). Because navigation 

routing includes deviations from the optimum pathways, it may more closely model these 

temporary neural pathways. It is therefore logical that navigation efficiency is related to 

incongruent trials, and that responses to these stimuli require longer processing times to 

control attention. In other words, different behavioural contexts might be facilitated by 

special underlying patterns of neural signalling, which would in turn be better captured by 

different network measures of communication. To test this theory, future studies could 

investigate whether the correlation between navigation efficiency and processing speed on 

incongruent trials disappears with as the response becomes well-learned and automated.  

We expected that examining communication within a task-specific subnetwork with 

strong links to performance on the global-local task would increase the specificity of our 

analyses, similar to previous graph theory studies (e.g., Román et al., 2017). This was the 
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case for characteristic path length, which negatively correlated with processing speed at the 

subnetwork level only. Surprisingly, however, navigation efficiency was sensitive to 

processing speed on both the subnetwork and whole-brain level. One possible explanation for 

this discrepancy again stems from the fact that characteristic path length and navigation 

efficiency were related to processing speed on different conditions. Given that characteristic 

path length represented communication for automatic tasks with predefined routes, it follows 

that only the subnetwork required for the task at hand was related to decision-making time. 

By comparison, navigation efficiency was related to trials that demanded greater top-down 

control of responses and might therefore be reliant on fronto-parietal topology as well as 

other distributed regions of the whole-brain network. Alternatively, navigation might be 

overall a more suitable model of neural signalling, which picks up on differences in 

processing speed even when not computed on the task-relevant subnetwork.  

4.2.6.4 Strengths, Limitations and Future Directions 

A causal link between brain structure and behaviour cannot be identified by 

correlation analyses alone (Woo et al., 2017). The main purpose of relating white matter 

organisation to individual variability in cognitive performance is ultimately to develop a 

‘diagnostic biomarker’, a neuroimaging metric that is indicative of behaviour (e.g., Imms et 

al., 2019). To this end, the use of techniques such as multivariate pattern-recognition and 

machine learning in future investigations will better enable prediction of behavioural 

outcomes from graph metrics (e.g., Dhamala et al., 2020; Jolly et al., 2020). An important 

limitation of the present study is the relatively small sample size. Compared with previous 

network communication studies utilizing data from the Human Connectome Project (e.g., 

Seguin et al., 2020), conclusions drawn from the current study are limited by the moderate 

sample size and lack of a validation dataset. We observed significant results at an FDR-
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corrected level, indicating sufficient power; nevertheless, larger samples would enable 

machine learning techniques to examine whether communication measures can be used to 

predict processing speed in individuals. Furthermore, the cause-effect relationship between 

brain structure and behaviour can be better understood by longitudinal studies that investigate 

changes in response to training. For example, Caeyenberghs et al. (2016) found that improved 

cognitive performance with adaptive working memory training was associated with increased 

global efficiency in healthy adults, indicating that graph metrics are sensitive to neuroplastic 

changes over time. A longitudinal examination could be the next step towards using 

communication measures to predict inter-individual variation in processing speed through 

healthy development (Kail & Salthouse, 1994) and aging (Kerchner et al., 2012).  

Connectome analyses can be heavily influenced by methodological choices in the 

processing pipeline (for reviews, see Sotiropoulos & Zalesky, 2019; Yeh et al., 2020; Zalesky 

et al., 2010). Thus, the interpretation of results from the current study are mitigated by the 

specific graph construction parameters employed during analysis. These effects were 

explored in the present study using control analyses, whereby we examined the robustness of 

results across different methodological choices, including parcellation scheme and 

normalization procedures. For instance, we did not observe significant correlations using the 

higher-resolution Destrieux atlas (164 regions, Destrieux et al., 2010). Zalesky et al. (2010) 

found that network parameters such as path length vary as spatial scale of the parcellation 

scheme increases, and thus findings should be reported with reference to the scale of the 

parcellation used. The fact that significant relationships were observed only under the lower-

resolution Desikan-Killiany parcellation scheme (82 regions, Desikan et al., 2006) reflects the 

idea that parcellation granularity does impact the sensitivity of communication measures to 

individual differences. In the case of processing speed on the global-local task, our results 

suggest a lower-resolution representation of brain regions seems to be important.  
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Also, both the Desikan-Killiany and the Destrieux atlases have differently sized 

parcels designed to reflect neuroanatomy (Desikan et al., 2006; Destrieux et al., 2010). While 

this makes these atlases potentially more neurobiologically relevant, differently sized parcels 

are a mathematical confound given larger regions are bound to have stronger weights due to 

the size of the nodes. In an effort to minimise the number of control analyses, the current 

study does not evaluate measures across a range of parcellation schemes of equally sized 

nodes as was done in a larger sample size (N=889) by Seguin et al. (2020). Instead, we 

conducted a control analysis utilizing the streamline weighting scaled to the volume of each 

node, which revealed no significant correlations at the FDR corrected level. This implies that 

communication is related to processing speed when node volume differences are not taken 

into account. While this is a confounding factor, it may also suggest that the variance in node 

size is an interesting feature of the human brain network when using edge weights based on 

SIFT2 (Smith, Raffelt, et al., 2020). 

We also observed no significant correlations at the FDR corrected level when using 

different remapping procedures. We chose to use the standard remapping procedure for each 

communication measure according to key publications (e.g., Rubinov & Sporns, 2010; 

Seguin et al., 2018). However, this does introduce a limitation in that variance in the 

distribution of edge weights may be a confounding factor. Because there is no ‘best practice’ 

method for this step, there is a need for thorough investigation of performance of 

communication measures for predicting behaviour under these different remapping 

procedures (e.g., Avena-Koenigsberger et al., 2018). Finally, we observed that controlling for 

the effect of brain size and head movement had little impact on the results of the analysis 

(apart from characteristic path length) probably due to the nature of our sample (healthy 

cohort). However, these variables will play an important role in connectome studies in 

paediatric and/or clinical populations (Makowski et al., 2019). 



 

149 

 

With these limitations in mind, promising relationships are emerging between 

cognitive processing speed and macroscale brain network communication. A strength of the 

current analysis lies in the diffusion MRI modelling approaches that were used to overcome 

some known limitations of earlier tensor-based techniques (for reviews, see Jeurissen et al., 

2013; Jones, 2010a). We used single-shell 3 tissue constrained spherical deconvolution to 

avoid overestimating the amount of diffusion signal attributed to white matter in the presence 

of partial voluming with other tissues (Dhollander et al., 2016); anatomically constrained 

tractography to generate streamlines from the grey-white matter boundary (Smith et al., 

2012); and attempted to avoid reconstruction biases and make the streamline tractography 

measures proportional to the underlying apparent fibre density, using SIFT2 (Smith et al., 

2015a). We also measured processing speed more specifically, using cognitive models that go 

beyond basic reaction time and that are sensitive to individual differences (Ratcliff & 

McKoon, 2008; Wiecki et al., 2013). Finally, we used a new measure of communication 

(navigation efficiency) that relies on more biologically realistic assumptions than shortest 

path length (Seguin et al., 2018).  

4.2.7 Conclusion 

Our analysis revealed a relationship between the white matter constraints of the 

macroscale healthy brain network and the speed of cognitive decision-making processes. 

Navigation is emerging as a more biologically grounded alternative to shortest path-based 

approaches at the whole-brain level, making it potentially useful as a marker of processing 

speed in healthy adults. Furthermore, by investigating the fronto-parietal subnetwork more 

specifically, we also found evidence that navigation efficiency and characteristic path length 

are differentially related to controlled and automatic processing speeds respectively. This 

opens up a new set of possible theories about how different communication models relate to 
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processing speed under different levels of cognitive demand. Overall, these results indicate 

that communication measures may have interpretive value in healthy adults, with higher 

communication efficiency (especially when calculated using the navigation heuristic) relating 

to faster processing speed on executive functioning tasks requiring cognitive control–bringing 

us closer to bridging the gap between graph theory and cognition.
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Chapter 5: Study 3 - Personalised structural connectome mapping in 

Traumatic Brain Injury 
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5.1 Preface 

The purpose of Study 3 was to investigate alterations in brain network structure and 

cognition in a series of six moderate-severe TBI patients who are in the chronic phase post 

injury: thus, advancing the use of graph theory in the study of brain injury. Building on the 

insights of the Study 1, this study addresses three main issues in the use of graph theory: 1) 

representing heterogeneity in the TBI population (5.1.1), 2) the rationale behind choice of 

graph metrics to examine (5.1.2), and 3) methodological considerations for graph analysis in 

patients with lesions (5.1.3). As well, an updated review of the literature published since the 

final systematic literature search conducted in Study 1 is provided (i.e., post April 2018) 

(Imms et al., 2019). 

A personalised connectomics approach uses the structural connectome as a 

‘fingerprint’ of an individual’s brain network (e.g., Sanz Leon et al., 2013; Schirner et al., 

2015). The vast majority of personalised connectomics research has focussed on the 

functional network profiles of healthy adults using fMRI (Finn et al., 2015; Gratton et al., 

2018; Miranda-Dominguez et al., 2014; Satterthwaite et al., 2018). However, as argued by 

Irimia and colleagues (Irimia, Chambers, et al., 2012; Irimia, Wang, et al., 2012), there is a 

need for individual-level structural connectome analysis of TBI patients; where the structure 

that entails the function of the brain is studied to determine how network organisation is 

rewired following trauma. Nevertheless, structural network differences between groups of 

TBI patients and healthy controls remained the dominant method of evaluation (Imms et al., 

2019) and the role of personalised structural connectomics is still undervalued, especially in 

chronic patients. 

5.1.1 How should heterogeneity in TBI patients be addressed? 



 

153 

 

In Study 1 it was noted that patients with TBI are diverse and vary in severity, time 

since injury, age at injury, method of injury, type of lesion, and other characteristics. Most 

research examining the link between brain structure and cognition has adopted group-level 

analyses that average TBI patient data regardless of this undeniable variability. While group-

level analysis is essential for statistical evaluation, the TBI population is notoriously 

heterogeneous in terms of their lesion characteristics and cognitive outcomes; as such, group-

level results are not necessarily applicable to individual patients (Mant, 1999). Instead, there 

is impetus for the use of single-subject profiling approaches to investigate the cognitive and 

neurological consequences of brain injury (e.g., Irimia, Chambers, et al., 2012; Irimia, Wang, 

et al., 2012). Therefore, this study develops and implements a framework for evaluating a 

profile of graph metrics, including the communication metrics investigated in Study 2, 

enhancing the applicability of the approach to any patient with TBI.  

Another important gap in the TBI field is methods to improve segmentation of 

patients with large lesions, so that they are not excluded from connectome analyses. It has 

been an unfortunate fact that, to increase the homogeneity of the TBI group, studies often 

discard patients with large lesions as ‘outliers’, meaning these patients are not being 

represented in the literature. This is often done because the altered signal intensity of the 

structural pathology causes failures in anatomical segmentation and streamline generation. 

However, newly available lesion filling techniques may allow for automated processing of 

these patients, allowing their inclusion in connectome analyses (i.e., 'Virtual Brain Grafting'; 

Radwan et al., 2021). Hence, Study 3 advances the use of a profile of graph metrics at the 

individual level, including new brain imaging tools to facilitate segmentation in the presence 

of large, bilateral lesions. 

5.1.2 Which graph metrics should be examined in TBI?  
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The meta-analytic study (Study 1) was used to define which graph metrics were 

selected for Study 3, and to inform predictions about whether they were expected to be higher 

or lower in the TBI patients compared with healthy controls. This profiling approach is a 

major advance in the theoretical reasoning behind the use of graph theory to understand TBI. 

Previous graph theoretical studies of TBI patient groups were generally exploratory, with no 

clear rationale behind the selection of graph metrics for analysis, and no theoretically 

informed hypotheses about group differences.  For example, (Yuan, Wade, et al., 2017) 

predicted that metrics would be abnormal in TBI patients compared with healthy controls, 

and that following training they would normalise. However, normality was not defined in 

reference to the graph metrics. This is, perhaps, understandable given the exploratory nature 

of the field and lack of available evidence upon which to base a hypothesis. The meta-

analysis in Study 1 provides a comprehensive summary of the graph metric findings in TBI 

populations compared with healthy controls, providing a foundation for selecting graph 

metrics and predictions for profiling in Study 3.  

Since publication of Study 1, a number of new studies have explored brain alterations 

in TBI patients using graph theory (see Table 1 for an updated summary of the demographics 

and processing techniques, and Table 2 for an updated summary of graph metric alterations in 

TBI). Overall, eight graph metrics were found to be frequently different between TBI patients 

and healthy controls: strength, global efficiency, characteristic path length, local efficiency, 

normalised clustering coefficient, clustering coefficient, betweenness centrality, and small-

worldness. These same metrics were therefore selected in Study 3, with one exception;  

small-worldness was not selected because it is a summary statistic of normalised clustering 

coefficient and normalised path length and, therefore, redundant. Another metric, navigation 

efficiency (Study 2) (Seguin et al., 2018) was included because it is showing promise as a 

more specific measure of network communication.  
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5.1.3 What methods should be used to create the connectome?  

As noted in Study 1, due to inherent limitations in tractography it is difficult to 

directly relate ‘edge’ properties to white matter organisation. The studies included in the 

meta-analysis were mostly conducted between 2012 and 2017, during which time 

tractography was largely deterministic and few options were available to address crossing 

fibres (with the exception of van der Horn et al., 2017; Verhelst et al., 2018). Furthermore, 

dMRI acquisition was slower and generally had lower b values (750-1200), which means the 

signal-to-noise ratio was poorer than is available currently. In Study 2 a state-of-the-art 

diffusion and connectome processing pipeline is described that includes advances in post 

processing and a short, 6-minute single-shell dMRI acquisition (b=3000) (Dhollander & 

Connelly, 2016; Dhollander et al., 2019; Dhollander et al., 2016; Smith et al., 2015a; Smith et 

al., 2012, 2015b). The length of the acquisition was important because it is often difficult for 

TBI patients to remain still in the scanner for long periods of time. This acquisition and 

processing pipeline follow very recent guidelines approved by experts in the field (Yeh et al., 

2020). The benefits and rationale behind the pipeline are outlined in detail in Study 2 (and in 

section 6.2.4) and are carried forward in Study 3. While no imaging or processing technique 

is perfect or future-proof, the methods in this thesis (arguably) represent the best of the 

current connectome analysis techniques. 

5.1.4 Summary 

In summary, Study 3 addresses themes raised in the meta-analytic study (Study 1) and 

employs the methodological advances used in Study 2. Taken together, the findings from 

these previous two studies are used to inform a novel approach to single-subject profiling of 

moderate-severe TBI patients in the chronic phase of their injury. This study addresses Aim 

3, Research Questions 1, 2, and 3: to facilitate visual comparison of graph metric alterations 
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in TBI patients compared to healthy controls; observe variability in graph metrics and 

cognitive performance; and establish the role of graph metrics as biomarkers of TBI. The 

technique implemented in Study 3 demonstrates a high level of heterogeneity in the six TBI 

patients included, regardless of their similarities in severity, lesion location and lesion size. 

Thus, single-subject profiling approaches may allow researchers to capture the range of 

network alteration patterns in TBI patients.  
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5.2.2 Abstract 

Graph theoretical analyses of the structural connectome have successfully been used 

to characterise brain network alterations in Traumatic Brain Injury (TBI). However, the 

population of moderate-severe TBI patients is heterogeneous with regards to cognitive 

function and neurological outcome, and group-level analyses tend to cancel out variability 

between subjects. Single-subject profiling approaches can instead be utilised to better 

represent individual patients. The current study examines cognitive and neurological 

impairments in six chronic moderate-severe TBI patients who underwent an MRI scan and 

completed a cognitive test battery. We develop a single-subject graph metric and cognitive 

profile for each patient comprising their i) cognitive performance, ii) lesion characteristics, 

iii) personalised connectome, and iv) regional brain network alterations. The individual 

profiles are compared with a healthy reference group to facilitate interpretation of graph 

metrics and cognitive performance. We show that cognitive and brain network alterations are 

highly variable across patients. This customised profile based on clinical manifestations and 

injuries provides new insights into how a profile of graph metrics, rather than a single metric, 

can be used to represent structural network alterations in TBI; and devise neuroimaging-

guided rehabilitation.  
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5.2.3 Introduction 

Traumatic Brain Injury (TBI) is one of the leading causes of death and disability 

worldwide, with approximately 27 million new cases recorded every year (James et al., 

2019). TBI severity (mild, moderate, or severe) is determined by a combination of factors, 

including the duration of loss of consciousness, length of post-traumatic amnesia, as well as 

lesions identified using neuroimaging techniques (Hannawi & Stevens, 2016; Maas et al., 

2008; Poudel et al., 2020). Moderate-severe TBI can result in diverse and long-term cognitive 

impairments including slow processing speed, poor attention and memory, and difficulties 

with communication and visuospatial processing, leading to significant decline in overall 

intellectual ability (Rabinowitz & Levin, 2014; Wallace et al., 2018). These impairments can 

persist for years following injury, interfering with the performance of daily tasks that are 

essential for independent living. 

White matter pathology is strongly considered to be a major cause of cognitive 

impairment following brain injury (Bressler & Menon, 2010). Executive functions that rely 

on broadly distributed regions of the brain are hindered due to disruptions to the axonal 

pathways (Catani & Ffytche, 2005; Hampshire et al., 2016). Numerous studies utilising 

structural connectomics using diffusion weighted MRI have linked cognitive deficits to 

different graph theoretical properties of brain networks in TBI patients (e.g., Caeyenberghs et 

al., 2014; Kim et al., 2014a; Raizman et al., 2020; van der Horn et al., 2017) supporting the 

disconnectivity theory of TBI-related impairment (e.g., Håberg et al., 2015; Hannawi & 

Stevens, 2016; Hulkower et al., 2013). For example, Kim et al. (2014a) found not only that 

the average path length was longer in TBI patients compared to controls but also that it was 

associated with poorer executive functioning and verbal learning. More recently, in a meta-

analysis of studies that used graph theory to examine TBI, our group found that only few 

graph metrics were robustly identified to be altered in TBI across studies – namely, 
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characteristic path length and normalised clustering coefficient (for review, see Imms et al., 

2019). We suggested that this finding reflects, at least in part, the heterogeneous nature of 

TBI (represented in individual variation in lesion location, severity of injury, time since 

injury, age, etc.). Because of degeneracy (the brain’s ability to attain the same function with 

different structures; see Mason et al., 2015; Price & Friston, 2002) in response to injury, 

different graph metrics may be altered across different individuals. As such, examining a 

profile of graph metric alterations – a literature-driven selection of measures that represent 

integration, segregation, and centrality – holds promise for capturing the range of individual 

network alterations caused by brain injury. 

As chronic TBI patients are heterogeneous, group-level comparisons do not represent 

intra-patient variance in brain network topography: thus, they cannot capture individual-

specific features (Mant, 1999). There is impetus for the use of individual-level approaches to 

enable individual diagnosis and treatment planning (e.g., Icometrix: 

https://icometrix.com/services/icobrain-tbi) (Irimia, Chambers, et al., 2012; Irimia, Wang, et 

al., 2012; Jolly et al., 2021). Recent studies have exploited this heterogeneity with the aim of 

individualising tract-level comparisons of fractional anisotropy (FA), cortical thickness (CT), 

and streamline count (Attyé et al., 2020; Jolly et al., 2021; Lv et al., 2020). For example, in 

their study of Schizophrenia patients, Lv et al. (2020) examined alterations FA and CT in 48 

white matter and 68 cortical regions. They found that overall, the Schizophrenia group 

demonstrated reductions in structural FA and CT. However, the anatomical locations of 

changes at the individual level were highly inconsistent, and as such group-level maps were 

not representative of individuals. In a separate study, Jolly et al. (2021) used individual 

examination of FA in TBI patients in the chronic (>6 months) and subacute (10 days – 

6weeks) phases to develop a structural connectivity pipeline for diagnosing diffuse axonal 

injury (DAI). Patients who were deemed to have DAI were also significantly more likely to 

https://icometrix.com/services/icobrain-tbi
https://icometrix.com/services/icobrain-tbi
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show cognitive impairment or poorer functional outcome. Despite these promising findings, 

these studies failed to analyse individuals’ brain networks, which is possible using 

personalised connectomics (Irimia, Wang, et al., 2012).  

Personalised connectomics allow for an individual’s brain network to be used as a 

‘fingerprint’ – analogous to genotyping (e.g., The Virtual Brain; Sanz Leon et al., 2013; 

Schirner et al., 2015). Irimia, Wang, et al. (2012) introduced the idea of personalised 

structural connectomics for TBI patients as a way to visualise trauma-related white matter 

atrophy. In particular, they exemplify the need for techniques that allow clinicians to rapidly 

compare changes in structural connectivity profiles to create personalised rehabilitation 

programs (Irimia, Chambers, et al., 2012). They characterised white matter atrophy from the 

acute stage (1-day post-injury) to the chronic stage (7-months post injury) in moderate-severe 

TBI patients, using a circular graph which highlights the tracts that show evidence of 

degeneration based on decreases in white matter fibre density. This enabled clinicians to 

track the location of white matter atrophy over time for each TBI patient. To date, however, 

no approach has examined an individualised profile of network alterations using graph 

metrics in TBI patients – whereby a literature-driven selection of graph metrics that 

summarise segregation, integration, and centrality (Rubinov & Sporns, 2010) are represented 

for each individual patient. Not only do graph metrics summarise network properties that 

show relationships with cognitive outcome in TBI patients, but they are also potentially more 

reproducible than FA and CT across scanning protocols and subjects (Vaessen et al., 2010). 

This approach could provide valuable information to clinicians leading to neuroimaging 

guided strategies that help understand and improve outcomes for chronic TBI patients. 

In the present study, we describe a novel framework to produce a detailed subject-

specific characterisation of cognitive impairments and brain network metrics in moderate-

severe TBI patients. Patients underwent an MRI scan and completed a cognitive test battery 
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that assesses the core domains affected in chronic moderate-severe TBI. Next, single-subject 

analyses of cognitive data and structural MRI scans were used to provide the following 

output: (i) a spider plot for the assessment of processing speed, attention, memory and 

planning (Rabinowitz & Levin, 2014; Ruff et al., 1993) – compared against reference scores 

in healthy controls to provide information about the magnitude of impairment; (ii) a lesion 

mask alongside the lesion load derived from the anatomical MRI scan, to identify the brain 

regions affected in the individual patient; (iii) color-coded segmentation of grey matter 

regions using the newly available Virtual Brain Grafting toolbox, which performs virtual 

repair of lesioned brains to improve segmentation and parcellation for structural connectome 

analyses (VBG; Radwan et al., 2021); (iv) graphical representation of the large-scale 

connectome, i.e. Graph Metrics profile (GraphMe) plot to elucidate subject-specific changes 

in global integration, functional segregation, and centrality (also compared with a reference 

sample); and finally v) regional assessment of the hub regions and edge alterations in each 

TBI patient. We test this single-subject profile in moderate-severe TBI patients with 

heterogeneous lesions loads, ages, and types of injuries to highlight the translational potential 

of our individual-level patient structural networks. 

5.2.4 Methods 

5.2.4.1 Traumatic Brain Injury Cases 

Six patients with chronic, moderate-severe TBI were recruited from St Vincent’s 

Hospital in Melbourne. The TBI patients had sustained closed head injuries due to sports or 

motor-vehicle accidents >6 months prior to testing. Participants were diagnosed with 

moderate-severe TBI, with clinical factors and initial presentations according to the following 

criteria: (i) Glasgow Coma Scale score between 3-12 (Teasdale & Jennett, 1974); (ii) loss of 

consciousness longer than 30 minutes; (iii) post traumatic amnesia longer than 24 hours 
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(Rabinowitz & Levin, 2014):and (iv) anatomical features of their brain injury including DAI 

and lesion extent and location (Table 1) as per evaluation by a neuroradiologist (PB). 

Informed written consent was obtained from each subject in accordance with the Helsinki 

declaration, and ethical approval was granted by the St Vincent’s Hospital Melbourne ethics 

committee for human research (project #250/17).  

5.2.4.2 Reference population 

The resulting individual profiles of cognitive impairments and brain networks need to 

be evaluated against a reference population of healthy controls. Without this contextual 

information, it is difficult to meaningfully assess and interpret cognitive impairment and 

network alterations in single subjects. We therefore also obtained data from 12 healthy 

controls to be used as a reference cohort in this study (see Table 1). Healthy controls were 

recruited from the general population using flyers and had to be (a) aged between 18 to 65 

years; (b) generally healthy with no history of head injury; and (c) fluent in English, with (d) 

no history of psychiatric illness (moderate levels of depression and anxiety not included), and 

(e) no contra-indications for MRI. 

 

 Table 1 

Summary of Demographics and Clinical Characteristics of the Participants. 

ID Age  Sex TSI1  Cause Pathology (at testing)2 DAI3 IQ4 NFI5 

HC 35.7± 
11.4 

M=4
F=8 

- - - - 119±
9 

134 
±5 

TBI1 45y, 
3m 

M 21y, 
0m 

Car accident  Small area of encephalomalacia in 
the (R) precentral gyrus  

0 101 133 
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ID Age  Sex TSI1  Cause Pathology (at testing)2 DAI3 IQ4 NFI5 

TBI2 49y, 
10m 

M 15y, 
6m 

Motorbike 
accident 

Large areas of encephalomalacia 
involving both ant. F and inf. F 
lobes, (R) T lobe and (R) 
parietotemporal region extending 
to the (R) post. F lobe. Focal T1 
hypointensities in the 
anteromedial aspect of the (L) 
thalamus. Volume loss and T1 
hypointensity on the ant. body 
and genu of the corpus callosum. 

2 106 102 

TBI3 49y, 
8m 

F 3y, 8m Horse riding 
accident 

Bilateral ant. and inf. F 
encephalomalacia, (R) greater 
than (L), and (R) ant. T 
encephalomalacia. Small deep 
white matter T2 hyperintensities 
med. (R) P lobe. Small focal T1 
hypointensity in the ant. body of 
the corpus callosum. 

2 95 234 

TBI4 29y, 
5m 

F 15y, 
6m 

Horse riding 
accident 

Bilateral inf. F and (L) ant. T 
encephalomalacia. Small area of 
encephalomalacia (L) sup. F 
gyrus. (R) F burr hole with 
underlying ventricular drain tract. 

0/1 91 218 

TBI5 50y, 
2m 

M 18y, 
1m 

Car accident Two small nonspecific deep white 
matter T2 hyperintensities in the 
(R) P lobe (within normal limits 
for age). 

0 104 123 

TBI6 29y, 
7m 

F 5y, 
10m 

Horse riding 
accident 

Small T1 hypointensity in 
splenium of corpus callosum. 
Scattered punctate T2 
hyperintensities in both cerebral 
hemispheres (approx. 6).  

2 120 120 

Note: 1 TSI=Time since injury (years, months). 2Abbreviations: (R) = right, (L) = left, ant. = anterior, post. = 
posterior, inf. = inferior, mid. = middle, med. = medial, sup. = superior, F = frontal, P = parietal, O = occipital, 
T = temporal. 3Grading of diffuse axonal injury (DAI) occurred according to Adams et al. (1989); a grade of ‘0’ 
indicates no confirmed DAI present, ‘1’ indicates DAI present in white matter of cerebral hemispheres, corpus 
callosum, brainstem, cerebellum; ‘2’ indicates there is also a focal lesion in corpus callosum; and ‘3’ identifies 
an additional lesion in dorsolateral quadrants of brainstem.4IQ was measured using the Weschler Abbreviated 
Scale of Intelligence Vocabulary and Matrix Reasoning subtests (Revised edition; WASI-II; Weschler, 1999; 
“Superior” = >130; “Very high” = 120-129; “Bright normal” = 110-119; “Average” = 90-109; “Low average” = 
80-89; “Borderline mental functioning” = 70-79). 5The Neurobehavioural Functioning Index (NFI) is a measure 
of self-reported daily life cognitive function, where scores above 157 (in bold) indicate ‘abnormal’ cognitive 
function (Kreutzer, Seel, & Marwitz, 1999).   
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5.2.4.3 Cognitive testing 

Eight cognitive tasks from the computerised Psychological Experimental Building 

Language test battery (Mueller & Piper, 2014) were used to evaluate core cognitive domains 

that are commonly affected in chronic moderate-severe TBI patients (Rabinowitz & Levin, 

2014; Ruff et al., 1993), including The Go/No-Go task (response inhibition), Vigilance 

(sustained attention), the Corsi Blocks task (visuospatial working memory), the Digit Span 

task (verbal working memory span), Letter Digit Substitution (processing speed), 

Connections (mental flexibility), the Global-Local Task (decision making speed), and the 

Tower of London task (planning). These tasks have also been recommended by the 

ENIGMA–TBI consortium (Olsen et al., 2020). For full descriptions of the tasks, see 

Supplementary Table 2. Cognitive data were acquired using a Dell Inspiron 15-3537 laptop 

(response latency=80ms; refresh rate=60Hz; stimulus display was synchronised to device 

refresh rate).  

5.2.4.4 MRI data acquisition  

MRI scans were performed at the Royal Children’s Hospital 3T Siemen’s PRISMA 

64-channel head coil scanner. Diffusion MRI (dMRI) data were acquired using a single-shot 

echo planar imaging sequence (twice-reinforced spin echo, multi-band acceleration factor of 

2, 70 contiguous sagittal slices) and a high angular resolution diffusion imaging (HARDI) 

gradient scheme with 66 non-collinear gradient directions (b=3000s/mm2, R>>L, FOV = 

260mm2, voxel size = 2.3mm isotropic, TR = 3500ms, TE = 67ms). Seven b=0 images were 

interspersed throughout the HARDI scheme, and two reverse phase-encoded b=0 images 

were also collected to allow for correction of susceptibility induced echo planar imaging 

distortions. The total acquisition time of the entire dMRI data was 6:17mins. T1-weighted 

images were also acquired for each participant with magnetisation-prepared rapid gradient-
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echo acquisition (208 contiguous slices, FOV = 256mm2, voxel size = 0.8mm isotropic, TR = 

2100ms, TE = 2.22ms, flip angle = 8º), with a total acquisition time of 5:48min.  

5.2.4.5 Lesion masking 

Manual lesion delineation for computation of lesion load and for improvement of 

anatomical segmentation was performed by a blinded assessor (ED), who was trained in 

lesion identification by neuroradiologist (PB). Lesions were drawn in the T1 native space 

using Fsleyes version 0.27.3 in FSL version 6.0.1 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). An 

in-house systematic search method and lesion identification protocol was developed by JD, 

KC, ED, and PB to ensure accurate lesion delineation. Abnormalities resulting in tissue loss, 

such as regions of encephalomalacia or gliosis and damage as a result of surgical drainage 

tracts were included in binarised lesion masks. Enlarged ventricles and hyperintensities often 

occurring in proximity to the skull (e.g., as a result of surgical craniotomies) were not 

included in the lesion masks. Lesion load was computed (in cm3) as the total volume of the 

binary lesion masks in FSL.  

5.2.4.6 Personalised connectome construction  

Preprocessing: An overview of our connectome processing pipeline can be seen in 

Figure 1. Raw dMRI data were processed using MRtrix3Tissue (v5.2.8; 

https://3tissue.github.io), a fork of MRtrix3 (Tournier et al., 2019). First, noise (Cordero-

Grande et al., 2019; Veraart et al., 2016), Gibbs ringing artefacts (Kellner et al., 2016), and 

motion, eddy current distortions and susceptibility induced (EPI) distortions were detected 

and corrected (Andersson et al., 2003; Andersson & Sotiropoulos, 2016). Slices that were 

greater than two standard deviations from the average were replaced automatically by FSL’s 

outlier correction (Andersson et al., 2016). After outlier correction, motion values were 

below the voxel size of image acquisition for each patient except TBI2 (TBI2rms=5.41mm; 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://3tissue.github.io/
https://3tissue.github.io/
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see Figure 2); this patient was excluded from subsequent diffusion imaging analyses. Next, 

average response functions for white matter, grey matter, and cerebrospinal fluid were 

estimated from the dMRI data using an automated unsupervised approach (Dhollander et al., 

2019; Dhollander et al., 2016).
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Figure 2 

Head Motion Summary for Six TBI Patients 

 
Note: Outlier slices are corrected by eddy motion correct, by removing and replacing with 
corrected slices; Data points are in the Total Movement plot represent the root mean square 
movement for each volume (n=67).  
 

Edge reconstruction: Pre-processed data were up-sampled to a voxel size of 1.3mm3 

to improve spatial resolution for image registration before binary masks were created. To 

estimate the white matter fibre orientation distributions (FODs) in each voxel, single-shell 3-

tissue constrained spherical deconvolution (SS3T-CSD) was performed on the upsampled 

data (Dhollander & Connelly, 2016). SS3T-CSD preserves the angular information of the 

GM- and CSF-like signal, removing contributions from these components to increase the 

specificity of the WM FODs, while avoiding over estimation into GM and CSF signal from 

the lesioned area (Khan et al., 2020). Finally, the resulting FODs were corrected for intensity 

inhomogeneity and global intensity level differences (Raffelt et al., 2017).  

The advanced normalisation tools package (ANTS; Avants et al., 2009) was used to 

remove non-brain structures from the T1 weighted images for white matter extraction (Zhang 
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et al., 2011). Next, FSL FLIRT (Jenkinson et al., 2002; Jenkinson & Smith, 2001) was used 

to perform the boundary-based registration between brain-extracted anatomical and diffusion 

images. MRtrix’s 5 tissue-type segmentation script was then used on the T1 images in dMRI 

space to create the relevant masks for tractography (Smith et al., 2012).  

Next, we performed whole brain anatomically constrained tractography (Smith et al., 

2012). The FOD cut-off threshold, step size, and angle were carefully determined to attain a 

reasonable trade-off between false negatives and false positives (seed points=dynamic; 

maximum length=250mm; minimum length=5mm; step size=1.25; angle=45˚; FOD 

amplitude cut-off threshold = 0.08). Twenty-two million streamlines were generated to keep 

connectome variability low enough for SIFT2 to be relatively stable (Yeh et al., 2018). Next, 

the SIFT2 algorithm was applied to match the density of the reconstructed streamlines to that 

of the underlying white matter structures (Smith et al., 2015a; Smith et al., 2015b; Yeh et al., 

2018). A proportionality coefficient µ was also calculated for each participant to be later 

applied to the connectome edge weights to ensure these are proportional to the apparent fibre 

density. 

Node reconstruction: Anatomical images were parcellated using Freesurfer’s recon-

all function (v6.0; http://surfer.nmr.mgh.harvard.edu/), as described in previous publications 

(e.g., Fischl & Dale, 2000). In brief, for all anatomical images subcortical grey-matter 

structures were segmented (Fischl et al., 2002); image intensity normalised (Sled et al., 

1998); pial surfaces and the grey-white matter boundaries estimated (Dale et al., 1999); and 

the entire brain “inflated” to smooth the gyri and sulci (Fischl et al., 1999). On this surface 

model the automated cortical and subcortical parcellation of 84 regions was generated using 

the Desikan-Killiany atlas (Desikan et al., 2006). Quality control was performed by 

inspecting output of the Freesurfer pipeline at each stage using stringent ENIGMA guidelines 
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(http://enigma.usc.edu/). Two patients (TBI3 and TBI4) did not pass the ENIGMA Freesurfer 

quality checks, due to significant segmentation failures in the presence of pathology. These 

patients were therefore run utilising the new virtual brain grafting (VBG v0.37) image 

processing pipeline to improve segmentation (Radwan et al., 2021). In brief, lesions are filled 

with healthy tissue from synthetic ‘donor brain’ images – either leveraging tissue from the 

native non-lesioned hemisphere for unilateral lesions, or a healthy synthetic donor brain for 

bilateral lesions. The resulting lesion free patient image is then passed through the Freesurfer 

recon-all pipeline, enabling improved segmentation in the absence of any structural 

pathology. VBG Freesurfer output for these three patients was again checked against 

ENIGMA quality control guidelines and any remaining errors were then corrected using 

control points in Freesurfer (Fischl, 2012). Finally, connectivity matrices were generated 

using the streamline weights from SIFT2, and area size normalisation occurred by scaling 

weights to the inverse of the volumes of the nodes they connect (Hagmann et al., 2008).  

5.2.4.7 Graph Theoretical Analysis 

We quantified the network architecture in terms of strength, global efficiency, 

characteristic path length, navigation efficiency, local efficiency, clustering coefficient, 

normalised clustering coefficient, and betweenness centrality (Table 3), using the Brain 

Connectivity Toolbox (Rubinov & Sporns, 2010). We selected these graph metrics, as they 

have previously been found to be significantly altered in moderate-severe TBI populations 

(Imms et al., 2019). Graph normalisation occurred by 1) normalising edge weights between 0 

and 1, and 2) weight-to-length remapping using -log transformation (for global efficiency, 

characteristic path length, local efficiency, and navigation efficiency only). Graph metrics 

were calculated for each TBI patient individually. Graph metrics were also computed from 

the group connectivity matrix of the 12 healthy control subjects; and 95% confidence 

http://enigma.usc.edu/
http://enigma.usc.edu/


 

 

178 

 

intervals for the healthy control graph metrics was used as an estimation of variability in the 

absence of injury.  

 

Table 3 

 Graph Metric Descriptions, Interpretations, and Evidence from Previous TBI Studies  

Graph Metric Description Higher values mean… Previous studies 
(Adult moderate-severe TBI) 

Integration 

Characteristic 
Path Length 

The shortest path is the fastest 
and most direct 
communication pathway 
between two network nodes. 
Characteristic path length is 
defined as the average shortest 
path length between all node 
pairs in a network (Watts & 
Strogatz, 1998). 
 

A higher characteristic 
path length indicates that 
the fastest communication 
pathways between regions 
are, on average, longer 
and less efficient. 

Higher CPL 
(Caeyenberghs et al., 
2014; Hellyer et al., 
2015; Kim et al., 2014) 

Global Efficiency The inverse average shortest 
path efficiency between all 
possible pairs of nodes in a 
network, where efficiency is 
computed as the inverse of 
shortest the path length 
(Latora & Marchiori, 2001).  
 

A higher global efficiency 
will indicate a greater 
capacity for efficient 
integration of information 
(in parallel) across the 
network. 

Lower global efficiency 
(Caeyenberghs et al., 
2014) 

Navigation 
Efficiency 

Navigation paths are use a 
decentralised and 
geometrically greedy heuristic 
(Bogunã et al., 2009). 
Navigation efficiency is 
defined as the average 
navigation path efficiency 
between all possible pairs of 
nodes in a network (Seguin et 
al., 2018). 

Higher navigation 
efficiency indicates 
greater capacity for 
efficient integration of 
information across the 
network. 

Not yet investigated, but 
lower navigation 
efficiency observed in 
stroke patients (Wang et 
al., 2019)  

Segregation 
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Graph Metric Description Higher values mean… Previous studies 
(Adult moderate-severe TBI) 

Clustering 
Coefficient 

The number of existing 
connections between the 
neighbours of a node, divided 
by all the possible 
connections, calculated for 
each node individually and 
averaged across the entire 
network (Watts & Strogatz, 
1998). 

A higher average 
clustering coefficient 
means that a greater 
proportion of connections 
are made between nodes 
neighbours, compared to 
the connections possible, 
and indicates more 
clustered connectivity 
around individual nodes. 

Lower clustering 
coefficient (Hellyer et 
al., 2015; Raizman et al., 
2020).  

Normalised 
Clustering 
Coefficient 

Clustering coefficient of the 
network normalised to a 
random network.  

Higher normalised 
clustering indicates 
higher local 
specialisation, with a 
value of 1 being 
equivalent to a random 
network. If greater than 1, 
the network has greater 
than random clustering. 
There may be a point of 
diminishing returns, 
where greater local 
specialisation comes at the 
cost of communication 
efficiency. 
  

Higher normalised 
clustering 
(Caeyenberghs et al., 
2012; Verhelst et al., 
2018)* 

Local Efficiency The local efficiency is the 
average of inverse shortest 
path length in a local area. 
Mean local efficiency is taken 
as the efficiency of each node 
in the network averaged over 
the total number of nodes 
(Latora & Marchiori, 2001).  

A higher local efficiency 
means greater capacity 
for integration between 
the immediate neighbours 
of a given node.  

Higher local efficiency 
(Jolly et al., 2020); 
AND/OR lower local 
efficiency 
(Caeyenberghs et al., 
2012)* 

Centrality 

Strength The strength of a node is the 
sum of the weights of its 
edges. Mean strength is the 
average of all the normalised 
strength values across each 
node of the network. 
 

A higher strength 
indicates a greater 
average edge weight for 
each node. 

Lower strength 
(Raizman et al., 2019) 



 

 

180 

 

Graph Metric Description Higher values mean… Previous studies 
(Adult moderate-severe TBI) 

Betweenness 
Centrality 

The proportion of shortest 
paths that pass-through node i 
between its neighboring nodes, 
calculated for each node and 
averaged across the network 
(Freeman, 1978).  

Higher betweenness 
centrality means that node 
lies on more shortest paths 
in the network pass 
through it, and this that 
node is more central and 
important to the network. 
A high network/average 
betweenness centrality 
indicates a high number of 
nodes that are central to 
shortest paths.  

Higher betweenness 
centrality (Caeyenberghs 
et al., 2012)* 

* Note: this study is of young adults and children with TBI – no adult TBI study found significant alterations or 
examined this metric.  
 
 

5.2.4.8 Cognitive and Network Profiles 

Two Spiderplots were used to efficiently represent TBI patients’ results: one for 

cognitive performance and another one for brain network metrics (GraphMe plots). Each axis 

of the plot represents a cognitive task or a graph metric. Response averages from the healthy 

controls are represented on the Spiderplot as a 95% confidence interval for visual 

comparison. Importantly, measures are recoded so that lower scores on any measure indicate 

worse performance or brain structure, by using the inverse of the scores (for cognitive 

performance: Tower of London, Letter Digit Substitution, and Vigilance; for graph metrics: 

characteristic path length, normalised clustering coefficient, and betweenness centrality – see 

Table 3). This facilitates rapid comprehension of the Spiderplot, where the smaller area of the 

TBI patient scores compared to the healthy cohort is indicative of worse cognitive 

performance or brain network structure. Scores were categorised as normal (within the 95% 

confidence interval); supra-normal (higher than the 95% confidence interval); or infra-

normal (lower than the 95% confidence interval) (Lv et al., 2020).  
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5.2.4.9 Regional analyses 

Alongside the graph analysis, we compared the ‘hub’ nodes identified in the TBI 

patients vs. in the healthy controls, using steps outlined in Fagerholm et al. (2015) and 

Raizman et al. (2020). We used betweenness centrality to identify the brain regions that are 

most crucial for communication within the brain network (Freeman, 1978; Rubinov & 

Sporns, 2010). Betweenness centrality was calculated for each of the 84 nodes, and the top 

10% (n=8) highest scoring nodes were identified as ‘hubs’. Hubs were visualised using 

NeuroMArVL (https://immersive.erc.monash.edu/neuromarvl/). The healthy control 

comparison hubs are shown in Figure 3.  

Figure 3 

Healthy Control Hub Regions 

Note: Healthy control hub regions (top 10% of nodes with highest betweenness centrality), in light blue. Larger 
nodes represent higher betweenness centrality values. The strongest edges are also shown (0.5th percentile, 
0.002% of edges, 18 edges shown), coloured by strength (yellow=weaker; red=stronger). 

 

Edge analysis was performed to examine in greater detail the specific connections that 

were driving overall differences in the network properties. A z-score matrix 𝑍𝑍𝑖𝑖,𝑖𝑖 was derived, 

which describes the distance from the healthy control mean, divided by the healthy control 

https://immersive.erc.monash.edu/neuromarvl/
https://immersive.erc.monash.edu/neuromarvl/
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standard deviation, between each subject’s connectivity matrix 𝑇𝑇𝑖𝑖,𝑖𝑖  and the controls 𝐻𝐻𝑖𝑖,𝑖𝑖 

according to equations given for an edgewise analysis in Wills and Meyer (2020): 

 

𝑍𝑍𝑖𝑖,𝑖𝑖 =
𝑇𝑇𝑖𝑖,𝑖𝑖 − 𝜇𝜇(𝐻𝐻𝑖𝑖,𝑖𝑖)
𝜎𝜎(𝐻𝐻𝑖𝑖,𝑖𝑖)

 

 

Positive scores represent stronger edges in the TBI patient compared to controls, 

while negative scores represent weaker edges. To visualise the z-score matrix, only edges 

with a score >4 (i.e., edges 4 standard deviations from the healthy control mean, representing 

a highly stringent 99.99% confidence interval) remain while all other edges are discarded. 

These edges are shown as a visual representation of graph differences between healthy 

controls and the TBI case.  

5.2.5 Results 

Presented below are the personalised profiles for six TBI patients as follows: (A) 

Cognitive profiles of planning, processing speed, memory, and attention domains, and NFI 

and IQ scores (see Table 1 for relevant scales). (B) Lesion maps drawn in mricroGL by ED, 

resulting lesion load and DAI score. (C) Quality assessment of the connectome pipeline 

including segmentation of cortical and subcortical parcels in Freesurfer (6.0; Fischl, 2012), 

fibre orientation distributions from single-shell 3 tissue constrained spherical deconvolution 

(mrtrix3tissue; Dhollander et al., 2019) and 5 tissue-type image for streamline generation, 

and registration of anatomically constrained tractography (Smith et al., 2012) with labelled 

subcortical and cortical parcels of the Desikan-Killianey atlas (Desikan et al., 2006). (D) 

GraphMe plot including healthy average with 95% confidence interval (blue), and TBI 

patient (red). (E) Regional and hub analyses including (i) healthy control hub nodes in pink 
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and TBI patient hub nodes in green, with strongest 0.5th percentile of edges represented 

(yellow = weaker edges; red = stronger edges), and (ii) comparison of edge weights from the 

z-score matrix (blue = edges lower than the healthy control average; red = edges stronger 

than the healthy control average; and thicker edges = larger number of standard deviations 

away from the healthy mean).  
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5.2.5.1 TBI1 

Summary: TBI1 (45yo, TSI=21y) self-reported a normal level of cognitive 

complaints (NFI=133); and had intelligence score within the normal range (IQ=101). 

However, their cognitive profile demonstrates slow decision-making and processing speed, 

poor planning, and short visuospatial working memory capacity compared to healthy controls 

(see Figure 4a). This patient has a small lesion load and a DAI grade of 0. The GraphMe plot 

indicates that TBI1 has slightly weaker integration than healthy controls, in particular longer 

path lengths and lower navigation efficiency. Interestingly, the right superior frontal gyrus 

(perilesional) was a hub node in the healthy controls but was not a hub node in TBI1. We also 

observed many weaker edges in TBI1 compared to the healthy controls, in particular 

connecting the bilateral frontal poles and left temporal regions (especially the left temporal 

pole).  
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Figure 4a 

Personalised Connectome Profile for TBI1  

Note: Cognitive profile: Infra-normal performance on four cognitive tests, including processing speed, planning 
and memory (panel A); Lesion profile: Small lesion (load=0.75cm3) in the right precentral gyrus (panel B); 
Quality Assessment: There were no failures in the Freesurfer pipeline, no manual edits were made and there 
was no need for virtual brain grafting (panel C). FODs were generated at the site of the lesion (see red arrow) 
but did not meet streamline criteria for ACT. Registration between structural and diffusion images was 
unaffected by this lesion; Personalised connectome profile: The GraphMe plot (panel D) shows very similar 
global graph metric properties compared to the healthy cohort. Navigation efficiency and path length were infra-
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normal; Regional analysis: Four alterations in the hub arrangement for TBI1 were observed (panel E(i)), 
whereby the bilateral accumbens (BCleft=1570; BCright=1546), palladium (BCleft=1382; BCright=978) and right 
putamen were hubs (BCright=1578), and the bilateral precentral gyri, thalamic, and right superior frontal gyrus 
did not meet the hub threshold. Weaker edges (n=43; panel E(ii)) were observed projecting across frontal, 
parietal, temporal, and subcortical areas, in particular the edges left posterior cingulate to right frontal pole (z=-
8.32), the left superior temporal to left frontal pole (z=-6.66), the left lateral orbitofrontal to left temporal pole 
(z=-7.98) and the left medial frontal to left temporal pole (z=-6.90; panel E(ii)). Some stronger edges (n=4) were 
also observed, including the connection between the right superior temporal to right temporal pole (z=5.92).  
 

5.2.5.2 TBI2  

Summary: TBI2 (49yo, TSI=15y) self-reported a normal level of cognitive complaints 

(NFI=102) and had intelligence scores within the normal range (IQ=106). However, this 

patient showed severe cognitive deficits in processing speed, planning, and working memory 

(see Figure 4b). Demonstrating a clear lack of insight, this patient had the lowest self-

reported level of cognitive complaints on the NFI, well below the healthy control cohort 

average. TBI2 also had a very large lesion load and a DAI grade of 2. Quality assessment of 

VBG performance demonstrated that VBG repaired 15 nodes for parcellation/segmentation. 

Note: personalised connectome analysis not performed due to excessive head motion.   
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Figure 4b 

Personalised Cognitive Profile for TBI2. 

Note: Cognitive profile: Infra-normal performance on five cognitive tests, including processing speed, planning 
and memory domains (panel A); Lesion profile: Extensive bilateral frontal, and right parietal and temporal 
lesions (load=163cm3; panel B), as well as focal hypointensities in the left thalamus and body and genu of the 
corpus callosum; Quality Assessment: Prior to VBG, 22 nodes failed the quality assessment (panel C). VBG 
improved segmentation in 15 nodes. The remaining 7 nodes are located predominantly in lesioned areas. 
Constrained spherical deconvolution based on the single-shell 3 tissue FODs was not generated at the site of the 
lesions (see red arrow in panel C), and registration between VBG reconstructed nodes and streamlines show that 
streamlines were not assigned to lesioned nodes.  
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5.2.5.3 TBI3 

Summary: TBI3 (49yo, TSI=3y) had intelligence scores within the normal range 

(IQ=95) but self-reported a high level of cognitive complaints (NFI=234). Accordingly, this 

patient demonstrated poor performance in all cognitive domains (processing speed, planning, 

memory, and attention; see Figure 4c). This patient had moderate-large lesion load involving 

frontal and anterior temporal regions predominantly, and a DAI grade of 2. VBG improved 

parcellation and segmentation from ‘poor’ to ‘acceptable’, allowing the inclusion of this patient 

with moderate-large lesion load in the connectome pipeline. TBI3 showed reductions in all 

network domains, with the exception of normalised clustering (supra-normal); and centrality 

and strength (normal). Finally, this patient showed 62 weaker edges, in particular projecting 

bilaterally from the frontal cortex to the subcortical regions such as the accumbens, caudate, 

and amygdala.  
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Figure 4c 

Personalised Connectome Profile for TBI3. 

Note: Cognitive profile: Infra-normal performance on five cognitive tests including processing speed, planning, 
memory, and attention domains (panel A); Lesion profile: Moderate-large lesion load (load=17.59cm3) 

including bilateral frontal and right temporal lesions (panel B), white matter hyperintensities in the medial right 
parietal lobe and the corpus callosum; Quality Assessment: Prior to VBG, 10 nodes failed the quality 
assessment (panel C). VBG repaired 9 nodes for parcellation. Registration between VBG reconstructed nodes 
and streamlines show that streamlines were not assigned to lesioned nodes; Personalised connectome profile: 
The GraphMe plot (panel D) demonstrates a mixed graph metric profile, with infra-normal integration and both 
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infra- and supra-normal segregation measures. Specifically, less efficient network communication as measured 
by both path length and navigation routing models; poorer segregation as indicated by lower clustering, but also 
lower normalised clustering; Regional analysis: Two hub alterations were observed (panel E(i)), whereby the 
bilateral putamen (BCleft=871; BCright=932) were hubs, and the bilateral precentral gyri were not hubs. Weaker 
edges (n=62; panel E(ii)) projected across the whole brain, in particular in the frontal regions including the left 
frontal pole to the left middle temporal (z=8.45), right superior frontal (z=8.12), right lateral orbitofrontal 
(z=8.17), and right putamen (z=8.41); left medial orbitofrontal to left amygdala (z=8.67); right lateral 
orbitofrontal to the right accumbens (z=8.03) and right caudate (z=8.33); and the right pars orbitalis to right 
lingual (z=8.10). No stronger edges were observed. 
 

5.2.5.4 TBI4 

Summary: TBI4 (29yo, TSI=15y) had intelligence scores within the normal range 

(IQ=91) but self-reported a high level of cognitive complaints (NFI=218). Accordingly, this 

patient was infra-normal in the processing speed, planning, and memory domains (see Figure 

4d). They had moderate-large lesion load involving frontal and anterior temporal regions 

predominantly, though their DAI grade was low (0/1). This patient showed minimal deviation 

from the healthy control network profile, in fact showing supra-normal strength indicating 

stronger edge weights relative to node size. Overall, the network analysis portrays a relatively 

good neurological outcome for TBI4, despite their cognitive complaints. They had only 26 

weaker edges in left temporal and parietal regions, coinciding with the location of the lesions 

in the left anterior temporal lobe and left inferior and superior frontal gyrus.  
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Figure 4d 

Personalised Connectome Profile for TBI4 

Note: Cognitive profile: Infra-normal performance on six cognitive tests, including processing speed, planning 
and memory domains (panel A); Lesion profile: Moderate-large lesion load (load=17.59cm3), including bilateral 
lesions in the superior frontal, the left temporal pole and inferior temporal regions, as well as a smaller lesion in 
the left precentral gyrus (panel B); Quality Assessment: Prior to VBG, 9 nodes failed the quality assessment 
(panel C). VBG repaired all nodes for parcellation. Constrained spherical deconvolution based on the single-
shell 3 tissue generated no FODs at the site of the lesions, and streamlines were not assigned to lesioned nodes. 
Personalised connectome profile: The GraphMe plot (panel D) demonstrates normal global graph metric 
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properties, although strength was supra-normal; Regional analysis: Four alterations in the hub arrangement 
were observed (panel E(i)), whereby the bilateral putamen (BCleft=2246; BCright=1550), left palladium 
(BCleft=1210) and left inferior parietal (BCright=902) were hubs, and the bilateral precentral gyri and thalamic 
regions were not hubs. Weaker edges (n=26; panel E(ii)) projected across the left hemisphere, in particular the 
entorhinal to the lingual gyrus (z=10.87), pericalcarine (z=9.55), superior parietal (z=9.46), and lateral occipital 
regions (z=9.33); the temporal pole to the insula (z=9.37); and the accumbens to the posterior cingulate (z=6.71), 
insula (z=6.30), and rostral anterior cingulate (z=5.98). Some stronger edges (n=4) were also observed in the 
right hemisphere, including the pars triangularis to post central (z=5.92), putamen to lateral orbitofrontal 
(z=4.86), pallidum to thalamus (z=4.24); and the left pallidum to amygdala (z=4.55). 
 

5.2.5.5 TBI5 

Summary: TBI5 self-reported a normal level of cognitive complaints (NFI=123) and 

had intelligence scores within the normal range (IQ=104). This patient also showed no lesion 

load and DAI grade of 0. However, cognitive testing revealed reduced processing speed, poor 

response inhibition, and short verbal working memory (see Figure 4e). While their hub 

arrangement was largely similar to the healthy controls, TBI5 demonstrated a wide array of 

weaker edges connecting the parietal, temporal, and subcortical hemispheres. Accordingly, 

they showed deviation from the healthy cohort in terms of integration, as these longer distance 

connections are important for efficient communication. However, their weakest edges 

(compared to healthy controls) were short-distance connections contained in the left 

hemisphere, connecting subcortical regions such as the amygdala and hippocampus with 

temporal regions such as the inferior temporal gyrus and the temporal pole. 
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 Figure 4e 

Personalised Connectome Profile for TBI5 

Note: Cognitive profile: Infra-normal performance on five cognitive tests, in the processing speed, planning, 
attention, and memory domains (panel A); Lesion profile: No masked lesion load on the T1 image (load=0cm3; 
panel B); Quality Assessment: there were no failures in the Freesurfer pipeline, and no manual edits were made 
(panel C). FODs were generated correctly and registration between segmentation and tractography was clean; 
Personalised connectome profile: The GraphMe plot (panel D) demonstrates infra-normal global connectivity 
properties, with the exception of centrality and strength. Global efficiency, navigation efficiency and path length 
are infra-normal, indicating less efficient network communication; and local efficiency, clustering, and 
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normalised clustering are also infra-normal indicating altered segregation; Regional analysis: Two alterations in 
the hub arrangement were observed (panel E(i)), whereby the bilateral putamen were hubs (BCleft=1182; 
BCright=1110), while the bilateral thalamic regions were not hubs. Weaker edges (n=33; panel E(ii)) projected 
inter-hemispherically in parietal, temporal, and subcortical areas. The weakest edges (compared to healthy 
controls) were in the left hemisphere, from the amygdala to the temporal pole (z=-7.19); the amygdala to the 
inferior temporal gyrus (z=-7.80); the inferior temporal gyrus to the hippocampus (z=-6.11); and the inferior 
temporal gyrus to the thalamus (z=-6.40). Some stronger edges (n=3) were also observed, including the 
connection from the left post central gyrus to the left lateral occipital gyrus (z=5.87).  
 

5.2.5.6 TBI6 

Summary: TBI6 (29yo, TSI=5y) self-reported a normal level of cognitive complaints 

(NFI=120); and had a ‘very high’ intelligence score (IQ=120). They had a small lesion in the 

splenium of the corpus callosum, which is one of the most common locations for DAI (Park et 

al., 2017; Uchino et al., 2006) – symptoms are often relatively mild in lesions of this type (Park 

et al., 2014) – and a DAI grade of 2. Quality assessment revealed no parcellation errors (see 

Figure 4f). This patient showed only slightly reduced response inhibition and very strong 

memory scores, a normal GraphMe plot, and no weaker edges than the healthy controls.  
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Figure 4f 

Personalised Connectome Profile for TBI6 

Note: Cognitive profile: Infra-normal performance on only one cognitive test, in the attention domain (panel A); 
Lesion profile: TBI6 had a lesion (load=0.5cm3) in the splenium of the corpus callosum (panel B); Quality 
Assessment: There were no failures in the Freesurfer pipeline, and no manual edits were made (panel C). FODs 
were generated at the site of the lesion but did not meet streamline criteria for ACT; Personalised connectome 
profile: The GraphMe plot (panel D) shows no significant alteration in the graph metric profile – global 
connectivity properties of TBI6 are normal except for global efficiency, local efficiency and clustering which 
are marginally supra-normal. Regional analysis: Three hub alterations were observed (panel E(i)), whereby the 
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right caudate (BCright=722), right hippocampus (BCright=606) and right inferior parietal gyrus (BCright=680) 
were hubs, and the bilateral precentral and right superior parietal regions were not hubs. No edges met the 
stringent threshold of being ±4 standard deviations from the healthy control mean (panel E(ii)). 
 

5.2.6 Discussion 

In this paper, we present a novel approach to connectomics and cognitive profiling 

illustrated in six adult patients with chronic moderate-severe TBI. Here, we discuss the 

benefits of personalised connectomics, and how examination of individual TBI patients 

facilitates interpretation of unique disconnectivity profiles. First, we detail observations from 

our single-subject profiles; next, we examine how our single-subject profiling approach adds 

to the field of personalised connectomics in the care of chronic TBI patients; and finally, we 

explore the next steps in improving our methods for personalised structural connectome 

analyses in individuals with TBI.  

5.2.6.1 Single-subject cognitive and network profiling observations 

Our observations highlight an important caveat in the search for a single graph metric 

‘biomarker’ that can represent alterations in the structural network of all TBI patients. Like 

Lv et al. (2020) in their study of FA and CT in Schizophrenia patients, the pattern of 

alterations we observed was not homologous. As expected, due to the heterogeneity of 

moderate-severe TBI patients, we observed that each TBI patient had a unique pattern of 

cognitive and graph metric alterations. This observation is underscored by the fact that 

patients with relatively similar lesion loads, and severities show clearly distinct profiles of 

network alterations. For example, TBI1 and TBI6 both have small lesion loads, but TBI1 

shows slowed processing speed and planning, and less efficient network communication 

measures. Meanwhile, TBI6 shows minimal deviation from the normal range for both 

cognitive and brain network measures. Similarly, TBI3 and TBI4 both have moderate-large 
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lesion loads and infra-normal cognitive performance, but TBI3’s brain network profile shows 

infra-normal integration and segregation measures while TBI4’s brain network was normal. 

This indicates that there may not be a single graph metric that can capture the range of 

changes caused by TBI – highlighting the importance of this individual profiling approach.  

This study also broaches an often discussed but rarely addressed problem – that TBI 

patients are neurologically and cognitively heterogeneous. Many earlier studies using a graph 

theoretical analysis deal with this heterogeneity by separating TBI patients according to their 

diagnosed severity (mild, or moderate-severe; for review, see Imms et al., 2019). Grouping 

by injury severity in this way is common in graph theoretical studies (e.g., Hellyer et al., 

2015; Königs et al., 2017; Raizman et al., 2020; Watson et al., 2019). These studies then 

purport to have found a graph metric that may serve as a ‘biomarker’ of a particular severity 

of TBI. However, the examples outlined above demonstrate that separating by diagnosed 

severity or even lesion load may not be sufficient to control for heterogeneity in this 

population. In contrast, our single-subject network profiles suggest that TBI patients of 

similar severities can exhibit vastly different patterns in hub and edge arrangements due to 

other injury and personal characteristics.  

Another interesting case is TBI5, who had only two small age-appropriate 

hyperintensities in the right parietal lobe, and a lesion load of 0mm3. This patient, however, 

shows impairments in processing speed, planning, verbal working memory, and inhibition, as 

well as infra-normal integration and segregation properties. This supports the disconnectivity 

theory of TBI – where executive functions are impaired due to disruptions to the axonal 

pathways they rely on (Catani & Ffytche, 2005) – and thus the presence or absence of focal 

grey-matter lesions does not always explain ongoing cognitive deficits. This patient 

exemplifies the fact that using diffusion-based graph metric analysis can reveal brain network 
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alterations where T1 anatomical scans do not (for review, see Hulkower et al., 2013). Overall, 

these five TBI patients reinforce the benefits of using network profiling to characterise TBI 

patients in the years following their injury – revealing individual differences in cognition and 

brain network topology that may otherwise have been overlooked.  

Finally, our six chronic patients all showed ongoing but different cognitive 

impairments across core cognitive domains. This raises the importance of continued cognitive 

assessment and intervention for patients with TBI, even years post-injury. While most 

patients demonstrated good insight into the extent of their injuries and their impact, some 

(i.e., TBI2) rated their neurobehavioral functioning as better than normal despite showing 

poorer cognitive performance on almost the entire cognitive testing battery. This patient had 

extensive areas of encephalomalacia in the frontal regions, which may explain this lack of 

insight and poor cognition (Milner, 1982; Owen et al., 1990). This reiterates the need to not 

rely on self-report in TBI patients (for a review of evidence-based cognitive rehabilition 

practices for TBI patients, see Stephens et al., 2015).  

5.2.6.2 Informing clinical assessment and rehabilitation programs using 

personalised connectomics 

We illustrate that a personalised connectomics approach has a role for assessing TBI 

patients in three main ways: First, connectome maps can be used as a profile of the patient’s 

brain network topography, providing researchers and clinicians a quick visual summary of 

network disruption, asymmetry, hub alterations, and overall reductions in strength. Second, 

by comparing the brain network of an individual patient to healthy control data, we can 

observe areas of the network that are topologically altered beyond the site of the focal lesion. 

For example, although TBI1 had focal lesions in the right precentral gyrus, their connectome 

also revealed weaker edges in left frontal and temporal regions in comparison to healthy 
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controls. Finally, we can observe these alterations longitudinally to assess network-based 

alterations over the time course of the injury and in response to treatment regimens, as the 

brain undergoes progressive secondary damage and structural and functional reorganisation 

(e.g., Meningher et al., 2020; Osmanlıoğlu et al., 2019). Examination of GraphMe plots over 

the course of the acute to chronic period could be used to examine whether dedicated 

customised neurorehabilitation improves network connectivity longitudinally, akin to the 

longitudinal assessment of white matter atrophy performed by Irimia, Chambers, et al. 

(2012). This exploratory work enables us to progress towards a personalised medicine 

approach, which, alongside group-based comparisons of patients against controls, is essential 

for translating structural MRI to evidence-based practice.  

The current study builds on the work of Irimia, Chambers, et al. (2012), who 

introduced the idea of personalised structural connectomics to create personalised 

rehabilitation programs. There is evidence that individual network- and connectivity-based 

profiles can inform neuroimaging-guided rehabilitation (Dichter et al., 2012; Stoeckel et al., 

2014; Wing et al., 2017), and assist health professionals to design personalised cognitive 

training and rehabilitation programs. The ultimate goal is to help clinicians better understand 

individual patients and potentially lead to personalised therapies to help improve chronic 

outcomes. For example, TBI1 (45yo male, TSI=21y, IQ=101, NFI=133) presented with a 

0.75cm3 lesion in the right precentral gyrus, and showed (i) reduced processing speed, 

planning, and working memory, in the presence of (ii) longer path lengths and lower 

navigation efficiency; weaker edges projecting from frontal regions to parietal, temporal, and 

subcortical regions; and loss of frontal and thalamic hubs (Figure 4a). With further validation 

(see below), this assessment profile could indicate that TBI1 may benefit from an attention, 
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planning, and working memory neurorehabilitation program targeting white matter 

projections from the right superior frontal regions to the precentral gyrus and thalamus.  

5.2.6.3 Improving methods for personalised connectomics 

Our cognitive- and network-based approach demonstrates structural connectivity 

alterations in TBI patients and provides an assessment of individual profiles of graph metrics. 

Before the graph metric profiling approach can be considered for clinical application, the 

GraphMe plots require validation and assessment of test-retest reliability. Indeed, we 

emphasise that any comparison between an individual TBI patient and the healthy control 

reference group (N=12) is done as a proof of concept, as was done in a similar design by 

Attyé et al. (2020) with N=20 healthy controls. As a preliminary step, normative analysis 

with large sample sizes of healthy individuals would allow for stronger statistical inferences 

to be made using techniques like quartile regression, as seen in Lv et al. (2020) and Jolly et 

al. (2021). 

We also highlight the need for statistical methods for individual-level analyses that do 

not violate assumptions of statistical models (Mycroft et al., 2002). We used 95% confidence 

intervals to determine if cognitive performance or graph metrics were infra- or supra-normal. 

However, this method only models variation in the healthy cohort but not in the TBI patients. 

Keeping in mind that the purpose of this study is to demonstrate the use of personalised 

connectomics in a handful of cases, improvements to this technique will involve reference 

intervals (the range of values deemed ‘normal’) designed to perform individual comparisons 

to group-level normative datasets (approximately N>100; Hansen et al., 2007) – a technique 

that has recently been used and does not violate statistical assumptions (Lv et al., 2020). 

The use of VBG should be encouraged in the efforts to advance personalised 

connectomics, as it avoids the exclusion of cases with large focal lesions that fail Freesurfer 
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segmentation (e.g., TBI3 and TBI4). Often, studies will use lesion masks and manual edits of 

the white matter volume mid-way through the Freesurfer pipeline (e.g., Siegel et al., 2017), to 

re-align the segmentation and labelling of nodes. However, these methods are time-

consuming and not reproducible across labs (Beelen et al., 2020). Instead, the implemented 

approach proposed by Radwan et al. (2021) utilises a novel method for automatic filling of 

uni- and bilaterally lesioned brains using healthy synthetic donor tissue, to improve 

segmentation without manual edits. Our implementation of the personalised connectomics 

approach therefore represents an important step in developing a framework for retaining TBI 

cases that are otherwise being excluded. Further steps towards improving this approach 

include incorporating other imaging modalities for lesion identification such as FLAIR or 

susceptibility weighted imaging (we used only T1 images, thus it is possible we missed some 

WM pathology); and validating VBG using the healthy donor image against true bilateral 

lesions (Radwan et al., 2021).  

Finally, we observed that the single-shell 3 tissue model for CSD (SS3T-CSD) 

(Dhollander et al., 2020; Dhollander et al., 2019) was suitable for constructing connectomes 

in the presence of lesions with TBI lesions. SS3T-CSD preserves the angular information of 

the GM- and CSF-like signal, removing contributions from these components to increase the 

specificity of the WM FODs, while avoiding over-estimation into GM and CSF signal from 

the lesioned area (Khan et al., 2020). Combined with anatomically constrained tractography 

(Smith et al., 2012), streamlines were not generated in lesioned areas, meaning anatomically 

disconnected regions were not removed from the connectivity matrix. This allows us to 

calculate graph metrics from connectivity matrices that are the same size (84x84) as those of 

the healthy controls, making comparisons more interpretable.  
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5.2.6.4 Conclusions 

Observations from these six cases reinforce the need for single-subject analyses to be 

re-evaluated in the context of network alterations following brain injury. Profiling individual 

patients based on their unique injury presentation provides insights into the heterogeneity of 

network-based alterations in moderate-severe TBI patients. This can help identify patterns or 

subgroups (otherwise obscured by group-level approaches) that can then be further explored 

in group-level studies. Finally, this study provides clinicians with a novel framework for 

using graph metrics to characterise cognitive performance and brain network structure. Future 

development of GraphMe plots can augment assessment and planning of cognitive training 

programs in conjunction with conventional approaches, by providing clinicians with 

personalised structural network alteration profiles for individual TBI patients. 
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5.2.7 Supplementary Materials 

Supplementary Table 2 

Detailed Description of the PEBL Test Battery 

Name Task Description Cognitive 
Ability 

Variables Reference/link to 
Wiki 

Go/No-Go A simple continuous 
performance task. For the first 
part of the test, the participant 
must respond to P’s (Go trials), 
but not R’s (No-Go trials). There 
are more P’s than R’s. In the 
second part, responses to R’s (Go 
trials), not P’s (No-Go trials) 
must be made. There are less R’s 
than P’s. 

Attention 
Response 
inhibition 

Number and 
average reaction 
time (RT) of 
correct and 
incorrect 
responses, for 
go and no-go 
trials. 

Go/No-go Task 

Bezdjian, S. Baker, 
L. A., Lozano, D. I 
& Raine, A. (2009). 
Assessing inattention 
and impulsivity in 
children during the 
Go/NoGo task. Br J 
Dev Psychol. 2009 
June 1; 27(2): 365–
383 

Tower of 
London 

Traditional problem 
solving/planning task. Tests 
ability to make and follow plans 
in problem solving task. 
Participants must match the 
pattern of stacked discs in as few 
moves as possible. The pattern 
must be matched on colour, 
stack, and position of the disc 
within the stack. 
 

Planning 
Problem 
solving 

Total 
movements and 
RT for overall 
task, mean 
movements and 
RT per trail. 

Tower of London 

Shallice T. (1982), 
Philosophical 
Transactions of the 
Royal Society of 
London, B, 298, 
199-209. 

Corsi Blocks An implementation of the classic 
spatial working memory test. The 
participant must reproduce the 
sequence of blocks after they 
light up by clicking on the box, 
in the correct order. Number of 
locations to reproduce increases 
with success. 

Memory 
Visuospatial 
working 
memory 
span 

Longest 
sequence 
correctly 
remembered. 

Corsi Blocks 

Corsi, P. M. (1972). 
Human memory and 
the medial temporal 
region of the brain. 
Dissertation 
Abstracts 
International, 34, 
819B. 

Digit Span The task is to reproduce the 
sequence of numbers heard, in 
the correct order. If the 
participant completes two correct 
trials of a particular length, 
sequence length increases by one 
digit. 

Memory 
Verbal 
working 
memory 
span 

Longest 
sequence 
correctly 
remembered. 

Digit Span 

Croschere, J., 
Dupey, L., Hilliard, 
M., Koehn, H., & 
Mayra, K. (2012). 
The effects of time 
of day and practice 
on cognitive 
abilities: Forward 
and backward Corsi 
block test and digit 
span. PEBL 
Technical Report 

https://nam04.safelinks.protection.outlook.com/?url=http%3A%2F%2Fpebl.sourceforge.net%2Fwiki%2Findex.php%2FGo%2FNo-go_Task&data=02%7C01%7Cphoebe.imms%40myacu.edu.au%7C8f85c030334d4dfd455a08d7b6339025%7C7c36a78e1602438c8e811e13ed494a5d%7C0%7C0%7C637178204984785275&sdata=FPuSz3IqiYCgTrJ9ggqATrMVZxEj7oYaw9%2Fxpw2rs%2Fw%3D&reserved=0
https://nam04.safelinks.protection.outlook.com/?url=http%3A%2F%2Fpebl.sourceforge.net%2Fwiki%2Findex.php%2FGo%2FNo-go_Task&data=02%7C01%7Cphoebe.imms%40myacu.edu.au%7C8f85c030334d4dfd455a08d7b6339025%7C7c36a78e1602438c8e811e13ed494a5d%7C0%7C0%7C637178204984785275&sdata=FPuSz3IqiYCgTrJ9ggqATrMVZxEj7oYaw9%2Fxpw2rs%2Fw%3D&reserved=0
https://nam04.safelinks.protection.outlook.com/?url=http%3A%2F%2Fpebl.sourceforge.net%2Fwiki%2Findex.php%2FTower_of_London&data=02%7C01%7Cphoebe.imms%40myacu.edu.au%7C8f85c030334d4dfd455a08d7b6339025%7C7c36a78e1602438c8e811e13ed494a5d%7C0%7C0%7C637178204984805270&sdata=u9x0nJ61nWopl9u%2FJWyolVQzYwHMfrbU7Fe3mSANTGo%3D&reserved=0
https://nam04.safelinks.protection.outlook.com/?url=http%3A%2F%2Fpebl.sourceforge.net%2Fwiki%2Findex.php%2FCorsi_Blocks&data=02%7C01%7Cphoebe.imms%40myacu.edu.au%7C8f85c030334d4dfd455a08d7b6339025%7C7c36a78e1602438c8e811e13ed494a5d%7C0%7C0%7C637178204984795270&sdata=tH%2FSdk3XfuNpg8vKzbfQtc9xkNerVsqKVi20MdgTVKU%3D&reserved=0
https://nam04.safelinks.protection.outlook.com/?url=http%3A%2F%2Fpebl.sourceforge.net%2Fwiki%2Findex.php%2FDigit_Span&data=02%7C01%7Cphoebe.imms%40myacu.edu.au%7C8f85c030334d4dfd455a08d7b6339025%7C7c36a78e1602438c8e811e13ed494a5d%7C0%7C0%7C637178204984775281&sdata=l8Qk8w5tMnNwTRGjymBjGBgOhRjvSFG9IhYadL6NOfs%3D&reserved=0
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Name Task Description Cognitive 
Ability 

Variables Reference/link to 
Wiki 

Series [On-line], 
#2012-03. 

Letter-Digit 
Substitution 

A 9-option version of the 'code 
substitution' task. Participants are 
asked to match the letter that 
appears on the screen with its 
corresponding number, according 
to the code. 

Processing 
speed 

Number and RT 
of correctly 
identified codes. 

Letter-Digit Task 
Perez, W. A., 
Masline, P. J., 
Ramsey, E. G. and 
Urban, K. E. (1987). 
Unified Tri-services 
cognitive 
performance 
assessment battery: 
Review and 
methodology, DTIC 
Document 
ADA181697 

Connections A trail-making test based on 
Salthouse et al. (2000), originally 
based on Zahlen Verbindsungs 
Test. In the control trials, the 
participant has 20 seconds to 
create as large a trail as possible 
by connecting letters or digits (as 
directed). In the switch trials, the 
trials alternate between letters 
and digits (e.g., A-1-B-2). 

Processing 
speed 
Mental 
flexibility 

Mean length 
and accuracy of 
sequences. 

Connections 

Salthouse, T. A., 
Toth, J., Daniels, K., 
Parks, C., Pak, R., 
Wolbrette, M., et al. 
(2000). Effects of 
aging on the 
efficiency of task 
switching in a 
variant of the Trail 
Making Test. 
Neuropsychology, 
14, 102–111. 

Global Local 
Task 

A basic version of Navon's 
(1977) global-local task. The 
participant must respond to either 
the large (global) or small (local) 
stimuli, an ‘S’ or ‘H’, as directed. 
Stimuli are both congruent (e.g., 
a large ‘S’ made of small ‘s’s) or 
incongruent (e.g., a large ‘S’ 
made of small ‘h’s). 
 

Processing 
speed 
Decision-
making 
time 

Number of 
correct/incorrect 
stimuli, and RT 
of neutral, 
congruent, and 
incongruent 
trials. 

Global Local 

Navon, D. (1977). 
Forest before trees: 
The precedence of 
global features in 
visual perception. 
Cognitive 
Psychology, 9(3), 
353-383. 

https://nam04.safelinks.protection.outlook.com/?url=http%3A%2F%2Fpebl.sourceforge.net%2Fwiki%2Findex.php%2FLetter-Digit_Task&data=02%7C01%7Cphoebe.imms%40myacu.edu.au%7C8f85c030334d4dfd455a08d7b6339025%7C7c36a78e1602438c8e811e13ed494a5d%7C0%7C0%7C637178204984805270&sdata=FD127yisIor87KXWOc%2FML7q5EZvKrTWwhszhxp0aU2I%3D&reserved=0
https://nam04.safelinks.protection.outlook.com/?url=http%3A%2F%2Fpebl.sourceforge.net%2Fwiki%2Findex.php%2FConnections&data=02%7C01%7Cphoebe.imms%40myacu.edu.au%7C8f85c030334d4dfd455a08d7b6339025%7C7c36a78e1602438c8e811e13ed494a5d%7C0%7C0%7C637178204984765285&sdata=99f7E20t3BTaILNWakbC%2FCNg4z6CmZTcpwd7i2BMPI8%3D&reserved=0
https://nam04.safelinks.protection.outlook.com/?url=http%3A%2F%2Fpebl.sourceforge.net%2Fwiki%2Findex.php%2FGlobal_Local&data=02%7C01%7Cphoebe.imms%40myacu.edu.au%7C8f85c030334d4dfd455a08d7b6339025%7C7c36a78e1602438c8e811e13ed494a5d%7C0%7C0%7C637178204984785275&sdata=P0y6XGiLFKB9yD6DlttHw1%2BHwBhqtyUyjrIBGVF1Pl8%3D&reserved=0
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Name Task Description Cognitive 
Ability 

Variables Reference/link to 
Wiki 

Vigilance A novel vigilance task requiring 
both rest and vigilance periods 
(similar to standard Test of 
Attentional Vigilance). The 
participant must wait for an X to 
appear in the circle. A cross 
appears before each trial, to alert 
the participant that a response 
will be required soon. When the 
X appears in the circle, the 
participant must respond as fast 
as possible. If the letter is not an 
X, the participant must not 
respond. 

Attention 
Sustained 
attention 

RT to X trials. PEBL Vigilance 
Task 

Forbes, G. B. (1998). 
Clinical Utility of 
the Test of Variables 
of Attention (TOVA) 
in the Diagnosis of 
Attention-
Deficit/Hyperactivity 
Disorder. Journal of 
Clinical Psychology, 
54 (4), 461-476. 

 
  

https://nam04.safelinks.protection.outlook.com/?url=http%3A%2F%2Fpebl.sourceforge.net%2Fwiki%2Findex.php%3Ftitle%3DPEBL_Vigilance_Task%26action%3Dedit%26redlink%3D1&data=02%7C01%7Cphoebe.imms%40myacu.edu.au%7C8f85c030334d4dfd455a08d7b6339025%7C7c36a78e1602438c8e811e13ed494a5d%7C0%7C0%7C637178204984765285&sdata=4PMtJe1oi1g%2F6%2F2pF%2FoYa2ucEV%2FH7tSBTWXj6Woi1a4%3D&reserved=0
https://nam04.safelinks.protection.outlook.com/?url=http%3A%2F%2Fpebl.sourceforge.net%2Fwiki%2Findex.php%3Ftitle%3DPEBL_Vigilance_Task%26action%3Dedit%26redlink%3D1&data=02%7C01%7Cphoebe.imms%40myacu.edu.au%7C8f85c030334d4dfd455a08d7b6339025%7C7c36a78e1602438c8e811e13ed494a5d%7C0%7C0%7C637178204984765285&sdata=4PMtJe1oi1g%2F6%2F2pF%2FoYa2ucEV%2FH7tSBTWXj6Woi1a4%3D&reserved=0
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Chapter 6: General Discussion and Conclusions 
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6.1 Restatement of the Research Aims and Main Findings 

6.1.1 Summary by chapter 

The purpose of this dissertation was to investigate the relationship between brain 

injury with cognitive symptoms and disruptions in the brain network using graph theory. 

First, a systematic review and meta-analysis of studies of adults with moderate-severe 

injuries was conducted. Next, the behavioural relevance of graph metrics was explored in a 

proof-of-concept study in healthy adults, where the relationship between measures of network 

communication and processing speed was used to evaluate whether graph metrics can be 

interpreted in terms of cognitive performance. Finally, a novel visualisation approach was 

developed to analyse the profile of graph metric alterations in single-subject TBI patients 

compared to healthy controls. 

In Study 1 (Chapter 2), a systematic review and meta-analysis assessed the 

consistency of recent graph theoretical studies of TBI (Imms et al., 2019). Findings suggested 

that normalized clustering coefficient and characteristic path length are altered in TBI 

patients compared to healthy controls: characteristic path length was also robust across 

studies and subgroups. The meta-analysis revealed evidence that the TBI brain network is 

closer to a regular lattice structure than healthy controls and that graph metrics have potential 

as diagnostic and prognostic biomarkers. Study 1 also raised pertinent issues prevalent in the 

TBI graph theory literature that became the focus of the remaining empirical chapters. These 

issues included over-interpretation of the relationship between graph metrics such as 

characteristic path-length and the ‘efficiency’ of cognitive processes – leading to an empirical 

report studying this relationship in more detail (Study 2). Finally, limitations of the group-

level analyses that combine heterogeneous patient samples and discard patients with large 

lesions were discussed, forming the rationale for Study 3. 
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In Study 2 the relationship between graph metrics and cognitive performance was 

explored, by examining whether inter-individual differences in decision-making time are 

related to network communication in healthy adults. Communication efficiency was 

measured using traditional path length-based metrics as well as a novel routing strategy 

(navigation efficiency; Seguin et al., 2018), across both the whole-brain and the fronto-

parietal subnetwork. Results support the idea that poor communication efficiency is related to 

slowed processing speed. Higher navigation efficiency of the whole brain network, and both 

higher navigation efficiency and shorter characteristic path length of the fronto-parietal 

subnetwork, were related to faster decision-making time on a global-local task (Wiecki et al., 

2013). Interestingly, navigation efficiency and characteristic path length were differentially 

related to decision-making time for controlled and automatic processes respectively. These 

findings infer those measures of network communication may reflect behaviour – however, 

this relationship is dependent on the specificity of the cognitive process being observed; the 

model of communication routing used to measure network efficiency; and the connectome 

methodology employed. 

Study 3 (Chapter 5) demonstrated unique profiles of graph metric alterations among 

moderate-severe TBI patients. The ‘GraphMe’ plots were used to represent alterations in 

segregation, integration, and centrality, facilitating interpretation of individual 

disconnectivity profiles. This study also employed a new technique Virtual Brain Grafting 

(VBG) that allowed the inclusion of patients with extensive focal lesions (Radwan et al., 

2021); and newly available methods that improve the estimation of edges (single-shell 3 

tissue constrained spherical deconvolution SS3T_CSD; Dhollander et al., 2019). As expected, 

the profile of graph metric alterations was different across the five individuals. Patients who 

might normally have been grouped together on the basis of age, severity of injury, and lesion 
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size showed very different network alterations in the GraphMe plots. The renewed emphasis 

on single-subject profiling of patients is discussed in relation to providing a patient-specific 

perspective to the question of whether graph metrics can be used as biomarkers. Finally, 

future directions are suggested for implementing GraphMe plots as a novel method for 

clinicians to characterise individual patient’s network alterations following brain injury.  

6.1.2 Collective summary of results 

Overall, evidence from this thesis indicates that graph metrics display potential for 

quantifying structural brain network alterations in TBI patients. First, measures of 

segregation and integration are sensitive to brain injury (Imms et al., 2019); and second, 

communication metrics can be related to individual differences in processing speed (Imms et 

al., 2021), demonstrating that graph metrics may have interpretive value. Study 3 suggests, 

however, that a single-subject profiling approach may better capture the ‘fingerprint’ of graph 

metric alterations, allowing characterisation of TBI patients based on their unique structural 

brain network profile. The following sections highlight the novel and original contributions 

this thesis provides to the field and details the potential implications of results for future 

research.
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6.2 Discussion 

6.2.1 Implications for the structural network topology of patients with TBI 

6.2.1.1 A regular lattice structure 

In Study 1 it is suggested that TBI patients display a brain network that has shifted 

towards a lattice structure, compared to healthy controls. The healthy connectome represents 

the ideal state of the cellular wiring of a brain, which sits between the highly clustered/poorly 

integrated regular lattice and the poorly clustered/highly integrated random graph (Fornito et 

al., 2016). Thus, the healthy connectome has a high level of clustering and shorter than 

expected path length, facilitating segregation of discrete brain functions in clusters, and 

integration of information across spatially distant regions (Watts & Strogatz, 1998). In 

contrast, the meta-analysis showed that characteristic path length and normalised clustering 

coefficient were both higher across TBI subtypes. This pattern is thought to be caused by loss 

of long-distance connections, which are particularly vulnerable in TBI (e.g., the corpus 

callosum; Kim et al., 2014a). Damage or loss of long-distance connections leads to longer 

paths and inflated measures of clustering. Other articles have made similar observations in 

TBI patients: for example, Sharp et al. (2014) also observed a shift in the TBI network, in 

particular within the default-mode network and the salience network. Also, a similar pattern 

of increased segregation and decreased integration has been observed in Alzheimer’s disease 

and Schizophrenia patients (for review, see Griffa et al., 2013). Thus, the findings of Study 1 

insinuate that traumatic injury may lead to a more costly network architecture of the brain. 

The impact of this less ‘efficient’ network structure is thought to underly the broad 

range of impairments in executive function and cognition (Bullmore & Sporns, 2012). 

Because the brain is metabolically expensive, its topological organisation is thought to be 

driven by the need to minimise these costs (Sporns, 2011). Thus, loss of important 
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connections between important hubs of the brain can disrupt this cost-efficiency trade-off 

(van den Heuvel & Sporns, 2011) and cause disorders of higher-order cognitive functioning 

(Bassett & Bullmore, 2009; Fornito & Bullmore, 2010). Accordingly, topology may be 

related to cognitive performance – for example Kim et al. (2014a) found that increased path 

length was correlated with poorer executive functioning and slower verbal learning. Thus, 

Study 2 presents an in-depth investigation into the relationship between communication 

measures and processing speed, to explore whether network topology has implications for 

cognition – albeit in healthy adults. Study 2 supports findings from Seguin et al. (2020), who 

note that communication measures that summarise capacity for integration are relevant to 

behavioural measures. However, there remains an absence of literature specifically 

investigating the relationship between topology and cognition in TBI patients. Nevertheless, 

results from Study 1 and Study 2 imply that communication measures (i.e., characteristic path 

length, global efficiency, and navigation efficiency) are important measures of topology to 

examine in TBI patients with regards to cognitive outcome. 

In the single-subject profiles of Study 3, it was noted that the topology of two patients 

shifted towards regular lattice structure (TBI1 and TBI3), while the others showed a different 

pattern of alterations: some patients remained economically balanced (i.e., TBI4 and TBI6) 

and others were closer to a random graph (TBI5). Thus, these highly variable patterns of 

alterations in each individual TBI patient were observed across all network properties. In 

support of Study 1 that purports characteristic path length to be the most robust metric across 

studies, it was observed that measures of integration (i.e., path length, global efficiency, and 

navigation efficiency) were most often affected: infra-normal in three of the five GraphMe 

plots, and normal in the remaining two. However, measures of segregation (i.e., normalised 

clustering coefficient, clustering coefficient, and local efficiency) showed mixed results – 
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infra-normal in one, normal in two, and supra-normal and infra-normal in the remaining two 

patients. This implies that, while at the group level TBI patients display a regular lattice 

structure, this does not necessarily translate to individual TBI patients. Similar findings were 

reported by Lv et al. (2020) who found that the brain structure of Schizophrenia patients 

deviated from healthy controls, but the exact topology of the differences was highly variable 

among individuals. Instead of the shift to a regular lattice structure being homogenously 

attributable to all TBI patients, results of Study 3 suggest that it will be necessary to stratify 

different ‘subgroups’ of personalised connectome profiles. With test-retest validation, the 

GraphMe plots show promise as a tool in this process of characterisation.  

6.2.1.2 Advanced theoretical reasoning and hypothesis generation 

The hypotheses of previous studies, described in detail in Study 1, reflect the 

exploratory nature of graph theoretical analysis in TBI – they lack clear rationales regarding 

the specific choice of graph metrics. Furthermore, the expected direction of effect was 

omitted in most of the studies analysed – only Yuan et al. (2015) and Königs et al. (2017) 

justified their choice of each graph metric. A clear rationale concerning the selection of graph 

metrics was required: to advance theoretical reasoning in the field, and to minimise 

unnecessary multiple comparisons thus reducing chance findings that inflate the false positive 

rate. Accordingly, a key outcome from this dissertation can be observed in the formulation of 

the GraphMe plots in Study 3. Each graph metric was chosen based on the results of previous 

literature – only those metrics that were significantly altered in TBI populations compared to 

healthy controls according to the meta-analysis were included in the GraphMe plots. 

Furthermore, whether these altered metrics were generally higher or lower than the healthy 

controls further informed the visualisation, with graph metrics recoded such that lower values 

indicated poorer topological structure (see Table 2 in Chapter 5). In this way, the GraphMe 
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plots provide a literature driven guide for investigating topological reorganisation in TBI 

patients, to aid in the development of hypotheses for future studies. 

6.2.2 Implications for the interpretive value of graph metrics 

6.2.2.1 Biomarkers of TBI? 

Biomarkers are a key outcome for the field of translational neuroscience. In their 

review, Griffa et al. (2013) state that graph metrics hold potential as neuroimaging 

biomarkers of brain disorders, in particular those that demonstrate disconnectivity (including 

TBI). However, questions remain around the biological validity of graph metrics, and their 

relationships with biological substrates, existing diagnostic criteria, and cognitive 

performance. Biomarkers must be able to 1) diagnose a particular brain disorder, and 2) 

predict cognitive or other outcomes (Woo et al., 2017). The ultimate goal of biomarkers is to 

then engage their use at 3) an individual level, to provide clinicians with tools to diagnose, 

prognose, and treat patients.  

With regards to the first criteria, the meta-analysis in Study 1 revealed that longer 

path lengths are the most robust diagnostic biomarker of TBI across all published studies (see 

section 6.2.1.2). With regards to the second criteria, Study 2 found that that communication 

measures such as path length and navigation efficiency (not previously studied in this regard) 

are related to cognitive outcomes. This study was one of the first ever to look at the direct 

interpretive value of communication measures, especially of the novel graph metric 

navigation efficiency (Seguin et al., 2018). There is currently no robust, widely used model of 

how structural network metrics relate to cognitive performance or capacity. Study 2 therefore 

provides a starting point for future studies to build mechanistic models of how network 

summary measures relate to cognition; grounds for an evidence-based interpretation of graph 

measures; and a framework for forming a priori hypotheses.  
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For the third criteria, Study 3 provides a framework for examining individual TBI 

patients with cognitive sequela using a profile of graph metrics. This shift away from 

searching for one ‘biomarker’ towards a profile of graph metrics enables examination of 

heterogeneity in the TBI population, which underscored the lack of robust findings in the 

meta-analysis (Imms et al., 2019). As expected, a diverse range of network alterations in the 

five moderate-severe participants was observed, which suggests there may not be a global 

change caused by TBI that can be robustly captured by a single graph metric. These 

observations highlight the importance of looking beyond a single global graph metric as a 

‘biomarker’, towards an individual profiling approach. Using the GraphMe plots, these 

profiles can be treated as a representation of an individual’s connectome that considers all 

network properties (integration, segregation, centrality) – not just one. This type of profiling 

approach provides an avenue for future research into graph metric biomarkers of TBI. 

In summary, this thesis demonstrates that 1) some graph metrics are robustly linked to 

TBI across studies; and 2) communication metrics are related to behaviour. However, this 

thesis does not validate this metric as a biomarker – for this, large scale studies testing the 

diagnostic and prognostic validity of this metric would be required (see Limitations section,  

Woo et al., 2017). Instead, it is argued that a profile of graph metrics might inform clinical 

practice by using a single-subject profiling approach. 

6.2.2.2 Specific measures of cognition and network structure 

Previously, studies that investigated whether graph metrics are biomarkers of TBI 

aimed to uncover relationships between network structure and cognition, with various levels 

of success. For example, Caeyenberghs et al. (2014) revealed that slower processing speeds 

on the GLT corresponded with lower global efficiency in adults with traumatic brain injury. 

Kim et al. (2014a) found that the increase in path length in TBI patients was related to poorer 
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executive functioning and slower verbal learning. However, they note that given 

characteristic path length is a measure of communication efficiency, they expected to see a 

relationship with processing speed – which was not significant. In Study 2 it was observed 

that these relationships may be improved by using specific measures of cognitive 

performance and network structure. By investigating the fronto-parietal subnetwork more 

specifically, this thesis found that navigation efficiency and characteristic path length are 

differentially related to controlled and automatic processing speeds respectively. This is in 

support of work by Román et al. (2017), who state that investigating task-relevant 

subnetworks improved their observed relationship with working memory and engagement. 

Furthermore, extracting task-relevant subnetworks and evaluating their relationship with 

cognitive performance may better reveal cognition-graph metric relationships.  

Equally as essential to linking graph metrics with cognition is the use of specific 

measures of cognitive performance. The HDDM was used to extract a specific measure of 

decision-making time from the Global-Local task (Wiecki et al., 2013). Importantly, 

relationships between communication measures and conditions on the Global-Local task were 

then found using these specific measures, which may not have been observed had basic 

reaction time been used to measure processing speed (e.g., Kim et al., 2014a). In other words, 

results of Study 2 suggest that it may be necessary to examine graph metrics of task-relevant 

subnetworks to uncover specific relationships with cognitive outcome.  

6.2.3 What can be gained from the use of Personalised Connectomics? 

6.2.3.1 Representation of the TBI population 

Importantly, understanding the link between cognition and affected neurological 

organisation has implications for the management of chronic TBI cases with persistent 

cognitive impairments. However, most research examining this link has done so using group-
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level analyses, which average TBI patient neuroimaging and cognitive data to compare to 

healthy controls (Imms et al., 2019). While group-level analysis is essential for statistical 

evaluation, TBI patients are notoriously heterogeneous in terms of their lesion characteristics 

and cognitive outcomes (Rabinowitz & Levin, 2014); meaning important individual 

differences are ‘left on the cutting room floor’, and group-level results are not necessarily 

applicable to individual patients (Mant, 1999). Instead, there is incentive for the use of 

individual-level approaches to investigate the cognitive and neurological facets of brain 

injuries in general (e.g., Irimia, Chambers, et al., 2012; Irimia, Wang, et al., 2012; Jolly et al., 

2021; Lv et al., 2020). The single-subject profiles of Study 3 constitute a timely response to 

the push for individual-level approaches – they provide a framework for future studies to 

examine a profile of cognitive and neurological alterations without averaging individual 

differences in TBI patients. 

In previous connectome studies of TBI it is common to exclude cases with large focal 

lesions that fail Freesurfer segmentation – which was not designed for brain images with 

structural pathology.  Consequently, results are not representative of the broader TBI 

population, and the models based on this data are less likely to be generalisable to real-life 

clinical settings (Woo et al., 2017). However, if these patients are discarded, our 

understanding of TBI is limited only to patients with smaller lesions. New techniques for 

improving image processing of patients with large lesions are currently being developed, that 

will allow inclusion of these patients (see section 6.2.4.3). In Study 3 one such technique is 

successfully employed (Radwan et al., 2021), enabling the demonstration of the individual 

profiling approach in moderate-severe TBI patients, including two with extensive lesions. 

Inclusion of these patients is essential for ensuring that the true diversity of the TBI 

population is represented in the literature. 
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6.2.3.2 A framework for clinical application 

Irimia, Wang, et al. (2012) introduced the idea of personalised structural 

connectomics for TBI patients, to visualise trauma-related white matter atrophy. In particular, 

they assert the need for techniques that allow clinicians to rapidly compare changes in 

structural connectivity profiles in order to create personalised rehabilitation programs (Irimia, 

Chambers, et al., 2012). There is evidence that individual network- and connectivity-based 

profiles are promising in this regard (e.g., Bonilha et al., 2015; Kottaram et al., 2020). 

However, few studies have examined personalised connectome approaches in TBI patients 

(Irimia, Chambers, et al., 2012). Study 3 demonstrates the usefulness of personalised 

structural connectomics in three ways: First, connectome maps can be used as a profile of the 

TBI patient’s brain topography, giving researchers and clinicians a quick visual summary of 

network asymmetry, hub alterations, and overall reductions in connectivity strength. Second, 

by comparing an individual to normative data, areas of the network that are topologically 

damaged beyond the site of the focal lesion can be observed. Finally, cognitive symptoms can 

be compared to changes in summary network metrics such as path length, navigation 

efficiency, and normalised clustering coefficient.  Thus, the novel visual representation 

‘GraphMe’ plot opens avenues for employing graph metrics in the clinical care of TBI 

patients. 

Moving forward, this revaluing of single-subject profiling can be used alongside 

group-level analyses to inform clinical practice. This approach could be useful longitudinally 

to assess network-based alterations over the time course of the injury. There is evidence that 

structural connectivity changes over time according to time since injury (e.g., Meningher et 

al., 2020; Osmanlıoğlu et al., 2019). For example, Osmanlıoğlu et al. (2019) found that 

moderate-severe TBI patients were identical to healthy controls immediately after the injury 
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and showed greater dissimilarity by three months post injury. Meningher et al. (2020) found 

that clustering coefficient dropped in the first week post injury then returned to baseline 

within a month in mice, while global efficiency increased in the first week then decreased 

over the following month. These fluctuations are likely to be a result of neurobiological 

responses to the injury which may continue for up to 6 months post-injury (e.g., Bramlett & 

Dietrich, 2015). Examination of multiple GraphMe plots over the course of the acute-chronic 

period could provide insights into how these fluctuations occur 1) in comparison to a healthy 

cohort, and 2) in comparison to the initial brain network at injury.  

Finally, there is evidence that individual network- and connectivity-based profiles are 

promising for informing personalised rehabilitation programs (Irimia, Wang, et al., 2012). 

Individual profiling approaches can inform neuroimaging-guided rehabilitation (Dichter et 

al., 2012; Stoeckel et al., 2014; Wing et al., 2017), and assist health professionals to design 

personalized cognitive training and rehabilitation programs. For example, clinicians can 

relate the single-subject brain profiles to the cognitive profiles, to design personalized 

therapies that take into account damaged connections. Assessment of cognitive and structural 

network alterations in comparison to a normative cohort provides essential information to 

deliver a compensatory training program that targets specific white matter tracts and 

cognitive domains.  

6.2.4 Methodological considerations of diffusion-based graph analysis in TBI 

6.2.4.1 Overview 

Although recent advances in computational neuroscience and image processing have 

been provided that ameliorate the challenges of connectome reconstruction, they are not 

always widely used (Yeh et al., 2020). It is important to judiciously select tools and 

approaches that minimise biases, as connectome analyses can be heavily influenced by 
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methodological choices in the processing pipeline (for reviews, see Sotiropoulos & Zalesky, 

2019; Yeh et al., 2020; Zalesky et al., 2010). This is especially true for brain injured cohorts – 

as such, the current research program utilised a meticulously crafted connectome pipeline. 

Here, the approach to the three major domains of the connectome pipeline is described: 1) 

tractography and generation of streamline edge weights; 2) creation of the connectome 

matrices and node choice; and 3) performance of the graph analysis.  

6.2.4.2 Edges 

According to a recent methodological review by Yeh et al. (2020), there are two main 

areas in which the generation of streamlines can bias the connectome analysis: 1) the 

streamline termination bias, and 2) the streamline quantification bias. The streamline 

termination bias infers that a streamline seed and termination point essentially defines which 

node that streamline belongs to. These termination criteria are (conventionally) that a 

streamline will begin at a randomly generated seed point, and end when the streamline passes 

through an area of low FOD amplitude or high curvature (Jeurissen et al., 2019; Tournier et 

al., 2011). However, the resulting streamlines are often biologically implausible, ending in 

white matter or the CSF. Instead, Smith et al. (2012) propose Anatomically Constrained 

Tractography (ACT) which were employed in the current research program. The streamlines 

generated were initiated and terminated in the grey matter boundary, using anatomical priors 

derived from T1 images, which better reflects the true biological nature of white matter tracts. 

In support of this, a recent study by Schilling et al. (2020) found that the best-case scenario 

for the accuracy of streamline generation occurred using anatomical priors, which improved 

both the sensitivity and specificity to the ground truth.  

One concern regarding the use of ACT in the presence of pathology was that 

streamlines may incorrectly be terminated and removed as implausible in cases where the 
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streamline ends in the lesion. However, recent work by Horbruegger et al. (2019) found that 

ACT improved the tractography of patients with Multiple Sclerosis lesions by preventing 

implausible tracts. Similarly, in Study 3, the combined effect of ACT and VBG (to improve 

image segmentation) produced connectomes that quite accurately reflected the underlying 

pathology. Nevertheless, new techniques are currently being crafted to improve the 

registration between streamline end-point and anatomy by using more accurate anatomical 

constraints (Yeh et al., 2017).  

Second, the streamline quantification bias (also referred to as the reconstruction bias) 

signifies that streamlines themselves do not actually represent the underlying fibre density 

and thus are not biologically relevant (Jones, 2010a; Jones et al., 2013; Smith et al., 2013). 

Accordingly, longer pathways are underestimated as there are more opportunities for the 

streamline to terminate (Jones, 2010a). Length correction and representation of the fibre 

density have been addressed using advances in streamline filtering algorithms, including 

COMMIT2 (Schiavi, 2020), LiFE (Pestilli et al., 2014), and SIFT2 (Smith et al., 2015a). In 

this thesis SIFT2 was utilised, which alters the streamline count to represent the underlying 

tissue microstructural properties inherent in the FODs. This avoids the streamline 

quantification bias and has been shown to result in connectomes that have stronger 

relationships with cognitive performance (McColgan et al., 2018). SIFT2 may provide greater 

confidence in the biological relevance of structural connectomes – however, of note, it also 

resulted in a heavy-tailed distribution of edge weights. A recent study by Frigo et al. (2020) 

found that filtering techniques such as SIFT2 alter the topology of TBI brain networks and 

can thus influence the measurement of network metrics – while thresholding based on density 

has negligible effects on network topology. However, density-based thresholding does not 
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fully overcome the streamline quantification bias, as it does not make the streamlines 

proportional to the underlying FOD amplitudes. 

It has also been suggested that SIFT2 is not appropriate for brain images where 

pathology is present, as the cross-sectional area of an individual fibre bundle may not be 

consistent along the length of the bundle in cases of neurodegeneration and lesions (Sarwar et 

al., 2019; Smith, Calamante, & Connelly, 2020; Zalesky et al., 2020). Zalesky et al. (2020, p. 

793) provide the metaphor a chain is only as strong as its weakest link, and that SIFT2 (by 

taking the sum of the weights of the cross-sectional area along the entire bundle, regardless of 

the weakest point), does not account for this. In response, Smith, Calamante, Gajamante, et 

al. (2020) propose a modification to the SIFT2 method where axonal truncation pathologies 

(such as lesions) are taken into account, by ensuring that the streamline density does not 

exceed the fibre density estimated by the diffusion model. Unfortunately, this proposed 

amendment was not available at the time of analysis; however, this technique shows promise 

for mitigating the effects of lesions on the quantification of streamlines in future studies.    

Finally, it was observed that the single-shell 3 tissue model for CSD (SS3T-CSD) 

inherently dealt well with TBI lesions (Dhollander et al., 2020; Dhollander et al., 2019). CSD 

provides an improvement to the tensor model of generating tractography, as it is able to 

represent multiple fibre directions in a single voxel, allowing for estimation of crossing fibres 

(Jeurissen et al., 2013). Even though CSD is probabilistic, graph metrics calculated from 

CSD show excellent reproducibility across iterations (Roine et al., 2019). SS3T-CSD reserves 

the angular information of the GM- and CSF-like signal, removing contributions from these 

components to increase the specificity of the WM FODs, while avoiding over estimation into 

GM and CSF signal from the lesioned area (Khan et al., 2020). Combined with anatomically 

constrained tractography (Smith et al., 2012), streamlines were not generated in lesioned 
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areas, meaning anatomically disconnected regions were represented as such in the TBI 

connectivity matrices.  

6.2.4.3 Nodes 

The manner in which the ‘nodes’ of the graph analysis are selected have an 

undeniable impact on the resulting metrics (Zalesky et al., 2010). While there is no consensus 

on the optimal choice of parcellation scheme (Sotiropoulos & Zalesky, 2019; Yeh et al., 

2020; Zalesky et al., 2010) the Desikan-Killiany atlas was used in Study 2 and 3 (Desikan et 

al., 2006), as it is one of the most commonly used parcellation schemes and shows good test-

retest reliability in structural connectome analysis (e.g., Buchanan et al., 2014; further 

reasons are outlined in Study 2, section 4.2.4.3). The interpretation of results are therefore 

mitigated by the specific choice of parcellation scheme (i.e., the Desikan-Killianey atlas has 

82 relatively large nodes, thus results are relevant for a more macro-scale understanding of 

the structural connectome). Zalesky et al. (2010) found that network parameters such as path 

length vary as spatial scale of the parcellation scheme increases, and thus findings should be 

reported with reference to the scale of the parcellation used. Therefore, other parcellation 

granularities may lead to different results - for instance, in Study 2, significant correlations 

using the higher-resolution Destrieux atlas were not observed (164 regions; Destrieux et al., 

2010).  

Node definition in patients with large lesions is both problematic and largely ignored 

– leading to a biased representation of the TBI population (see section 6.2.3.1). TBI patients 

often have lesions that do not cope well with standard segmentation procedures from which 

atlases like the Desikan-Killianey and the Destrieux are derived (Fischl et al., 2002). In cases 

where large regions of the brain are structurally damaged (e.g., TBI2, TBI3, TBI4), it is 

logical to presume that these nodes are disconnected (thus, the weight of the corresponding 
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row/column in the connectivity matrix should be set to 0). However, these disconnected 

nodes must still be generated to run the connectome analysis. Unsurprisingly, in cases of 

severe lesions, automated Freesurfer segmentation was problematic, resulting in inaccurate 

streamline assignment – at which point these patients are often excluded. The use of manual 

edits to the white matter volume to re-align the segmentation is not feasible for patients with 

extensive regions of encephalomalacia, and these methods are time-consuming and 

unreproducible across labs (Beelen et al., 2020).  

Automated lesion filling or ‘virtual repair’ methods instead aim to ‘fill in’ structural 

pathologies to aid in segmentation processes. Significant advances have been made for 

automatic identification (e.g., Lesion Identification using Neighbourhood Data Analysis; 

Pustina et al., 2016) and filling of large unilateral lesions such as those commonly seen in 

stroke. Unfortunately, these methods are not suitable for use in all TBI patients as they rely 

on leveraging healthy tissue from the contralateral hemisphere to fill a lesion (i.e., 

enantiomorphic normalisation; Nachev et al., 2008), and TBI lesions often occupy 

homologous regions of both hemispheres of the brain. This is the first time the approach 

proposed by (Radwan et al., 2021), which utilises a novel method for automatic filling of 

bilaterally lesioned brains using healthy synthetic donor tissue, has been applied in TBI 

research. Study 3 demonstrates that VBG improved segmentation accuracy in TBI patients 

with extensive bilateral lesions. As such, this single-subject approach has been beneficial for 

piloting approaches for rare TBI cases which may otherwise have been excluded. However, it 

is also noted that VBG using the healthy donor image has not yet been validated against a 

ground truth – though, this work is currently underway.  
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6.2.4.4 Graph analysis 

There are many ‘decision points’ within the graph theoretical analysis, including: 1) 

binary or weighted, 2) thresholding (or not), and 3) weight-length remapping. All studies in 

the meta-analysis (Study 1), and empirical Study 2 and 3 used the BCT to run the graph 

analysis, which is designed to provide a consistent methodology (Rubinov & Sporns, 2010). 

However, the three decisions described above are not prescribed by the BCT, such that every 

step taken will alter the outcome of the analysis. The benefits of each decision are laid out in 

Yeh et al. (2020) – here, justification is provided for the methodology used in this thesis.  

First, a weighted connectome was used, as this has been shown to provide a stronger 

representation of the properties of the brain network (Bassett & Bullmore, 2017). Given the 

use of SIFT2 to ensure the generated streamlines represented the underlying fibre orientation 

density, the edge weights were as biologically representative as possible (Smith et al., 2015a). 

This choice is also recommended for connectomes of patients with neurological pathology 

such as Alzheimer’s disease (Mito et al., 2018) and by extension TBI, where reduced but not 

absent connectivity is important to the interpretation of altered network properties. Second, 

the use of SIFT2 also meant that no thresholding was necessary, as very weak edges were 

given an extremely low edge weight – meaning their impact on resulting metrics was almost 

non-existent (Civier et al., 2019). However, the third decision (weight-length remapping) was 

more contentious. In Study 2, a series of control analyses were performed, changing the 

method of remapping between -log(10) and 1/W. The resulting communication measures and 

subsequent correlations with processing speed changed depending on the procedure used. 

There is no best practice method prescribed for this step in the BCT – however, this step 

needs to be synchronised, as this study (and others: e.g., Avena-Koenigsberger et al., 2018) 

found that this step can impact the distribution of edge weights. 
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6.2.4.5 Summary 

In summary, up-to-date processing techniques were utilised to ensure the biological 

validity and replicability of the connectome pipeline. While the application of some methods 

to patients with structural pathology are still being debated (e.g., SIFT2 and ACT), advances 

are being made relativity quickly in these areas. Furthermore, the use of new methods that 

allow better representation of neurodiversity in the TBI literature are demonstrated (i.e., 

VBG; Radwan et al., 2021). Finally, currently accepted and standardised methods for graph 

theoretical analysis were employed wherever possible (Rubinov & Sporns, 2010), and 

methods that require further investigation (i.e., weight-length remapping) were highlighted to 

improve the robustness and reproducibility of graph analyses.  

 

6.3 Strengths, Limitations and Future Directions 

6.3.1 Limitations and future directions 

6.3.1.1 Correlational analysis 

It is important that biomarkers are able to predict cognitive outcome (Woo et al., 

2017) – which was not examined by the correlational study in Chapter 4. Instead, Study 2 

provides insights into the potential mechanisms of graph metric-cognition relationships. It is 

noted that while communication metrics are related to processing speed, this relationship is 

highly dependent on the measures being used (see section 6.2.2.2). There is now a 

subsequent, ongoing investigation using a previously published dataset with a sample size of 

N=92 TBI patients (Jolly et al., 2020). Using a machine-learning approach, an algorithm will 

be trained on a subset of the TBI cohort to determine if slow processing speed can be 

predicted using navigation efficiency and path length measures. This would enable the 

predictive validity of navigation efficiency to be more directly examined in TBI patients. This 
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next step in biomarker development is essential to establish which injury-related changes in 

the brain network are behaviourally relevant.  

6.3.1.2 Structural versus functional connectivity 

The scope of this research program was limited to the use of structural connectivity to 

investigate TBI related alterations in patients with cognitive sequela. Structural connectivity 

represents the network architecture, the circuitry and wiring that brain function relies upon 

(Sporns et al., 2005). There is strong evidence that brain structural connectivity is related to 

functional connectivity (Straathof et al., 2019), in both healthy adults (Honey et al., 2009) 

and TBI patients (for review in preprint, see Parsons et al., 2020, December 3). Utilising 

multimodal measures of connectivity (i.e., pairing structural and functional connectivity) may 

improve the capacity to observe the relationship between properties of the brain network and 

cognitive performance (Dhamala et al., 2020; Seguin et al., 2020). For example, Seguin et al. 

(2020) found that communication measures calculated on functional connectomes are better 

indicators of cognitive performance than structural measures alone. The idea of coupling 

structural-functional connectivity for connectome analysis is rising in popularity (Sarwar et 

al., 2020). Future iterations of the GraphMe plots could include functional plots alongside the 

structural, to examine 1) whether the pattern of alterations is similar across domains in an 

individual patient, and 2) whether the combination of modalities provides a more informed 

perspective of the patient’s brain network that better reflects their unique cognitive outcome.  

6.3.1.3 Normative data  

Individual level analyses require a comparison of 1 subject to N controls. This 

individual approach to neuroimaging biomarker studies has flourished in recent months (e.g., 

Attyé et al., 2020; Garcia-Rudolph et al., 2020; Jolly et al., 2021; Lv et al., 2020). Compared 
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to Study 3 the sample size of the healthy cohort in these attribution studies is much larger – 

minimum N=103 (Jolly et al., 2021). Normative analysis with large sample sizes of healthy 

individuals allows for stronger statistical inferences to be made using such techniques as 

quartile regression, as was done by Lv et al. (2020) and Jolly et al. (2021). Normative data 

approaches are limited by access to substantial healthy control cohorts scanned with the same 

sequence at the same site – as results from tractography and connectome analyses are not 

robust to differences in image acquisition and processing (Sotiropoulos & Zalesky, 2019; 

Yeh et al., 2020). However, with the use of data harmonisation techniques (for review, see 

Pinto et al., 2020) this limitation could potentially be overcome in the near future, allowing 

larger normative datasets to be more easily created.  

6.3.2 Strengths 

One of the main strengths of this research program is its inclusivity – no patients were 

discarded for having large lesions. As such, this thesis constitutes an important step towards 

addressing the problems of heterogeneity in the TBI population, made possible by the up-to-

date connectome pipeline that was employed (see section 6.2.4) (Radwan et al., 2021; Smith 

et al., 2015a; Smith et al., 2012). Specific measures of cognition (Wiecki et al., 2013) and 

network communication (Seguin et al., 2018) were also used to uncover relationships 

between graph metrics and cognition (see section 6.2.2.2). An ongoing area of investigation 

before graph metrics can be considered as ‘biomarkers’ is whether they have interpretive 

value, and specific measures such as those utilised in Study 2 may provide opportunities for a 

more mechanistic understanding of this link. Finally, this research provides new, clinician 

targeted output for assessing TBI patients, particularly those with chronic, ongoing disability 

who are often under-represented and unable to access ongoing rehabilitation. 
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6.4 Conclusions 

This thesis provides a substantive critical evaluation of the use of graph metrics in the 

study of patients with TBI. The three empirical studies form a body of work that examines 

the robustness (Study 1), behavioural relevance (Study 2), and applicability at the single-

subject level (Study 3) of graph theoretical approaches to studying brain injury. It was found 

that brain network communication is often altered across different TBI groups (Imms et al., 

2019); which may also be related to cognitive processing speed (Imms et al., 2021). 

However, the pattern of graph metric alterations varies extensively in individual patients, 

depending on their age, lesion size, and lesion location. Therefore, future graph theoretical 

studies of TBI must adopt a profiling approach to better characterise network alterations that 

consider the unique ‘disconnectivity’ of each patient. In this way, graph theoretical analysis 

holds promise as a means of characterising and informing treatment decisions for patients 

with TBI.
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Appendix H. Outline of what to expect on the testing day (MBI) 



 

 

280 

 

 



 

 

281 

 

 



 

 

282 

 

 



 

 

283 

 

 



 

 

284 

 

Appendix I. Explanatory statement provided to healthy adults (MBI) 
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Appendix J. Consent form provided to healthy adults (MBI) 
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Appendix L. Participant information form for TBI participants (RCH) 



 

 

291 

 

 



 

 

292 

 

 



 

 

293 

 

 



 

 

294 

 

 



 

 

295 

 

 



 

 

296 

 

 



 

 

297 

 

 



 

 

298 

 

 



 

 

299 

 

Appendix M. Phone recruitment script for TBI participants (RCH) 
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Appendix N. Screening form for TBI participants (Royal Children’s Hospital) 
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Appendix O. Participant information form for Healthy Controls (Royal 

Children’s Hospital)  
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Appendix P. Screening checklist for Healthy Controls (RCH) 
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Appendix Q. Consent form for TBI participants (RCH) 
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Appendix R. Consent form for Healthy Controls (RCH)   



 

 

319 

 

 



 

 

320 

 

Appendix S. Survey of demographic information  
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Appendix T. The Neurobehavioural Functioning Inventory 
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Appendix U. MRI scan running sheet 
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Appendix V. MatLab script for Graph Theoretical Analysis 
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