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Abstract: Diet, exercise and the gut microbiome are all factors recognised to be significant contribu-
tors to cardiometabolic health. However, diet and exercise interventions to modify the gut microbiota
to improve health are limited by poor understanding of the interactions between them. In this pilot
study, we explored diet–exercise–microbiome dynamics in bodybuilders as they represent a distinc-
tive group that typically employ well-defined dietary strategies and exercise regimes to alter their
body composition. We performed longitudinal characterisation of diet, exercise, the faecal microbial
community composition and serum metabolites in five bodybuilders during competition preparation
and post-competition. All participants reduced fat mass while conserving lean mass during competi-
tion preparation, corresponding with dietary energy intake and exercise load, respectively. There
was individual variability in food choices that aligned to individualised gut microbial community
compositions throughout the study. However, there was a common shift from a high protein, low
carbohydrate diet during pre-competition to a more macronutrient-balanced diet post-competition,
which was associated with similar changes in the gut microbial diversity across participants. The
circulating metabolite profiles also reflected individuality, but a subset of metabolites relating to lipid
metabolism distinguished between pre- and post-competition. Changes in the gut microbiome and
circulating metabolome were distinct for each individual, but showed common patterns. We conclude
that further longitudinal studies will have greater potential than cross-sectional studies in informing
personalisation of diet and exercise regimes to enhance exercise outcomes and improve health.

Keywords: personalised diet; athletes; gut microbiota; macronutrient ratio

1. Introduction

Non-communicable diseases are the leading causes of death worldwide, with car-
diovascular disease accounting for around half of non-communicable disease deaths [1].
Modifiable lifestyle factors, including an imbalanced diet and a lack of physical activity,
are major contributors to cardiovascular disease risk [2]. However, the optimum diet and
exercise regime remains elusive, and diet and exercise interventions often have highly
variable outcomes between individuals. This is evident in sports science, where defined
diet strategies have been designed to optimise energy availability and complement athletic
outcomes [3]. Yet, individual factors are the main determinant of athletic performance. In
recent years, with the recognition of the significance of the gut microbiome in modulating
metabolism, there has been an increasing interest in the contribution of the gut microbiome
to individuality in athletic outcomes [4–6].

The impact of diet on human physiology and metabolism is complex and occurs
through mechanisms that are dependent on the human digestive processes and microbial
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activity. Although most nutrients are directly released from food by digestive processes
and absorbed in the small intestine, the ileal and colonic gut microbes profoundly influence
the outcomes. Microbial metabolism results in the formation or modification of a wide
range of molecules, including nutrients (e.g., amino acids, vitamins, short-chain fatty acids)
and other bioactive molecules (e.g., secondary bile acids, polyphenols) [7]. Collectively,
these microbial metabolites account for a significant proportion of energy (>10%), essential
nutrient supply, and contribute to the signaling interactions that underpin physiological
regulation [7,8]. While dietary guidelines aimed at altering body composition often outline
specific macronutrient compositions and energy intakes [9], there is flexibility in the choice
of food items. Thus the chemical composition of different food drive distinct interactions
with the gut microbes [10–12]. Hence, to understand the outcomes of diet manipulation,
dietary analysis needs to be considered at multiple levels (e.g., nutrients, foods, meals,
diets) [13]. Furthermore, the microbial contribution to the shaping of diet-derived molecules
also needs to be considered [14].

Recent studies provide evidence that gut microbial metabolites influence the effects of
exercise on physiological outcomes. Germ-free mice, devoid of a microbiota, had reduced
muscle mass, fat mass, and exercise endurance compared to conventionally raised mice
with a microbiota [15]. In another mouse study, intrarectal instillation of the microbial
metabolite propionate compared to a control of saline increased exercise performance [16].
Interestingly, another study found that although exercise training of mice altered the
microbiota composition and diversity, the protective metabolic effects of exercise were not
mediated through gut metabolites (as tested by faecal microbiota transfer), but through
diabetogenic diet effects [17]. Such studies highlight that diet, exercise and microbes
interact, however, identifying these relationships in humans is challenging.

There have been reports of specific microbial taxa being associated with exercise
outcomes. For example, in cyclists a greater exercise load was associated with a higher
relative abundance of Prevotella spp. [18], while marathon athletes were reported to have a
higher relative abundance of Veillonella spp. in the five days post-marathon compared to
pre-marathon [16]. However, recent reviews indicated that there were no specific microbial
taxa, or community composition consistently associated with exercise regimes or athletic
performance level [4–6]. Furthermore, while studies found differences between the micro-
biotas of athletes and sedentary individuals, the variation between individuals was often
greater [19–21]. Together, these studies indicate that exercise-microbiome relationships are
complex. The duration of exercise [22] and the type of sport [23] have different impacts
on the gut microbiota. Factors other than exercise also need to be considered. In a study
of endurance runners, athletic performance was greater with a high carbohydrate diet
intervention compared to a high protein diet, but also was also associated with individuals
whose microbiota had greater resistant to change during the diet intervention [24]. In sum-
mary, while diet-derived microbial metabolites are known to impact human physiology
and metabolism [25,26], the influence of exercise on the gut microbiome and vice versa
remains poorly predictable.

In our study, we sought the understand how variations between individuals impacted
athletic outcomes. Bodybuilders are a group of athletes well-suited for investigating the
dynamics between diet, exercise, and the gut microbiome, since they typically undergo
strongly patterned dietary manipulation and exercise to modulate their body composi-
tion for a competition [27–29]. Bodybuilders usually begin preparation 20 weeks prior
to the competition, using exercise and dietary strategies to reduce fat mass to increase
muscle definition while limiting loss of muscle mass [29]. During competition preparation,
bodybuilder’s diets are characterised by a high protein intake of >1.9 g/kg/d to main-
tain lean mass [27], combined with progressive reductions in carbohydrate, fat, and total
energy intake to create an energy deficit to achieve fat loss [30]. After the competition,
bodybuilders tend to have a more relaxed diet resulting in an increase in energy intake,
with some bodybuilders reporting episodes of overindulgent eating [30]. This dietary
pattern means that bodybuilders are predicted to undergo transitions in the ratio of protein
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to carbohydrate in the diet at levels that are significant drivers of microbial community
dynamics [31].

In this pilot study of five male bodybuilders, we tested the hypothesis that defined
transitions in diet composition and exercise training are associated with changes in the gut
microbial community composition and circulating metabolites. We performed a longitudi-
nal investigation, sampling at eight weeks and one week prior the competition and four
weeks post-competition to determine diet- and exercise-associated effects on the micro-
biome and host metabolism. We aimed to explore the deviations between participants to
better understand the impact of individual differences on diet and exercise outcomes.

2. Materials and Methods
2.1. Participants

The study was conducted in accordance with the Declaration of Helsinki, and ap-
proved by the Human Ethics Committee of THE UNIVERSITY OF SYDNEY (protocol code
2015/425, date of approval: 7 July 2015). Informed consent was obtained from all subjects
involved in the study.

This study is based on a subset of competitive bodybuilders from a previously reported
study [32]. The inclusion criteria were: male, aged 18 years or above, drug-free, and preparing
to compete in a natural federation bodybuilding competition. For this study we selected five
participants with a longitudinal series of blood and faeces samples matched with diet and
exercise history to look for associations with the gut microbiota and circulating metabolites
over time. These five bodybuilders had an average of 28.0 ± 11.9 years of age, 177.0 ± 2.8 cm
height, 77.7 ± 6.7 kg body weight, and 4.2 ± 3.5 years bodybuilding experience.

Participants were assessed on three occasions over a 12-week period. Samples were
collected eight weeks and one week prior to competition (PRE8, PRE1), and four weeks
after the competition (POST4). Participants presented to the laboratory for blood sampling
between 0600 and 0800 h after a 12 h food and fluid fast. Participants were also instructed
to abstain from caffeine, alcohol and exercise in the 12 h prior to the blood test.

2.2. Blood Sampling and Serum Metabolite Analysis

Venous blood samples were obtained by venepuncture from the antecubital vein.
Samples were centrifuged after allowing 15 min for clotting, and serum separated and
stored at −80 ◦C until analysis. 10 µL aliquots of serum samples were prepared via
protein precipitation with the addition of nine volumes of 74.9:24.9:0.2 v/v/v acetoni-
trile/methanol/formic acid containing stable isotope-labelled internal standards: valine-d8
(Sigma-Aldrich, St. Louis, MO, USA), and phenylalanine-d8 (Cambridge Isotope Laborato-
ries, Tewksbury, MA, USA).

Targeted metabolomic analysis measured hydrophilic metabolites in positive and neg-
ative ionisation mode using an LC-MS system comprised of an Agilent 1260 Infinity liquid
chromatography (LC) system coupled to a QTRAP 5500 mass spectrometer (MS) (AB Sciex,
Foster City, CA, USA). A hydrophilic interaction liquid chromatography (HILIC)—tandem
mass spectrometry (LC-MS/MS) method was used for the simultaneous detection of polar
metabolites in positive ionisation mode, composed of amino acids, nucleotides, neurotrans-
mitters and vitamins [33,34]. An amide chromatographic LC-MS/MS method was used for
the detection of nucleotide and nucleoside phosphates, high-energy intermediates, organic
acids, Krebs cycle intermediates, and glycolytic intermediates [35]. For each method, qual-
ity control (QC) pooled serum samples were included in the analytical run spaced at regular
intervals of every five injections, enabling monitoring and correction for temporal drift in
mass spectrometry performance. All raw data files from Analyst software v1.6.2 (AB Sciex)
were imported into Multi-Quant v3.0 (AB Sciex) for MRM Q1/Q3 peak integration and
the abundance of each metabolite in each sample was normalised to the nearest neighbour
flanking pair of pooled serum, deriving a normalised area (AU) for each metabolite.
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2.3. Diet and Exercise

Weighed food and training diaries were completed by participants during the seven
days before each assessment time point. The food diaries documented all food, fluid, and
supplements consumed. Food diaries were analysed using FoodWorks v8 (Xyris Software,
Brisbane, Australia) and included analysis of reported dietary supplement consumption.
The training diaries documented aerobic and resistance training that the participants
performed. Body composition, exercise training, energy intake and macronutrient intake in
the seven days prior each timepoint is shown in Table S1. Supplement intake in the seven
days prior to each timepoint is shown in Table S2.

2.4. Dual-Energy X-ray Absorptiometry (DXA)

Body composition was estimated using the Lunar Prodigy whole body DXA scanner
(GE Healthcare, Chicago, IL, USA) as previously reported [32]. Total fat mass and lean
mass were determined using enCORE 2011 v13.60.033 (GE Healthcare).

2.5. Faecal Sampling and Microbial Analysis

Participants were provided with 70 mL stool collection containers (TechnoPlas, St Marys,
Australia), and instructed to collect and store the specimen at home. For each participant,
one sample was self-collected within the seven days prior to each timepoint (the same
period as when the food diaries were documented). Samples were collected using the
provided container, and immediately frozen at home without preservatives, before being
returned to the laboratory within seven days and stored at −80 ◦C until analysis. The
faeces samples were thawed immediately prior to DNA extraction. Around 500 mg of
faeces from the centre of the sample was isolated for DNA extraction.

Total DNA was extracted from faecal samples using the FastDNA SPIN kit for feces
(MP Biomedicals, Santa Ana, CA, USA). The DNA extraction protocol was modified from
the manufacturer’s instructions by: repeating the homogenisation step once, repeating
the wash step with wash buffer #2 twice, and extending the centrifugation step to extract
residual ethanol to 4 min.

The microbial community was profiled using the 16S rRNA V4 region (515F–806R) [36].
Sequencing with Illumina MiSeq was performed at the Ramaciotti Centre for Genomics
(University of NSW, Sydney, Australia). Paired-end reads were aligned using Pandaseq [37].
Chimera checking was performed with Usearch v10.0.240 [38]. Sequenced reads were
assigned to operational taxonomic units (OTUs) at 97% identity with open reference picking
against the GreenGenes v13.8 database using the QIIME v1.9.1 pipeline [39]. OTUs that
did not reach at least 0.1% abundance in at least three samples were filtered out to reduce
noise in the dataset. After filtering, the minimum reads per sample was 80,000.

The microbial raw sequence reads presented in this study are openly available in the
National Center for Biotechnology Information (NCBI) Sequence Read Archive, accession
numbers SRR10317043-SRR10317057.

2.6. Statistical Analysis

The relative changes in body composition and exercise training at the PRE1 and POST4
timepoints were compared to the PRE8 timepoint as a baseline.

Statistical analysis of serum metabolites was performed with IBM SPSS Statistics
v24.0.0.0 (IBM, Armonk, NY, USA). The differences in metabolite levels between timepoints
were analysed using the nonparametric Kruskal–Wallis test, with a significance level set at
p < 0.05. The sample for participant 5 at the PRE1 timepoint did not pass LC-MS quality
control and was excluded from analysis.

Principal component analyses of dietary food components and serum metabolites
were performed in R with the stats package v3.6.1 [40] and visualised with the ggbiplot
package v0.55 [41].

Microbial diversity and principal coordinate analysis was performed in R [40] with the
phyloseq package v1.26.1 [42] and visualised with the ggplot2 package v3.1.0 [43]. Within-
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sample diversity was measured using the inverse Simpson index and between-sample
diversity was measured using the weighted UniFrac metric. Permutational multivariate
analysis of variance of weighted UniFrac distances was performed using the vegan package
v2.5.4 [44].

3. Results
3.1. Bodybuilders Showed a Common Direction of Change in Body Composition Alteration but Had
Varied Exercise Regimes

We investigated common patterns and individual deviations of body composition
alteration and exercise training across bodybuilders during the pre- and post-competition
periods. All participants achieved intended body composition change over the competition
preparation period (PRE8 to PRE1 timepoint), with a greater reduction in fat mass (6.4 to 43%
reduction) than loss in lean mass (0.4 to 2.7% reduction) (Figure 1a,b, Table S1). Outcomes
for the participants were not equal, with participants 2 and 3 being more successful in
conserving lean mass (<0.5% reduction) than others. However, participant 3 had a much
greater reduction in fat mass than participant 2 (43% compared to 11% reduction). Participant
1 was distinctive with the least fat mass reduction (6.4% reduction). After the competition
(PRE1 to POST4 timepoint), all participants increased both lean mass and fat mass.
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Figure 1. General and individual changes in body composition alteration and exercise training:
(a,b) Body composition relative to the PRE8 timepoint of each participant; (c,d) Exercise training
relative to the PRE8 timepoint of each participant; Dotted lines represent each participant, bars
represent mean; n = 5 participants; Absolute values for body composition and exercise training are
shown in Table S1.

Exercise training reduced on average at PRE1 and POST4 compared to PRE8, but
the exercise regimes varied across individuals (Figure 1c,d). Notably, an increase in both
resistance and aerobic training from PRE8 to PRE1, as only observed in participant 2,
corresponded with better outcomes in the conservation of lean mass, but not with loss of
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fat mass. Despite our small sample size, it is evident that exercise alone does not explain
the extent of body composition alteration.

3.2. Bodybuilders Diets Were Similar at the Energy and Macronutrient Level but Variable at the
Food Item Level

We then investigated dietary intake at three levels of complexity: energy, macronutri-
ents, and food items. At the level of energy intake, participants showed similar patterns.
Energy intake was highest after the competition in four out of five participants (Figure 2a).
Notably, greater decreases in energy intake from PRE8 to PRE1 corresponded to greater
reductions in fat mass from PRE8 to PRE1 (Figure 1b) but was not linked to changes in
lean mass.
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pant 1 and 2 each formed distinct clusters away from other participants, attributed to the 
differences in their choice of protein foods (Figure 2d). The diet of participant 1 was char-
acterised by a high intake of poultry and eggs, while participant 2 had a high intake of 
legumes. Participants also showed high variability in the consumption of supplements 
containing protein or amino acids (Table S2). However, there was no clear pattern be-
tween the intake of these supplements alone and body composition alteration. 

In summary, at the level of energy and macronutrient intake there were pronounced 
patterns of similarity across participants, while at the level of food items there was inter-
individual variation. 

 

Figure 2. Dietary intake patterns at different levels: (a) Energy intake relative to the PRE8 timepoint of
each participant, inclusive of diet and supplements (Table S2); Dotted lines represent each participant;
Bars represent mean (n = 5 participants); (b) Contribution of macronutrients and carbohydrate
types to energy intake; Black lines represent mean (n = 5 participants); Striped bars represent the
acceptable macronutrient distribution range (AMDR) [45]; (c) Principal component analysis of food
items; Vectors indicate the contribution of each food item to the diet; Ellipses indicate 95% confidence
intervals of samples from each participant; Please see Figure S2 for a larger version of (c); (d) Serves
of protein foods consumed as compared to the minimum recommended daily intake (MRDI) [46];
LC N-3 = long chain n-3 fatty acids; Serves of other food types are shown in Figure S1. Supplement
intake is shown in Table S2.

All participants showed a similar shift in macronutrient intake across timepoints
with respect to the acceptable macronutrient distribution range (AMDR) guidelines [45]
(Figure 2b). Prior the competition, protein contribution to energy was consistently above
the AMDR upper limit (>25%), carbohydrate contribution to energy was below the AMDR
lower limit (<45%), while energy intake as fat was generally within the AMDR (20 to 35%).
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After the competition, the dietary macronutrient distribution of all participants shifted
towards the AMDR. This was attributed to an increase in starch intake.

All participants exceeded the minimum recommended daily intake (MRDI) [46]
for protein foods at all timepoints, and showed variation at the level of food items
(Figures 2c,d and S1). Participants 4 and 5 consumed similar food items, as shown by
close clustering of their diets in principal components analysis. Comparatively, the diets of
participant 1 and 2 each formed distinct clusters away from other participants, attributed
to the differences in their choice of protein foods (Figure 2d). The diet of participant 1 was
characterised by a high intake of poultry and eggs, while participant 2 had a high intake
of legumes. Participants also showed high variability in the consumption of supplements
containing protein or amino acids (Table S2). However, there was no clear pattern between
the intake of these supplements alone and body composition alteration.

In summary, at the level of energy and macronutrient intake there were pronounced
patterns of similarity across participants, while at the level of food items there was interindi-
vidual variation.

3.3. Bodybuilders Maintained Individualised Gut Microbial Communities with Altered Diversity
Post-Competition

We next looked for patterns in microbiota responses over time and across participants.
Each participant had an individualised and dynamic gut microbiota throughout the study,
as expected from previous longitudinal studies in humans [47,48]. Samples from the same
individual were significantly more similar than to samples from other individuals regard-
less of timepoint (Figure 3a, R2 = 0.67, p < 0.001), however pairwise comparisons between
participants did not reach significance. No significant relationship was seen between
samples taken at the same timepoint from different participants. Notably, the microbial
community profiles of participant 1 and 2 were each clustered distinctly away from other
participants, corresponding with their distinct separations from other participants in diet
at the level of food items (Figure 2c).

A post-competition temporal shift was observed in terms of the within- and between-
sample diversities (Figure 3). The PRE8 and PRE1 microbial communities of each individual
were more similar than to the POST4 community in four out of five participants, as shown
with the weighted UniFrac between-sample diversity measure (Figure 3b). The POST4
microbial communities also had the lowest within-sample diversity in four out of five
participants as measured by the inverse Simpson index (Figure 3c). Thus, in all participants
the post-competition regime exerted a discernible impact on the microbiota.

Across all participants, the majority of the microbial community (55–85%) were as-
signed to the phylum Firmicutes (Figure 3d,e). The Verrucomicrobia and Actinobacteria
phyla showed between-participant variations in abundance that were resilient to timepoint
(Figure 3d), contributing to the individuality observed in principle coordinates analysis
(Figure 3a).

In summary, individualised gut microbial communities were maintained across time-
points. There is evidence that the diet and/or exercise changes associated with the transition
between pre- and post-competition may impact an individual’s microbiota, as the POST4
timepoint was an outlier across participants. The POST4 timepoint was not associated
with changes in specific taxa but had a less complex microbial community structure with
reduced richness and evenness.
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Figure 3. Shifts in gut microbial community composition within and between individuals: (a) Princi-
pal coordinate analysis ordination of weighted UniFrac distances; Connecting lines indicate shifts
in microbial community composition across timepoints; (b) Weighted UniFrac distances relative to
the PRE8 timepoint; Higher values indicate greater between-sample diversity; (c) Inverse Simpson
index; Higher values indicate greater within-sample diversity; (d) Relative abundance of bacteria taxa
grouped at phylum level; (e) Relative abundance of bacteria taxa grouped at genus level or the next
lowest taxonomic assignment; [Square brackets] around taxa indicates uncertain taxon assignation.

3.4. Circulating Metabolite Profiles Reflect Individuality and Distinguishes between Pre- and
Post-Competition

Next, we investigated the serum metabolic profiles of participants in a fasted and
exercise-abstained state. Out of 127 detected metabolites, 9 were significant by timepoint,
as measured by the nonparametric Kruskal–Wallis test (Table S3). The subset of metabolites
that differed by timepoint was then examined to determine which timepoint was the outlier.

Each participant maintained a unique metabolite profile over time when all metabolites
were analysed (Figure 4a). Visualisation of the subset of metabolites that differed signifi-
cantly by timepoint showed that the POST4 profiles were segregated from the PRE8 and
PRE1 profiles (Figure 4b). The pre-competition profiles were characterised by elevated lev-
els of acetylcarnitine, β-hydroxybutyrate, α-ketobutyrate, malonate, and guanidinoacetic
acid, while the POST4 profiles were characterised by elevated levels of NAD+, saccharopine
and choline (Figure 4b, Table S3). Measured metabolites that are known to be metabolised
by the gut microbiota did not differ significantly by participant or by timepoint.

In summary, the circulating metabolite profiles showed a strong pattern of individuality,
but a subset of metabolites showed distinct patterns between pre- and post-bodybuilding
competition. Although the transition between before and after the competition shifted both the
gut microbiota and the metabolome, there was no evidence that the two were interdependent.
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and was excluded from analysis.

4. Discussion

Bodybuilders use both dietary and exercise strategies to alter their body composi-
tion in preparation for a competition [27–29]. In our pilot study, all participants were
successful in reducing fat mass while preserving lean mass during the pre-competition
period. The two participants that had the least reduction of resistance training at the
PRE1 timepoint relative to the baseline (PRE8) had the greatest preservation of lean mass.
Comparatively, the participants with the greatest reduction in dietary energy intake during
pre-competition had a greater loss of fat mass. However, the variations in bodybuilding
outcomes could not be fully explained by exercise and diet. Therefore, we examined the
responses of the gut microbiota and circulating metabolome across participants to identify
common patterns of change in microbial and host metabolism that may have contributed
to bodybuilding outcomes.

Diet drives microbial responses through mechanisms operating at multiple levels. The
greatest difference in microbial community composition in our study was observed between
individuals. Food choice plays a major role in shaping the microbial community as distinct
chemical structures of food drive selection for specific microbes that can break down those
compounds [11]. Correspondingly, the two participants with the most distinct diets at the
level of food items compared to the rest of the cohort also had more distinct microbial
profiles. At higher dietary levels, participants showed more similarities. The increase
in dietary energy intake at post-competition compared to pre-competition corresponded
with the lowest microbial within-sample diversities in an individual. Similarly, a study
of obese and overweight individuals found that an energy-restricted dietary intervention
increased the gut microbial gene diversity [49]. These findings suggest that changes in
dietary energy intake can predict changes of microbial community complexity. At the
level of dietary macronutrient distribution, there was a common shift from a high protein,
low carbohydrate distribution during pre-competition to a more macronutrient-balanced
diet post-competition. This macronutrient shift coincided with the greatest changes in
between-sample microbial diversity within an individual. Notably, similar changes in
microbial diversity in response to dietary energy density and macronutrient distribution
were reported in a study of mice fed controlled diets comprising refined ingredients [31].
These results indicate that despite differences in the gut microbial community composition
between individuals, the within-sample and between-sample diversity of the microbiota
can be predictably modulated by diet. However, although detailed diet data was available
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in this study, a major limitation was that current food databases do not have an accurate
analysis of dietary fibre content, especially resistant starch [50]. Dietary fibre encompasses
a diverse range of substances, resulting in different definitions and measurement methods
adopted over time [51,52]. This inconsistency has a large impact on diet-microbiota analyses
as resistant starch degradation is highly specific to bacteria at the strain level [53], and
degraded resistant starch products support the growth of a larger microbial community [54].
Therefore, better characterisation of dietary fibre in future studies is necessary to understand
diet-microbiome relationships.

The overall circulating metabolite profiles showed stable interindividuality over the
experimental period. There was no evidence of changes relating to microbial metabolism,
but there were converging patterns across participants relating to lipid metabolism. The
levels of acetylcarnitine and the ketone body β-hydroxybutyrate were elevated during
pre-competition compared to post-competition. These metabolites are indicative of fatty
acid oxidation in ketogenesis to generate energy when there is a lack of glucose supply, such
as during exercise [55]. Multiple studies reported the greatest circulating metabolic changes
within a few hours after exercise were related to lipid metabolism, with increases in medium-
and long-chain fatty acids, ketone bodies, and fatty acid oxidation products, as recently
reviewed [56]. In our study, participants did not exercise for 12 h prior to blood collection
for metabolomic analysis. Thus, these observations suggest that the effects of long-term
exercise on metabolism remain even at rest state. These common metabolic responses to
exercise across individuals may have potential to provide insights into exercise outcomes.

The main limitation of this study is the small sample size, meaning that we were
unable to perform correlation analysis between diet, exercise, gut microbes and serum
metabolites. This is a common problem in human studies, where the high dimensionality
of collected data results is often orders of magnitude larger than the number of samples
available. The result is that identified correlations have a high chance of being spurious and
not applicable outside the study population. Therefore, future studies would benefit by
reducing the dimensionality of collected data, for instance, by computational methods such
as machine learning [57], or biologically relevant methods such as guild-based analysis of
the microbiome [58–60].

5. Conclusions

In conclusion, despite the small sample size, it was clear that the strongest pattern in
the gut microbiota and circulating metabolite profiles was high interindividual variability.
This individuality indicates that predicting the dynamics between diet, exercise, the gut mi-
crobiome and circulating metabolites would be more successful within one individual than
across multiple individuals. Therefore, designing personalised diet and exercise regimes
for both athletes and non-athletes would yield greater benefits than applying regimes
based on generalised patterns from a population. This same recommendation has been
proposed for both diet and microbiome data collection to improve studies investigating
diet–microbiome relationships [61]. Similarly, to generate more useful data for modelling
cardiometabolic disease risk and other health outcomes, we suggest longitudinal sampling
of individuals undergoing different conditions rather than sampling a greater number of
individuals cross-sectionally.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/metabo12100911/s1, Figure S1: Serves of food consumed as compared
to the minimum recommended daily intake (MRDI); Figure S2: Principal component analysis of
food items; Table S1: Body composition, exercise training, energy intake and macronutrient intake
measured in the seven days prior to each time point; Table S2: Supplement intake in the seven
days prior to each timepoint; Table S3: Circulating metabolites significantly different (p < 0.05)
by timepoint.
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