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Abstract The purpose of this article is to report on a newly funded research project in which we will 
investigate how secondary students apply mathematical modelling to effectively address real world 
situations. Through this study we will identify factors, mathematical, cognitive, social and environmental, 
that "enable" Year 10/11 students to successfully begin the modelling process, that is, formulate and 
mathematise a real world problem. The three-year study will take a design research approach in working 
intensively with six schools across two educational jurisdictions. It is anticipated that this research will 
generate new theoretical and practical insights into the role of “enablers” within the process of 
mathematisation, leading to the development of principles for the design and implementation for tasks that 
support students' development as modellers. 
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Introduction 
The ability to apply mathematics to the real world underpins many aspects of personal, civic and work life 
and is an issue of rising international concern for educational policy makers and researchers. As Paulos 
(2000) notes, an inability to use mathematics limits an individual’s career aspirations, social well-being, and 
financial security. The growing profile of international comparative assessments such as the Programme for 
International Student Assessment (PISA) and Programme for International Assessment of Adult 
Competencies (PIAAC), which have components aimed at ascertaining the capacity of individuals to apply 
mathematics to life-like problems, is a reflection of governments’ interests in the mathematical capability of 
their citizenry. The outcomes of these assessments are increasingly shaping government policy reform in 
education (Geiger et al. 2015). 

Concomitantly, the capacity to use mathematics to model real world phenomena and make predictions is 
a vital capability within Science, Technology, Engineering and Mathematics (STEM) careers, a sector that 
contributes substantially to maintaining the productivity of the nation in an increasingly globalised world 
characterised by rapid technological and economic change (Office of the Chief Scientist 2012). In response 
to these changing global demands, governments such as South Korea, Vietnam, Germany, Japan and China 
have all built economic policy with reliance on a central plank of STEM capability development (New York 
Academy of Sciences 2015). For students to choose and have access to careers within STEM, and related 
professions, they must be confident with, and competent in, applying mathematics to the real world (English 
2016). At the same time, there is growing concern, worldwide, over students’ capability, engagement and 
participation in the STEM disciplines (Marginson et al. 2013).  

Within the Australian context, the important capability of applying mathematics to problems in different 
real world contexts is captured at the very beginning of the National Curriculum Statement (ACARA, 2016): 

mathematics aims to ensure that students are confident, creative users and communicators of mathematics, able to 
investigate, represent and interpret situations in their personal and work lives and as active citizens. (p.1) 

The purpose of our recently funded Australian Research Council project is to address this issue by 
identifying, refining and applying teaching approaches that help secondary students learn how to use 
mathematics to solve real world problems through the processes of mathematical modelling. As a particular 
focus, we will investigate the factors, mathematical, cognitive, social and environmental, that enable Year 
10/11 students to successfully begin the modelling process as a precursor to its successful conclusion. This 
involves developing mathematical representations of a real world problem – an activity that involves 
mathematisation and formulation (Niss 2010). In attending to this challenge, this project will address the 
following specific aims: 



 2 

i) describe the nature of anticipatory metacognition and identify and describe enablers necessary for students 
to translate problems involving real world situations into mathematical models; 
ii) design tasks that support the development of students’ anticipatory metacognition or allow for the 
identification of issues that are problematic for that development; and 
iii) develop, trial and refine teaching practices that support the growth of students’ anticipatory metacognition 
while working on effective modelling tasks. 

The planned research will address these aims and lead to the development of an Integrated Modelling 
Task and Pedagogy Framework (IMTPF) that incorporates principles of effective task design and guidelines 
for classroom implementation (i.e., supportive pedagogies, necessary resources, other environmental and 
social factors). Thus, through this study we will generate new theoretical insights (enablers of 
mathematisation, anticipatory metacognition) and practical strategies (tasks, pedagogies) needed to progress 
students' success with modelling real world problems. 

Background 
International assessments such as the Programme for International Student Assessment (PISA) provide clear 
evidence that other countries are outperforming Australia within STEM related subjects. For example, across 
2003-2015 PISA results, Australia was ranked 20th for mathematical literacy in 2015, down from 19th in 
2012, 13th in 2009 and 8th in 2006. Of even greater concern, PISA results show that 22% of Australian 15 
year old students did not meet the international proficiency Level 2 for mathematical literacy – indicative of 
the level of competence necessary to use mathematics effectively in real-life situations. Further, 45% were 
below the nationally agreed baseline of Level 3 (Thomson, De Bortoi et al. 2016). A similar decline is also 
evident in PISA results for scientific literacy and in Australia’s performance in TIMMS (Thomson, Wernert 
et al. 2016). These results are particularly concerning, as PISA test items are designed to assess attributes 
that contribute to the capacity of students to apply their knowledge to real-life situations. If the root cause of 
these results remains unchallenged, Australia faces the prospect of limited life opportunities for individuals, 
and diminished effectiveness of our work force, resulting in a potential down-turn in our nation’s growth 
and prosperity.  

The difficulties secondary students experience in applying mathematics to real life or context-based tasks, 
is a long-standing problem in educational research (e.g., Wijaya et al. 2014). Features known to influence 
students’ capacity to mathematise include teachers’ expertise and pedagogical knowledge in modelling 
(Blum 2011), teachers’ and students’ dispositions toward and beliefs about mathematics (Kaiser and Maaß 
2007), and the skilful deployment of digital tools by teachers and students (e.g., Brown 2015; Geiger et al. 
2010). Researchers are in agreement, however, that the main area of difficulty for those learning how to 
model is the transformation of a real world situation into a mathematical form in order that mathematical 
techniques can be brought to bear (Gould and Wasserman 2014). This view, long established in the modelling 
community (e.g., Treilibs, 1979) is also supported by PISA data, which indicates formulation is the most 
difficult process for Australian students when attempting to solve problems drawn from the real world 
(Stacey and Turner 2015), and so is fundamental to successful modelling.  

It should be noted, however, that performance on test items of the PISA type identifies symptoms only, 
and then not systematically. The goals of this project go far deeper, to develop abilities which cover 
attributes, some of which may be tested by means of such items, but much more. Continued monitoring of 
outcomes from assessment programs provides useful evidence of effectiveness, but is insufficient on its own. 
PISA and similar items may assess individual competencies, but overall competence requires a synthesis of 
these that can only be addressed in extended settings using authentic modelling tasks. 

To date, few pedagogical solutions have been proposed to the problem of how students learn to 
mathematise consistently. Our contention is that the construct of implemented anticipation (Niss 2010), a 
metacognitive/cognitive process in which students anticipate, within the act of modelling, what is useful 
mathematically in subsequent steps, and also in decision making and carrying through of actions that bring 
those following steps to fruition, is central to students’ ability to mathematize (Stillman et al. 2015). We use 
the term anticipatory metacognition (e.g., Galbraith 2015) to describe the associated metacognitive aspect. 
Our earlier work with anticipatory metacognition (e.g., Stillman et al. 2010) has shown promise in dealing 
with the difficulties students experience with mathematisation, indicating further research is worth pursuing. 
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Consequently, enablers of anticipatory metacognition, that is, the mathematical, cognitive, physical and 
digital resources necessary for students to transform real world situations into mathematical models and then 
utilise them, are also of prime importance. 

The process of mathematisation is often presented as the entire mathematical modelling cycle (e.g., OECD 
2009, p. 105), resulting in a level of complexity that makes it difficult to identify fundamental enablers of 
mathematisation and to communicate these effectively to students and teachers. Metacognition related to 
engaging with a mathematics problem is often portrayed as “any knowledge or cognitive activity” (Flavell 
et al. 2002, p. 164) that accounts for an individual’s awareness, regulation and monitoring of their progress 
and feelings. In this study, we will focus on anticipatory, and not just reflective, processes – a metacognitive 
stance through the concept of ‘anticipation’. Our previous work (e.g., Stillman et al. 2015) has provided 
empirical evidence for the existence of Niss’ (2010) hypothesised foreshadowing and feedback loops used 
by successful modellers during the process of mathematisation.  

Conceptual Framework 

The open-ended nature of mathematical modelling is evident in the modelling task example, below, which 
is drawn from earlier work on designing modelling tasks (e.g., Stillman 2010, p. 307). The task demonstrates 
the demanding nature of mathematisation, This requires, at least, insight into what mathematical knowledge 
is appropriate for the problem and how this knowledge could be used in a real life authentic situation. In this 
case, mathematical modelling featured centrally in related court cases and provided evidence that the victim 
was thrown from the cliff.  

Caroline Byrne, an Australian model, was found at the bottom of a cliff at The Gap in Sydney in the early 
hours of 8 June 1995. Given that the cliff is 29 metres high and her body was found 11.8 metres from the 
base of the cliff, determine if she fell, jumped or was thrown. 

Fig. 1. Modelling task example 
As a result, a further investigation was initiated, eventually resulting in the conviction of the accused. 

This conviction has now been overturned, following further argument around the modelling inferences made 
by the prosecution “expert” witness. The case demonstrates the level of mathematical literacy expected by 
our society for potential jurors in our justice system. 

Modelling is typically described as a cyclic activity that can be represented as in Fig. 2. This diagram is 
an analytical representation of the key components of the modelling process – a simplification of modelling 
activity in action. Entries A-G represent stages in the modelling process with the thicker arrows indicating 
transitions in activity. Formulation of a mathematically feasible problem from the real situation occurs 
through making assumptions and identifying features essential to addressing a real world problem that must 
be posed. These are then incorporated into a formulation of the mathematical model designed to solve the 
problem. Solution of the model takes place in the mathematical domain that includes relevant mathematical 
knowledge methods and artefacts (e.g., diagrams or graphs). Mathematical outputs must then be interpreted 
in terms of the original real situation. Interpreted outputs provide answers to questions posed about the real 
situation or, if unsatisfactory for this purpose, stimulate further modelling. The kinds of cognitive activity 
that modellers utilise as they attempt to transition from one stage to the next are shown in the descriptors 1-
7 in Fig. 2. The double-headed arrows indicate the presence of reflective metacognitive activity that acts on 
these cognitive activities. This can involve looking forwards or backwards with respect to stages in the 
modelling (Stillman 2011); hence the bi-directionality. 
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Fig. 2 The process of mathematical modelling (Stillman 2011) 

Within this cycle, the capability to anticipate future steps and make decisions is vital. Anticipating was 
used by Niss (2010) within a theoretical model of the mathematisation process. He coined the term, 
“implemented anticipation” (p. 55); as successful mathematisation involves both anticipating what will need 
to be done mathematically in subsequent steps, and using that anticipation in consequent decision making 
involving the carrying through of actions that bring those steps to fruition. We contend that such activity 
employs an anticipatory form of metacognition in which the following processes are employed:  
1. Implementing decisions about what features are essential as well as generating a related problem 

statement (B) by anticipating their usefulness in mathematising a mathematically feasible problem from 
the real situation (A→B in Fig. 2).  

2. Anticipating mathematical representations and mathematical questions that, from previous experience, 
have been effective when forming a mathematical model (B→C); thus, invoking metacognitive 
knowledge in an anticipatory manner.  

3. Awareness of the utility of the selected mathematisation and resulting model (C), in the future problem 
solving processes, to provide a mathematical solution (D) to the questions posed by the mathematisation; 
therefore, anticipated mathematical procedures and strategies are used in problem solving after 
mathematisation is complete.  
The foreshadowing of the results of future actions being “projected back onto current actions” (Niss 2010, 

p. 55) generates a “sense of direction” that is crucial in modelling (Maaß 2006). Niss (2010) proposed four 
enablers of successful anticipatory metacognition in that modellers need to: (1) believe a valid use of 
mathematics is modelling real phenomena; (2) possess relevant mathematical knowledge; (3) be capable of 
using this when modelling; and (4) have perseverance and confidence in their mathematical capabilities (p. 
57). The necessity and sufficiency of these and other enablers, for example the role of digital tools (Geiger 
et al. 2010), require further research (Stillman and Brown, 2014) and will be a focus within this project.  

Design and Methods 
A design-based methodology was chosen for the study because this approach is suited to applied research 
that develops contextualised theories of learning and teaching in tandem with practical approaches to solving 
educational problems across multiple settings. Cobb and his colleagues (Cobb et al. 2003) have identified 
several requirements in planning for design-based research. These are outlined in Table 1 with an indication 
of how the proposed study will address each. 

Table 1 Principles of design-based research applied to the project 

Principles of design-based research Relevance to the study 
1.  Theoretical intent should be clarified Identification and refinement of enablers of anticipatory 

metacognition in mathematical modelling  
2.  Goals or desired outcomes should be 

specified 
Development of an Integrated Modelling Task and 
Pedagogy Framework (IMTPF) that incorporates principles 
of effective task design and guidelines for classroom 
implementation 

1. Understanding, structuring, 
simplifying, interpreting context 

2. Assuming, formulating, 
mathematizing 

3. Working mathematically 
4. Interpreting mathematical output 
5. Comparing, critiquing, validating 
6. Communicating, justifying (if 

model is deemed satisfactory) 
7. Revisiting the modelling process (if 

model is deemed unsatisfactory 

 

A. Messy real 
world situation 

B. Real 
World 

 

D. Mathematical 
Solution 

C. Mathematical 
Model 

E. Real world 
meaning  

F. Revise model  
or accept solution G. Report 

2 3 

4 

5 6 

7 

1 



 5 

3.  Starting points should be identified Working with students and teachers on pilot tasks designed 
to provoke the use of enablers 

4.  Conjectures should be developed and 
tested concerning how teaching practice 
might change and how this change can 
be identified 

The study will be implemented via cycles of in-class trials, 
refinement and retrial in developing the IMTPF. 

The research plan for this study aligns with these methodological considerations, and consists of the 
documentation of student cases within the contexts in which they learn and develop. Methods include 
participant observation, interviewing, and collection of written and non-written data (survey questionnaires, 
teaching materials, student artefacts, video/audio recordings, video stimulated recall). 

Participants  

Participants will include 6 teachers (3 from each state) and three successive cohorts of intact Year 10-11 
classes (approximately 150 students per year; total 450) from Queensland and Victorian secondary schools. 
These two states provide contrasting curriculum contexts – enabling important inputs when considering the 
scaling up of results of the research. For example, while mathematical modelling has been a major focus of 
Queensland mathematics syllabuses for at least 25 years, the focus on modelling in Victoria has been more 
subtle. Consequently a higher level of experience with teaching modelling can be expected of Queensland 
teachers. Years 10 and 11 students have been selected as mathematising has been confirmed, (e.g., via PISA 
[Stacey and Turner 2015]), as a difficulty in the previous year group (Year 9). Further, this level of schooling 
allows for engagement with a level of modelling challenge that requires metacognitive capabilities (Stillman 
2004). From each student cohort, additional data will be gathered from selected pairs of students via video 
stimulated recall sessions. Teachers will be purposively selected (Burns 2000), on the basis of their expertise 
in teaching modelling. 

Data collection and analysis methods 

Data collection methods will consist of: a Conceptions of Learning and Dispositions toward Mathematics 
Questionnaire (CDM); lesson observations; student and teacher interviews; open-paired video stimulated 
recall sessions; and directed-paired video stimulated recall sessions. These are now described in brief. 

Conceptions of Learning and Dispositions toward Mathematics Questionnaire (CDM): Will be developed 
as part of the research and administered at the beginning and end of each phase of the project in order to 
gauge students’ conceptions of learning and dispositions towards using mathematics. In designing the 
questionnaire we will draw on previous surveys developed by Wood, Petocz and Reid (2012) and Cai and 
Mellino (2011). Likert items will be subject to descriptive statistical analysis in order to determine changes 
to students’ conceptions of learning across a single school year. Thematic analysis via NVivo will be 
conducted on open-ended responses. 

Lesson observations, student and teacher interviews: Using methods developed previously (Geiger et al. 
2015), lesson observation field notes, pre- and post-lesson interviews with teachers, post-lesson interviews 
with small groups of students and student work samples will be used to gain insight into the effectiveness of 
both task and pedagogical design for students attempting to work on demanding applications of mathematics. 
The analysis of interview excerpts, field notes and student artefacts will be integrated into accounts of 
individuals’ teaching practice and of students’ deployment of enablers of mathematisation.  

Open paired video stimulated recall: Two pairs of students per class will be videotaped during the first 
round of school visits for each phase of the project. As soon as possible after the school visits, researchers 
will convene a video stimulated recall session where video recordings of students’ approaches to modelling 
real world problems will be overlaid with students’ descriptions of their own activity (drawing on Jorgensen 
and Lowrie 2012). The commentaries will be analysed for the anticipatory nature of decision making with 
respect to: (1) essential features of the real world situation; (2) choice of mathematical artefacts for 
representation of that situation; and (3) choice and use of mathematical techniques.  

Directed paired video stimulated recall: In a similar fashion, two pairs of students per class will be 
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videotaped during the second round of school visits in each phase of the project. During follow-up video 
stimulated recall sessions, students will view sections of recordings selected by researchers that represent 
critical moments in students’ attempts to solve a modelling problem. After playing a section of video students 
will be asked to respond to prompts based on Witzel and Reiter’s (2012) Problem Centered Interview 
protocol. This analysis will aid in confirming the existence of conjectured enablers and assist in identifying 
additional enablers. 

Design 

The research design involves four types of research and enabling activity: (1) whole day meetings between 
teachers and researchers for immersion experiences, establishing goals, planning task trials, identifying 
pedagogies that support students’ development in mathematizing, and evaluating progress; (2) teacher and 
student activity that will be captured through video techniques to establish enablers of successful student 
mathematisation; (3) day-long visits to schools to investigate the progress of task development and 
implementation via lesson observations, student work samples, and interviews with teachers and students; 
and (4) collection and analysis of data for evidence of students’ modelling proficiency and mathematics 
achievement. The project will be conducted in three phases corresponding to the three years of project 
funding. In Phase 1, the goal is to gain insight into the thinking of students as they mathematise and to 
elaborate upon the nature of anticipatory metacognition and the enablers that support it. Phases 2 and 3 are 
geared to test developing theory and influence students’ and teachers’ development.  

Phase 1 (Year 1): Phase 1 involves 6 teachers in 6 schools working with intact classes. The focus will be 
on “able” students (teacher identified) in order to establish reasonable expectations for what students can 
achieve as modellers at Years 10/11. The purpose of this phase is to map knowledge and understanding of: 
(a) how ‘able’ students mathematise; (b) which enablers are necessary and sufficient for successful modelling 
with ‘able’ students; and (c) the features of modelling tasks and mentoring that support the development of 
students’ anticipatory metacognition or assist with the identification of issues that are problematic for this 
development.  

This phase will involve three whole day meetings, two rounds of school visits, and two rounds of video 
stimulated recall sessions, where pairs of students and their teacher will be interviewed while viewing a 
video recording of the students working on a modelling problem. In the first workshop, the researchers will: 

• explain and illustrate the modelling cycle to the participant teachers  
• describe the role of mathematisation within the cycle and the critical nature of enablers of students’ ability 

to mathematise; present case studies drawn from our previous research on modelling in order to illustrate 
effective modelling teaching practice  

• introduce teachers to the first Common Modelling Task (CMT) (developed out of successful activities 
employed in previous research projects, e.g., Galbraith et al. 2010; Geiger et al. 2010)  

• and plan for upcoming school visits by researchers.  
Teachers will implement the first CMT before the second whole day workshop. Lessons in which these 

tasks are implemented will be observed and video-recorded during school visits. Additionally, two pairs of 
students from each class will be video recorded (using two additional video cameras) at close range while 
working on this task. Teachers will be interviewed before a lesson, in order to document their aims and 
identify the intended enablers of mathematisation. Teachers and focus groups of students will be interviewed 
after each observation to gauge the perceived effectiveness of tasks in terms of student interest and learning 
and the extent to which the intended enablers featured. As soon as practical after each school visit, pairs of 
students and their teachers will take part in an open paired video stimulated stimulated recall session in order 
to gain insight into students’ approaches to mathematisation. Whole class video recordings, teacher and 
student interviews, and paired video recorded stimulated recall sessions will be analysed in order to identify 
and describe enablers that support anticipatory metacognition, for example, the way digital tools are used to 
promote the process of mathematisation. Initial findings will inform the development of a draft Modelling 
Task and Technology Integrated Pedagogical framework (IMTPF).  

A second cycle of similar research activity will complete Phase 1 with data gathering mirroring that of 
the first round of school visits and including teacher and student interviews, as well as whole class and paired 
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student video recording. These visits will be followed by directed paired video stimulated recall sessions 
(instead of open paired video stimulated recall). Analysis of these data for identification and description of 
additional enablers will help refine the draft IMTPF. 

After the first and second whole day meetings, the CDM questionnaire will be administered to students. 
A third whole day meeting (end of year), will be conducted for the purpose of seeking teacher feedback on 
the refined draft IMTPF.  

Phase 2 (Year 2): Phase 2 involves the Phase 1 teachers with new cohorts of students. The specific purpose 
of this phase is to test the effectiveness of the draft IMTPF for designing modelling tasks and supportive 
pedagogies for mathematically able students, and to further refine the framework. This phase will also 
involve three whole day meetings, two rounds of school visits, and two rounds of video stimulated recall 
sessions (one open and one directed). Between meetings, cycles of action and data collection will then be 
repeated as for Phase 1 with the focus again on able modellers. With the experience of Phase 1, teachers 
should be more attuned to the nuances of students’ anticipatory capabilities when they attempt to 
mathematise, and so will be able to provide greater support for this process.  

At the first whole day workshop, teachers will collaborate with researchers to review the IMTPF, develop 
new school based tasks, and discuss pedagogies appropriate for these tasks, in preparation for 
implementation in classrooms. During the second whole day workshop, teachers and researchers will share 
insights gained from implementing their modelling tasks and their views on enablers that support students’ 
attempts to mathematise; and plan for the implementation of an additional modelling task. This task will be 
one where students themselves pose a problem developed from a real world situation of personal interest, 
formulate it, and then mathematise the situation into a mathematical model. This freedom to choose the 
situation to model is crucial to establishing empirical evidence for the first aspect of Niss’s (2010) 
“implemented anticipation” and to generate student performance data with respect to mathematizing. A third 
whole day meeting will be conducted to validate and enhance the IMTPF.  

Phase 3 (Year 3): Teachers from Phase 1 and 2 will work with a new cohort of Year 10/11 students. Phase 
3 will adopt a similar cyclic structure to Phases 1 and 2, except that the focus of open and directed video 
stimulated recall sessions will be on less able mathematics students. These students will be selected in order 
to determine if the IMTPF, developed with able modellers, is effective in assisting teachers to design 
modelling tasks and supportive pedagogies for a wider range of students. Phase 3 will also consist of three 
whole day meetings and two rounds of school visits. Within the first and second whole day meetings teachers 
and researchers will develop tasks and discuss pedagogies for implementation in classrooms as in Phase 2. 
The project will conclude with a final whole day project workshop where findings of the project will be 
presented, including the difference between the repertoire and use of enablers for more and less able students. 
Final input will also be invited from teachers for refinement of the IMTPF. Cycles of data collection between 
whole day meetings will be conducted as in Phase 2. 

Advances in knowledge and anticipated benefits  

Falling participation and under-performance in the STEM disciplines in Australia has created serious 
concerns about Australia’s capacity to sustain a knowledge-based economy and society (Australian Industry 
Group 2015). Mathematical modelling underpins many of the advances made in science and manufacturing 
as well as areas such as communications, environmental change, transport, and resources. Mathematical 
literacy is the foundation for successful participation in all STEM disciplines, including mathematics, and 
for the ACARA ideals of citizens able to use mathematics to enrich their lives personally, and as responsible 
citizens. We concur with the writers of the Californian STEM Taskforce Report (2014) who suggest 
mathematically literate students know “how to analyse, reason, and communicate ideas effectively [and how 
to] mathematically pose, model, formulate, solve, and interpret questions and solutions in science, 
technology, and engineering” (p. 9), all elements of mathematical modelling. Thus, through this project we 
seek to address the challenge of falling student interest and performance in the study of mathematics and 
participation in the STEM disciplines by focusing on what we see as an essential attribute of the mathematical 
expertise of the future, that is, mathematical modelling.  
The anticipated outcomes of the project will contribute to new theoretical and practical knowledge about 
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how students’ can learn to apply mathematics to real world problems. Theory about the teaching and learning 
of applications of mathematics via modelling will be extended by investigating the nature of anticipatory 
metacognition and the the role of enablers of mathematisation, This approach represents a new direction, 
different from previous studies which have looked at “in the moment” and reflective metacognitive activity. 
Further, bringing focus to the role of enablers, rather than the entire mathematical modelling cycle, allows 
for a more targeted approach to developing insight into those elements that are essential to effective 
mathematical modelling. As we aim to investigate anticipatory, and not just reflective or online processes, 
potential findings will allow for the implementation of more proactive activity while modelling. 
At a practical level, the project will provide new understandings about how teaching practice and student 
learning can be changed through the implementation of tasks and pedagogies designed to promote the 
capability to mathematise. Insights gained though the project will lead to the development of task design 
principles and teaching practices, embodied in the IMTPF, that support students’ mathematisation and hence 
enhance their real world problem solving ability. The development of the IMTPF will provide direct support 
to teachers intending to assist their students to learn how to apply mathematics to the real world and also 
identify issues that limit the development of this capability. Support will include exemplar tasks and 
guidelines for how teachers can develop their own tasks that support development of anticipatory 
metacognition. There will be additional advice on how tasks should be implemented in classrooms. In this 
sense, the aims of the project align with two key findings of the STEM: Country Comparison Report 
(Marginson et al. 2013), that (a) it is important to broaden STEM engagement and achievement, and (b) 
schools should promote inquiry, reasoning, and creativity and design in STEM curricula. This project 
addresses (a) by developing tasks that situate mathematical learning within real world scenarios relevant and 
of interest to students, and (b) by supporting teachers to identify and present students with open-ended 
problems originating from real world phenomena that require novel thinking and the use of their 
mathematical resources in creative ways. 
The project is situated in different curriculum and experiential contexts in order to make judgments about 
the transferability of findings across educational jurisdictions across the nation. Thus, outcomes of the project 
will include advice on the development of professional learning programs aimed at enhancing aspects of 
teaching and learning mathematical modelling and its up-scaling nationally. 
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