ABSTRACT

Challenges and special aspects related to the management and prognosis of pulmonary hypertension (PH) in middle- to low-income regions (MLIRs) range from late presentation to comorbidities, lack of resources and expertise, cost, and rare options of lung transplantation. Expert consensus recommendations addressing the specific challenges for prevention and therapy of PH in MLIRs with limited resources have been lacking. To date, 6 MLIR-PH registries containing mostly adult patients with PH exist. Importantly, the global prevalence of PH is much higher in MLIRs compared with high-income regions: group 2 PH (left heart disease), pulmonary arterial hypertension associated with unrepaired congenital heart disease, human immunodeficiency virus, or schistosomiasis are highly prevalent. This consensus statement provides selective, tailored modifications to the current PH guidelines to address the specific challenges faced in MLIRs, resulting in the first pragmatic and cost-effective consensus recommendations for PH care providers, patients, and their families. (J Am Coll Cardiol 2020;75:2463–77) © 2020 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Pulmonary hypertension (PH) is a complex condition that associates with multiple diseases and may affect several organs beyond the cardiovascular and respiratory systems. Challenges intrinsic to clinical programs in middle- and low-income regions (MLIRs) affect diagnosis and treatment of PH. These challenges range from lack of resources to cost of care, limited expertise, unpredictable availability of medications, and the extremely rare option of lung transplant (1–4). The disease spectrum is further complicated by late presentation and coexisting comorbidities (i.e., infections, malnutrition, and hypercoagulability). Additionally, lack of data from MLIRs leads to extrapolation of etiology, diagnosis, and management algorithms from high-income regions (HIRs) that may not address some of the contextual issues intrinsic to MLIRs (2,3).

The purpose of this expert consensus statement is to highlight the specific challenges in the diagnosis and treatment of PH in MLIRs. Following a pragmatic approach with clear cost-risk-benefit consideration, we developed a consensus statement with a focus on PH in children and young adults. This consensus statement does not replace but must be seen as supplementary to previously published recommendations and guidelines by the European Society of Cardiology (ESC) and European Respiratory Society (5), the American Heart Association/American Thoracic Society (6), the publications produced by the World Symposium on Pulmonary Hypertension (WSPH) 2018 (7–9) and the European Pediatric Pulmonary Vascular Disease Network (EPPVDN) (10). We will not discuss all aspects of PH covered in the aforementioned papers. Health care practitioners from MLIRs are encouraged to read the ESC/European Respiratory Society guidelines (5), along with the update on pediatric PH provided by the WSPH and the 2019 updated guidelines of the EPPVDN (10) and then use this document to help modify practices contextualized to their own setting.

The current PH registries in MLIRs have minimal information on patients <18 years of age; thus, the suggested recommendations on the care of children with PH in this document are an extrapolation from both adults with PH in MLIRs and children with PH in HIRs (10); they are primarily based on expert opinion. Several etiologies in children and young adults living in MLIRs are discussed. The importance of such a document still exists given the challenges associated with such a disease in a limited resource environment as MLIRs.

METHODS

GOALS AND COMPOSITION OF THE EPPVDN WRITING GROUP (PH IN MLIRs). The EPPVDN is a registered nonprofit organization that strives to define and develop effective, innovative diagnostic methods and treatment options in all forms of PH (Supplemental Methods). Most recently the EPPVDN has revised their 2016 executive summary (11) to develop 2019 updated guidelines on pediatric PH (10) acknowledging the changes put forward at WSPH 2018 (7–9). Here, we highlight and discuss the challenges and special aspects in the diagnosis and treatment of PH in MLIRs, and for the first time, give specific expert recommendations. This expert consensus statement is not restricted to pediatric patients and includes disease etiologies and the management of PH in both children and (younger) adults in MLIRs. We defined MLIR as a region where the majority of people live in countries that have a gross national income (previously known as gross national product), below 10,000 U.S. dollars per capita, as published by The World Bank. The executive writing group members for this consensus statement on PH in MLIRs were recruited from Austria, Belgium, Bolivia, China, Germany, India, Mozambique, Pakistan, South Africa, and Ukraine.

The authors attest they are in compliance with human studies committees and animal welfare regulations of the authors’ institutions and Food and Drug Administration guidelines, including patient consent where appropriate. For more information, visit the JACC author instructions page.

Manuscript received February 26, 2020; revised manuscript received March 19, 2020, accepted March 23, 2020.
LITERATURE SEARCH, GRADING SYSTEM OF RECOMMENDATIONS, AND REVIEW PROCESS.

Literature search. We conducted computerized searches of the PubMed/MEDLINE bibliographic database from January 1990 to January 2020. Clinical trials, consensus statements, guidelines, meta-analyses, and comprehensive clinical reviews were searched using the terms “pulmonary hypertension” and up to 10 other key words. The writing group members discussed the topics during several face-to-face and web-based meetings (2018 to 2019).

Class of recommendation, Level of Evidence. Details on the ESC/American Heart Association grading system for Class of Recommendation (Table 1) and Level of Evidence (Table 2), as well as the voting, peer review, and endorsement process can be found in the Supplemental Appendix. Importantly, health care providers must adhere to the medication labeling and follow future drug recommendations/warnings, published by regulatory agencies, such as the European Medicines Agency and the U.S. Food and Drug Administration, when transferring these recommendations into clinical practice. Challenges specific to MLIRs will be discussed in each section of this paper and consensus recommendations will be presented at the end of the document.

DEFINITION OF PH AND PAH IN MLIRs. PH is currently defined as a mean pulmonary artery pressure (mPAP) >20 mm Hg at rest in patients >3 months, at sea level, determined by cardiac catheterization (8,12). Because invasive pressure measurements are infrequently used for diagnosis of PH in MLIRs, transthoracic echocardiography (echo) is the mainstay of diagnostic screening in such regions. The right ventricular (RV) to right atrial (RA) pressure gradient was estimated by continuous wave Doppler (via tricuspid regurgitation velocity [TRV]), and an estimated RV-RA systolic gradient >50 mm Hg (TRV >3.5 m/s) was used as a noninvasive cut-off to define PH (2,3). Of note, such a noninvasive definition may lead to an underestimation of patients with PH in these registries. The etiologies of PH are diverse and differ based on patients’ age and geographic location. Such information may be important, especially when deciding on resource allocation and cost of care for diagnosing and managing patients with PH in MLIRs (3,5). Details on hemodynamic definitions of PH subtypes can be found in the Supplemental Appendix.

Epidemiology (Disease Burden) and Etiology of PH in MLIRs

Data is sparse to determine the global prevalence and incidence of PH. The estimated global prevalence of PAH is between 15 and 60 per 1 million adults (13). There is a dearth of data on the incidence, prevalence, and causes of PH (pre-capillary, post-capillary, and combined forms) in MLIRs. Although there are registries in some of the MLIRs (Central Illustration), most of them only have data on patients with group 1 PH (e.g., PAH), include mostly patients >18 years of age, and have limited patient numbers (Table 3). Although the PAPUCO (Pan African Pulmonary Hypertension Cohort) (Africa) (3), PRO-KERALA (Pulmonary Hypertension Registry of Kerala, India) (India) (2), and Ukrainian (14) registries included most groups of PH patients (groups 1 to 5 PH), these data cannot be considered to be representative for all different causes of PH in other MLIRs. The overall burden of PH in MLIRs is several times higher than that of HIRs, as demonstrated in the Kerala registry where the estimated incidence was probably 48 per 1 million people in 2015 (2). The following conditions are likely to contribute substantially to the disease burden of PH in MLIRs:

- Rheumatic heart disease, which is still a scourge in most MLIRs.
- Untreated congenital heart disease (CHD): only a small fraction (~10%) of infants with shunt lesions from CHD receive timely intervention in MLIRs (surgery or percutaneous device closure).
- PH due to left heart disease (LHD) (group 2 PH) as a result of a high burden of coronary artery disease

<table>
<thead>
<tr>
<th>TABLE 1 Classes of Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>COR</td>
</tr>
<tr>
<td>COR I</td>
</tr>
<tr>
<td>COR II</td>
</tr>
<tr>
<td>COR IIa</td>
</tr>
<tr>
<td>COR IIb</td>
</tr>
<tr>
<td>COR III</td>
</tr>
</tbody>
</table>

Classes of recommendations (COR), as currently proposed by the European Society of Cardiology and the American Heart Association. This color coding for COR can be found in Table 7.

<table>
<thead>
<tr>
<th>TABLE 2 Levels of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOE A</td>
</tr>
<tr>
<td>LOE B</td>
</tr>
<tr>
<td>LOE C</td>
</tr>
</tbody>
</table>

Levels of evidence (LOE), as currently proposed by the European Society of Cardiology and the American Heart Association. This color coding for LOE can be found in Table 7.
and unrecognized and untreated systemic arterial hypertension (15,16).

- PH due to lung disease: especially interstitial or parenchymal lung disease pertaining to high prevalence of tuberculosis (23% of patients in PAPUCO) in MLIRs (3). Parenchymal lung disease caused by smoking, exposure to air pollutants, and smoke generated during indoor cooking/heating without chimney (32% in PAPUCO) (3).

- Schistosomiasis is endemic in several parts of the world especially in South America, the Caribbean, Sub-Saharan Africa, and South Asia. It is estimated that 5 to 20 million people worldwide experience the clinical manifestation of PAH caused by Schistosoma parasite infection (17).

- Human immunodeficiency virus (HIV) infection in endemic regions (35% of patients in PAPUCO) (3).

- The burden of idiopathic pulmonary arterial hypertension (IPAH) and other conditions listed in the WSPH PH classification is also substantial, simply because of the large populations in MLIR regions.

Differences in etiologies between HIRs and MLIRs are evident from the finding that IPAH is the largest subgroup of PH in the European COMPERA (Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension) registry (18) whereas PH-LHD (group 2 PH) was found to be the most common cause in PH registries from MLIRs. Among group 1 PH patients (here PAH), unrepaired CHD accounts for the majority of cases and...
TABLE 3 Characteristics of Pulmonary Hypertension Registries in Middle- to Low-Income Regions (MLIRs)

<table>
<thead>
<tr>
<th>Registry/Reference</th>
<th>Region</th>
<th>Demographic Data</th>
<th>Main Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAPUCO Registry</td>
<td>Africa</td>
<td>209 adults (median age 48 yrs; IQR: 35.6) and 11 children (age 1–17 yrs); 9 specialist centers in 4 African countries (Nigeria, Cameroon, South Africa, and Mozambique).</td>
<td>Majority (59%) had left heart disease (Group 2 PH); ~20% were PAH (Group 1 PH); ~5% had IPAH (Group 1 PH); ~50% of PAH patients received oral PAH-targeted therapies.</td>
</tr>
<tr>
<td>Pro-KERALA Registry</td>
<td>Kerala, Southern India</td>
<td>2,003 adults (mean age 56 ± 16.1 yrs) enrolled over 1 yr from 50 hospitals; estimated incidence is 48 per million adult population.</td>
<td>Mortality (1 yr): 4.1%; Rehospitalization (1 yr): 62%.</td>
</tr>
<tr>
<td>HINPULSAR**</td>
<td>Argentina</td>
<td>124 adult patients (mean age 45 ± 17 yrs) from 31 centers recruited prospectively over 1 yr.</td>
<td>PAH patients only (Group 1 PH): 52% IPAH and 27% CHD-PAH, 78% females. 62% presented in NYHA functional class III/IV.</td>
</tr>
<tr>
<td>RECOPILAR††</td>
<td>Argentina</td>
<td>170 adult patients (mean age 51 yrs) recruited prospectively over 1 yr. Only PAH patients (Group 1 PH) enrolled.</td>
<td>PAH patients only (Group 1 PH): 52% IPAH, 27% CHD-PAH; 75% women. 70% presented in NYHA functional class III/IV.</td>
</tr>
<tr>
<td>Colombian Registry‡</td>
<td>Bogota, Colombia</td>
<td>159 patients (age ~18 yrs) recruited retrospectively over 6 yrs from 5 centers. Only PAH (Group 1 PH) and CTPEH (Group 4 PH) patients enrolled.</td>
<td>Follow-up period was up to 51 months. The Kaplan-Meier survival rate for the total cohort was 93.3%, 86.8%, and 81.5% at 1, 2, and 3 yrs.</td>
</tr>
<tr>
<td>Ukrainian Registry (14)</td>
<td>Kyiv, Ukraine</td>
<td>281 patients (mean age 41.7 ± 14.6 yrs) recruited prospectively between June 2014 and July 2018 from 1 center. 52 patients with CTEPH (Group 4 PH) and 229 with PAH (Group 1 PH).</td>
<td>PAH (Group 1 PH) and CTPEH (Group 4 PH) patients only. 33% had CTEPH, 58% men. 88% presented in NYHA functional class II and III.</td>
</tr>
</tbody>
</table>

PAPUCO — Pulmonary Hypertension in Middle- and Low-Income Regions; CTEPH — chronic thromboembolic pulmonary hypertension; IPAH — idiopathic pulmonary arterial hypertension; IQR — interquartile range; MLIR — middle- to low-income region; NYHA — New York Heart Association; PAH — pulmonary arterial hypertension; PH — pulmonary hypertension.

contributes substantially to the overall disease burden of PH in MLIRs. Table 4 summarizes the features of different PH groups and some of the specific recommendations relevant to MLIRs.

CLINICAL PRESENTATION AND DIAGNOSIS OF PATIENTS WITH PH IN MLIRs

Untreated, undiagnosed PH patients in MLIRs present late at definitive diagnosis and with more advanced functional deterioration compared with HIRs (Table 3). Similar functional impairment at presentation was observed in the Latin American registries too (Table 3) (19). Such late presentation with advanced disease is a major contributor to the very high mortality in PH patients living in MLIRs (Table 3) (2,3). Indeed, patients with CHD and significant left-to-right shunts frequently present late in MLIRs and often have severely increased pulmonary vascular resistance (PVR). Some of these PAH-CHD patients may still be operable, despite their older age at presentation, thus warranting comprehensive and careful invasive assessment to determine operability (20,21). Our recommendations for the overall approach to determine operability of a cardiovascular shunt lesion in MLIRs is summarized in Supplemental Table 1.

DIAGNOSTIC WORK-UP. Identifying PH. Transthoracic echo is the main diagnostic modality for diagnosis of PH, as many patients in MLIRs do not undergo a diagnostic “gold standard” cardiac catheterization (2,3). Using TRV, based on the continuous wave Doppler envelope, as a measure of RV systolic pressure in PH may still result in underdiagnosing the disease. A detailed, multiparameter assessment of the right heart using a standardized protocol (10,22) will likely increase the accuracy of echo in detecting PH. Once PH is judged to be highly likely, a diagnostic approach should be adopted that helps identify causes with a high likelihood of occurrence and prevalence in a given region/country (Table 4).

Diagnostic work-up for suspected PH in MLIRs. A systematic approach to patients with PH in MLIRs may help identify causes in a cost-effective manner (Figure 1, Supplemental Table 2).

Detailed history and physical examination: Helps to identify a cause and evaluates the clinical status of the patient. A detailed family history is imperative to diagnose familial or hereditary PAH.

Chest x-ray: Identifies potential pulmonary etiology or indirect contributors, such as spinal deformity. Signs of left-sided heart disease may suggest group 2 PH (23).

Transcutaneous pulse oximetry and arterial blood gas analysis: Can provide information regarding parenchymal/interstitial lung disease (diffusion impairment) and also operability in CHD shunt lesions (24). Pulse oximetry screening in both the right upper and
TABLE 4 The 5 PH Groups and Specific Considerations in Middle- to Low-Income Regions (MLIRs)

<table>
<thead>
<tr>
<th>PH Classification</th>
<th>Global Prevalence*</th>
<th>Features to be Considered in MLIRs</th>
<th>Recommendations to be Considered in MLIRs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1: Pulmonary arterial hypertension (PAH)</td>
<td>Prevalence 15-60 per million</td>
<td>True incidence and prevalence of HPAH may be higher in regions with high rates of consanguinity</td>
<td>Genetic testing may not be feasible due to cost or lack of availability; detailed family history is imperative</td>
</tr>
<tr>
<td>1 PAH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Idiopathic PAH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 Heritable PAH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3 Drug- and toxin-induced PAH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4 PAH associated with:</td>
<td>Some report prevalence of 0.5 per 1,000 adults with HIV-related PAH in Africa (probably overestimated)</td>
<td>Higher incidence and prevalence of late presenting and unrepaird CHD, HIV, HBV/HCV-induced cirrhosis and portal hypertension</td>
<td>Screening for unrecognized or latent infections (HIV, HBV/HCV, schistosomiasis) may be included in the initial workup</td>
</tr>
<tr>
<td>1.4.1 Connective tissue disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4.2 HIV infection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4.3 Portal hypertension</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4.4 Congenital heart disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4.5 Schistosomiasis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 2: PH due to left heart disease</td>
<td>3-4 million people with rheumatic heart disease (RHD)-related PH worldwide</td>
<td>High incidence and prevalence of advanced RHD valvular disease</td>
<td>Reduction in RHD burden is an enormous challenge that needs a concerted global effort. The World Heart Federation roadmap serves as a foundation for the development of tailored plans of action to improve RHD control in specific contexts.</td>
</tr>
<tr>
<td>2.1 PH due to heart failure with preserved LVEF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2 PH due to heart failure with reduced LVEF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3 Valvular heart disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4 Congenital/acquired cardiovascular conditions leading to post-capillary PH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 3: PH due to lung diseases and/or hypoxia</td>
<td>High incidence and prevalence of TB-related lung disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 4: PH due to pulmonary artery obstructions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1 Chronic thromboembolic PH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2 Other pulmonary artery obstructions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 5: PH with unclear and/or multifactorial mechanisms</td>
<td>1-2.5 million people affected by sickle cell-related PH worldwide</td>
<td>High incidence and prevalence of sickle cell disease, thalassemia, chronic renal failure</td>
<td>Centers are needed with expertise in treating benign hemoglobinopathies and its related complications</td>
</tr>
<tr>
<td>5.1 Hematological disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2 Systemic and metabolic disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3 Others</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4 Complex congenital heart disease</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Per million adults or individuals affected worldwide. PH classification according to the World Symposium on PH 2018, see Simonneau G, et al. (3). CHD = congenital heart disease; CLD = chronic lung disease; HCV = hepatitis C virus; HBV = hepatitis B virus; MLIR = middle- and low-income regions; IUGR = intrauterine growth restriction; TB = tuberculosis.

any lower extremity is recommended for evaluating post semilunar valve shunt lesions (i.e., patent ductus arteriosus or aorto-pulmonary window).

Lung function tests: May help to identify airway pathologies such as unrecognized asthma or interstitial lung disease.

Specific laboratory tests: Work-up to evaluate for autoimmune disorders, when clinically appropriate (23), should be performed. Screening for and diagnosis of HIV in endemic areas is essential.

Abdominal ultrasound: Can help identify diseases leading to porto-PH or other rare diagnoses such as the Abernethy malformation (25).

Computed tomography chest and lung perfusion scans: Might help identify chronic thromboembolic pulmonary hypertension (CTEPH). CTEPH is potentially treatable and can be identified through either of these tests. Chest computed tomography, if available, is important to rule out parenchymal/interstitial lung disease in suspected PH.

Cardiac catheterization and acute pulmonary vasoreactivity testing (AVT): A number of institutions in MLIRs now have cardiac catheterization laboratory facilities. Although inhaled nitric oxide is largely unavailable, preliminary data suggests that inhaled iloprost (5 µg through a nebulizer over 15 min) and intravenous sildenafil can be used effectively for AVT at a fraction of the cost compared with inhaled nitric oxide (iNO) (26). Oxygen alone is insufficient and not useful to test for AVT (5). However, oxygen alone may be useful when lung disease and diffusion impairment is suspected to be the major cause of PH and to determine oxygen-dependence of PAP elevation.

ASSESSMENT OF FUNCTIONAL STATUS AND PH RISK STRATIFICATION. After PH diagnosis is made
Due to several factors intrinsic to MLIRs, ranging from access to health care to unavailability of treatment and cost (2,3,27–29), both managing PH patients and improving their ultimate outcome in MLIRs are major challenges (27–29) (Table 6, Supplemental Table 4). It is imperative that practitioners in MLIRs modify the management recommendations that apply in HIRs to keep the overall essence but make it practical according to the constraints in the MLIR setting. Without such a pragmatic approach, maintaining patient compliance will be difficult and management will be ineffective in the end.

PAH-TARGETED PHARMACOTHERAPY. Targeted pharmacotherapy is approved for PAH (group 1 PH); some PAH-targeted medications are also approved for use in CTEPH (group 4 PH) (Supplemental Table 4). Using PAH-targeted medications in other groups of PH (e.g., combined pre- and post-capillary PH) should be

TABLE 5 PAH-Specific Medications and Special Considerations in Middle- to Low-Income Regions (MLIRs)*

<table>
<thead>
<tr>
<th>Medication Class</th>
<th>Mode of Delivery</th>
<th>Special Considerations in MLIRs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCBs (e.g., amiodipine)</td>
<td>Oral</td>
<td>Lack of ability to perform AVT makes it difficult to diagnose acute responders vs. nonresponders; thus, use of CCB may not be feasible.</td>
</tr>
<tr>
<td></td>
<td>i.v.</td>
<td>CCBs are contraindicated in PAH-CHD with large shunt and in Eisenmenger Syndrome.</td>
</tr>
<tr>
<td></td>
<td>i.v.</td>
<td>CCBs are contraindicated in patients who have not undergone AVT, in proven non-responders to AVT, and in those with poor cardiac function and/or right heart failure, regardless of AVT response.</td>
</tr>
<tr>
<td></td>
<td>Oral</td>
<td>Ability to follow-up to ensure “responder” status may not be possible.</td>
</tr>
<tr>
<td>Phosphodiesterase-5 inhibitors (e.g., sildenafil, tadalafil)</td>
<td>Oral i.v. (for special conditions, i.e., immediate post-operative)</td>
<td>- Relatively easily available in cheap generic forms (cost ~ U.S. $2 per 25-mg oral dose).</td>
</tr>
<tr>
<td></td>
<td>Oral i.v.</td>
<td>- Less side effects; no drug-related adverse event monitoring required.</td>
</tr>
<tr>
<td></td>
<td>Oral i.v.</td>
<td>- Use of medium dose should be encouraged (EMA recommendation 10 mg 3× daily for weight <20 kg and 20 mg 3× daily for weight ≥20 kg).</td>
</tr>
<tr>
<td>Endothelin receptor antagonists (e.g., bosentan, ambrisentan, macitentan)</td>
<td>Oral</td>
<td>- Making its way to the MLIR markets; still expensive (especially newer agents).</td>
</tr>
<tr>
<td></td>
<td>Oral</td>
<td>- Monitoring of liver function may be challenging (bosentan).</td>
</tr>
<tr>
<td></td>
<td>Oral</td>
<td>- Teratogenicity as risk of unplanned pregnancy may be high in MLIRs.</td>
</tr>
<tr>
<td>Prostacyclin analogues and oral prostacyclin IP receptor agonists</td>
<td>Oral, inhaled, subcutaneous, and intravenous</td>
<td>Limited availability in few MLIR countries such as China.</td>
</tr>
<tr>
<td>Soluble guanylate cyclase stimulators (e.g., riociguat)</td>
<td>Oral</td>
<td>Frequency of use may significantly impair compliance for inhaled medication.</td>
</tr>
<tr>
<td>Supportive medication:</td>
<td>Oral, intravenous</td>
<td>- i.v. infusion option is almost nonexistent in MLIRs because of fundamental health system challenges.</td>
</tr>
<tr>
<td>Diuretic agents</td>
<td>Oral, intravenous</td>
<td>- Expensive.</td>
</tr>
<tr>
<td>Spironolactone</td>
<td>Oral, intravenous</td>
<td>- Diuretic agents (furosemide, thiazide) should be used with caution given RV hemodynamics.</td>
</tr>
<tr>
<td>Digoxin</td>
<td>Oral, intravenous</td>
<td>- Recommended use of spironolactone, a supportive medication in PAH and proven to be effective in HFpEF.</td>
</tr>
<tr>
<td>Beta-blockers</td>
<td>Oral</td>
<td>- Digoxin may be useful particularly in PAH with high heart rates.</td>
</tr>
<tr>
<td>Iron and vitamins</td>
<td>Oral</td>
<td>- Avoid chronic use of beta-blockers in adults with PAH (negative RCT have been published; no pediatric data available).</td>
</tr>
<tr>
<td>Oral anticoagulation</td>
<td>Oral</td>
<td>- Treat especially iron deficiency.</td>
</tr>
<tr>
<td>Supportive medication:</td>
<td>Oral, intravenous</td>
<td>- Oral anticoagulant treatment may be considered in adult patients with IPAH, HPAH, and PAH due to use of anorexigens (COR: IIb, LOE: C).</td>
</tr>
<tr>
<td>Diuretic agents</td>
<td>Oral, intravenous</td>
<td>- Do not pursue oral anticoagulation without a clear indication and proper follow-up.</td>
</tr>
<tr>
<td>Spironolactone</td>
<td>Oral, intravenous</td>
<td>- No data exist to recommend oral anticoagulation in children with PH.</td>
</tr>
<tr>
<td>Digoxin</td>
<td>Oral, intravenous</td>
<td>- Of note, many patients with severe PAH do have acquired von Willebrand syndrome and thus an increased bleeding risk per se.</td>
</tr>
<tr>
<td>Beta-blockers</td>
<td>Oral, intravenous</td>
<td>- Limited availability in selected MLIRs.</td>
</tr>
<tr>
<td>Iron and vitamins</td>
<td>Oral, intravenous</td>
<td>- Expensive.</td>
</tr>
</tbody>
</table>

*For specific and detailed dosing recommendations, refer to Hansmann et al. (1)).

AVT = acute vasoactivity testing; CC = cardiac catheterization; CCB = calcium-channel blockers; COR = Class of Recommendation; EMA = European Medical Association; ESC/ERS = European Society of Cardiology/European Respiratory Society; HFpEF = heart failure with preserved ejection fraction; INO = inhaled nitric oxide; i.v. = intravenous; LOE = Level of Evidence; RCT = randomized clinical trials; RV = right ventricle; other abbreviations as in Table 3 and Supplemental Table 4.
Incidence of PH and disease entities

In the Chinese pediatric PAH registry, the majority of pediatric PAH patients had PAH-CHD followed by IPAH/PAH, similarly to the adult PAH population.

High prevalence of RHD and unrepaired CHD in the South Asia region. Indoor and outdoor pollution together with high prevalence of TB-related lung injury may contribute to group 3 PH.

The etiology of PH in Africa is broad and there is no systematically collected data on epidemiology. Estimates on the prevalence by underlying disease are: schistosomiasis (170 million), RHD (6.5 million), SCD (12 million), HIV (20 million), moderate to severe COPD (30 million).

IPAH has been reported as the most common type of PAH in Latin America, although this ranking may be due to reporting bias. More than 1 million with schistosomiasis-related PH in the Amazonas Region, high altitude-related PH (acute and chronic), and PAH due to untreated left-to-right cardiovascular shunting with CHD.

Diagnostic options

Echocardiography and cardiac catheterization available only in selected centers.

Echocardiography and cardiac catheterization available in urban centers.

Echocardiography and cardiac catheterization available in selected centers.

Very limited access to cardiac catheterization and echocardiography usually restricted to major urban areas.

Echocardiography and cardiac catheterization available in selected centers.

Treatment options

Diverse, for example, in Belarus, PAH drugs and lung transplantation available.

In Kazakhstan, PAH drugs are usually available for free, but only to selected PAH patients. No HLTx in Kazakhstan.

PDE5i, ERA, inhaled and subcutaneous PCAs available.

LuTx or HLTx available in selected centers.

Most pharmacological options (PDE5i, ERA, inhaled and subcutaneous prostanoids) available, but only affordable to some patients.

Targeted PAH therapy and transplantation (LuTx, HLTx) out of reach for the majority of 1 billion Africans.

Oral sildenafil is the first-line PAH pharmacotherapy in Middle and South America.

Availability of other drugs differs between countries. Transplantation (LuTx, HLTx) available in few selected centers.

Comments

The member countries of the European Union allow for free mobility within the European Union and, thus, specialized health care in Western Europe is often accessible to PAH patients.

Today, most PAH patients are treated with PDE5I monotherapy. National administration announced to cover bosentan, macitentan, riociguat, and selexipag by the health care insurance system from 2020.

High birth rates, overcrowding, poverty, and disorganized health system. Ongoing efforts to establish register studies (Pro-KERALA and Pakistan registry).

Preventive strategies aimed at reducing smoking, pollution, elimination of RHD, HIV, and schistosomiasis might eventually contribute to reducing the incidence of PH in Africa.

Despite principal availability, only a minority of PAH patients have access to the appropriate diagnostic technology and medication.

For details, see Appendix.

- COPD — chronic obstructive pulmonary disease; ERA — endothelin receptor antagonist; HLTx — heart-and-lung transplantation; LuTx — lung transplantation; PCA — prostanoylin analog; PDE5I — phosphodiesterase 5 inhibitor; SCD — sickle cell disease; other abbreviations as in Tables 3 and 4.
FIGURE 1 Algorithm for the Diagnostic Work-Up of Suspected or Confirmed Pulmonary Hypertension in MLIRs Without Access to Cardiac Catheterization

The algorithm applies to children and adults living in middle- to low-income regions (MLIRs) with limited health care resources. See Supplemental Table 2.

COPD = chronic obstructive lung disease; CTEPH = chronic thromboembolic pulmonary hypertension; CTPA = chest tomography pulmonary angiography; ECG = electrocardiogram; echo = echocardiogram; HIV = human immune deficiency virus; HBV = hepatitis B virus; HCV = hepatitis C virus; HRCT = high resolution computed tomography; LFT = liver function test; LHD = left heart disease; PCP = pneumocystis carinii (newer term: pneumocystis jirovecii); PH = pulmonary hypertension; SLE = systemic lupus erythematosus; TB = tuberculosis; US = ultrasound; V/Q scan = ventilation to perfusion scan.
The initial evaluation of a child/young adult with PH must include a comprehensive medical history (specifically to identify causes like sickle cell disease, tuberculosis, or operability in shunt lesions), physical examination (in MLIRs specific causes like rheumatic heart disease) (2,3,23).

Patients in endemic areas of schistosomiasis who present with symptoms and physical signs of PH must undergo a detailed echocardiogram. Patients from such endemic areas with PH and signs of pre-hepatic portal hypertension may be suspected to have schistosomiasis-related PH (17,56).

Patients with schistosomiasis infection and PH benefit from PAH-directed therapy (mainly sildenafil) (31). The role of HAART on the prevalence and outcome of PH secondary to HIV is still controversial (49,57,58).

If no underlying cause of the PH is evident, specific tests for HIV, schistosomiasis, and chronic hepatitis (HBV and HCV) must be performed. Further imaging (mainly chest CT) is recommended to exclude underlying parenchymal/interstitial lung disease, in ex-premature infants, and in patients with BPD, Down syndrome, or other well-known risk factors (1,23,59).

A comprehensive echocardiogram at diagnosis is recommended as this is the main (and may be the only) modality of diagnosing PH. Features of operability in shunt lesions should also be assessed using echocardiogram. Serial echocardiograms and ECGs may not be feasible in MLIRs (due to lack of expertise and equipment) or not be cost-effective, and may be performed on a case-by-case basis (2,3,22).

Further imaging (mainly chest CT) is recommended to exclude underlying parenchymal/interstitial lung disease, in ex-premature infants, and in patients with BPD, Down syndrome, or other well-known risk factors (1,23,59).

Cardiac catheterization for diagnosis or routine follow-up should be performed in PH centers only. If no underlying cause of the PH is evident, specific tests for HIV, schistosomiasis, and chronic hepatitis (HBV and HCV) must be performed. Serial 6MWTs must include pulse oximetry and are recommended to assess exercise tolerance and response to therapy, and to estimate prognosis in children with PH capable of performing such studies. A 6MWT is an inexpensive, reproducible measure of functional capacity. Equipment and expertise for CPET are rarely available in MLIRs (65).

PAH-specific therapy is recommended and can significantly improve quality of life. Safety of intravenous therapy in a low-resource setting is also of concern (higher risk of infection and catheter-based complications). Inhalation therapies are often ineffective due to lack of sufficient patient compliance and/or difficulties with applying the devices at home (2,3,66).

Cardiac catheterization for diagnosis or routine follow-up should be performed in PH centers only. Lack of expert centers and standardization of cardiac catheterization in MLIRs may lead to erroneous data, wrong data interpretation, or little management value. In the absence of vasoactivity testing, the value of cardiac catheterization (especially if done for shunt operability) is limited (1,3,62,63).

A comprehensive echocardiogram at diagnosis is recommended as this is the main (and may be the only) modality of diagnosing PH. Features of operability in shunt lesions should also be assessed using echocardiogram. Serial echocardiograms and ECGs may not be feasible in MLIRs (due to lack of expertise and equipment) or not be cost-effective, and may be performed on a case-by-case basis (2,3,22).

If no underlying cause of the PH is evident, specific tests for HIV, schistosomiasis, and chronic hepatitis (HBV and HCV) must be performed. An abdominal ultrasound is indicated to rule out liver cirrhosis and/or portal hypertension (1,3,64).

Cardiac catheterization for diagnosis or routine follow-up should be performed in PH centers only. Lack of expert centers and standardization of cardiac catheterization in MLIRs may lead to erroneous data, wrong data interpretation, or little management value. In the absence of vasoactivity testing, the value of cardiac catheterization (especially if done for shunt operability) is limited (1,3,62,63).

Serial 6MWTs must include pulse oximetry and are recommended to assess exercise tolerance and response to therapy, and to estimate prognosis in children with PH capable of performing such studies. A 6MWT is an inexpensive, reproducible measure of functional capacity. Equipment and expertise for CPET are rarely available in MLIRs (65).

PAH-specific therapy is recommended and can significantly improve quality of life. Safety of intravenous therapy in a low-resource setting is also of concern (higher risk of infection and catheter-based complications). Inhalation therapies are often ineffective due to lack of sufficient patient compliance and/or difficulties with applying the devices at home (2,3,66).

For children with PH/PHVD undergoing surgery or other interventions requiring sedation or general anesthesia, consultation with cardiac anesthesia and PH service and appropriate post-procedure monitoring are required (67,68).

Atrial septostomy and other surgical measures (e.g., reverse Potts shunt) and interventional procedures (dual stenting, balloon atrial septostomy) may be considered in highly selected cases at very few specialized centers. These procedures are risky per se and especially in MLIRs, with inconclusive long-term benefits especially in the absence of a lung transplant program (54,55,69).

Serial measurements of serum NT-proBNP concentration may be indicated as changes in NT-proBNP reflect hemodynamic impairment. Cost-benefit assessment of this test is needed in MLIRs health care setting (5).
PREGNANCY AND CONTRACEPTION. Pregnancy in female PH patients is associated with substantial risk of maternal and fetal mortality; thus, relevant counseling is very important, especially in MLIRs (30). Safer contraception options (i.e., progesterone impregnated intrauterine coils, subdermal or intramuscular progesterone implants/injections) may not be readily available in MLIRs. Standard oral estrogen-based contraceptive is associated with increased risk of thrombosis (30). In the event of pregnancy, if the mother wants to continue, close follow-up with high-risk obstetric care is recommended, especially at the time of delivery and within the 2 weeks postpartum, when the risk of death is the highest, often due to thromboembolic complications or heart failure (30).

SPECIAL THERAPEUTIC CONSIDERATIONS IN MLIRs

PH ASSOCIATED WITH SCHISTOSOMIASIS. Schistosomiasis is the most common parasitic disease associated with PH (17). The cause of PH in schistosomiasis is multifactorial, including parasitic pulmonary artery embolization, pulmonary vasculopathy, and portal hypertension related to hepatosplenic disease (17) that can be diagnosed by abdominal ultrasound. A high index of suspicion of schistosomiasis-induced PH should be present when patients present with cardiovascular symptoms and features of PH in schistosomiasis endemic areas (Supplemental Figure 1) (17). The cornerstone of current schistosomiasis control programs is delivery of praziquantel to at-risk populations. World Health Organization guidelines recommend annual treatment for schistosomiasis or soil-transmitted helminthiasis when prevalence in school-aged children is at or above a threshold of 50% and 20%, respectively. No specific test exists to diagnose schistosomiasis-induced PH. Patients with schistosomiasis infection and PH may benefit from PAH-directed therapy (mainly sildenafil) (31). Patients with active schistosomiasis need immediate treatment with an anthelmintic drug, such as praziquantel (32).

PH ASSOCIATED WITH SICKLE CELL DISEASE. In a systematic review of PH in Africa, the prevalence of PH in sickle cell disease (SCD) was 36.9% (29.7% to 44.3%) (27) with a mean age of 28.6 ± 5.8 years at presentation (33). The etiology of PH in SCD is multifactorial, so that all 5 groups of PH (mainly groups 1 to 3) occur (8,27). PH in SCD is often linked to left heart failure (27,34,35) due to chronically elevated cardiac output, LV diastolic dysfunction, or coronary ischemia. Furthermore, SCD patients may develop parenchymal lung disease from recurrent acute chest syndrome, while others develop CTEPH. Despite PAP being only moderately elevated in most SCD patients, PH has a negative influence on exercise capacity (33) and markedly increases the risk of death in SCD patients compared with those without PH. Treatment with PAH-targeted medication (especially sildenafil) in patients with SCD-related PH is controversial and may lead to an increase in SCD-related vaso-occlusive crisis (36). For most patients with SCD who have PH (confirmed by cardiac catheterization), we do not recommend administration of any PAH-targeted therapy (Table 7) (37). Furthermore, hydroxyurea is the first-line therapy in patients with SCD who are at increased risk for mortality, according to American Thoracic Society criteria from 2014 (TRV ≥2.5 m/s, serum N-terminal pro-brain natriuretic peptide ≥160 pg/ml, or presence of PH by cardiac catheterization, as defined at the time by mean pulmonary artery pressure ≥25 mm Hg) (37). Recently, promising results have been reported using chronic blood exchange transfusions in SCD with pre-capillary PH (38).

PH ASSOCIATED WITH THALASSEMIA. The prevalence of PH in patients with β-thalassemia intermedia (TI) is quite high, and exceeds those with β-thalassemia major (TM) (4.2% vs. 1.1%) (39). In contrast, PH is rarely found in patients with α-thalassemia (Bart or Hemoglobin H disease) (39). Of note, PH in thalassemia is multifactorial in nature, that is, chronic hemolysis leading to impaired NO bioavailability, restrictive cardiomyopathy due to myocardial siderosis, liver siderosis-related cirrhosis or viral hepatitis, pulmonary siderosis, transfusion-related HIV infection, change in circulating erythrocytes post splenectomy (40), and hypercoagulability leading to higher risk (1% to 4%) of thromboembolic episodes (41). Thus, suspected PH associated with any type of thalassemia requires a careful and systemic approach to confirm the diagnosis. A high index of suspicion is required, because symptoms of PH in thalassemia patients may mimic those related to anemia. Chronic transfusion protocol with appropriate iron chelation strategies may prevent and also improve PH in these patients (42). Hydroxyurea therapy in β-TI and L-carnitine in TM patients have been shown to improve PH (43). There is limited data on use of PAH-specific medication in thalassemia patients. Sildenafil therapy in β-TM patients (44), tadalafl in β-TI patients (45), and bosentan in β-TI patients have been used. Due to its liver toxicity, bosentan should be cautiously used with close monitoring (11). Limited
data exist on the use of prostacyclin analogs in these patients.

PH ASSOCIATED WITH HIV INFECTION. HIV-infected patients have a greater incidence of PH compared with the general population (46) and a 2,500-fold increased risk of developing PAH. A systematic review and meta-analysis of cardiac dysfunction in HIV reported a prevalence of PH of 11.5% in 125,382 HIV-infected adults (5.5% to 19.2%) (47). However, in a prospective cohort registry of 220 African PH patients, HIV/acute immune deficiency syndrome was found in <10% of PH cases (3). HIV-related PAH reduces the probability of survival by one-half compared with HIV-positive individuals without PAH (48). Patients with HIV infection and PH suspected by echo may benefit from PAH-targeted therapy (especially bosentan) (49). The role of high-activity antiretroviral therapy on the prevalence and outcome of PH associated with HIV is still controversial (49).

PH ASSOCIATED WITH HIGH ALTITUDE. PH in the presence of chronic hypobaric hypoxia is per definition endemic. In La Paz, Bolivia, at 3,350 m above sea level (a cohort of 4,469 patients), 206 of 1,217 (17%) infants <3 months had signs of PH. Based on the La Paz experience, it is recommended to treat these newborns and young infants with echo evidence of PH with PDE5 inhibitors (oral sildenafil 1 mg/kg bodyweight every 6 h). Older patients, who develop PH specifically related to high altitude, primarily need to be referred to lower regions, where pulmonary pressure usually drops to normal levels. No medication is needed in this clinical scenario in most instances. Prophylactic use of pulmonary vasodilators to prevent high altitude–induced PH is discouraged as in some studies it has been shown to cause harm (50).

CHD at high altitude occurs with a rather different anatomical distribution (e.g., patent ductus arteriosus [PDA], atrial septal defect, tricuspid atresia, and Ebstein anomaly are more common than at sea level). Children living at high altitude have a 10-fold chance of having a hemodynamically relevant PDA (51). The presentation and clinical evolution of CHD lesions also differs at high altitude compared with similar patients residing at sea level (52). For example, left to right shunt lesions (PDA, ventricular septal defect) have a delayed progression toward an inoperable state and should be assessed for operability even after childhood.

HYPOXEMIA AND EISENMENGER SYNDROME. Eisenmenger syndrome is present in unrepaired shunt lesions and is characterized by cyanosis, clubbing, and reverse (right-left) flow across the shunt. Goal of treatment is improving quality of life and dealing with complications (Supplemental Table 5) that arise in Eisenmenger syndrome (53). In patients with Eisenmenger syndrome and neurological symptoms (minor stroke), phlebotomy may be considered in severe hyperviscosity (hematocrit 70%); however, iron deficiency from frequent phlebotomies must be avoided. Routine phlebotomy is associated with increased risk of stroke and also leads to relative anemia and reduction in exercise tolerance.

ATRIAL SEPTOSTOMY OR REVERSE POTTS SHUNT AS PALLIATIVE OR BRIDGING THERAPIES. Atrial septostomy or reverse Potts shunt as palliative or bridging therapies are typically used to improve quality of life, as a bridge to lung transplantation (54,55), or as destination therapy (54). Both procedures carry significant risk and require a high level of expertise. Very few advanced centers in MLIRs attempt such interventional therapies (mainly reverse Potts shunt: surgery or catheter intervention) and consider them only in selected cases. Developing skills in performing these procedures may be beneficial, especially in countries where intravenous PAH therapy or lung transplantation are not available. Continuous combination PAH-pharmacotherapy is required after atrial septostomy or reverse Potts shunt for the underlying advanced pulmonary vascular disease/PAH.

EXPERT RECOMMENDATIONS ON THE DIAGNOSIS AND TREATMENT OF PH IN MLIRs

The majority of our recommendations (Table 7) are extrapolated from previously published European or North American guidelines and consensus statements (5,6,11). Modification pertaining to MLIRs has minimum data support and are predominantly expert opinions (Level of Evidence: C). The focus is on diagnosis and management of PH, keeping in mind a high prevalence and a broad etiology of the disease. Special attention is given to the diagnosis of LHD (i.e., rheumatic heart disease), acquired lung diseases (i.e., tuberculosis), infections such as HIV and schistosomiasis, and un repaired CHD. The most significant challenge in PH management includes unavailability of PAH-targeted medication.

PERSPECTIVES FOR PH PATIENTS IN MLIRs

The perspectives for PH patients and their health care specific to certain region and countries in MLIRs are summarized in Table 6, and further discussed in more detail in the Supplemental Appendix.
PH is a progressive and often fatal condition that is more common in MLIRs than in HIRs; PH is underdiagnosed in MLIRs where it is handled by cardiologists who often serve both children and adults with limited access to advanced health care. Importantly, on a global scale, PH is not a rare disease but is a major health care burden worldwide, for example, when associated with rheumatic heart disease or CHD, SCD, thalassemia, HIV, or schistosomiasis. Data from MLIRs regarding epidemiology, etiology, management, and/or prognosis of PH is still limited but is emerging from 6 patient registries. Modifications to the international PH guidelines, which are mostly based on studies from HIRs, need to be made to address some of the specific challenges faced in MLIRs. We propose a pragmatic approach with clear cost-risk-benefit evaluation along with an honest discussion among health care providers, patients, and their families. Registry and other collaborative study data for national advocacy and government supported health care plans will be crucial for the managing of young PH patients in MLIRs with limited economic resources.

SUMMARY AND GLOBAL PERSPECTIVES

PH is a progressive and often fatal condition that is more common in MLIRs than in HIRs; PH is underdiagnosed in MLIRs where it is handled by cardiologists who often serve both children and adults with limited access to advanced health care. Importantly, on a global scale, PH is not a rare disease but is a major health care burden worldwide, for example, when associated with rheumatic heart disease or CHD, SCD, thalassemia, HIV, or schistosomiasis. Data from MLIRs regarding epidemiology, etiology, management, and/or prognosis of PH is still limited but is emerging from 6 patient registries. Modifications to the international PH guidelines, which are mostly based on studies from HIRs, need to be made to address some of the specific challenges faced in MLIRs. We propose a pragmatic approach with clear cost-risk-benefit evaluation along with an honest discussion among health care providers, patients, and their families. Registry and other collaborative study data for national advocacy and government supported health care plans will be crucial for the managing of young PH patients in MLIRs with limited economic resources.

ADDRESS FOR CORRESPONDENCE: Dr. Babar S. Hasan, Department of Pediatric and Child Health, Stadium Road, P.O. Box 3500, The Aga Khan University Hospital, Karachi, Pakistan. E-mail: babar.hasan@aku.edu. OR Dr. Georg Hansmann, Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany. E-mail: georg.hansmann@gmail.com. Twitter: @pvd_network.

REFERENCES

Pulmonary Hypertension in Middle- and Low-Income Regions

MAY 19, 2020:2463

2476

in sickle cell disease. Blood 2015;126:703
Meiselman HJ, Coates TD, Wood JC. Chronic
Respir Crit Care Med 2014;189:727
Pulmonary hypertension of sickle cell disease. Am J
8.
Gordeuk VR, Castro OL, Machado RF. Patho-
tension in Nigerian adults with sickle cell anemia.

Circulation 2014;129:338

30.
Sliwa K, van Hagen IM, Budts W, et al. Pul-

29.

34.
Crosby A, Jones FM, Kolosiek E, et al. Pra-
ziqantel reverses pulmonary hypertension and vascular remodeling in murine schistosomiasis.

35.
Amadi VN, Balogun MO, Akiniono NO, Adebayo RA, Akintomide AO. Pulmonary hyper-

36.
Gordeuk VR, Castro OL, Machado RF. Patho-
physiology and treatment of pulmonary hyper-

37.

38.

39.

40.

41.

42.
Phrommintikul A, Sukonthasarn A, Kanjanavat R, Nayarawong W. Splenectomy: a strong risk factor for pulmonary hypertension in pa-
tients with thalassemia. Heart 2006;92:1467-72.

43.
Musallam KM, Taher AT. Thrombosis in thal-
assemia: why are we so concerned? Hemoglobin 2011;35:503-10.

44.
Atichartakon V, Chuncharuee S, Chandanamathapat P, Likitvanasombat K, Aryucharai K. Correction of hypercoagulability and amelioration of pulmonary arterial hypertension by chronic blood transfusion in an asplenic he-

45.
Karimi M, Borzouee M, Mehrabani A, Cohan N. Echocardiographic finding in ß-thalassemia intermedia and major: absence of pulmonary hyper-

46.

47.
Jalalian R, Moghadamnia AA, Tamaddoni A, Khafﬁ S, Iranian M. Comparing the efﬁcacy of ziquanet reverses pulmonary hypertension and
eralisation of pulmonary arterial hypertension: con-

ditions in thalassemia intermedia and major: absence of pulmonary hyper-
tension following hydroxyurea treatment in beta-thalassemia intermedia. Heart Lung Circ 2017;26:677-83.

48.
Crothers K, Huang L, Goulet JL, et al. HIV infec-

49.
Erqui S, Lodebo BT, Masri A, et al. Cardiac dysfunction among people living with HIV: a sys-
tematic review and meta-analysis. J Am Coll Car-

50.
Bigna JJR, Sime PSD, Koulla-Shiro S. HIV related pulmonary arterial hypertension: epide-

51.

52.
Jim B, Luo X-P, Ni H-C, Shi H-M. Phosphodi-
esterase type 5 inhibitors for high-altitude pul-
monary hypertension. Clin Drug Invest 2010;30:
259-65.

53.

54.

55.

56.
Khun MS, Memon MM, Amin E, et al. Use of balloon atrial septotomy in patients with advanced pulmonary arterial hypertension: a sys-

57.

58.
Butrous G. Human immunodeficiency virus-associated pulmonary arterial hypertension: consider-

59.

60.
Lopes AA, Barst RJ, Haworth SG, et al. Repair of congenital heart disease with associated pul-

61.
Viswanathan S, Kumar RK. Assessment of operability of congenital cardiac shunts with increased pulmonary resistance. Catheter Car-

62.
Dowies JM, Hegeman AK, van der Kieke MB, Roofhoof HT, Hillegie HL, Berger RM. Six-minute walking distance and decrease in oxygen satura-
tion during the six-minute walk test in pediatric pulmonary arterial hypertension. Int J Cardiol 2015;202:34-9.

63.

64.
Beghetti M, Schulze-Neick I, Berger RM, TOPP Investigators, et al. Haemodynamic characterisa-
tion and heart catheterisation complications in children with pulmonary hypertension: Insights from the Global TOPP Registry (tracking outcomes and practice in paediatric pulmonary hyperten-

65.
Condino AA, Ivy DD, O’Connor JA, et al. Por-

66.
Lammers AE, Diller GP, Ondelaal D, Tailor S, Derrick G, Haworth SG. Comparison of 6-min walk test distance and cardipulmonary exercise test performance in children with

Springer Science Business Media, 2011:

KEY WORDS consensus statement, middle- and low-income countries, pulmonary hypertension

APPENDIX For supplemental Methods, figures, tables, and references, please see the online version of this paper.