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Abstract: Heart rate (HR) and HR variability (HRV) infer readiness to perform exercise in athletic
populations. Technological advancements have facilitated HR and HRV quantification via pho-
toplethysmography (PPG). This study evaluated the validity of WHOOP’s PPG-derived HR and
HRV against electrocardiogram-derived (ECG) measures. HR and HRV were assessed via WHOOP
and ECG over 15 opportunities. WHOOP-derived pulse-to-pulse (PP) intervals were edited with
WHOOP’s proprietary filter, in addition to various filter strengths via Kubios HRV software. HR
and HRV (Ln RMSSD) were quantified for each filter strength. Agreement was assessed via bias
and limits of agreement (LOA), and contextualised using smallest worthwhile change (SWC) and
coefficient of variation (CV). Regardless of filter strength, bias (≤0.39 ± 0.38%) and LOA (≤1.56%) in
HR were lower than the CV (10–11%) and SWC (5–5.5%) for this parameter. For Ln RMSSD, bias
(1.66 ± 1.80%) and LOA (±5.93%) were lowest for a 200 ms filter and WHOOP’s proprietary filter,
which approached or exceeded the CV (3–13%) and SWC (1.5–6.5%) for this parameter. Acceptable
agreement was found between WHOOP- and ECG-derived HR. Bias and LOA in Ln RMSSD ap-
proached or exceeded the SWC/CV for this variable and should be interpreted against its own level
of bias precision.

Keywords: autonomic nervous system; agreement; electrocardiogram

1. Introduction

Resting heart rate (HR) quantification and monitoring have been common in exercise
physiology research and practice for centuries [1]. Additionally, HR variability (HRV),
a sophisticated derivative of HR, has been quantified to provide insight into cardiac
modulation by the parasympathetic and sympathetic divisions of the autonomic nervous
system (ANS) [2]. Given the integral role of the ANS to all physiological function, including
those related to exercise and training [3], the body’s ability to tolerate or adapt to an exercise
stimulus may be inferred by examining ANS responsiveness [3]. Consequently, HRV has
been used to infer training tolerance or readiness to perform exercise in athletes [4,5].

Advancements in HR monitor technology, namely the first wireless HR monitor [6],
have facilitated frequent and accurate HR quantification. However, this technology is
reliant on the wireless communication of the heart’s electrical activity from an elastic elec-
trode chest strap to relevant receivers, and such reliance on chest straps can be inconvenient
and problematic. Regarding HR and HRV assessment for the day-to-day monitoring of
readiness to perform specifically, compliance is challenged by wearing a chest strap during
daily recordings [7]. Consequently, HR and HRV assessments that occur without a chest
strap, such as photoplethysmography (PPG), are advantageous.
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PPG detects changes in pulsatile blood flow between the heart’s systole and diastole
via LED-emitted light at the wrist, fingertip or earlobe [8]. The LED light illuminates the
skin, while a photodetector quantifies the intensity of the light reflected back from the
skin [7]. Since blood volume is acutely increased following cardiac systole (which obstructs
the LED light and reduces the intensity of the reflected light) and decreased during cardiac
diastole (increasing the intensity of reflected light), the heart’s rhythm can be detected via
PPG [7].

Calculation of HR and HRV from pulse-to-pulse (PP) intervals quantified via PPG is
not a novel concept, having been utilised in research as historically as 1938 [9]. However, its
contemporary application has been facilitated by technological advancements in commer-
cially available HR monitors. PPG validation studies demonstrate acceptable agreement
in HR quantification at rest [8,10] and during sleep [11]. Similarly, PPG-derived resting
HRV (and specifically the root mean square of successive beat to beat (BB) interval differ-
ences; RMSSD) demonstrates acceptable agreement assessed at the earlobe and fingertip at
rest [7,12–17] and during sleep [18].

WHOOP is a commercially available unit that quantifies HR and HRV (in the form of
RMSSD) via wrist-based PPG. Uniquely, however, WHOOP quantify these measures during
slow-wave sleep (SWS) [19], which it is able to determine with moderate accuracy [20].
Given that SWS is thought to be important for physiological recovery from exercise [21–23],
and HRV is considered a marker of physiological recovery [4,5], HRV assessment during
SWS may quantify the degree of physiological recovery facilitated by this sleep stage,
and thus may be used in the day-to-day monitoring of training status by practitioners.
Additionally, WHOOP subsequently utilise HR and HRV measures (along with sleep
duration) in an algorithm to predict a “Recovery Score” out of 100% [19]. This Recovery
Score may be used to individually guide training prescription as a measure of readiness to
perform. Given the novelty of WHOOP for assessing wrist-based PPG-derived HR and
HRV, in addition to its unique dependence on measuring SWS in its quantification of HR
and HRV, this study aimed to evaluate the agreement between WHOOP-derived HR and
HRV and gold-standard assessment via ECG during SWS episodes.

2. Materials and Methods
2.1. Participants

Six healthy, young adults (male: n = 3; female: n = 3; age: 22.9 ± 3.4 years) partic-
ipated in this study. Participants were excluded if they reported any existing medical
conditions or sleep disorders, or had a recent history of shift work and/or transmeridian
travel. This study was approved by the Central Queensland University Human Research
Ethics Committee.

2.2. Experimental Overview

Data collection occurred concurrently with a larger pre-existing sleep study which has
not yet been published. Data were collected over three consecutive sleep opportunities
at the Appleton Institute of Behavioural Science, Central Queensland University, which
contains two co-located, purpose-built accommodation suites that are sound attenuated,
free from external environmental cues and can simultaneously house a total of six partici-
pants with private bedrooms and bathrooms. Participants wore a WHOOP unit (CB Rank,
Greater Boston, New England) on their non-dominant wrist during sleep opportunities
at the end of day 1 (2300–0800), end of day 2 (0300–1200) and during day 4 (1430–2130).
Agreement between WHOOP and ECG-derived HR and HRV was evaluated through four
time- and SWS stage-matched analyses (Table 1). Firstly, agreement between time-matched
WHOOP- and ECG-derived HR and HRV was assessed during the final WHOOP-derived
SWS episode in line with the technology’s ecological use, and across a range of data editing
filters to determine the extent to which WHOOP-derived PP intervals need to be edited
for erroneous PP intervals, including WHOOP’s proprietary filter. Secondly, to determine
whether the accurate identification of the final SWS episode impacts upon the agreement
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between WHOOP- and ECG-derived HR and HRV (given that WHOOP has only moderate
sensitivity to accurately identifying sleep stage [20]), WHOOP- and ECG-derived HR and
HRV were also quantified during the final polysomnography (PSG)-derived SWS episode
for comparison. Additionally, to provide insight into the impact of misrepresentation of
true SWS periods by WHOOP on HR and HRV, two SWS stage-matched analyses were
conducted. Consequently, the third analysis assessed agreement between ECG-derived
HR/HRV (i.e., true HR/HRV) during PSG-derived SWS episodes (i.e., true SWS) and
WHOOP-derived HR/HRV during WHOOP-derived SWS episodes. The fourth analysis
assessed the agreement between WHOOP-derived HR/HRV during PSG-derived SWS
episodes and WHOOP-derived HR/HRV during WHOOP-derived SWS episodes as a
means of determining the impact of SWS misrepresentation on WHOOP-derived measures.

Table 1. Analyses of agreement overview.

HR/HRV Derived by . . .

WHOOP ECG

SWS period derived
by . . .

WHOOP 1,3,4 1

PSG 2,4 2,3
HR, heart rate; HRV, heart rate variability; PSG, polysomnography; SWS, slow-wave sleep; 1, time-matched
analysis of WHOOP-derived HR/HRV vs. ECG-derived HR/HRV during WHOOP-derived SWS; 2, time-
matched analysis of WHOOP-derived HR/HRV vs. ECG-derived HR/HRV during PSG-derived SWS; 3, sleep
stage-matched analysis of WHOOP-derived HR/HRV during WHOOP-derived SWS vs. ECG-derived HR/HRV
during PSG-derived SWS; 4, sleep stage-matched analysis of WHOOP-derived HR/HRV during WHOOP-derived
SWS vs. WHOOP-derived HR/HRV during PSG-derived SWS.

2.3. Sleep Stage Identification

To acquire WHOOP strap sleep data, researchers manually entered the start and end
times of each sleep opportunity into the WHOOP smart phone application. The manufac-
turer then provided data in 30 s epochs for wake, light sleep, SWS and rapid eye movement
(REM) sleep. PSG data were recorded directly to data acquisition, storage and analysis
systems (Grael, Compumedics; Victoria, Australia). Brain, eye and muscle activity were
quantified from electrodes attached to the face and scalp of participants, including three
electroencephalography electrodes (i.e., C4-M1, F4-M1, O2-M1), two electro-oculograms
(i.e., left/right outer canthus) and a submental electromyogram. PSG records were manu-
ally scored (in 30 s epochs) by a registered and experienced polysomnographic technician
in compliance with standard criteria [24]. Time in bed during each sleep opportunity was
arranged into wake, non-rapid eye movement sleep (non-REM; stage 1 [S1], stage 2 [S2]
and SWS) and rapid eye movement (REM) sleep. Cardiac activity was assessed via two
ECG electrodes (left-positive and right-negative) recorded using the aforementioned Grael
PSG system. The negative electrode was placed three centimetres below the right clavicle,
positioned on the torso parallel to the right leg. The positive electrode was positioned on
the left side of the torso parallel to the left hip and leg, between either the fifth, sixth, or
seventh intercostal spaces on the lower left side of the rib cage.

2.4. Heart Rate and Heart Rate Variability Calculation

Using both the WHOOP- and PSG-derived sleep staging data for each sleep oppor-
tunity, the final five minutes of the final SWS episodes were identified. If the final sleep
stage was less than five minutes in duration, the preceding stages were identified until
a five-minute stage was found. Subsequently, time-matched PP and RR intervals were
extracted from WHOOP- and ECG-derived files, respectively, for each SWS episode and
analysed using WHOOP’s proprietary filter and HRV analysis software (Kubios HRV
Analysis, version 2.0 beta 1, Biomedical Signals Analysis Group, University of Kuopio,
Finland). To determine the degree of PP interval editing required to facilitate the best agree-
ment between WHOOP- and ECG-derived measures, Kubios’s default filters (i.e., “Low”,
“Medium”, “Strong” and “Very Strong”—equivalent to 400, 300, 200 and 100 ms editing
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thresholds, respectively), in addition to no filter (i.e., “None”) and WHOOP’s proprietary
filter, were separately applied to WHOOP-derived PP intervals and recorded for analysis.
For HRV analysis, RMSSD and its natural logarithm transformation (i.e., Ln RMSSD) were
recorded for analysis.

2.5. Statistical Analysis

Data were analysed using SPSS (IBM Corp. IBM SPSS Statistics for Windows, Version
25.0. Armonk, NY, USA) and presented as the mean ± 95% confidence intervals. Agreement
between WHOOP- and ECG-derived measures of HR and HRV was determined through
absolute and percentage mean bias (WHOOP minus ECG), absolute and percentage limits
of agreement (LOA) and intra-class correlation (ICC). ICCs were evaluated as: 0.0–0.1,
trivial; 0.1–0.3, small; 0.3–0.5, moderate; 0.5–0.7, large; 0.7–0.9, very large; 0.9–1.0, nearly
perfect [25].

For the parameters of HR, RMSSD and Ln RMSSD, separate two-way (filter strength× SWS
quantification method [i.e., WHOOP vs. PSG]) repeated measures ANOVAs determined sta-
tistically significant differences in ECG and WHOOP-derived values, and in bias between
filter strengths for each SWS quantification method. As it was not possible to statistically
compare LOA between filters and SWS quantification method, mean residuals were cal-
culated as a measure of variability about the bias and compared via separate two-way
(filter strength × SWS quantification method) repeated measures ANOVAs for HR, RMSSD
and Ln RMSSD. Individual residuals were calculated as the square root of the squared
difference between the individual value and the mean value for both absolute and percent
bias. Statistical significance was set at p < 0.05.

For values of HRV, the filter strength resulting in the smallest bias and smallest LOA, in
addition to WHOOP’s proprietary filter, was subsequently used to compare differences in
percent bias and percent residuals between analytical method (i.e., RMSSD vs. Ln RMSSD)
via two-way ANOVA.

Effect sizes ([ES] with 95% confidence intervals) between variables of interest were
calculated using pooled standard deviation. Threshold values for ES were ≤0.2 (trivial),
>0.2 (small), >0.6 (moderate), >1.2 (large), >2.0 (very large), and >4.0 (extremely large) [25].

3. Results

Of the 18 opportunities for data collection, HR and HRV data from three sleep oppor-
tunities were lost due to equipment malfunction and/or experimenter error. Thus, data
from 15 sleep opportunities were available for comparison.

3.1. Filter Analysis

With regard to WHOOP’s proprietary filter, trivial but statistically significant biases
were found between WHOOP- and ECG-derived Ln RMSSD across both SWS quantification
methods (percent bias ≤3.25 ± 1.53%; bias as ES ≥0.18 ± 0.16; p ≤ 0.04; LOA ≤6.59%;
Figure 1a,b), and RMSSD during PSG-derived SWS (percent bias = 12.74 ± 6.53%; bias as
ES = 0.14 ± 0.09; p = 0.005; LOA = 25.31%; Figure 1d), but not RMSSD during WHOOP-
derived SWS (percent bias = 8.54 ± 6.65%; bias as ES = 0.13 ± 0.15; p = 0.10; LOA = 25.75%;
Figure 1c).
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Figure 1. Agreement between (a) ECG-derived Ln RMSSD and WHOOP-derived Ln RMSSD during WHOOP-derived SWS,
(b) ECG-derived Ln RMSSD and WHOOP-derived Ln RMSSD during PSG-derived SWS, (c) ECG-derived RMSSD and
WHOOP-derived RMSSD during WHOOP-derived SWS, (d) ECG-derived RMSSD and WHOOP-derived RMSSD during
PSG-derived SWS, (e) ECG-derived HR and WHOOP-derived HR during WHOOP-derived SWS and (f) ECG-derived HR
and WHOOP-derived HR during PSG-derived SWS. Thin continuous line represents mean bias. Dashed lines represent
mean bias ± limits of agreement. bpm, beats per minute; ECG, electrocardiogram; HR, heart rate; Ln RMSSD, natural
logarithm of the root mean square of successive BB interval differences; ms, milliseconds; PSG, polysomnography; RMSSD,
root mean square of successive BB interval differences; SWS, slow-wave sleep.

Regarding the BB editing filters applied in Kubios, a Strong filter (equivalent to a
200 ms editing threshold) applied to WHOOP-derived PP intervals resulted in the smallest
percent bias and smallest percent LOA across both SWS quantification methods for RMSSD
(percent bias ≤8.39 ± 6.70%; bias as ES ≤0.08 ± 0.15; LOA ≤27.26%) and Ln RMSSD
(percent bias ≤2.30 ± 1.69%; bias as ES ≤0.14 ± 0.17; LOA ≤6.98%) (Supplementary
Tables S1 and S2).

In comparison to Kubios’s Strong filter, the bias between WHOOP and ECG values
was greater when edited using WHOOP’s proprietary filter during PSG-derived SWS
across both RMSSD (ES = 0.51 ± 0.24; p = 0.04) and Ln RMSSD values (ES = 0.34 ± 0.14;
p = 0.03). Percent LOAs were similar when WHOOP-derived PP intervals were edited
using Kubios’s Strong filter compared to WHOOP’s proprietary filter across both SWS
quantification methods for RMSSD and Ln RMSSD, and analysis of residuals indicated no
statistical differences (ES ≤0.50 ± 0.59; p ≥ 0.12).

With regard to HR, there was a trivial but statistically significant bias between
WHOOP-derived HR edited by WHOOP’s proprietary filter and ECG-derived HR during
both WHOOP- and PSG-derived SWS (ES ≥−0.03 ± 0.02; percent bias ≥−0.39 ± 0.38%;
p ≤ 0.04; Figure 1e,f). For all other filters, there were trivial and non-statistically significant
biases between WHOOP- and ECG-derived HR (ES ≤0.006 ± 0.023; p ≥ 0.59). LOA for all
filters across both SWS quantification methods were ≤1.56% and ICCs were almost perfect
(r = 1.00 [95% confidence interval range 0.99 to 1.00]; Supplementary Table S3).

3.2. Analytical Method Analysis

For both Kubios’s Strong filter and WHOOP’s proprietary filter, percent bias for
measures of Ln RMSSD were smaller than measures of RMSSD (ES ≤−0.73 ± 0.61; p ≤ 0.03)
with the exception of Kubios’s Strong filter during WHOOP-derived SWS which trended
toward statistical significance (ES = −0.56 ± 0.60; p = 0.09). Similarly, percent residuals
for measures of Ln RMSSD were smaller than measures of RMSSD (ES ≤−1.23 ± 0.60;
p ≤ 0.001).
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3.3. SWS Stage-Matched Analyses

For the analysis of agreement between ECG-derived HR/HRV during PSG-derived
SWS and WHOOP-derived HR/HRV during WHOOP-derived SWS, there were trivial
to small biases in HR (ES = 0.13 ± 0.17; 1.85 ± 2.51%; p = 0.15; Figure 2a) and HRV
(ES = 0.03 ± 0.29; 20.08 ± 28.42%; p = 0.86 for RMSSD [Figure 2b] and ES = 0.21 ± 0.39;
3.74 ± 5.76%; p = 0.29 for Ln RMSSD [Figure 2c]). There were moderate to large LOAs for
HR (9.71%; ES = 0.67), RMSSD (110.07%; ES = 1.12) and Ln RMSSD (22.31%; ES = 1.50).
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For the analysis of agreement between WHOOP-derived HR/HRV during PSG-
derived SWS and WHOOP-derived HR/HRV during WHOOP-derived SWS, there were
trivial biases in HR (ES = 0.11 ± 0.17; 1.57 ± 2.45%; p = 0.21; Figure 3a) and HRV
(ES = 0.16 ± 0.31; 5.75 ± 23.16%; p = 0.34 for RMSSD [Figure 3b] and ES = 0.01 ± 0.38;
0.68 ± 5.13%; p = 0.94 for Ln RMSSD [Figure 3c]). There were moderate to large LOAs for
HR (9.48%; ES = 0.66), RMSSD (89.70%; ES = 1.21) and Ln RMSSD (19.85%; ES = 1.47).
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Figure 4 depicts the time differential between WHOOP-derived SWS episodes and
PSG-derived SWS episodes per sleep opportunity; there was a small bias (WHOOP minus
PSG) of 35.1 ± 47.2 min (ES = 0.31 ± 0.42; p = 0.17) with large LOA of 182.7 min (ES = 1.62).
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4. Discussion

This study evaluated agreement between PPG assessment of HR and HRV by a com-
mercially available wrist-worn activity monitor (WHOOP) and gold-standard assessment
via ECG. The primary findings were that of trivial bias (ES ≤ 0.03) and LOA (ES ≤ 0.10)
for time-matched HR assessment, and trivial bias (ES ≤ 0.19) and small LOA (ES ≤ 0.59)
for time-matched HRV assessment when either a Strong filter or WHOOP’s proprietary
filter was applied to WHOOP-derived PP interval data and analysed as Ln RMSSD. SWS
stage-matched WHOOP-derived HR and HRV demonstrated trivial bias (ES ≤ 0.11) and
moderate to large LOA (ES = 0.66–1.47).

The present study identified that WHOOP-derived PP intervals need to be filtered
prior to HRV calculation to facilitate optimal agreement with ECG-derived HRV. The
methodological consideration of BB interval editing is not a novel concept and has been
advocated in HRV analysis [2,5]. Indeed, Buchheit [5] demonstrated that a single erroneous
BB interval over a five-minute recording substantially altered RMSSD calculation. Conse-
quently, it is important to edit BB intervals prior to analysis to ensure a true reflection of
ANS status. While visual inspection and manual editing of BB intervals is ideal, it is an
unrealistic practice in the field where a multitude of files are recorded, and instantaneous
feedback is required to guide athletic training. Accordingly, automatic BB interval editing
within manufacture software is commonplace [5]. In the present study, bias and LOA
was minimised, while ICC was maximised, as filter strength increased to a Strong level
(and also with WHOOP’s proprietary filter). However, a Very Strong filter resulted in
poorer agreement between WHOOP- and ECG-derived HRV, indicating this filter was
too aggressive, and excessively altered the true BB interval patterning. Thus, the present
study indicates that while erroneous WHOOP-derived PP intervals have little impact on
HR calculation, these intervals have a small to moderate impact on RMSSD/Ln RMSSD
calculation, as evidenced by the small biases (ES = 0.21–0.32) and small to moderate LOAs
(ES = 0.56–0.78) in unfiltered RMSSD and Ln RMSSD across both SWS quantification meth-
ods, in comparison to the trivial biases (ES = 0.04–0.19) and small LOAs (ES = 0.33–0.59) in
filtered values (i.e., Kubios’s Strong filter and WHOOP’s proprietary filter).

A further methodological consideration in HRV determination is the natural logarithm
transformation of RMSSD (i.e., Ln RMSSD). Natural logarithm transformation reduces bias
from non-uniformity of error [25], and has become standard practice for the longitudinal
monitoring of training status via HRV [5]. In the present study, natural logarithm transfor-
mation of RMSSD resulted in small to moderate (ES = 0.56–1.19) reductions in percent bias,
and large to very large (ES = 1.23–2.15) reductions in percent residuals in comparison to
raw RMSSD.

While some statistically significant differences in bias were found between Kubios’s
Strong filter and WHOOP’s proprietary filter, agreement statistics (i.e., bias and LOA) in
WHOOP-derived HR and HRV may also be contextualised using the natural day-to-day
variability in these variables. Some variation exists in the literature with regard to day-to-day
variability in HR (10–11% coefficient of variation [5,26]) and Ln RMSSD (3–13% coefficient of
variation [5,26–32]) which is likely dependent on timing of assessment (i.e., morning waking
versus nocturnal) and posture (i.e., supine versus sitting versus standing). With specific
regard to nocturnally collected Ln RMSSD, Costa et al. [32] demonstrated a coefficient of
variation of 4–6%. Additionally, given that a smallest worthwhile change in HR/HRV has
been proposed to be calculated as 0.5 multiplied by coefficient of variation [25], the smallest
worthwhile change is 5–5.5% for HR and 1.5–6.5% for Ln RMSSD (and 2–3% for nocturnally
derived Ln RMSSD). Consequently, since the bias (<0.5%) and LOA (1–1.5%) in WHOOP-
derived HR were less than both the smallest worthwhile change and coefficient of variation
in HR, it may be concluded that WHOOP’s proprietary filter provides suitable editing of
PP intervals. However, since the bias (2–3.5%) and LOA (6–6.5%) in WHOOP-derived Ln
RMSSD (when edited with WHOOP’s proprietary filter) approaches the upper limit for the
smallest worthwhile change in Ln RMSSD (and exceeds both the coefficient of variation
and smallest worthwhile change for nocturnally derived Ln RMSSD), WHOOP-derived
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measures of Ln RMSSD may need to be interpreted against their own level of bias precision
(i.e., LOA of 6–6.5%).

The physiological determinants of the trivial biases with small LOAs for agreement
between ECG- and PPG-derived Ln RMSSD demonstrated in the present study potentially
lie within the pulse travel time. Specifically, the electrical activity of the heart is followed
by spread of the pulsatile wave of blood to the periphery [12]. While this pulse travel time
demonstrates BB fluctuations of only a few milliseconds [33–35], this does indicate that
BB intervals derived from ECG and PPG will rarely be exactly the same, which intuitively
indicates that variability in BB intervals (i.e., RMSSD/Ln RMSSD) will rarely be exactly the
same also.

WHOOP quantify HR and HRV in the final SWS episode of each sleep opportunity,
which is intuitive from a physiological perspective. SWS is thought to be important for
physiological recovery from exercise [21], a hypothesis supported by the synchronisation
between SWS periods and growth hormone release in humans (suggesting that sleep peri-
ods provide optimal anabolic conditions) and findings of SWS duration being proportional
to preceding wakefulness [22]. Since HRV is a measure of ANS status [2], which is in
turn considered a marker of physiological readiness to perform exercise [3], it is intuitive
that HRV be assessed during SWS, since this may be used to quantify the magnitude of
physiological recovery facilitated by SWS (although future research is required to confirm
this). However, given that WHOOP has only moderate sensitivity in accurately identifying
sleep stage [20], which is supported by the findings of the present study indicating a small
time differential (ES = 0.31) in the determination of SWS periods by WHOOP in comparison
to PSG (and a large [ES = 1.62] LOA about that time differential), the misrepresentation of
true SWS periods by WHOOP may have an impact on WHOOP-derived HR and HRV since
autonomic HR modulation is physiologically impacted upon by sleep stage [36–39]. Indeed,
while the bias in stage-matched WHOOP-derived HR (ES = 0.11; 1.57%) and Ln RMSSD
(ES = 0.01; 0.68%) during WHOOP-derived SWS episodes compared to PSG-derived SWS
episodes was trivial, the LOA for WHOOP-derived HR (9.48%) exceeded the smallest
worthwhile change (5–5.5%) and approached the coefficient of variation (10–11%) in this
variable, while the LOA for WHOOP-derived Ln RMSSD (19.85%) exceeded both the
smallest worthwhile change (1.5–6.5%) and coefficient of variation (3–13%) for this variable.
Thus, while the exploratory analysis performed in the present study does not quantify the
true day-to-day variability in WHOOP-derived HR and HRV, it does indicate that a mis-
representation of SWS periods impacts upon the precision of bias in WHOOP-derived HR
and HRV, which may in turn impact upon the day-to-day variability in WHOOP-derived
HR and HRV. Consequently, future research should evaluate the day-to-day variability in
WHOOP-derived HR and HRV.

The agreement between PPG- and ECG-derived HR shown in this study
(i.e., bias = 0.02–0.23 bpm [ES = 0.01–0.03]; LOA = 0.72–0.81 bpm; r = 1.00 across both
SWS quantification methods) is similar to that previously shown in other wearable devices
during quiet rest and sleep (bias = 0.09–1.00 bpm [ES = 0.01–0.09]; LOA = 2.67–5.29 bpm;
r = 0.99) [8,10,11]. The agreement between wrist-based PPG- and ECG-derived HRV demon-
strated in the present study (i.e., bias = 1.33–4.90 ms [ES = 0.04–0.14]; LOA = 11.26–15.96 ms;
r = 0.98–0.99 for RMSSD) is within the range found using earlobe and fingertip PPG-
derived HRV (bias = 0.00–2.71 ms [ES = 0.00–0.11]; LOA = 1.40–14.50 ms; r = 0.99–1.00)
during quiet rest and sleep [7,12–18].

The present study used repeat measures in only a small number of unique individuals,
which may be considered a limitation in certain scientific contexts. However, the authors
propose this is not the case in the present study where simple statistical agreement is
the focus. Specifically, to suitably “challenge” the WHOOP unit for accurately assessing
PPG-derived HR and HRV, an appropriate range and variability in BB intervals is required.
The current dataset provides HR in the range of 40–75 bpm and RMSSD in the range of
15–125 ms, and it is hypothesised that these ranges cover the typical range seen in both the
general and athletic population.
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While the WHOOP-derived HR and HRV variables assessed in the present study feed
into WHOOP’s Recovery Score, validation of this Recovery Score itself was beyond the
scope of this study, and thus should be validated in future research.

5. Conclusions

A wrist-worn, commercially available activity monitor (WHOOP) demonstrated ac-
ceptable agreement in HR via PPG assessment compared with gold-standard assessment
via ECG. Regarding HRV assessment however, bias and LOA in Ln RMSSD approached
or exceeded the smallest worthwhile change/coefficient of variation for this variable, and
thus should be interpreted against its own level of bias precision when suitably edited to
remove erroneous PP intervals and analysed as Ln RMSSD. SWS stage-matched assess-
ment of HR and HRV indicated that misrepresentation of SWS periods impacted upon the
precision of bias in WHOOP-derived HR and HRV, which may in turn have an impact on
the day-to-day variability in WHOOP-derived HR and HRV.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21103571/s1, Table S1. Agreement between ECG- and WHOOP-derived Heart Rate (bpm),
Table S2. Agreement between ECG- and WHOOP-derived RMSSD (ms), Table S3. Agreement
between ECG- and WHOOP-derived Ln RMSSD (ms).
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