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Abstract
Implicit sequence learning describes the acquisition of serially ordered move-
ments and sequentially structured cognitive information, that occurs without 
awareness. Theta, alpha and beta cortical oscillations are present during implicit 
motor sequence learning, but their role in this process is unclear. The current 
study addressed this gap in the literature. A total of 50 healthy adults aged be-
tween 19 and 37 years participated in the study. Implicit motor sequence learning 
was examined using the Serial Reaction Time task where participants unknow-
ingly repeat a sequence of finger movements in response to a visual stimulus. 
Sequence learning was examined by comparing reaction times and oscillatory 
power between sequence trials and a set of control trials comprising random 
stimulus presentations. Electroencephalography was recorded as participants 
completed the task. Analyses of the behavioral data revealed participants learnt 
the sequence. Analyses of oscillatory activity, using permutation testing, revealed 
sequence learning was associated with a decrease in theta band (4–7 Hz) power 
recorded over frontal and central electrode sites. Sequence learning effects were 
not observed in the alpha (7–12 Hz) or beta bands (12–20 Hz). Even though alpha 
and beta power modulations have long been associated with executing a motor 
response, it seems theta power is a correlate of sequence learning in the manual 
domain. Theta power modulations on the serial reaction time task may reflect 
disengagement of attentional resources, either promoting or occurring as a con-
sequence of implicit motor sequence learning
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oscillations, serial reaction time (SRT) task, theta
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1   |   INTRODUCTION

Implicit sequence learning describes the acquisition of 
skills and knowledge, generated by repeatedly executing 
or processing serially ordered movements or percepts 
(e.g., Fiser & Aslin,  2002; Isbilen et al.,  2020; Nissen & 
Bullemer, 1987; Saffran et al., 1997). The learning is im-
plicit since the performer develops no reportable aware-
ness of the dependencies between sequence elements 
(Cleeremans et al., 1998; Lewicki et al., 1988). Implicit se-
quence learning is fundamental to a range of human abil-
ities (e.g., motor function, language, social interaction) 
(Clegg et al., 1998; Hamrick et al., 2018) and is impaired in 
a number of neurodevelopmental, neurodegenerative and 
psychiatric disorders (Clark & Lum, 2017). Neuroimaging 
studies suggest this type of learning, at least in the motor 
domain, activates a basal ganglia-cortical network that 
includes the striatum, prefrontal cortex, primary motor 
cortex, supplemental motor area and possibly medial 
temporal lobe (Albouy et al., 2008; Hardwick et al., 2013; 
Janacsek et al., 2020; Pascual-Leone et al., 1996; Schendan 
et al., 2003). Much less is known about the role of neural 
oscillatory activity, which enables information transfer 
and processing in the brain (Başar et al., 2001; Ward, 2003), 
during implicit motor sequence learning. Addressing this 
gap in the literature is needed to understand a critically 
important learning mechanism, and its genesis of impair-
ment in a number of disorders.

Cycles of synchronized-desynchronised activity of 
summed dendritic post-synaptic potentials generates os-
cillatory activity in the brain, leading to rhythmic fluc-
tuations in the amplitude of the electroencephalogram 
(EEG) and magnetoencephalogram (MEG) (Jackson & 
Bolger, 2014; Nunez & Srinivasan, 2006). Oscillatory ac-
tivity is also generated by subcortical structures that com-
prise the basal ganglia, but is unlikely to be detected by 
scalp electrodes (Cohen et al., 2011). In general, as more 
neurones are synchronously activated, the amplitude of 
the M/EEG increases. In the mammalian brain, oscilla-
tory activity occurs within bands of approximately 1–4, 
4–8, 8–12, 12–30 and 30–100 Hz termed delta, theta, alpha, 
beta and gamma, respectively (Buzsáki et al., 2013).

Oscillatory activity during implicit motor sequence 
learning has mainly been examined using the serial re-
action time (SRT) task (Heideman et al., 2018; Meissner 
et al.,  2018, 2019; Pollok et al.,  2014; Tóth et al.,  2017; 
Tzvi et al., 2016; Zhuang et al., 1997). On this task a vi-
sual stimulus appears repeatedly in one of four (or more) 
visual spatial locations on a computer display (Nissen & 
Bullemer,  1987). The stimulus prompts participants to 
press one of four buttons on a response panel that matches 
the stimulus' location. Participants are not informed that 
the trial-to-trial location of the visual stimulus follows a 

repeating, pre-determined order. In healthy controls, man-
ual reaction times decrease (i.e., become faster) across tri-
als as the sequence of finger movements is unknowingly 
repeated. Faster reaction times partially occur because 
the location of an upcoming visual stimulus is predicted 
(without awareness) by the manual response system 
(Lum,  2020; Robertson,  2007). This pattern of implicit 
learning is highlighted following introduction of a control 
block of trials presented at the end of the task, in which 
the visual stimulus appears randomly in one of the pre-
defined locations. On this part of the task, reaction times 
increase (i.e., become slower) because the stimulus' loca-
tion can no longer be predicted (e.g., Deroost et al., 2006; 
Lukács & Kemény,  2015; Lum,  2020; Lum et al.,  2019; 
Nissen & Bullemer,  1987; Thomas et al.,  2004; Thomas 
& Nelson,  2001). General motor learning may also con-
tribute to faster reaction times on the SRT task. General 
motor learning occurs as stimulus–response associations 
are strengthened, that is, mapping a motor response to a 
specific visuo-spatial location. This type of learning is re-
vealed by faster reaction times on random trials of the SRT 
task where the visual stimulus appears in non-predictable 
locations (Marcus et al., 2006).

Performance on the SRT task has been shown to mod-
ulate oscillatory power in beta, alpha and theta bands 
(Heideman et al.,  2018; Meissner et al.,  2018, 2019; 
Pollok et al., 2014; Tzvi et al., 2016; Zhuang et al., 1997). 
At present, it is unclear whether these modulations sup-
port sequence learning or general motor learning ef-
fects. One hypothesis is that beta oscillations may reflect 
cortical reorganization associated with sequence learn-
ing (Pollok et al.,  2014, 2015). Beta desynchronisation, 
that is reduced beta power, not only supports execution 
of movement (Pfurtscheller & Da Silva, 1999), but has 
been proposed to permit bottom-up or sensory-driven 
information to modify current performance or motor 
programs (Engel & Fries, 2010). On the SRT task, beta 
desynchronisation may promote plasticity within the 
primary motor cortex, enabling motor programs, or en-
grams, to be updated as the sequence is repeated. Thus, 
on this task, beta power should be lower on sequence 
trials compared with random trials; a result observed by 
Heideman et al.  (2018). Further evidence for a role of 
beta oscillations in implicit sequence learning was ob-
served by Meissner et al. (2018). In that study, beta power 
over the primary motor cortex was found to be lower in 
healthy controls who implicitly learnt a motor sequence, 
compared to participants with Parkinson's disease who 
evidenced lower levels of learning. Not all studies, how-
ever, provide unequivocal support for an association be-
tween beta oscillations and implicit sequence learning. 
Pollok et al.  (2014) found no difference in beta power 
between sequence and random trials on the SRT task. 
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Further correlation analyses, however, did reveal an as-
sociation between beta desynchronisation and sequence 
retention. This potentially suggests oscillatory activity 
in this frequency band may play a role in the long-term 
storage of the sequence, rather than learning.

Alpha power is also modulated during implicit motor 
sequence learning. Several studies using the SRT task 
have found alpha power, recorded over the primary motor 
cortex and parietal-occipital lobe (Pollok et al., 2014; Tzvi 
et al., 2016; Zhuang et al., 1997), to be higher on sequence 
trials compared with random. Localized increases in alpha 
power have an inhibitory effect on cortical functioning. 
This is often observed when a region of the brain is no lon-
ger involved in completing a task (Klimesch et al., 2007; 
Pfurtscheller, 1992, 2001). Sequence learning may enable 
manual responses to be executed in an increasingly au-
tomatic manner, thereby reducing the cortical resources 
needed to monitor and then respond to a visual stimulus 
(Lum et al., 2019; Thomas et al., 2004; Zhuang et al., 1997). 
On the SRT task, alpha power should therefore be higher 
on sequence trials compared to random. Not all study 
findings are consistent with this position. Tzvi et al. (2016) 
found that after sequence learning, alpha power was 
higher on random trials compared to sequence.

Finally, inconsistencies in the literature have emerged 
with respect to theta power. Meissner et al.  (2018), de-
scribed above, found that in healthy controls, who implic-
itly learnt a motor sequence, theta power over the primary 
motor cortex was higher on sequence trials compared to 
random. This difference was reduced in the participants 
with Parkinson's disease, who evidenced impaired se-
quence learning abilities. An additional analysis revealed 
a positive correlation between theta power and sequence 
learning, but only in the group with Parkinson's disease. 
These results may be indicating that increases in theta 
power promote sequence learning. Interestingly, increases 
in theta power also occur during explicit motor learning 
(Rozengurt et al., 2016; van der Cruijsen et al., 2021). One 
potential caveat to Meissner et al.’s (2018) findings is that, 
abnormal theta oscillatory activity appears to be part of 
broader brain and cognitive dysfunction in Parkinson's 
disease (Geraedts et al., 2018). Differences in theta power 
on the SRT task between control and Parkinson's disease 
groups, might be related to non-specific effects of neuro-
degeneration on neural functioning, rather than sequence 
learning related oscillatory activity. Alternatively, theta 
power changes across the SRT task may be more related 
to generating a motor response, than sequence learning. 
That is, learning and/or executing stimulus–response as-
sociations. Tzvi et al. (2016) found that as more trials were 
completed on the SRT task, theta power decreased irre-
spective of whether a sequence or random motor response 
was generated.

1.1  |  The current study

The aim of the current study was to examine oscillatory 
activity during implicit motor sequence learning. In this 
study, healthy adults completed an SRT task. Both man-
ual responses and EEG were recorded. The task consisted 
of seven blocks of trials. The first and last block (i.e., Block 
1 & 7) comprised random trials and the remaining blocks 
(Blocks 2–6), sequence trials. The presence of sequence 
learning effects in oscillatory power and also manual re-
sponses were tested by contrasting data between the final 
random block and preceding sequence block (i.e., Block 
6 & 7). This contrast is commonly used to test sequence 
learning effects in behavioral and neuroimaging (fMRI/
PET) data on the SRT task, since it controls for the effects 
of general motor (i.e., stimulus response learning) learn-
ing (Clark & Lum, 2017; Hardwick et al., 2013; Janacsek 
et al.,  2020; Janacsek & Nemeth,  2013; Lum,  2020; 
Robertson, 2007). This specific comparison has not been 
tested in most past studies examining oscillatory activity 
on this task (Heideman et al., 2018; Meissner et al., 2018; 
Pollok et al., 2014). Thus, reported beta, alpha and/or theta 
power modulations previously observed on the SRT task, 
might not reflect sequence learning related brain activity. 
This possibility was also examined in the current study. 
General motor learning, which primarily encompasses 
learning stimulus–response associations, was examined 
by comparing differences in the data between the first and 
final random block (i.e., Block 1 & 7). Both blocks com-
prised random trials, thus potential differences in the data 
on this comparison would indicate improvements associ-
ated with providing a manual response to non-predictable 
stimulus presentations.

2   |   METHOD

2.1  |  Participants

A total of 50 healthy adults (33 female, 17 male) aged 
between 19.4 and 37.2 years (M = 24.0, SD = 3.8) partici-
pated in the study. Power analysis indicated a sample size 
of 50 participants provided a 90% chance of detecting a 
standardized mean difference of 0.5 between the random 
and sequence blocks. This corresponds to a medium ef-
fect size in Cohen's taxonomy (Cohen,  2013). The sam-
ple were predominantly right-handed. Handedness was 
screened using the Edinburgh Handedness Inventory 
(Oldfield, 1971). This instrument was scored on a range 
of −100 to 100 where positive values indicate a tendency 
for right handedness and negative values, left handed-
ness. The mean handedness score for the sample was 
61.7 (SD  =  57.9; Range: −100 to 100) and there were 
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43 participants with positive values (indicating right-
handedness). Almost all the sample held a university/col-
lege degree (n = 45). Written consent was obtained before 
taking part in the study. The study was approved by the 
Deakin University Human Research Ethics Committee 
and research protocols adhered to the Declaration of 
Helsinki (World Medical Association,  2001). All partici-
pants were provided with a $30 shopping voucher for tak-
ing part in the study.

2.2  |  Materials

2.2.1  |  Serial reaction time task

Participants were administered a version of Nissen and 
Bullemer's (1987) SRT task. Participants completed seven 
blocks of 60 trials. Each trial commenced with a blank 
screen (colored gray) for 500 ms. A visual stimulus then 
appeared in one of four horizontal positions for 650 ms. 
The only instruction provided to participants was to 
press one of four horizontally arranged buttons on a re-
sponse panel, that matched the visual stimulus' location. 
All participants operated the response panel using their 
right hand. Specifically, the 2nd through to 5th digit was 
used to press the left- to right-most buttons respectively. 
During testing, participants rested each finger on separate 
buttons. Participants could respond anytime during the 
650 ms period. For responses made before 650 ms, the vis-
ual stimulus would stay on screen for the remaining time. 
For example, if the participant made a response 400 ms, 
post stimulus onset, the visual stimulus would stay on the 
screen for a further 250 ms. This was also the case when 
participants pressed a button on the response panel that 
did not match the stimulus' location. Figure 1 summarizes 
the trial design.

Participants were unaware that on Blocks 2–6, hereafter 
referred to as the ‘sequence blocks’, the visual stimulus' lo-
cation on each trial followed a pre-determined 10 element 
sequence. Labelling the left-most position on the computer 
display that the visual stimulus could appear as 1, and 
right-most 4, the sequence was 3-4-1-2-4-1-3-4-2-1. This is a 
first order conditional sequence, in which each element in 
the sequence is predictive of the next. For example, spatial 
position ‘3’ in the sequence is always followed by position 
‘4’. It has been suggested this type of sequence is specif-
ically processed by the basal ganglia procedural memory 
system (Poldrack & Rodriguez, 2003). On Blocks 1 and 7, 
hereafter referred to as the ‘random blocks’, the visual stim-
ulus appeared pseudo-randomly in one of four positions 
on the display adhering to the following three constraints. 
First, the visual stimulus could not appear in the same 
location on two consecutive trials. Second, the number 
of times the visual stimulus appeared in each of the four 
spatial locations was the same as for the sequence blocks. 
For example, on each sequence block the visual stimulus 
appeared in Position 1, a total of 18 times. This was also the 
case for the random blocks. Third, the frequency of each 
pairwise transition in the random blocks matched the se-
quence blocks. For example, on each sequence block, the 
visual stimulus moved from Position 3 to Position 4 a total 
of 20 times. This was also the case on the random blocks. 
Unlike the sequence blocks, however, these pairwise tran-
sitions did not occur within a sequence. Thus, potential dif-
ferences in the data between sequence and random blocks 
is unlikely to be due to participants only learning pairwise 
transitions. Finally, the order of random stimulus presen-
tations on Block 1 and Block 7 differed.

The version of the SRT task used in the current 
study differed from the standard version (Nissen & 
Bullemer, 1987). First, there were no boxes on the display 
indicating visual stimulus' locations. Second, a different 

F I G U R E  1   Schematic representation 
of two trials from the serial reaction time 
task. Note the stimulus remained on 
screen for 650 ms irrespective of whether 
a correct, incorrect, or no response was 
made during that time
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visual stimulus appeared on each trial within a block. 
The stimuli comprised 60 different shapes (circles and 
polygons) presented in different colors (purple, green, 
blue, red, orange). Each stimulus subtended approxi-
mately 4.6° × 4.6° of visual angle. On each trial within 
a block, a visual stimulus was randomly selected with-
out replacement. Thus, on each block the order that the 
60 visual stimuli were presented differed. These mod-
ifications make it less likely that participants become 
aware of the sequence (Koch et al.,  2020; Lum,  2020). 
The SRT task was presented using E-Prime 2 software 
(Psychology Software Tools, Pittsburgh, PA).

Participants' performance on the SRT task was mea-
sured by accuracy and reaction times. A correct response 
was recorded when participants pressed the button on 
the response pad that matched the visual stimulus' loca-
tion on the display. All other responses were recorded as 
incorrect. Failure to provide a manual response to the vi-
sual stimulus within 650 ms was also coded as an incor-
rect response. Inspection of the accuracy data indicated 
participants were consistently responding appropriately 
to the visual stimulus across all blocks. The proportion 
of correct responses on each block approached ceil-
ing (Block 1: M  =  0.89, SD  =  0.11; Block 2: M  =  0.88, 
SD  =  0.08; Block 3: M  =  0.92, SD  =  0.08; Block 4: 
M = 0.91, SD = 0.09; Block 5: M = 0.92, SD = 0.08; Block 
6: M = 0.91, SD = 0.09; Block 7: M = 0.90, SD = 0.09). 
Reaction times recorded the time taken to provide a 
manual response following stimulus onset. Only reac-
tion times associated with a correct response were in-
cluded in the analyses. For each participant the mean 
reaction time for each block was computed. These data 
were submitted for analyses.

2.2.2  |  EEG acquisition

EEG were continuously recorded using a 25-channel mon-
tage as participants completed the SRT task. Events were 
inserted into the EEG data marking stimulus and manual 
response onset. EEG was acquired using a TMSi RefA bi-
osignal amplifier (Twente Medical Systems International, 
The Netherlands) via Ag-AgCl electrodes embedded into 
an elastic cap (Easycap, Herrsching, Germany). The data 
were acquired at a sampling rate of 2048 Hz with the com-
mon average used as the online reference. The electrodes 
were placed in positions Fp1, Fp2, F7, F3, Fz, F4, T7, C3, 
Cz, C4, T8, P7, P3, Pz, P4, P8, O1, O2, M1 (left mastoid) 
and M2 (right mastoid). Additional electrodes were placed 
on the left and right outer canthus as well as above and 
below the left eye to record blinks and eye-movements. 
Impedances were reduced to less than 5 kΩ before record-
ing commenced.

2.3  |  Procedure

Participants were individually tested in a laboratory set-
ting. They first completed a background survey and 
handedness inventory. After the EEG cap and electrodes 
were fitted, the SRT task was administered. To adminis-
ter the task, participants first completed 10 practice trials 
to ensure they understood the mapping between visual 
stimulus locations and manual responses. The test tri-
als, comprising the seven blocks, were then presented. At 
the conclusion of the task, participants were asked if they 
were aware of a sequence or pattern. All the participants 
included in this study indicated they were unaware that a 
sequence was present.

2.4  |  EEG offline pre-processing and 
time-frequency analysis

All processing of the EEG data were undertaken using 
the EEGLab Toolbox (Delorme & Makeig,  2004) and 
MATLAB scripts (Version 2021a; MathWorks, Natick, 
MA, USA) adapted from Cohen  (2014). A 0.1  Hz high 
pass FIR filter was first applied to the data before down 
sampling to 500 Hz. Line noise was then removed using a 
50 Hz notch filter followed by a 40 Hz lowpass FIR filter. 
Consistent with most previous research in this field, the 
continuous EEG were segmented into response-locked 
epochs (Heideman et al.,  2018; Meissner et al.,  2018, 
2019; Pollok et al.,  2014). Each epoch commenced 
1000 ms before a manual response was made and ended 
1000 ms after. The main analyses examined oscillatory 
power associated with ±500 ms of data surrounding 
each manual response. The data were segmented using 
a larger temporal window to avoid edge artifacts asso-
ciated with time-frequency decomposition (described 
below). Channels with excessive noise were identified 
and then interpolated (via spherical interpolation) using 
EEGLAB's pop_rejchan (threshold set at 5σ using kur-
tosis method) and pop_interp functions respectively. 
The data were then re-referenced to the average of the 
mastoid electrodes. Blinks and eye-movements were 
identified for removal using Independent Components 
Analysis run in EEGLAB (using the RUNICA algo-
rithm) and ADJUST (Mognon et al., 2011). Finally, ep-
ochs with a data point exceeding ±80 μV or associated 
with an incorrect manual response were excluded from 
further analysis. The average number of epochs, out of 
a maximum of 60, included in the final analyses are as 
follows: Block 1: M = 51.0 (SD = 6.6), Block 2: M = 50.2 
(SD  =  4.9), Block 3: M  =  52.5 (SD  =  5.2), Block 4: 
M = 51.1 (SD = 4.6), Block 5: M = 52.5 (SD = 5.1), Block 
6: M = 51.9 (SD = 5.5), Block 7: M = 52.4 (SD = 4.7).
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Oscillatory power from the EEG signal was extracted 
via time-frequency decomposition using complex Morlet 
wavelets defined as:

whereby frequency ( f ) ranged from 1 to 30 Hz, in 60 
logarithmically spaced steps. The width of the wavelet 
(� = n∕

[

2�f
]

) was defined in cycles (n), ranging from 2 to 
15 logarithmically spaced steps which provided reasonable 
frequency and temporal resolution. For each participant, 
trial (or epoch level) time-frequency data were aver-
aged separately for each block and channel. After time-
frequency decomposition, the data were further down 
sampled to 250 Hz in order to decrease the computational 
time associated with the statistical analyses (described 
below). The initial result of Morlet wavelet convolution 
was oscillatory power computed in μV2, but in a further 
step, data were decibel baseline corrected using the average 
power of the entire epoch. The final data analyzed were 
the change in oscillatory power from this baseline period, 
expressed in dB. This approach has previously been used 
to examine oscillatory activity on the SRT task (Meissner 
et al., 2018; Pollok et al., 2014). This type of correction was 
applied because on this task, there are no identifiable rest 
periods between trials which can be used to define a base-
line period; the end of one trial, marks the start of the next. 
Figure 2 presents baseline corrected power data averaged 
over all trials, blocks and participants at each electrode site.

2.5  |  Data analysis

The behavioral data analyzed were manual reaction times. 
The EEG data analyzed were oscillatory power, between 1 to 
30 Hz, occurring ±500 ms around each manual response. In 
order to reduce the number of statistical tests, time-frequency 
data were averaged across sets of electrodes which are de-
picted in Figure 3. A frontal electrode grouping was created 
by averaging data from electrodes F3, Fz and F4. A central 
electrode grouping was created by averaging time-frequency 
data from C3, Cz and C4. Finally, a parietal-occipital group-
ing was created by averaging data from electrodes P3, Pz, 
P4, O1 and O2. This grouping of electrodes was based on 
the results of previous studies that have found oscillatory 
power in one or more of these groupings is modulated dur-
ing implicit motor sequence learning (e.g., Frontal: Tzvi 
et al., 2016; Central: Meissner et al., 2018; Parietal-Occipital: 
Tzvi et al., 2016). Data from lateral electrodes (e.g., F7/F8, 
T7/T8) were excluded from the analyses to reduce the influ-
ence of muscle related artifacts on the data.

Manual reaction times were analyzed using a one-
way repeated measures ANOVA that tested the effect of 

Block (Block 1, Block 2, Block 3, Block 4, Block 5, Block 
6 & Block 7) on reaction times. A significant main effect 
of Block was then explored using two planned compari-
sons or contrasts. One contrast examined the presence of 
sequence learning effects, and the other, general motor 
learning effects (i.e., stimulus–response learning). The 
sequence learning contrast tested for differences between 
Block 6 (sequence trials) and Block 7 (random trials). The 
general motor learning contrast tested for differences in 
the data between Block 1 (random trials) and Block 7 
(random trials). Each contrast was tested using a paired 
samples t-test. For these analyses, p-values were corrected 
using the Bonferroni Procedure.

Time-frequency data were also analyzed with two 
contrasts that examined sequence learning and general 
motor learning effects in oscillatory power. Each contrast 
was computed separately at each electrode grouping (i.e., 
frontal, central, parietal-occipital) using permutation tests 
with cluster correction (Maris & Oostenveld, 2007). This is 
a data driven approach for identifying regions of interest 
in time-frequency maps, whilst maintaining alpha at .05. 
This approach has also been used in several past studies 
examining oscillatory activity during sequence learning 
(Heideman et al.,  2018; Meissner et al.,  2018). An over-
view of the procedure used for this study is now described.

Separate permutation tests were undertaken for the se-
quence learning and general motor learning contrasts and 
for each electrode grouping (i.e., frontal, central, parietal-
occipital). Permutation testing for the sequence learning con-
trast involved randomizing Block 6 and Block 7 labels, at the 
participant level, to create t-maps that assumed no reliable 
differences in the contrast. The approach used to test the gen-
eral motor learning contrast randomized Block 1 and Block 7 
labels. For each contrast, a total of 100,000 permutations were 
undertaken. Data from permutation testing were used to de-
fine a null distribution in order to threshold non-significant 
individual pixels (p < .05, two tailed) in t-maps of the ‘real’ or 
non-permutated data. Clusters were then identified in these 
t-maps. A cluster was defined as two or more connected sig-
nificant pixel values using MATLAB's ‘bwconncomp’ func-
tion. A cluster in the ‘real’ t-map was only retained if the 
absolute average t-value of the cluster, was greater than 97.5% 
(which corresponds to p < .05, two tailed) of average cluster 
t-values computed using the permutated t-maps.

Finally, a series of analyses examined the effect of 
handedness on the data. The results of these analyses 
are reported in the Supplementary data analysis section. 
Seven participants in the study were left-handed and oper-
ated the response panel with their right hand. Two sets of 
Supplementary analyses were undertaken examining the 
effects of handedness on the data. First, the correlation 
between performance on the SRT task and scores from 
the Edinburgh Handedness Inventory (Oldfield,  1971) 

ei2�fte−t2∕(2�
2),
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      |  7 of 16LUM et al.

were computed. No significant correlations were found. 
Second, time-frequency analysis and permutation testing 
were repeated, but only with right-handed participants. 
Overall, these analyses revealed that excluding left-
handed participants had no effect on the current results.

3   |   RESULTS

3.1  |  Analyses of manual reaction times

Figure  4 presents mean reaction times reported by 
block. This figure shows reaction times decreased 

across Blocks 1–6 before increasing on Block 7. The 
repeated measures ANOVA revealed a significant 
main effect of Block on reaction times (F [4.885, 
238.362]  =  27.225, p < .001, partial η2  =  .357). This 
analysis reports Greenhouse–Geisser corrected re-
sults, addressing violations in sphericity. Both the gen-
eral motor learning and sequence learning contrasts 
were significant. Reaction times on Block 7 were sig-
nificantly faster compared with Block 1 (t [49] = 2.796, 
pcorrected  =  .014, Cohen's d  =  0.395). Also, reaction 
times on Block 7 were significantly slower compared 
with Block 6 (t [49]  =  7.736, pcorrected < .001, Cohen's 
d = 1.094).

F I G U R E  2   Grand average time-
frequency plots at each electrode. Yellow 
indicates an increase in power (dB) from 
baseline, and blue a decrease. The time-
frequency plots show data averaged across 
trials, blocks and participants
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8 of 16  |      LUM et al.

3.2  |  Analyses of oscillatory power

Time-Frequency plots presenting oscillatory power 
(in dB) presented by Electrode Grouping (i.e., Frontal, 
Central, Parietal-Occipital) and Block (i.e., Block 1–7) are 
presented in Figure 5.

The results from the permutation tests of the general 
motor learning and sequence learning contrasts are pre-
sented in Figures 6 and 7 respectively. Permutation testing 
of the general motor learning contrast is shown in Panel 
A of Figure 6. The analysis identified a significant clus-
ter comprising frequencies between 7 and 13 Hz at frontal 

(p < .001), central (p < .001) and parietal-occipital (p < .001) 
electrode groupings. This cluster was present before a man-
ual response was made. The direction of the t-values indi-
cates power was higher on Block 7, compared with Block 
1. This trend is further illustrated in Panel B of Figure 6. 
This panel shows the average power of the 7–13 Hz clus-
ter, averaged across frontal, central and parietal-occipital 
sites, computed separately for each block. Paired sample 
t-tests with Bonferroni corrected p-values were used to 
examine general motor learning and sequence learning 
effects in these data. The analysis replicated the results 
from the permutation tests showing power increased from 
Block 1 to Block 7 (t [49] = 5.954, pcorrected < .001, Cohen's 
d = 0.842). The sequence learning contrast was also sig-
nificant for this cluster. Power increased from Block 6 to 
Block 7 (t [49] = 2.540, pcorrected = .028, Cohen's d = 0.359).

Permutation testing for the general motor contrast also 
revealed an additional cluster with a frequency range be-
tween 13 and 20 Hz. This cluster was only present at the 
parietal-occipital grouping. This cluster occurred at the time 
a manual response was made. For this cluster, the direction 
of the t-values indicates power was lower on Block 7, com-
pared with Block 1. Panel C of Figure 6 shows the averaged 
power for this 13–20 Hz cluster, at the parietal-occipital 
site, computed separately for each block. This panel shows 
power for this cluster decreased across the SRT task. This 
was confirmed using paired sample t-tests with Bonferroni 
corrected p-values. Power for the 13–20 Hz cluster signifi-
cantly decreased from Block 1 to Block 7 (t [49] = 4.218, 
pcorrected < .001, Cohen's d = 0.596). The sequence learning 
contrast was not significant for this cluster. The difference 
in power between Block 6 and Block 7 was not significant (t 
[49] = 0.115, pcorrected = .999, Cohen's d = 0.016).

The results of the permutation testing of the sequence 
learning contrast are presented in Panel A of Figure 7. The 
analysis identified significant clusters at frontal (p = .021) 
and central (p = .003) electrode groupings. The frequency 

F I G U R E  3   Overview of electrode groupings. The frontal 
grouping comprised electrodes F3, Fz and F4. The central grouping 
C3, Cz and C4. The parietal-occipital grouping P3, Pz, P4, O1 and 
O2. Electrodes excluded from the analyses were Fp1, Fp2, F7, F8, 
T7, T8, P7, P8, M1 and M2 (these are not shown in the figure)

F I G U R E  4   Mean reaction times 
reported by block. Letter in parenthesis 
denotes block comprised either random 
trials (R) or sequence trials (S). Error bars 
show standard error
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      |  9 of 16LUM et al.

range of the clusters was between approximately 4–7 Hz 
and mainly present before manual response onset. The di-
rection of the t-values in Panel A indicate power was higher 
on Block 7 (random) compared to Block 6 (sequence). 
Panel B shows the average power associated with these 
clusters computed separately for each block. Paired sam-
ple t-tests replicated the results from the permutation tests 
showing sequence learning effects. This analysis found 
that average power of the 4–7 Hz cluster on Block 7 was 
significantly higher compared to Block 6 (t [49] = 4.831, 
pcorrected < .001, Cohen's d  =  0.683). The general motor 
learning contrast (i.e., Block 1 vs. Block 7) for this cluster 
was not significant (t [49] = 1.881, pcorrected = .132, Cohen's 
d = 0.266).

3.3  |  Correlations between reaction 
times and oscillatory power

A set of exploratory analyses were undertaken to exam-
ine the relationship between the behavioral measures of 

learning, both general and sequence, and oscillatory power. 
An index of general motor learning was computed by sub-
tracting Block 7 reaction time data from Block 1 (i.e., Block 
1–Block 7). Positive values on this index indicate an increase 
in the speed responding to the visual stimulus at the end of 
the task, compared to the start. A sequence learning index 
was computed by subtracting Block 6 reaction times from 
Block 7 (i.e., Block 7–Block 6). Positive values for this index 
would indicate greater sensitivity to the sequence and greater 
levels of sequence learning. The general motor learning 
and sequence learning indices were also computed for the 
average of the 7–13 Hz (using data presented in Panel B of 
Figure 6), 13–20 Hz (Panel C of Figure 6) and 4–7 Hz (Panel 
B of Figure 7) clusters. Correlations between reaction times 
and oscillatory power were computed using Spearman's ρ. 
The general learning index, measured by reaction times, 
was not found to be significantly correlated with the corre-
sponding index for the 7–13 Hz (ρ = .010, p = .943), 13–20 Hz 
(ρ = .019, p = .864) or 4–7 Hz (ρ = −.005, p = .975) clusters. 
Similarly, the sequence learning index computed using re-
action times, was not found to be significantly correlated 

F I G U R E  5   Time-frequency plots showing change in oscillatory power from baseline (dB), reported by electrode grouping and block
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10 of 16  |      LUM et al.

with the average power from the sequence learning index 
from the 7–13 Hz (ρ = .156, p = .277), 13–20 Hz (ρ = −.100, 
p = .490) or 4–7 Hz (ρ = .108, p = .455) clusters.

4   |   DISCUSSION

This study examined changes in oscillatory power dur-
ing implicit motor sequence learning. Analyses of the 
behavioral data indicated sequence learning and general 
motor learning effects were present. Consistent with ear-
lier studies (Deroost et al., 2006; Lukács & Kemény, 2015; 
Lum,  2020; Lum et al.,  2019; Nissen & Bullemer,  1987; 
Thomas et al., 2004; Thomas & Nelson, 2001), sequence 
learning was evident from the analysis showing reaction 
times increased from the final sequence block to the fol-
lowing random block (see Figure 4). The results of the per-
mutation tests indicated theta was modulated by this type 

of learning, with power between 4–7 Hz found to be sig-
nificantly lower on the final sequence block than the fol-
lowing random block. Permutation tests did not indicate 
alpha and beta modulations were associated with sequence 
learning. Rather, oscillatory activity in these frequency 
bands appears to be related to general motor learning, that 
is learning or executing stimulus response associations. 
Permutation tests revealed 7–13 Hz power increased, and 
13–20 Hz power decreased from the first to last random 
block of trials. At the behavioral level, reaction times 
over these blocks became faster (see Figure 4), as seen in 
past research (Marcus et al.,  2006). This suggests a role 
of alpha and beta band activity with respect to generating 
increasingly faster manual responses to non-predictable 
visual stimuli. This may occur as stimulus–response asso-
ciations are established and then strengthened. Since the 
SRT task used in the current study only examined learn-
ing, our findings do not rule out the role of alpha and beta 

F I G U R E  6   Panel A shows time-frequency t-maps testing the general motor learning contrast. A manual response is made at time zero. 
In Panel A, the white contour shows a cluster that comprised power in the 7–13 Hz range at frontal, central and parietal-occipital electrode 
groupings. The direction of the t-values indicates power for these clusters was higher on Block 7 compared to Block 1. An additional cluster 
was found at the parietal-occipital grouping that comprised power in the 13–20 Hz range. Power in this frequency range was lower on Block 
7 compared to Block 1. Panels B and C show the average power associated with the 7–13 Hz and 13 - 20 Hz clusters respectively, reported by 
block. In these panels, error bars show standard error
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      |  11 of 16LUM et al.

oscillations in retention or consolidation processes (e.g., 
Pollok et al., 2014, 2015). Nevertheless, the study demon-
strates for the first time, that decreases in theta power are 
associated with implicit motor sequence learning on the 
SRT task.

In healthy controls, increases in theta power occur when 
completing a task that places greater demands on atten-
tional resources (Clayton et al., 2015; Sauseng et al., 2007) 
and temporal sequencing of information in declarative and 
working memory (Burke et al., 2014; Canolty et al., 2006; 
Herweg et al.,  2020; Roux & Uhlhaas,  2014). The results 
of the current study may indicate that these processes are 
disengaged during implicit forms of learning, since theta 
power was lower on sequence trials compared to random. 
One explanation for this finding is that theta desynchroni-
sation promotes implicit forms of sequence learning (e.g., 
Janacsek et al., 2012; Nemeth et al., 2013; Tóth et al., 2017). 
Janacsek et al.  (2012) proposed implicit learning of se-
quences and statistical regularities may be optimized when 
bottom-up processing of sensory information drives the 

learning. Put another way, top-down influences on learn-
ing may shift attention away from the regularities present 
in the sensory input and disrupt the learning process. In 
support of this position, Tóth et al. (2017) found that im-
plicit learning of a probabilistic sequence co-occurred with 
decreased functional connectivity between frontal and cen-
tral brain regions in the theta band. This decrease in func-
tional connectivity was considered to reflect attentional 
resources and working memory no longer playing a role 
during learning. This may have been the case in the current 
study given theta power modulations were also observed at 
frontal and central electrode groupings. Interestingly, the 
correlation between indices of sequence learning based 
on manual reaction times and theta power was not sig-
nificant. Also, the latency range of the 4–7 Hz cluster oc-
curred before a motor response was executed. This may 
reflect disengagement of top-down influences with respect 
to processing the visual stimulus, enabling the sequence to 
be discovered from the moving visual target, rather than 
directly influencing the speed of manual responses.

F I G U R E  7   Panel A shows time-frequency t-maps testing the sequence learning contrast. A manual response is made at time zero. 
In Panel A, the white contour shows a cluster that comprised power in the 4–7 Hz range at frontal and central electrode groupings. The 
direction of the t-values indicates power in the 4–7 Hz range was higher in Block 7 compared to Block 6. Panel B shows the average of the 
4–7 Hz cluster reported by block. Error bars show standard error
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12 of 16  |      LUM et al.

The pattern of theta modulations observed in the 
current study are inconsistent with the data presented 
by Meissner et al.  (2018). In their study investigating 
oscillatory activity in Parkinson's disease, implicit se-
quence learning was associated with an increase in theta 
power. One analysis revealed sequence learning was cor-
related with increases in theta power in the group with 
Parkinson's disease, but not controls. When considered 
within the framework outlined above, elevated levels of 
theta power during implicit learning may represent a mal-
adaptive response to processing patterns present in visual/
motoric information. This seems likely in Parkinson's dis-
ease given implicit motor sequence learning impairments 
are common in this disorder (Clark et al., 2014), along with 
atypical theta oscillatory activity (Geraedts et al., 2018). It 
will be interesting to test whether elevated theta levels are 
present on the SRT task in other disorders (e.g., Clark & 
Lum,  2017) who also exhibit implicit sequence learning 
impairments.

It is equally plausible, however, that the increase in 
theta power from sequence to random blocks occurred 
as a consequence of sequence learning. Frontal-central 
theta power is modulated by the attentional demands as-
sociated with processing and responding to sensory infor-
mation (Clayton et al., 2015). These types of modulations 
also occur when differences in sensory information can 
be detected. For example, frontal-central theta power in-
creases when participants detect infrequently occurring 
auditory or visual stimuli (Cacace & McFarland,  2003; 
Mazaheri & Picton, 2005). In the context of the SRT task, 
participants may notice slower manual responses on the 
random block (Rünger & Frensch,  2008), relative to the 
preceding sequence block, which in turn leads to an in-
crease in theta power. From this perspective, the theta 
modulations observed in this study may be an outcome 
of sequence learning. This interpretation may also explain 
the absence of a significant correlation between manual 
reaction times and theta power. To further clarify the role 
of frontal-central theta oscillations during implicit motor 
sequence learning, non-invasive brain stimulation could 
be used. There is evidence to suggest frontal theta power 
can be manipulated using transcranial electrical stimula-
tion or transcranial magnetic stimulation (e.g., Chander 
et al.,  2016; Desforges et al.,  2022). If theta oscillatory 
activity is instrumental in supporting implicit sequence 
learning, attenuating and/or enhancing power in this fre-
quency band should therefore promote or disrupt perfor-
mance on the SRT task.

Theta oscillations may also reflect the attentional de-
mands associated with general motor learning, in addition 
to sequence learning. Tzvi et al. (2016) found theta power 
decreased on the SRT task, irrespective of whether par-
ticipants were responding to sequence or random trials. 

This result was only observed at parietal electrodes, but 
also noted to have been likely present at unanalysed occip-
ital electrodes as well. This finding was interpreted to sug-
gest a decline in the attentional demands associated with 
providing a manual response to a visual target, that likely 
occurred as stimulus–response associations were estab-
lished via repetition. This result was not observed in the 
current study. Permutation testing of the general motor 
learning contrast did not reveal theta power modulations. 
Also, theta power increased from the final sequence to fol-
lowing random block at frontal and central electrode sites. 
Differences in the analysis of the EEG data may explain 
these inconsistent findings and reveal distinct theta re-
lated processes during learning. Notably, Tzvi et al. (2016) 
averaged power over a 5-second window. This approach 
may be ideal for detecting overall changes in oscillatory 
power, that are the sum of all cognitive and motor pro-
cesses associated with completing the SRT task. In con-
trast, time-frequency decomposition, which was used 
in this study and elsewhere (e.g., Heideman et al., 2018; 
Meissner et al., 2018), is better suited for detecting changes 
in oscillatory power associated with a specific event, such 
as executing a motor response or processing a visual stim-
ulus. Thus, the literature may be indicating theta oscil-
lations do not serve a singular function during implicit 
motor sequence learning. Rather, theta activity from dis-
tinct sources may independently support relatively micro 
level (e.g., executing a manual response/visual stimulus 
processing) and macro level processes (e.g., completing 
the SRT task). This possibility can be investigated in future 
research using high density electrode M/EEG recordings 
that permit distinct sources of theta power in the brain to 
be identified (e.g., Beese et al., 2017).

The results of this study also shed new light on the 
function of alpha and beta oscillations during implicit 
sequence learning. Permutation testing did not reveal 
sequence learning effects in the alpha or beta bands. 
Oscillatory activity in both frequency bands, however, 
was found to be related to general motor learning. First, 
permutation testing revealed an increase in alpha power 
(7–13 Hz) from the first to last random block. When 
completing visual-motor tasks, increases in alpha power 
reflect a decrease in levels of cortical activity associated 
with processing visual information and/or executing a 
manual response (Pfurtscheller,  1992; Pfurtscheller & 
Da Silva, 1999). Thus, it seems that the cortical resources 
needed to process a non-predictable visual target and/or 
execute a motor response decreased with practice, irre-
spective of whether a sequence was present. This likely ex-
plains the result of a t-test demonstrating 7–13 Hz power 
was significantly higher on the final random (Block 7) 
block, compared with the first random block (Block 1) 
(see Panel B of Figure  6). Learning stimulus–response 
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associations is one factor that likely facilitated this out-
come, since activity in this frequency band was not found 
by the permutation test of sequence learning effects.

Second, beta power (13–20 Hz) declined from the 
first to final random block. Decreases in beta power or 
beta desynchronisation, appear to support cortical re-
organization associated with motor learning (Engel & 
Fries, 2010). The results obtained in the current study sug-
gest this was related to stimulus–response learning, rather 
than sequence learning. Indeed, in the current study, beta 
power decreased across the SRT task and was not sensitive 
to sequence learning effects (see Panel C of Figure 6). This 
result is not without precedent. Pollok et al.  (2014) also 
found no significant differences in beta power between 
random and sequence trials on the SRT task. Also, van der 
Cruijsen et al. (2021) found beta power was not associated 
with explicit motor sequence learning, after controlling 
for oscillatory activity related to generating a manual 
response. These findings might be indicating beta oscil-
lations play no direct role in sequence learning, beyond 
supporting movement (Pfurtscheller & Da Silva, 1999), for 
example, pressing a button on a response panel. This in-
terpretation may explain the non-significant correlations 
between beta power and the manual reaction time indices 
of learning, observed in the current study.

Beta oscillations, however, may be needed for the long-
term storage or retention of an implicitly learnt motor 
sequence. Pollok et al.  (2014) found beta power cor-
related with a measure of sequence retention presented 
15-minutes after the initial learning. Also, the beta power 
modulations on the SRT task observed by Heideman 
et al. (2018) may be more closely related to retention than 
learning. In that study, significant differences in beta 
power were observed between sequence and random tri-
als, using an SRT task that comprised 864 sequence tri-
als and administered over 45 minutes. As a comparison, 
the SRT task used in the current study comprised 300 se-
quence trials and was completed in around 10 minutes.

Beta oscillations may be specifically involved in sta-
bilizing motor sequence knowledge, after learning has 
occurred. Pollok et al.  (2015) administered transcranial 
alternating current stimulation over the primary motor 
cortex as participants completed the SRT task. The fre-
quency of the alternating current used in that study aimed 
to increase beta or alpha oscillatory power (e.g., Berger 
et al., 2018). Following alpha and sham/placebo stimula-
tion, the ability to execute the motor sequence was poorer 
after an interference block of trials was presented. The in-
terference block, however, had no effect on executing the 
motor sequence following beta stimulation.

Finally, an important limitation associated with this 
research is the extent theta power modulations reflect im-
plicit learning. In the current study, sequence awareness 

was assessed by asking participants if they detected a 
sequence or pattern in the location of the visual stimuli 
after they completed the SRT task. A weakness with this 
approach, however, is that awareness of the sequence is 
probed after the random block of trials has been presented 
(Eimer et al., 1996). As a consequence, participants who 
do not indicate that a sequence was present, may be re-
sponding to the random, rather than sequence block. In 
response to this problem, several learning paradigms have 
been developed that aim to quantify the effects of im-
plicit (or unconscious) and explicit (conscious) influences 
on learning and memory (Jacoby,  1991). This approach 
has been extended to study sequence learning (Jiménez 
et al., 1996). It will be important for future studies to use 
this methodology to better understand the oscillatory 
dynamics associated with implicit and explicit forms of 
learning.

5   |   CONCLUSION

The main finding to emerge from our study was that 
sequence learning related power modulations were ob-
served in the theta band, but not alpha or beta. During 
implicit sequence learning theta desynchronisation may 
indicate disengagement of top-down influences on sen-
sory processing, that promotes learning. Alternatively, 
theta power modulations may be an outcome of se-
quence learning. Specifically, changes in this frequency 
band may reflect the sensitivity of the sensory system to 
the presence or absence of a sequence. The study find-
ings have implications for our understanding of the bio-
logical basis of implicit motor sequence learning deficits 
in a range of neurodevelopmental, neurodegenerative 
and psychiatric disorders who typically perform poorly 
on the SRT task (Clark & Lum,  2017). For example, 
studying theta power in these groups may reveal an elec-
trophysiological correlate of implicit sequence learning 
impairments. Based on the results of the current study, 
elevated levels of theta power on the SRT task may be 
associated with suboptimal learning. Along with past re-
search, the current study advances our understanding of 
the relationship between cortical oscillations and motor 
learning, which will be important to elucidate the neu-
ral processes underpinning skill acquisition in healthy 
and disordered populations.
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