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Abstract 

Brain network modularity analysis has attracted increasing interest due to its capability in 

measuring the level of integration and segregation across subnetworks. Most studies have focused 

on extracting modules at a single level, although brain network modules are known to be organized 

in a hierarchical manner. A few techniques have been developed to extract hierarchical modularity 

in human functional brain networks using resting-state functional MRI data; however, the focus of 

those methods is binary networks produced by applying arbitrary thresholds of correlation 

coefficients to the connectivity matrices. In this study, we propose a new multi-subject spectral 

clustering technique, called Group-level Network Hierarchical Clustering (GNetHiClus), to 

extract the hierarchical structure of the functional network based on full weighted connectivity 

information. The most reliable results of hierarchical clustering are then estimated using a 

bootstrap aggregation algorithm. Specifically, we employ a voting-based ensemble method, i.e. 

majority voting; random subsamples with replacement are created for clustering brain regions, 

which are further aggregated to select the most reliable clustering results. The proposed method is 

evaluated over a range of group sample sizes, based on resting-state fMRI data from the Human 

Connectome Project. Our results show that GNetHiClus can extract relatively consistent 

hierarchical network structures across a range of sample size investigated. In addition, the results 

demonstrate that GNetHiClus can hierarchically cluster brain functional networks into specialized 

subnetworks from upper-to-lower level, including the high-level cognitive and the low-level 

perceptual networks. Conversely, from lower-to-upper level, information processed by specialized 

lower-level subnetworks are integrated into upper-level for achieving optimal efficiency for brain 

functional communications. Importantly, these findings are consistent with the concept of network 



segregation and integration, suggesting that the proposed technique can be helpful to promote the 

understanding of brain network from a hierarchical point of view. 
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INTRODUCTION 

    Modularity of brain networks provides selective adaptability, which has been demonstrated to 

play a key role in developmental optimization of the human brain (Meunier et al., 2009a). Hence, 

the detection of such community structures within brain networks, namely communities or 

modules, has attracted increasing interest (Meunier et al., 2009b, Ferrarini et al., 2009). Methods 

have been proposed to seek the optimal modules for a variety of complex networks (i.e. not limited 

to brain networks); a fundamental characteristic of such “modular” system is that nodes within 

modules are densely connected, whereas cross connections between modules are sparser (Newman, 

2006, Newman and Girvan, 2004).  

    Importantly, Simon proposed that most complex systems are organized in a hierarchical manner, 

introducing the notion of “nearly-decomposable systems” (Simon, 1962), which has been well-

accepted as fundamental for cognitive and computational neuroscience. In a stricter sense, a system 

is decomposable if its function can be decomposed to the sum of the independent functions of its 

parts. Furthermore, Simon suggested that hierarchies reduce the complexity of systems, which 

supports the feature of modularity. In this regard, a module (or a subsystem) can be considered as 

a self-enclosed unit that works almost independently, regardless of the changes that occur in other 

modules. Human brain network is an instantiation of such a hierarchically decomposable system.  

Hierarchical modular networks 

    Previous studies support the concept that a brain functional network has an intrinsic hierarchical 

structure (Moretti and Munoz, 2013). However, most previous studies focused on studying 

modularity at a single level of the community structure, without mapping the properties or 

functions of the sub-modular communities at other hierarchical levels (Chen et al., 2008, Meunier 



et al., 2009a). Extracting hierarchical structures from the brain network should help gain deeper 

insights and advance our understanding of brain organization from a network point of view.  

Weighted vs. binary networks 

    There have been few studies developed to extract the hierarchical sub-networks. A recent study 

investigated the human functional brain networks at several hierarchical levels by applying a 

method for extracting hierarchical sub-networks (Meunier et al., 2009b). In another study, an 

approach was proposed to extract hierarchical functional modularity using an unbiased clustering 

coefficient (Ferrarini et al., 2009). Hierarchical functional modularity was also investigated in two 

more recent studies (Bassett et al., 2010, Power et al., 2011). Notably, all these studies require 

setting an arbitrary threshold for the correlation coefficient for measuring functional connectivity 

strength; different thresholds would unfavorably lead to distinct clustering outcomes. Furthermore, 

although binary networks obtained by applying arbitrary thresholds remain the most common 

approach employed for network analysis, weighted networks are increasingly recognized as they 

carry continuously characterization of brain connectivity (Bassett and Bullmore, 2016). Applying 

arbitrary thresholds could impose a detrimental effect on the subsequent network analyses 

(Garrison et al., 2015); a binarized connectivity matrix that discards putative connectivity strength 

might further deviate network measures from realistic biological connectivity, leading to 

compromised network analysis results. 

Group-level vs individual-level networks 

    In general, functional networks are analyzed at either individual- or group-level. While the 

former could be important for some applications, such as subject-specific treatment (so-called 

precision medicine), its use has been limited due mainly to the relatively low signal-to-noise ratio 



of fMRI data. Therefore, group-level network analysis has been most commonly employed. Brain 

functional networks at group-level are of great interest regarding probing the mechanism of 

complex brain function, and how networks change across disease condition and mental states. 

Group-level analyses have been mostly performed via the following ways: (a) direct averaging of 

individual-level networks across the group to obtain a single representative network for the group 

(Achard et al., 2006, Liang et al., 2014); or (b) estimating group-level networks by accounting for 

inter-subject variability with machine learning techniques (Varoquaux et al., 2010, Ng et al., 2013, 

Liang et al., 2016, Liang et al., 2017). Despite the popularity of the former approach, it fails to 

consider the variation among individual subjects. Thus, the latter studies advocate the 

incorporation of individual-level constraint to increase their robustness.   

    In this study, our objective is to robustly identify functional subnetworks of multiple hierarchical 

levels, directly from full weighted networks without filtering networks using arbitrary thresholds. 

To achieve this aim, we propose a novel multi-subject spectral clustering method in conjunction 

with a bootstrap ensemble learning technique, called Group-level Network Hierarchical Clustering 

(GNetHiClus). Further, the performance of GNetHiClus is assessed in terms of robustness and 

reproducibility based on resting-state fMRI data downloaded from the Human Connectome Project 

(http://www.humanconnectome.org, HCP).  

MATERIALS AND METHODS 

Motivation for developing GNetHiClus  

    There have been a variety of clustering algorithms available, of which the spectral clustering 

approach is very useful in hard, nonconvex clustering problems (Donath and Hoffman, 1973). 

Spectral clustering views the data clustering as a graph partitioning problem without relying on 

http://www.humanconnectome.org/


any assumption on the form of data clustering. As such, the clustering results obtained by spectral 

clustering generally are more accurate than other approaches. Furthermore, spectral clustering can 

be easily implemented by applying linear algebra methods. Overall, therefore, spectral clustering 

provides a very efficient approach for clustering.  

    For conventional spectral clustering, k-means clustering is further applied to the eigenvectors 

obtained with spectral clustering, in order to determine the correct number of clusters. However, 

k-means clustering could be sensitive to initial conditions; subsequent analyses might be 

unfavorably affected by such uncertainty. Furthermore, such standard spectral clustering 

approaches are limited to extracting modularity at one particular level while ignoring hierarchical 

network topology. 

    To address the abovementioned limitations, we propose a hierarchical spectral clustering 

approach based on recursive bi-clustering. Specifically, subnetworks at the next level are obtained 

by subdividing each subnetwork at the current level, thereby providing detailed hierarchical 

network topology across multiple levels. Importantly, each bi-clustering process is exclusively 

based on spectral clustering, without being subject to the uncertainty issues intrinsic to k-means 

clustering.  

    In this study, we extend the multi-view spectral clustering technique (Kumar et al., 2011) to a 

multi-subject scenario, which could effectively integrate useful inter-subject information from 

every individual subject within a group via regularization, thereby achieving more reliable 

clustering results. By combining the hierarchical bi-clustering and multi-view spectral clustering 

techniques, we propose the GNetHiClus method to identify functional subnetworks at 

hierarchical-level by sharing individual-network information across subjects.  



The spectral clustering technique 

Generally, spectral clustering is implemented as follows: 

(1) Adjacency-matrix: For a given set of data points 𝑥1, … , 𝑥𝑛, a similarity graph 𝐺 = (𝑉𝑡, 𝐸) can 

be employed to represent the data, with  𝑉𝑡 = {𝑣1, … , 𝑣𝑛} and E representing vertices and edges 

respectively. The adjacency-matrix 𝐴 = (𝑎𝑖,𝑗)𝑖,𝑗=1,…,𝑛 of the graph is employed to characterize 

the similarity between vertices 𝑣𝑖 and 𝑣𝑗 , with a nonnegative weight 𝑎𝑖𝑗 .  

(2) Normalized adjacency-matrix (Chung, 1997) 

                                      𝑁1   = 𝐷−1/2𝐴𝐷−1/2                                                                          (1) 

Where the degree-matrix D is defined as diagonal matrix with node degrees 𝑑1, … , 𝑑𝑛  on the 

diagonal. To make sure normalized adjacency matrix is symmetric, we let 𝑁 = (𝑁1 + 𝑁1
𝑇)/2. 

Spectral clustering algorithm solves the following optimization problem for the normalized 

adjacency-matrix N: 

                              
𝑚𝑎𝑥

𝑈 ∈ 𝑅𝑛×𝑘 𝑡𝑟(𝑈𝑇𝑁𝑈), s. t. 𝑈𝑇𝑈 = 𝐼,  

where tr represents the trace of a matrix. 

(3) Compute k eigenvectors corresponding to the k largest eigenvalues. Specifically, here we 

consider k=2 (with two eigenvectors 𝑢1  and 𝑢2) because our proposed approach relies on 

iterative bi-clustering. In particular, the second largest eigenvector 𝑢2 is also called a Fiedler 

vector, which can be used to divide its elements into two clusters based on their associated 

signs (Fiedler, 1973), i.e. a cluster corresponding to the data points with elements of “+” sign 

and another cluster with those that have “-” sign (see Figure 1 for an illustrative example). 

The original multi-view spectral clustering approach 



    Basically, a multi-view spectral clustering approach can be considered as a way to extract 

information from different data representations (such as multi-modality or multi-subject data) to 

achieve more accurate clustering results. While multiple views of data might be available in many 

scenarios, such complementary information cannot be fully utilized without an appropriate multi-

view approach. To fully utilize such complementary information (i.e. information across subjects 

in our study), a co-regularized multi-view spectral clustering was proposed by Kumar and 

colleagues (Kumar et al., 2011); they demonstrated the advantages of their approach over other 

existing techniques for data clustering. In that study, a centroid-based co-regularization was 

proposed for regularizing each view-specific set of eigenvectors 𝑈(𝑣)  (v=1,2,…,m) towards a 

common centroid 𝑈(∗), with m representing the total number of views. The objective function is 

formulated as: 

        max
𝑈(1),𝑈(2),…,𝑈(𝑚),𝑈∗∈𝑅𝑛×𝑘

∑ [𝑡𝑟(𝑈(𝑣)𝑇
𝑁(𝑣)𝑈(𝑣))𝑚

𝑣=1 + 𝜆𝑣𝑡𝑟(𝑈(𝑣)𝑈(𝑣)𝑇
𝑈∗𝑈∗𝑇

)],                      (2) 

               s. t. 𝑈(𝑣)𝑇
𝑈(𝑣) = 𝐼, ∀1 ≤ 𝑣 ≤ 𝑚, 𝑈∗𝑇

𝑈∗ = 𝐼. 

    This objective function essentially tries to estimate consensus eigenvectors 𝑈(∗) from m views 

through regularization; each regularization term is weighted by a weighting parameter 𝜆𝑣  that 

reflects the importance of view v.  

    The objective function can be solved in an alternating way that optimize one single view-

specific eigenvector 𝑈(𝑣) at a time, while fixing all other variables. Thus, the objective function 

for optimizing 𝑈(𝑣) for view v is reformulated as follows: 

    max
𝑈(𝑣)∈𝑅𝑛×𝑘

𝑡𝑟(𝑈(𝑣)𝑇
𝑁(𝑣)𝑈(𝑣)) + 𝜆𝑣𝑡𝑟(𝑈(𝑣)𝑈(𝑣)𝑇

𝑈∗𝑈∗𝑇
),  s. t. 𝑈(𝑣)𝑇

𝑈(𝑣) = 𝐼                          (3) 

  Eq. (3) can be written as follows: 



               max
𝑈(𝑣)∈𝑅𝑛×𝑘

𝑡𝑟(𝑈(𝑣)𝑇
(𝑁(𝑣) + 𝜆𝑣𝑈∗𝑈∗𝑇

)𝑈(𝑣)), s. t. 𝑈(𝑣)𝑇
𝑈(𝑣) = 𝐼                                    (4)       

This provides a standard spectral clustering objective for 𝑈(𝑣)  with a modified normalized 

adjacency-matrix  𝑁(𝑣) + 𝜆𝑣𝑈∗𝑈∗𝑇
.                              

Next, consensus 𝑈(∗) is optimized by keeping all view-specific eigenvectors 𝑈(𝑣) fixed. With Eq. 

[2], 𝑈(∗) can be obtained by solving the following equation: 

                   max
𝑈∗∈𝑅𝑛×𝑘

∑ 𝜆𝑣𝑡𝑟(𝑈(𝑣)𝑈(𝑣)𝑇
𝑈∗𝑈∗𝑇

)𝑣 ,  s. t. 𝑈(∗)𝑇
𝑈(∗) = 𝐼                                            (5) 

The cyclic property of matrix traces (i.e. for square matrices A, B and C, 

Tr(ABC)=Tr(BCA)=Tr(CAB)) is then applied to reformulate Eq. [5] as a standard spectral 

clustering objective for 𝑈(∗) as follows:  

                max
𝑈∗∈𝑅𝑛×𝑘

𝑡𝑟(𝑈∗(𝑇)
(∑ 𝜆𝑣(𝑈(𝑣)𝑈(𝑣)𝑇

)𝑣 )𝑈∗),  s. t. 𝑈(∗)𝑇
𝑈(∗) = 𝐼                                       (6) 

with a modified normalized adjacency-matrix Nm= ∑ 𝜆𝑣(𝑈(𝑣)𝑈(𝑣)𝑇
)𝑣 . 

    Eq. [6] could be reformulated as max
𝑈∗∈𝑅𝑛×𝑘

𝑡𝑟(𝑈∗(𝑇)
𝑈∗),  s. t. 𝑈(∗)𝑇

𝑈(∗) = 𝐼; the solution to this 

equation can be obtained by using the standard spectral clustering approach (Ng et al., 2002), given 

the provided standard spectral clustering objective for 𝑈(𝑣) (𝑣 = 1,2, … , 𝑚) and 𝑈(∗). In practice, 

the multi-view spectral clustering approach is iteratively implemented; the clustering procedure 

stops when the difference in value of objective function between consecutive iterations falls below 

a relatively low threshold (𝜀 = 10−4) (Kumar et al., 2011), suggesting that the optimal solution is 

achieved. 

The proposed GNetHiClus approach 



GNetHiClus consists of 2 parts (part I and II) - A flowchart is shown in Figure 2: 

(I) The multi-subject spectral clustering described above is used to estimate a consensus (group-

level) eigenvector of normalized adjacency-matrices and consistent individual-level eigenvectors 

and eigenvalues across the group. It includes the following steps: 

(a) Using BOLD fMRI data to generate an adjacency-matrix 𝐴(𝑣) for a subject v (v=1,...,m), 

where m is the number of subjects within the group. 

(b) Calculating normalized adjacency-matrix 𝑁1
(𝑣) = 𝐷(𝑣)−1/2

𝐴(𝑣)𝐷(𝑣)−1/2
, D: degree-

matrix. 𝑁 = (𝑁1 + 𝑁1
𝑇)/2. 

(c) Calculating eigenvectors 𝑈(𝑣) by eigenvalue-decomposition of 𝑁(𝑣). In particular, we are 

interested in the second eigenvalue and eigenvector (see (h) below).  

(d) Updating group consensus 𝑈𝐺 : solving max
𝑈𝐺∈𝑅𝑛×𝑘

𝑡𝑟{𝑈𝐺𝑇
(∑ 𝜆𝑣(𝑈(𝑣)𝑈(𝑣)𝑇

))𝑈𝐺},𝑣  

s. t. 𝑈𝐺𝑇
𝑈𝐺 = 𝐼, by eigenvalue-decomposition on ∑ 𝜆𝑣(𝑈(𝑣)𝑈(𝑣)𝑇

)𝑣 , with 𝑈(𝑣) from (c) for 

first iteration, n: number of nodes, k: number of clusters, 𝜆𝑣: weight (i.e. the ‘importance’ of 

subject v, 𝜆𝑣 = 1 − 𝐷 , with D representing disagreement between subjects (views) (see 

Kumar et al., 2011 for the calculation of D (Eq. 2)); Note: k=2 due to bi-clustering in our 

study, therefore k=2 for GNetHiClus). 

(e) Updating 𝑈(𝑣): solving max
𝑈(𝑣)∈𝑅𝑛×𝑘

𝑡𝑟{𝑈(𝑣)𝑇
(𝑁(𝑣) + 𝜆𝑣𝑈𝐺𝑈𝐺𝑇

)𝑈(𝑣)}, s. t. 𝑈(𝑣)𝑇
𝑈(𝑣) = 𝐼, by 

eigenvalue-decomposition on 𝑁(𝑣) + 𝜆𝑣𝑈𝐺𝑈𝐺𝑇
, with all other 𝑈(𝑣) and 𝑈𝐺 fixed. 

(f) Updating 𝑈(𝑣) and 𝑈𝐺 iteratively via (d) and (e) until convergence (Kumar et al., 2011), 

yielding final estimates of 𝑈𝐺, 𝑈(𝑣) and 𝐸𝑉(𝑣) (i.e. eigenvalues). 

(II) The hierarchical-clustering is used to hierarchically divide the networks (or subnetworks) into 

2 clusters downstream from the current level using 𝑈𝐺, 𝑈(𝑣) and 𝐸𝑉(𝑣) from (I). 



(g) For each cluster, if the median of Fiedler eigenvalues of all individual subjects across the 

group is positive (i.e. more than half of the subjects have a positive second largest eigenvalue), 

continue to step (h); otherwise, stop performing further clustering; 

(h) The nodes are assigned into 2 different clusters based on the signs of the Fiedler vectors 

(i.e. “+” or “-”).  

(i) Furthermore, since brain subnetworks tend to be bilateral (Tyszka et al., 2011, Meunier et 

al., 2009b), homotopic brain regions are forced to be present in the same subnetworks to which 

the homotopic regions are more likely belonging, which is determined as follows: 

     (1) For region i (and j), whether i (and j) is identified in cluster A or cluster B is firstly 

determined at individual-level, i.e. total numbers of subjects that vote for region i (and j) to 

be in clusters A and B are counted; 

    (2) Then, for region i (and j), the magnitudes of eigenvector entries corresponding to region 

i are summed across those subjects identifying i (and j) to be in the cluster A at individual-

level, i.e. SA(i) and SA(j) are computed; 

    (3) Similarly, for region i (and j), the magnitudes of eigenvector entries corresponding to 

region i are summed across those subjects identifying i (and j) to be in the cluster B at 

individual-level, i.e. SB(i) and SB(j) are computed; 

    (4) Finally, if SA(i) +SA(j) > SB(i) + SB(j), then the (i,j) pair is assigned to cluster A, 

otherwise, it is assigned to cluster B. 

 (j) Two new clusters obtained at the current-level are fed into (I) recursively, until all clusters 

cannot be divided based on the criteria in (g). 



Matlab code to perform the proposed method can be downloaded from 

https://www.florey.edu.au/science-research/scientific-services-facilities/human-

mri/imaging-software.1 

MRI Data Acquisition 

Resting-state FIX-denoised (Salimi-Khorshidi et al., 2014) fMRI data of 133 subjects (n=133) 

were downloaded from the ConnectomeDB (https://db.humanconnectome.org). Data of 1200 

volumes had been acquired in a Siemens 3T Connectome Skyra system, using a gradient-echo 

slice-accelerated multiband EPI sequence at 2 mm isotropic resolution, with TR/TE = 720/33.1 

ms. See (Glasser et al., 2013; Van Essen et al., 2013) for HCP data acquisition details. 

Data Analysis 

Network construction 

Networks are constructed as follows: (i) the automated anatomical labeling (AAL) template 

(Tzourio-Mazoyer et al., 2002) was used to parcellate the whole-brain into 90 regions (cerebellum 

was excluded); (ii) region-wise mean time-series were calculated across all voxels within each 

region (size: 90×1200); (iii) individual-level functional connectivity matrix (size: 90×90) was 

constructed from region-wise mean time-series of each subject using Pearson-correlation. 

Hierarchical clustering results: statistical modeling and analyses 

GNetHiClus is implemented with the following two-level analysis. Firstly, the first-level analysis 

for selecting most representative clustering results across bootstrap datasets. Secondly, the second-

                                                           
1 Note to the Editor and reviewers: Please note that this code will be uploaded on acceptance of a final version of the 

manuscript. 

https://db.humanconnectome.org/


level analysis for identifying the final clustering results with the highest probability across 

repetitions of the first-level analysis. 

(i)  Bootstrapping: since GNetHiClus is implemented across all subjects, only a single group 

outcome is obtained, to which regular statistical analyses could not be applied. To address this 

issue, the bootstrap method relying on random subsampling with replacement was employed. For 

a given number of total subjects (i.e. a subset of the maximum 133 subjects, which was considered 

to investigate the effect of sample size), random subsampling was implemented using a fixed ratio 

of ~60% with a variable subsampling size (i.e. the ratio between the number of randomly-

subsampled subjects and the total number of subjects in the pool): 75/125, 

70/117,65/108,60/100,55/92, and 50/83. As an example, for the case of 75/125, each subsampled 

dataset was obtained by randomly selecting 75 subjects out of a total of 125 subjects; this procedure 

was then repeated 100 times to generate 100 subsampled datasets. We sought to identify the 

optimal implementation strategies for the bootstrapping among all these 6 cases, i.e. we aim to 

determine the optimal subsamples (and total subjects) that can achieve robust hierarchical 

clustering results. As more reliable results are expected when using larger sample sizes, the 

clustering results of 80/133 are employed as a ‘ground-truth’ for evaluating the other results with 

smaller sample sizes. 

(ii) Extraction of the most representative clustering results for each of the 6 cases: (a) GNetHiClus 

was applied to each of the 100 bootstrap subsamples to extract hierarchical subnetworks; (b) 

normalized mutual information (NMI) (Fred and Jain, 2003) was calculated between each 

subsample and the remaining 99 subsamples, yielding a 100×99 matrix of NMI values; (c) the 99 

NMI values were averaged, yielding a vector of 100×1 mean NMI (mNMI) values; (d) the 

subsample having the highest mNMI was selected from the vector of 100 mNMIs; (e) hierarchical 



subnetworks that produced the highest mNMI were designated as the most reliable clustering 

results. The reasons for choosing NMI to evaluate the proposed method are as follows: (a) It is a 

good measure for determining the performance of clustering; and (b) NMI can be used to compare 

clustering results having different number of clusters (Danon et al., 2005). In general, the higher 

NMI values indicate the more accurate clustering results are obtained (NMI∈ [0,1], with NMI=1 

indicating perfect clustering results. 

(iii) Measurement of probability of clusters: (a) the step (ii) was repeated 100 times to obtain 100 

groups of clusters (i.e. 10,000 bootstraps), of which, each group was expressed as a 90×90 matrix 

and all members of each cluster was denoted with a unique number; (b) for each of the 100 groups 

(i.e. 100 matrices of size 90×90), we counted the total number of occurrences of each cluster, 

Tcluster, by searching over all clusters and all groups; (c) for each of the 100 groups, the total number 

of occurrences of all clusters, Tall, belonging to the group was calculated; (d) The group with the 

maximum Tall was then selected as the optimal group, which yielded the clustering results with the 

highest overall probability; (e) those clusters corresponding to the identified optimal group were 

designated as the final clustering results; (f) for the obtained clustering results, the probability of 

each cluster, p, was calculated as p= Tcluster/100. 

RESULTS 

    Our results show that GNetHiClus extracts 13 functional subnetworks (the green clusters at the 

bottom level) from resting-state HCP fMRI data for subsample/sample sizes of 75/125 (Figure 3). 

Importantly, the results suggest that GNetHiClus can automatically organize the whole brain 

functional networks into a hierarchical ‘tree’ structure where each branch represents a well-

established functional subnetwork of the human brain. As shown in Figure 3, the whole-brain 

network is first divided into low-level perceptual and high-order cognitive networks, from which 



well-known resting-state brain networks are hierarchically clustered; these subnetworks include 

visual, auditory/somatomotor, default-mode, and attention networks.  

Specifically,13 functional subnetworks extracted at the finest levels, i.e. 4th&5th levels in Figure 

3, are shown in Figure 4. The nodes of these undividable subnetworks are displayed using the AAL 

atlas. To facilitate interpretation, the undividable subnetworks are aggregated (but colored 

differently to differentiate the clusters) into 4 well-known resting-state networks, i.e. visual, 

auditory/somatomotor, default-mode and attention networks. Table 1 summarizes the brain nodes 

of each cluster for the case of using subsamples/samples = 75/125,70/117, 60/100 & 55/92 

showing high correspondence between those clustered brain regions with their roles known in 

human brain functions. 

As expected, increasing subsample/sample sizes improved clustering results. For 70/117 and 

75/125, the clustering results were consistent with 80/133, as shown in Figure 5(a), also achieving 

more persistent probabilities of all clusters (Figure 6 (e) & (f)) than all other cases (Figure 6 (a), 

(b), (c) &(d)). When lower subsampling/sampling sizes, i.e. 65/108, slightly different clustering 

results were obtained: the bilateral DCG, which were classified into auditory/somatomotor 

networks for 80/133, were erroneously identified as nodes of attention networks (Figure 5(b)). 

While clustering results of 60/100 and 55/92 were also consistent with 80/133, these probabilities 

are not persistent across all clusters, i.e. some clusters have very low probabilities (see Figure 6(b) 

& (c)). As expected, when using the lowest subsampling/sampling size of 50/83, in addition to the 

common difference observed in 65/108, one of the subnetworks (i.e. cluster 26 in Figure 3) within 

DMN was further divided into 2 clusters, showing apparent deviation from the ground truth of 

80/133 (see Figure 5(c); cluster 1: ORBinf.L, ORBinf.R, ITG.L & ITG.R; cluster 2: MTG.L, 

MTG.R, TPOsup.L, TPOsup.R, TPOmid.L & TPOsup.R). 



With the clustering results from 80/133 as ground truth, overall high NMI values are obtained. 

For clusters having the highest overall probability among all 100 repetitions of each case, their 

NMI values were 0.9662, 1, 1, 0.9806 and 1, 1 for sampling sizes of 50/83, 55/92, 60/100, 65/108, 

70/117, and 75/125, respectively. This demonstrates that GNetHiClus achieves clustering 

outcomes with fairly high accuracy (as indicated by high NMI values) for most of the clusters even 

with relatively low subsampling/sampling sizes, i.e. 50/83. 

DISCUSSION 

In this study, a multi-subject hierarchical spectral clustering method, GNetHiClus, has been 

proposed. Specifically, this is a recursive bi-clustering approach, where brain nodes are 

hierarchically bi-clustered into subnetworks until stopping criteria are met. In this way, functional 

hierarchical network structure of the human brain can be reconstructed from resting-state fMRI 

data. A bootstrap ensemble learning technique is adopted to compute the most representative 

functional hierarchical structure via repeatedly applying GNetHiClus on the bootstrap datasets 

(i.e. a subset of randomly selected individuals). The performance of the proposed method in 

clustering brain networks is evaluated by using the publicly available HCP data; the consistency 

of our results with the concept of low-level perceptual and high-order cognitive networks (Shang 

et al., 2014, Mottron et al., 2006) along with hierarchical subnetworks (such as visual, 

somatosensory, DMN, and attention networks) demonstrate that the proposed method can achieve 

biologically-reasonable hierarchical structures that characterize specialized functional networks. 

The main novelties of GNetHiClus are discussed point-by-point in the following sections: 

    (i) Avoiding uncertainty of choosing arbitrary thresholds 

Previous network clustering approaches commonly rely on applying arbitrary thresholds to the 

correlation coefficients of inter-regional functional connectivity, with different thresholds possibly 



leading to different network clustering outcomes (or modularity). Empirically, the computation of 

network modularity is highly dependent on network density, with higher modularity achieved by 

using lower network density; as an extreme case, network modularity analysis might not be 

practically feasible if no thresholds are applied (i.e. for fully connected networks, conventional 

network modularity might detect the whole brain network as a single modular). In contrast, 

GNetHiClus takes weighted-networks as the input without requiring arbitrary thresholds and 

binarizing the networks; it is rather immune to network density because it directly uses full 

networks for performing clustering, where per-edge connectivity strength is the main determinants 

to the outcome of network clustering. Therefore, GNetHiClus can exclude the uncertainty induced 

by the selection of threshold values, potentially providing a more robust and consistent approach 

for investigating brain networks. However, direct comparisons between GNetHiClus and the 

existing threshold-based techniques are beyond the scope of the current study. 

     (ii) Ensemble learning to reduce sensitivity to noise 

Network clustering is prone to the influence of noise, particularly in resting-state functional 

connectivity where BOLD contrast is sensitive to noise; it is therefore not ideal to rely on a single 

clustering result. Aggregation of many estimators could reduce the effect of noise, leading to more 

accurate results. In this study, bootstrapping is employed to generate randomly subsampled 

datasets with replacement: we employed an ensemble learning approach that is analogous to a 

majority voting-based ensemble algorithm (Lam and Suen, 1997); it trains models through 

randomly selecting multiple sets of subsamples from the training datasets, and then aggregates the 

votes (i.e. clustering results) from different models to decide the final class of the test object. 

Specifically, GNetHiClus is implemented with two-level analysis, i.e. the first-level analysis for 

selecting most representative clustering results across 100 bootstrapping datasets and the second-



level analysis for identifying clustering results with highest-probability across first-level 100 

repetitions. In contrast, previously methods have been mainly relying on obtaining average 

connectivity matrix from a group followed by the identification of (hierarchical) subnetworks. In 

particular, we proposed a novel and robust machine learning framework for investigating 

hierarchical networks, which can quantify the probability of extracting hierarchical functional 

modularity. 

    (iii) Uncovering hierarchical structure 

While there is no direct ground truth available, the identified subnetworks of our hierarchical 

structure are overall consistent with resting-state networks extracted using other approaches, such 

as independent-component analysis (ICA) (Beckmann et al., 2005); note however that ICA cannot 

yield hierarchical network structure. Previous studies have shown that visual, sensorimotor, 

auditory, default mode, attention, executive-control, and subcortical networks are commonly 

detected from resting-state human brain using either BOLD or arterial spin labeling perfusion 

fMRI (Beckmann et al., 2005, Liang et al., 2012). Similarly, with GNetHiClus, visual, 

sensorimotor/auditory, default mode, attention networks are extracted. Of note, due to the 

differences in the fundamental algorithms, there are a few apparent differences in the subnetwork 

extraction between previous findings and our clustering results: using ICA, the sensorimotor and 

the auditory network are identified as a single cluster (Beckmann et al., 2005, Liang et al., 2012); 

using GNetHiClus, the attention, the executive control and the subcortical network are identified 

as a single cluster.  

Note that we are not implying the proposed method is the only available approach to achieve 

hierarchical brain decomposition, but we described a novel approach to achieve this goal that has 

a number of important features. 



    Overall, the aim of this study is to recursively divide a large group of objects (i.e. brain regions 

in the current study) into relatively small groups that share certain similarities given the 

relationships (i.e. network connection strength) among all objects. This has been commonly 

perceived as community structure detection (or network modularity analysis), with which methods 

for analyzing network modularity have been developed (Newman, 2006, Newman and Girvan, 

2004). These methods have been successfully employed for analyzing network modularity, but 

hierarchical network structure cannot be uncovered. Importantly, our method provides the 

capability of revealing hierarchical subnetworks across different levels, a goal that was also 

achieved in two previous studies (Meunier et al., 2009b, Ferrarini et al., 2009). However, direct 

comparisons between the proposed method and these two previous approaches were not conducted 

for the following reasons: (1) both previous studies focused on binary networks by setting arbitrary 

thresholds, instead of weighted networks in our study; (2) Ferrarini and colleagues employed 

partial correlations (Ferrarini et al., 2009), instead of full correlation as in our study. 

Effect of sample size on group-level analysis 

Given the use of bootstrapping approach, subsampling/sample size could be one of the most 

important factors that affect the final estimation of the clustering results. Our results have shown 

that reliable clustering results can be achieved with relatively high probability for 

subsampling/sample size of 70/117 and 75/125. While fully consistent results cannot be obtained 

with lower number of subsampling/sample size, i.e. 65/108, further inspection reveals that only 

one pair of brain regions are not desirably extracted into the right cluster. It should be noted that 

fully consistent clustering results have been also achieved for 60/100 and 55/92, albeit with a few 

clusters of low probability. Taken together, these clustering results suggest that the proposed 

method, GNetHiClus, can achieve satisfactory clustering outcomes (i.e. no more than a pair of 



brain regions are incorrectly assigned) with 75/125, 70/117, 65/108, 60/100, and 55/92. In contrast, 

regarding 50/83, four pairs of brain regions have not been correctly clustered into right clusters, 

indicating its inferior performance in comparison to those clustering results obtained with larger 

subsample sizes/sample sizes. Further, among all extracted subnetworks, while visual subnetworks 

are the most reliable, auditory/somatomotor subnetworks are the least reliable ones, whose 

reliability cannot be consistently improved by increasing the subsampling/sampling sizes; further 

investigation is, therefore, warranted. Regardless, results have demonstrated that acceptable 

clustering results should still be achievable by using the proposed method, GNetHiClus, with 

reduced total number of subjects.  

Use of the bilateral homotopic constraint 

    In GNetHiClus, homotopic brain regions are explicitly constrained to be clustered in the same 

subnetwork in order to minimize the noise effect (see also “Limitations” section below). A 

previous study has shown that spontaneous brain activity is highly correlated across homotopic 

regions between left and right hemispheres (Tyszka et al., 2011), which suggests that homotopic 

regions tend to be cooperative with each other to achieve optimal brain function. Interestingly, 

such a bilateral symmetric property was also shown in both healthy adults and patients with 

complete agenesis of corpus callosum (Tyszka et al., 2011). This supports the plausibility of the 

bilateral homotopic constraint adopted in GNetHiClus.  

Limitations 

In this study, GNetHiClus is evaluated by using a relatively large number of subjects, based on 

the high-quality HCP MRI datasets. Our results have shown that a total number of ~90 subjects 

are required to achieve acceptable clustering results, which might not be readily achievable for 

some clinical studies, due to the relatively small number of patients often collected. However, such 



a sample size should be feasible for multi-site studies that collect relatively large cohorts, which 

is becoming increasingly common in the field.   

    The use of the bootstrapping technique in GNetHiClus imposes a computational demand, 

discouraging its application to high spatial-resolution parcellation schemes (Glasser et al., 2016) 

– or alternatively requiring the access to high performance computing.  We acknowledge that low-

resolution AAL parcellation used in the current study also has limitations. However, the 

parcellation was selected however selected primarily based on the following reasons: (1) it is a 

commonly used parcellation template; (2) the empirical evidence of hierarchical modularity is 

likely to be more accessible; (3) finer parcellation might be more informative, but it dramatically 

increases the computational burden.  

For healthy subjects, the homotopic constraint (Tyszka et al., 2011) can be employed for 

achieving more reliable clustering results by removing uncertainty in assigning brain regions into 

specific clusters. However, it is not clear if this constraint is still appropriate for patients with 

abnormal brain functions. To deal with such scenarios, further work is warranted to develop an 

alternative reliable approach for extracting subnetworks from group of patients with abnormal 

brain function without having to explicitly rely on a homotopic constraint. Future studies on the 

validity of the bilaterally homotopic constraint might provide important information on 

understanding the mechanism for maintaining normal brain function. 

CONCLUSION  

In this study, we proposed a novel approach, GNetHiClus, for hierarchically clustering the brain 

network into subnetworks, without relying on applying arbitrary thresholds to cross-coefficients. 

Importantly, rather than performing clustering at individual-level, we employed a multi-subject 

approach, sharing information across subjects. Our results show that GNetHiClus can 



hierarchically cluster brain functional network into specialized subnetworks that fulfill specialized 

tasks; conversely, information processed by specialized lower-level subnetworks are integrated 

into upper-level for achieving optimal efficiency. Our findings are consistent with the concept of 

network segregation and integration. This proposed technique should promote the understanding 

of brain network from a hierarchical point of view. 
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FIGURE CAPTIONS 

Figure 1: An illustrative example of the overall concept of spectral clustering. Given a normalized 

adjacency matrix with 4 nodes, Fiedler vector (i.e. the 2nd eigenvector derived from eigen-

decomposition of the input matrix) can be employed to divide the original 4 nodes (1,2,3 & 4) into 

2 clusters based on the positive and negative signs of the values of Fiedler vector. In this example, 

nodes 1 & 2 are classified into a cluster, and nodes 3 & 4 are assigned into another. 

Figure 2: The workflow of GNetHiClus for extracting hierarchical functional subnetworks.  The 

flowchart can be divided into 2 major parts, as grouped by 2 dashed boxes: (Left) Multi-subject 

spectral clustering (steps (a-f)); (Right) Hierarchical clustering (steps (g-j)). See Methods for the 

detailed description of each step and the definition of each symbol within the flowchart. Note: this 

procedure needs to be repeated for a certain number of times (e.g. 100 times in this study) to realize 

ensemble learning through bootstrapping.  

Figure 3: Results of hierarchically-clustered subnetworks using GNetHiClus, for the case of using 

75/125 subsample/sample size. From upper-to-lower level of the figure, the brain network is 

hierarchically subdivided into 2 clusters until stopping criterion is met. Each circle indicates a 

cluster, with green ones represent the final clusters and blue ones represent clusters at intermediate 

stage. At the second-level (i.e. following the first division), the result show that GNetHiClus 

subdivides the whole brain functional network into 2 meaningful major subnetworks, one 

corresponds to the low-level perceptual network (cluster #2) and the other one corresponds to the 

higher-order cognitive network (cluster #3). At the third-level, the result shown that the visual- 

and the somato-motor-network (SMN) are separated from low-level perceptual network, while the 

default-mode- (DMN) and the attention-network are divided by the high-order cognitive network. 

These functional specialized subnetworks can be further divided into subnetworks at finer levels 



(4th and 5th) to fulfill specialized tasks. Likewise, from lower-to-upper level, the outcome of 

hierarchical structure can be used to conversely integrate subnetworks into whole-brain network. 

Also refer to Figure 4 and Table 1 for a detailed description of the constituents of each subnetwork. 

Figure 4: Visualization of all functional subnetworks at the finest levels, i.e. 4th and 5th levels in 

Figure 3. The whole-brain network is divided into 4 meaningful resting-state functional networks, 

i.e. visual, auditory/somatomotor, default-mode and attention networks, which are shown in Figure 

3 (a), (b), (c) & (d), respectively. In each subfigure, those colored circles compose the current 

focused network. The 4 resting-state networks can be further partitioned into finer subnetworks 

(until indivisible), with each subnetwork represented in a different color. See Table 1 for definition 

of node acronyms. Note: We just show the relevant part of the tree in each subfigure (see Figure 3 

for the full tree), with each colored circle corresponding to a set of nodes with the same color 

mapped onto the brain; as an example, Figure 4(a) focuses on visual network, where yellow circle 

represents medial visual network and green circle represents lateral visual network.  

Figure 5: Results of GNetHiClus for different subsample and sample sizes. Visual network, SMN, 

DMN and attention network at the third level (see Figure 3) are displayed with nodes mapped onto 

the AAL template. In each of these 4 networks, the lowest-level indivisible subnetworks extracted 

are represented in different colors, with each color corresponding to a green node in Figure 3. 

Clustering results are shown for the following subsampling/sample sizes: (a) 75/125, 70/117, 

60/100 and 55/92; (b) 65/108; (c) 50/83. For better appreciation of the differences of extracted 

subnetworks relative to that from 80/133 (i.e. the results considered as the ‘ground truth’), such 

differences are indicated with circles of 3 different colors: blue, red and black circles representing 

the missing brain regions, extra brain regions, and over-clustered clusters (i.e. a cluster is 



inappropriately divided into a few clusters at higher levels), respectively. See Table 1 for the 

definition of node acronyms. 

Figure 6: Evaluation of the probability of each extracted subnetwork. The probability values of 

13 subnetworks are shown for all 6 subsampling/sample sizes: (a) 50/83; (b) 55/92; (c) 60/100; (d) 

65/108; (e) 70/117 & (f) 75/125. On top of each bar, a pair of numbers are shown, representing 

extracted number of regions/ true number of regions; numbers of such clusters that are inconsistent 

with ground truth are shown in red color. In addition, a red line corresponding to threshold=0.5 is 

drawn to show extracted clusters with relatively low threshold (i.e. <0.5). 
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                                                 Figure 4(a): Visual networks 

 

                                         Figure 4(b): Auditory/Somatomotor networks 
 



 

                                                          Figure 4(c): Default mode networks 
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Table 1: Brain regions of subnetworks that are consistently extracted from test and retest data for 

both cases: 75/125 and 80/133 using NetHiClus (see Figure 2 and Figure 3). Cluster No. 

corresponds to the number of indivisible clusters labeled with green color (i.e. the final clustering 

outcomes) shown in Figure 2. Note: all brain regions are bilaterally present in the related clusters. 

 

 

 

 

 

Cluster No. Brain regions in each subnetwork 

Cluster 8 Amygdala (AMYG), Calcarine (CAL), Cuneus (CUN), Lingual gyrus (LG), 

Superior occipital gyrus (SOG) 

Cluster 9 Middle occipital gyrus, Inferior occipital gyrus, Fusiform gyrus 

Cluster 10 Precentral gyrus (PreCG), Superior parietal gyrus (SPG), Inferior parietal gyrus 

(IPG), Supramarginal gyrus (SMG) 

Cluster 22 Rolandic operculum (ROL), Supplementary motor area (SMA), Insula (INS), 

Middle cingulum (DCG), Heschl gyrus (HES) 

Cluster 23 Postcentral gyrus (PoCG), Paracentral lobule (PCL), Superior temporal gyrus 

(STG) 

Cluster 24 Superior frontal gyrus (SFG), Posterior cingulum (PCG), Angular gyrus 

(ANG), Precuneus (PCUN) 

Cluster 25 Hippocampus (HIP), Parahippocampal gyrus (PHG) 

Cluster 26 Inferior frontal-orbital part (ORBinf), Temporal pole-superior part (TPOsup), 

Middle temporal gyrus (MTG), Temporal pole-middle part (TPOmid), Inferior 

temporal gyrus (ITG) 

Cluster 27 Olfactory (OLF), Superior frontal-medial part (SFGmed), Medial frontal-orbital 

part (ORBsupmed), Rectus (REC) 

Cluster 28 Superior frontal-orbital part (ORBsup), Middle frontal gyrus (MFG), Middle 

frontal gyrus-orbital part (ORBmid) 

Cluster 29 Inferior frontal gyrus-opercular part (IFGoperc), inferior frontal gyrus-

triangular part (IFGtriang) 

Cluster 30 Anterior cingulum (ACG), Thalamus (THA) 

Cluster 31 Caudate (CAU), Putamen (PUT), Pallidum (PAL) 
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