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Structural brain networks estimated from diffusion MRI (dMRI) via tractography have

been widely studied in healthy controls and patients with neurological and psychiatric

diseases. However, few studies have addressed the reliability of derived network metrics

both node-specific and network-wide. Different network weighting strategies (NWS)

can be adopted to weight the strength of connection between two nodes yielding

structural brain networks that are almost fully-weighted. Here, we scanned five healthy

participants five times each, using a diffusion-weighted MRI protocol and computed

edges between 90 regions of interest (ROI) from the Automated Anatomical Labeling

(AAL) template. The edges were weighted according to nine different methods. We

propose a linear combination of these nine NWS into a single graph using an appropriate

diffusion distance metric. We refer to the resulting weighted graph as an Integrated

Weighted Structural Brain Network (ISWBN). Additionally, we consider a topological

filtering scheme that maximizes the information flow in the brain network under the

constraint of the overall cost of the surviving connections. We compared each of the nine

NWS and the ISWBN based on the improvement of: (a) intra-class correlation coefficient

(ICC) of well-known network metrics, both node-wise and per network level; and (b) the

recognition accuracy of each subject compared to the remainder of the cohort, as an

attempt to access the uniqueness of the structural brain network for each subject, after

first applying our proposed topological filtering scheme. Based on a threshold where

the network level ICC should be >0.90, our findings revealed that six out of nine NWS

lead to unreliable results at the network level, while all nine NWS were unreliable at

the node level. In comparison, our proposed ISWBN performed as well as the best

performing individual NWS at the network level, and the ICC was higher compared

to all individual NWS at the node level. Importantly, both network and node-wise

ICCs of network metrics derived from the topologically filtered ISBWN (ISWBNTF),
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were further improved compared to the non-filtered ISWBN. Finally, in the recognition

accuracy tests, we assigned each single ISWBNTF to the correct subject. We also

applied our methodology to a second dataset of diffusion-weighted MRI in healthy

controls and individuals with psychotic experience. Following a binary classification

scheme, the classification performance based on ISWBNTF outperformed the nine

different weighting strategies and the ISWBN. Overall, these findings suggest that

the proposed methodology results in improved characterization of genuine between-

subject differences in connectivity leading to the possibility of network-based structural

phenotyping.

Keywords: connectome, diffusion MRI, structural brain network, tractography, reliability

INTRODUCTION

Tractography is a popular method for extracting white matter
connectivity from diffusion MRI (dMRI) and plays a key role
in structural brain connectomics (Fornito et al., 2015). A
variety of algorithms have been proposed, with the majority
of them using voxel-based assessment of water diffusion to
reveal paths/tracts of the white matter bundles. A fundamental
problem with tractography is that there is no “ground truth” so
it is impossible to separate “true” from spurious false positive
and false negative connections (Smith et al., 2012; de Reus
and van den Heuvel, 2013; Girard et al., 2014). Any noise in
the system can lead to noisy connection matrices, particularly
at the single-subject level, leading to numerous false positives
(Thomas et al., 2014). It has recently been estimated that false
positives are twice as detrimental as false negatives for any
network metric derived from binary networks (Zalesky et al.,
2016).

Two recent studies have attempted to solve this issue, which is
a main obstacle for the application of graph theory to structural
brain networks. Drakesmith et al. (2015b), proposed the multi-
threshold permutation correction to overcome the effects of false
positives and threshold bias. Roberts et al. proposed a consistent
thresholding of structural brain networks that attempted to
identify highly consistent and highly inconsistent subnetworks
across subjects in a targeted cohort (Roberts et al., 2016).

One solution to this bias in structural brain connectivity
metrics is to aggregate data over large samples of subjects as a
way of increasing the signal to noise ratio, for example, through
averaging of brain networks across subjects (Hagmann et al.,
2008; Perry et al., 2015). An alternative to this group-averaging
approach is to construct a consensus brain network by pooling
edges that are derived from a predefined fraction of subjects
across the whole cohort (van den Heuvel and Sporns, 2011;
de Reus and van den Heuvel, 2013). Consensus brain network
is a term derived from consensus clustering where different
clusterings that have been obtained from the same dataset, after
applying different clustering algorithms, are aggregated to fit a
more robust/consistent clustering. Similarly, a consensus brain
network maintains the edges that are highly representative across
the cohort as a “majority vote” rule.

These aforementioned approaches are problematic because
densely seeded tractography leads to dense structural brain

networks and thus, a high level of inherent (but potentially
spurious) overlap across subjects. The most common approach
to tackling this issue is to adopt a “topological filtering” approach
or a “threshold” in order to uncover the backbone of the
network topology. Apart from reducing spurious connections,
topological filtering of brain connectivity matrices plays a
significant role in extracting connection topology (Bullmore and
Bassett, 2011). The most common method in this setting is
to “threshold” networks to some desired density by keeping
only the “strongest” links (Dimitriadis et al., 2010). We recently
proposed a data-driven topological filtering scheme based on
orthogonal minimal spanning trees (OMST) (Dimitriadis et al.,
2017b). It is extremely important that any data-driven filtering
approach considers the topology of the brain network and treats
both weak and strong connections equally (Gigandet et al.,
2008).

Thresholding is widely used in both structural and functional
brain network analysis as a step for binarizing the weighted
networks (i.e., transforming them into unweighted networks
(Dimitriadis et al., 2010, 2015a, 2016a,b,c,d; Rubinov and
Sporns, 2010; Antonakakis et al., 2016). While such binarization
procedures are recommended for separating strong from weak
connections, they are not ideally suited to extracting network
metrics. The relative weights on different edges are informative
and can give a better characterization of the underlying
structural and/or functional topology, potentially leading to
better separation of groups or conditions.

Previous studies have attempted to reveal the reliability of
network and node-wise network metrics for structural brain
networks, using a few edge-weighting strategies. Cheng et al.
(2012) assessed test-retest reliability using diffusion tensor MRI
(DT-MRI) data from 44 subjects with a focus on the differences
between binary and weighted networks. Buchanan et al. (2014),
with repeated scans from nine subjects, explored the reliability of
network metrics on a network and node-wise level using dMRI
and two alternative tractography algorithms, two alternative
seeding strategies, a white matter way point constraint and
three alternative network weightings (Buchanan et al., 2014).
Specifically, Cheng et al. (2012) explored variability of network
metrics using DTI and two different weighting network strategies
(WS). In the first approach, the weights were computed as the
ratio between the sum of the inverse of the fiber length and
the mean volume of two Regions of Interests (ROIs) (WS1),
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while in the second (WS2), they eliminated the fiber length,
counting only the number of fibers normalized by the sum of
the voxels in both ROIs. The Intra-Class Correlation Coefficients
(ICCs) for six network metrics varies from 0.54 to 0.67 for
WS1 but varies from 0.3 to 0.64 for WS2. Buchanan et al.
(2014) reported global within-subject differences between 3.2
and 11.9%, with ICCs between 0.62 and 0.76. The mean nodal
within-subject differences were between 5.2 and 24.2%, with
mean ICCs between 0.46 and 0.62. For 83.3% (70/84) of nodes,
the within-subject differences were smaller than between-subject
differences.

Both studies demonstrated (ICCs) for network-wise network
metrics using a few edge-weighting strategies. However, they
did not assess the reliability of network metrics at a node
level and more importantly, did not propose a solution for
further improving the reliability of the existing methodology in
constructing structural brain networks.

In this study, we constructed structural brain networks
from five repeat scans of five healthy volunteers by adopting
nine different network weighting strategies (NWS) affecting
the construction of networks. In each of the nine alternative
network weighting scenarios DT-MRI-based weights (Fractional
Anisotropy-FA/Radial Diffusivity-RD/Mean Diffusivity-MD),
average tract length (ATL), Euclidean distance between the
coordinates of the ROIs (ED), the volume of the tract (TV),
the number of streamlines (NSTR) and the proportion of
streamlines (PSTR) [see section Network Weighting Strategies
(NWS) for the definition], we quantified the reliability of
six graph-theoretic measures network-wise (characteristic path
length, global/local efficiency, radius, diameter, and eccentricity)
and two node-wise (global and local efficiency) using (ICC).
Since these measures are essential prerequisites for characterizing
complex networks, their reliability is crucial to the ultimate
interpretation of structural brain networks. Additionally, we
propose a methodology for combining the alternative network
weighted brain networks into a single integrated weighted
structural brain network (IWSBN).We compared the ICCs of the
same networkmetrics both network and node-wise, derived from
the IWSBN, with those derived using the nine individual NWS.
We also present a data-driven thresholding scheme that can
extract the backbone of structural brain networks by optimizing
the information flow under the constraint of the overall cost
of the selected weighted connections. This topological filtering
scheme was applied to the IWSBN, and the ICCs of the network
metrics were again estimated. Finally, we tested the NWS-
based weighted brain networks, the proposed IWSBN and its
topologically filtered version IWSBNTF in terms of the ability
to match each network to the correct subject out of the whole
cohort (i.e., identify which networks are derived from repeat
scans of the same subject, which we refer to as “recognition
accuracy”). This is important, as it captures the ability to
separate intra-individual differences in derived networks (where
variance derives from measurement noise), from interindividual
differences in networks (reflecting true underlying biological
differences). As such, this facilitates the study of individualized
structural brain networks without having to resort to group-
averaging approaches.

MATERIALS

Participants
In total, five healthy subjects participated in this pilot study
(mean 37.1± 4.9 years std age, five males). The whole procedure
involved five repeat scans for each participant 1 week apart
from each other. All participants were recruited through the
School of Psychology, Cardiff, Wales, UK. All participants were
undergoing or had previously completed a university degree
course, were right handed as assessed with the Edinburgh
Handedness Inventory3 and of Caucasian origin. Exclusion
criteria included a current episode or a history of neurological
and psychiatric disorders, drug or alcohol abuse and medication
that may have an impact on the structure of the brain. For
assessment, the general health questionnaire was used (Goldberg
and Huxley, 1980). All subjects provided a written informed
consent.

Structural MRI Scanning
T1-weighted structural scans were acquired using an oblique
axial, 3D fast-spoiled gradient recalled sequence (FSPGR) with
the following parameters: TR = 7.9ms, TE = 3.0ms, inversion
time = 450ms, flip angle = 20◦, 1mm isotropic resolution, with
a total acquisition time of∼7min.

Diffusion MRI Scanning
High angular resolution diffusion-weighted imaging (HARDI)
data were acquired in the Cardiff University Brain Research
Imaging Centre (CUBRIC) on a 3 T GE Signa HDx system
(General Electric, Milwaukee, USA) using a cardiac-gated,
peripherally gated twice-refocused spin-echo Echo Planar
Imaging (EPI) sequence, with effective TR/TE of 15R-R
intervals/87ms. Sets of 60 contiguous 2.4mm thick axial slices
were obtained, with diffusion-sensitizing gradients applied along
30 isotropically distributed (Jones et al., 1999) gradient directions
(b = 1,200 s/mm2). For further details of the MRI protocol see
(Bracht et al., 2016).

Diffusion MRI Data Preprocessing
Data were analyzed using Explore DTI 4.8.3 (Leemans et al.,
2009). Eddy-current induced distortion and motion correction
was performed using an affine registration to the non-
diffusion-weighted B0-images, with appropriate re-orienting
of the encoding vectors (Leemans and Jones, 2009). Field
inhomogeneities were corrected for using the approach of Wu
et al. (2008). The diffusion-weighted images (DWIs) were non-
linearly warped to the T1-weighted image using the FA map,
calculated from the DWIs, as a reference. Warps were computed
using Elastix (Klein et al., 2010) normalized mutual information
as the cost function and constraining deformations to the
phase-encoding direction. The corrected DWIs were therefore
transformed to the same (undistorted) space as the T1-weighted
structural images. A single diffusion tensor model was fitted to
the diffusion data in order to compute quantitative parameters
such as FA (Basser et al., 1994). Following the method of
Pasternak et al. (2009), a correction for free water contamination
of the diffusion tensor based estimates was applied (Pasternak
et al., 2009; Metzler-Baddeley et al., 2012). Data quality was
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checked by careful visual inspection and by looking at the average
residuals per DWI for each participant.

Tractography
DT-MRI analysis was performed using ExploreDTI (Leemans
et al., 2009) following peaks in the fiber orientation density
function (fODF) reconstructed from the damped Richardson
Lucy algorithm (dRL) (Dell’acqua et al., 2010; Jeurissen et al.,
2013). The dRL algorithm estimates multiple fiber orientations
in a single voxel and therefore provides a more accurate diffusion
profile than DT-MRI-based methods estimating only one fiber
orientation per voxel. For each voxel in the dataset, streamlines
were initiated along any peak in the (fODF) that exceeded an
amplitude of 0.05. A streamline, uniform step-size, algorithm
based on that of Basser et al. (2000), but extended to multiple
fiber orientations within each voxel (Jeurissen et al., 2011), was
used for tractography. Each streamline continued in 0.5mm steps
following the peak in the fODF that subtended the smallest angle
to the incoming trajectory. Termination criteria were an angle
threshold >45◦ and fODF amplitude <0.05.

Network Construction
The automated atlas labeling (AAL) atlas (Tzourio-Mazoyer et al.,
2002) was registered to the HARDI data using a nonlinear
transformation (Klein et al., 2010). The streamline termination
points were coregistered to each AAL region. The numbers of
streamlines connecting each pair of AAL regions were aggregated
into a 90× 90 connectivity matrix.

Connections between regions were computed by identifying
the streamlines connecting each pair of gray matter ROIs. The
endpoint of a streamline was considered to be the first graymatter
ROI encountered when tracking from the seed location

Streamlines that did not connect to an ROI were discarded.
Networks were computed for 13 different thresholds of
streamline filtering by minimum contiguous length in white
matter, from 0 to 6.0mm in increments of 0.5mm (Buchanan
et al., 2014). For instance, a threshold of l mm discards any
streamline that does not pass through at least l mm in white
matter between gray matter ROIs.

Network Weighting Strategies (NWS)
In this section, we describe the nine adopted NWS derived from
tractography.

Fractional anisotropy (FA) is calculated from the eigenvalues
(λ1,λ2,λ3) of the diffusion tensor. The eigenvectors (ǫ) give
the orientations in which the ellipsoid has major axes and the
corresponding eigenvalues give the magnitude of the peak along
each axis (Basser and Pierpaoli, 1996). Themean diffusivity (MD)
is the average of the three eigenvalues, while the axial and radial
diffusivity are given by the largest and average of the two smallest
eigenvalues, respectively (Basser et al., 1994).

The fourth NWS was based on average streamline tract
length (ATL) leading to ATL-weighted networks. The fifth NWS
estimated the Euclidean distance (ED) between the centroids
of the two ROIs leading to the ED-weighed network. The
Euclidean distance is computed in native space, so will vary
across individuals.

The sixth NWS, termed streamline density (SD-weighted),
records the interconnecting streamline density corrected for ROI
size:

wij =
2

gi + gj

∣

∣Sij
∣

∣ (1)

where Sij is the set of all streamlines found between node i and
node j (and Sij = Sji), and gi and gj are the number of gray matter
voxels in nodes i and j. This approach leads to the construction of
a SD-weighed network.

The seventh NWS is based on the volume of the tract (TV)
leading to TV-weighted networks. The tract volume is computed
by counting the number of voxels the streamlines of a bundle
occupy and multiplying by the voxel size.

Two further NWSs were based on the number and the
percentage of streamlines that connected a pair of ROIs. The
number of streamlines (NSTR) is the absolute NSTR connecting
two regions. The proportion of streamlines (PSTR) is the NSTR
between each pair of regions, normalized to the total NSTR across
the whole brain.

The adopted NWSs are called the NSTR and PSTR.
Figure 1 illustrates the nine alternative NWS and the

corresponding weights from a scan of the first subject.

Integrating NWS into a Single Graph
We integrated the different NWS via a linear integration based
on the best matching of each pair of NWS-based brain networks
in terms of their maximum information flow using the graph
diffusion distance metric (gDDM) as described in the next
section.

Graph Diffusion Distance Metric
We computed the dissimilarity distance between every pair
of structural brain networks (SBNs) with a novel gDDM
Graph Diffusion Distance (GDD), based on a graph Laplacian
exponential kernel (Fouss et al., 2012), served as a distance
metric.

The graph Laplacian operator of the SBN was defined as
L= D – SBN, where D is a diagonal degree matrix estimated
from the SBN. This method entails modeling hypothetical
patterns of information flow among sensors based on each
observed (static) SBN. The GDD metric reflects the result of
the comparison of such patterns between groups. The diffusion
process on the person-specific SBN was allowed for a set time
t; the quantity that underwent diffusion at each time point is
represented by the time-varying vectoru(t) ∈ ℜN . Thus, for a
pair of sensors i and j, the quantity SBNij (ui(t) – uj(t)) represents
the hypothetical flow of information from i to j via the edges
that connect them (both directly and indirectly). Summing all
these hypothetical interactions for each sensor leads to uj

′(t) =
∑

i
FCGij(ui(t)− uj(t)), which can be written as:

ui(t) = −Lu(t) (2)

where L is the graph Laplacian of SBN. At time t= 0, Equation (2)
has the analytic solution: u(t) = exp(−tL)u(0). Here exp(-tL) is a
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FIGURE 1 | (Top) 90 × 90 connectivity matrices of inter-region connections adopted from a subject for the nine network weighting strategies (NWS). (Bottom) The

corresponding histograms of the connection weights for each of the nine NWS.

N × N matrix function of t, known as a Laplacian exponential
diffusion kernel (Fouss et al., 2012), and u(0) = ej, where ej ∈

ℜN is the unit vector with all zeros except in the jth component.
Running the diffusion process through time t produced the
diffusion pattern exp(–tL)ej which corresponds to the jth column
of exp(–tL).

Next, a metric of dissimilarity between every possible pair of
person-specific diffusion kernelised SBNs (SBN1, SBN2) in the
form of the graph diffusion distance dgdd(t) was computed. The
higher the value of dgdd(t) between the two graphs, the greater the
difference in their network topology as well as the corresponding
hypothetical information flow. The columns of the Laplacian
exponential kernels, exp(–tL1) and exp(-tL2), describe distinct
diffusion patterns, centered at two corresponding sensors within
each SBN. The dgdd(t) function is searching for a diffusion time
t that maximizes the Frobenius norm of the sum of squared
differences between these patterns, summed over all sensors, and
is computed as:

dgdd(t) =
∥

∥exp(−tL1)− exp(−tL2)
∥

∥

2

F
(3)

where ‖.‖F is the Frobenius norm.
Given the spectral decomposition L = V3V, the Laplacian

exponential can be estimated via:

exp(−tL) = Vexp(−t3)V ′ (4)

where for3, exp(–t3) is diagonal to the ith entry given by e−t3i ,i .
We computed dgdd(SBN1, SBN2) by first diagonalizing L1 and

L2 and then applying Equations (3) and (4) to estimate dgdd(t)
for each time point t of the diffusion process. In this manner,
a single dissimilarity value was computed for each pair of SBNs
(Hammond et al., 2013).

Linear Integration of the Different NWS-Based SBN

into IWSBN
Specifically, adopting a gDDM (see previous section Graph
Diffusion Distance Metric), we estimated a dissimilarity matrix
dgDDM between every pair of NWS-based brain networks
independently for each scan and subject (Figure 2A). Afterward,
we estimated the sum of the rows of dgDDM and then we
normalized this derived vector (such as to have a total sum
equal to one), to extract weights, lw, for the linear integration
of the NWS-based networks into a single graph. Then, we
summed across all of these networks weighting each network by
lw (Figure 2B). The result is an IWSBN that is fully-weighted
(Figure 2C). Figure 3 illustrates the topologies of the nine NWS
from a single subject from their first scan. We plotted the upper
decile 10% of the strongest connections according to the related
weight.

Topological Filtering of Structural Brain
Network
We topologically filtered the IWSBN using a data-driven
thresholding scheme that optimizes the information flow over the
cost of the surviving/selecting connections. Below, we describe
the proposed data-driven topological filtering scheme.
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FIGURE 2 | Integrated different network weighting strategies into a single weighted structural brain network (IWSBN). (A) From the dissimilarity matrix between every

pair of NWS-networks to the related linear weights linked to their interrelationship. We first summed the rows from the dissimilarity matrix dgDDM and then we

normalized these weights lw such as to have a total sum equal to one. (B) Linear integration of the NWS-networks by multiplying (x) each NWS-based SBN with the

related weight lw derived from (A). (C) The suggested IWSBN derived from (C). (D) The topological filtered version of IWSBN called IWSBNTF.

FIGURE 3 | Subject 1—First scan: Topographical layouts of (A) nine brain networks derived from the related NWS and the (B) IWSBN and its topological filtering

version IWSBNTF. We plotted the 10% of the strongest connections at each structural brain network to enhance the visualization of the network topology.

Topological Filtering Based on Orthogonal Minimal

Spanning Trees (OMST)
In graph theory, a tree is defined as an acyclic connected graph
(Estrada, 2011). Acyclic implies that there are no loops (of any
length) in the graph. Minimal Spanning Tree (MST) has been
shown to be an unbiased, assumption-free method to derive

unique functional brain networks (Meier et al., 2015). However,
MST is a tree with only V-1 links, which for large graphs is too
sparse to allow reliable discrimination between two (Antonakakis
et al., 2016; Dimitriadis et al., 2017a,b) or more groups (Khazaeea
et al., 2017). Two main algorithms have been described to
construct the MST of a weighted graph by Kruskal (1956) and
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FIGURE 4 | OMST: The optimization of GE-Cost over cost function based on

OMSTs from a typical reader. The red circle denotes the peak of the computed

curve, while the resulting topologically filtered SBN is shown in Figures 2B,C.

Prim (1957). In a recent study, we demonstrated a data-driven
topological filtering scheme for brain networks using a large
number of EEG and fMRI functional connectivity graphs. Our
algorithm samples connections from a fully-weighted graph via
OMST (Dimitriadis et al., 2017a,b). The objective criterion was
the optimization of the Global Cost Efficiency (GCE) = GE-
Cost over each round of the OMST. Cost denotes the ratio of

the total weight of the selected edges, over multiple iterations

of OMST, divided by the total strength of the original fully-

weighted graph. The values of GCE range within the limits of an

economical small-world network for healthy control participants
(Bassett and Bullmore, 2009). The quality formula is described by
the following equation:

JOMSTs
GCE = GE− Cost (5)

The curve in Figure 4 plots Equation (5) over cost after
running exhaustive OMSTs until all observed weights were tested,
based on data from a typical reader. The maximum of this
(always) positive curve reflects the optimization of the proposed
OMST algorithm. In the example of Figure 4, we applied the
algorithm in the IWSBN in Figure 2C and the GE-Cost vs.
cost function was optimized after four OMSTs leading to a
selection of 4∗89 = 356 connections—a mere 8.9% of the total
number of connections that survived the topological filtering
approach.

The outcome of this procedure is the IWSBNTF presented
in Figures 2D, 3B which is sparser compared to the IWSBN in
Figures 2C, 3B. The topological filtering scheme revealed a dense
subgraph between frontal areas and calcarine, cuneus, lingual,
occipital, and fusiform bilaterally.

Network Measures
For each of the nine weighted SBNs, we estimated six network
metrics at the network level and two at the node level. Specifically,
for the network level, we estimated global efficiency, local
efficiency, characteristic path length, radius, eccentricity and
mean weight. For the node level, we estimated global and local
efficiency.

Test-Retest Statistics
For each metric, an agreement between sessions was computed,
via ICC (Shrout and Fleiss, 1979). ICC values were extracted for
both network and node level and for every NWS-based brain
network, for the IWSBN and also its topological filtering version
IWSBNTF.

High test-retest reliability is a prerequisite for a connectomic
metric to allow for the distinguishing of different individuals
(Zuo and Xing, 2014) and also for developing a biomarker of
the application of functional connectomics, such as mapping
growth charts of human brain function (Dosenbach et al.,
2010; Castellanos et al., 2013). Therefore, beyond developing a
biomarker, estimations of the test-retest reliability of functional
connectomics are valuable for providing a reference regarding
how strongly the estimated variables affect the observed results
and guiding the significant value of the findings of both normal
and abnormal brains (Zuo et al., 2014).

Classification of Structural Brain Networks
Recognition accuracy was assessed for each individual scan
compared to the rest based on a k-nearest neighbor (k-NN)
classifier with k = 4 and adopting a leave-one-out cross-
validation scheme (LOOCV). Instead of the Euclidean Distance
(ED) most commonly used in k-NN classifiers, here we used the
proposed gDDM (see section Graph Diffusion Distance Metric).
gDDM is a more appropriate metric compared to ED to quantify
the distance between two SBNs regarding their distance in terms
of information flow based on their topology. The proposed
gDDM metric is based on the eigenanalysis of the Laplacian
matrices with known attributes in terms of graph theory and
diffusion processes (Fouss et al., 2012).

Discrimination of Healthy Controls from
Individuals with Psychotic Experiences via
Structural Connectome
To demonstrate the effectiveness of the proposed method in
a binary classification problem, we analyzed a large dataset
consisting of 123 individuals with psychotic experience and 125
age and gender-matched controls. The details of the cohort
and the MRI scanning protocol can be found in the original
publication (Drakesmith et al., 2015a).

We followed a binary classification procedure with a 10-
fold cross-validation, employing as an input, each weighted
SBN separately but also the IWSBN and the topologically
filtered version (IWSBNTF). As a classifier, we used a tensor
subspace analysis to reduce the initial high-dimensionality of the
original functional connectivity network to a space of condensed
descriptive power (Dimitriadis et al., 2015b,c; Antonakakis et al.,
2016). The input on TSA is a 3D tensor-matrix of dimensions
(subjects × ROIs × ROIs). As a classifier, we used a support
vector machine with RBF kernel.

Exploring the Effect of Each Node to the
Integrated Graph
The proposed IWSBNTF was derived after first linearly
combining the nine NWS and after that, topologically filtering
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the outcome IWSBN. Our second thought was to weight each
node independently within each of the nine NWS first and
secondly to weight the whole NWS-network with the proposed
methodology. To get the linear weights lw for each node within
each NWS-network, we followed five strategic network lesion
schemes, three based node-wise and two cluster-wise.

The first three node-wise strategies were: (1) zeroing half of
the connections of each node; (2) diminishing the weights of
the connections of each node by 50%; and (3) combining both
where half of the connections of each node were zeroed while
the weights of the second half were diminished by 50%. The
three node-wise attack strategies were followed for one by one
node at every NWS and then we estimated the gDDM distance
between the original network and the attacked network. Finally,
the derived vector with the 90 gDDM values was normalized
such as its sum was equal to one. Then, we multiplied each
NWS-network node-wise with this vector and afterward with the
network-wise approaches based on the present methodology.

The two cluster-wise lesions were: (1) the distinction of the
whole set of hubs into rich-club hubs and non-rich-club hubs
(van den Heuvel and Sporns, 2011); and (2) the functional
clustering of the NWS-network into distinct clusters using
the modularity algorithm (Newman, 2006). The two cluster-
wise attack strategies were followed for each cluster at every
NWS, based on the three node-wise attack strategies targeting
either connections within rc-hub subgraphs and/or non-rc-hub
subgraph connections and/or the connections between the non-
rc and rc-hubs. Then, we estimated the gDDM distance between
the original network and the attacked network. Finally, the
derived vector with ncluster gDDM values was normalized such
as its sum was equal to one.

The whole procedure was added as a first step before the
proposed network-wise linear combination of the NWS-network
into a single IWSBN All the NWS-networks were pre-filtered
with the proposed data-drive thresholding scheme. The node-
wise linear weighting step prior to the proposed network-
wise was evaluated based on the ICC values of the adopted
network metrics both network and node-wise. Additionally, the
recognition accuracy of each subject scan over the rest of cohort
was compared to the proposed method.

RESULTS

Graph Embedding of the Dissimilarity
Matrices Based on dgDDM

Dissimilarity matrices (DM) based on each NWS across scans
and subjects were estimated based on the gDDM. Figure 5

QCI =
scans x (scans− 1) /2

scans x scans
×

subjects
∑

su1=1

subjects
∑

su2=su1+1

scans
∑

l=1

scans
∑

m=1
gDDM

(

D_IWSBNTF(su1 ,l),D_IWSBNTF(su2 ,m)
)

subjects∗(subjects −1)/2

subjects
∑

su=1

scans
∑

l=1

scans
∑

m=l+1

gDDM(D_IWSBNTF(su,l),D_IWSBNTF(su,m))

subjects

(6)

demonstrates the DM for each of the NWS across repeat scans
and the related graph embedding based on multidimensional

scaling (MDS). The NSTR proved to better discriminate the five
subjects compared to the rest of the methods.

Reliability of Network Level Metrics for
NWS and ISWBN
The ICC scores were excellent—ranging from 0.75 to 1—for six
out of nine network metrics for the entire set of network metrics.
These NWS include the ATL, BIN, SD, ED, NSTR, PSTR, and
TV (Figure 6). The related group-averaged values of the network
metrics for each NWS are shown in Figure 7. The proposed
IWSBN yielded good ICC values but these were lower than those
obtained for each of the six NWS (Figure 8A). Significantly, we
observed an improvement of the ICC on the IWSBNTF which
reached the level of the six best NWS in terms of ICC scoring
(Figure 8B). Figure 9 demonstrates the group-averaged values of
network metrics on the network level.

Reliability of Network Metrics on a Node
Level
The analysis of ICCs on global and local efficiency node-wise
on the nine NWS and in both IWSBN and IWSBNTF revealed
important trends. Firstly, the ICC values for each of the NWS
failed to reach a fair value (ICC < 0.1). Secondly, the ICC values
derived from the IWSBN showed a large variability but reached
on average ICC= 0.68± 0.10 for global efficiency and ICC= 0.68
± 0.17 for local efficiency (Figure 10A). Third, the ICC values
for both network metrics were improved in IWSBNTF, reaching
a mean ICC = 0.75 ± 0.02 for global efficiency and a mean
ICC = 0.84 ± 0.02 for local efficiency (Figure 10B). Applying
a Wilcoxon Rank Sum Test between the two distributions for
each network metrics, we observed significant improvement of
ICC values for IWSBNTF (global efficiency: p = 0.0035 × 10−7,
local efficiency: p= 0.0067× 10−10). Figure 11 demonstrates the
group-averaged values of network metrics on the node level.

Recognition Accuracy of Structural Brain
Networks
Dissimilarity matrices (DM) based on both IWSBN and
IWSBNTF across scans and subjects were estimated based on the
gDDM. Figure 12 demonstrates the DM for both IWSBN and
IWSBNTF across repeat scans and the related graph embedding
based on multidimensional scaling (MDS). The proposed
topological filtering scheme improved the discrimination of the
five subjects compared to the original IWSBN.

Applying a k-NN classifier with k = 4 and gDDM as
the appropriate distance metric under a LOOCV scheme, we
succeeded to accurately classify each scan to the right person

based on IWSBNTF. Similar results were also obtained withNSTR
(Figure 5).
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FIGURE 5 | Dissimilarity matrices (DM) based on each NWS across scans and subjects based on the gDDM and graph embedding of DM. First and third rows

illustrate the DM between every pair of scans across the cohort based on the gDDM metric for each of the nine NWS, while the second and fourth rows demonstrate

the embedded DM via the MDS process in a common 3D space. Each color corresponds to a single subject, while lines with the same color interconnect the NWS

derived from repeat scans from the same subject (MDS, multidimensional scaling).

FIGURE 6 | ICC values for basic network metrics on the network level for each of the nine NWS. CPL, Characteristic Path Length; ECC, Eccentricity; R, Radius; GE,

Global Efficiency; LE, Local Efficiency; STR, mean strength.

For a better estimation of the discrimination of proposed
IWSBNTF with NSTR, we defined the following quality of
clustering index (QCI) (Dimitriadis et al., 2012):

The QCI quantifies the average similarity of the IWSBNTF

across scans within each subject (cluster) expressed in the
denominator of Equation (6) and the average dissimilarity
between every pair of subjects (clusters) across their scans
expressed in the numerator. Both similarity and dissimilarity
were estimated based on the gDDM. The higher the dissimilarity
between the clusters (numerator) and/or the lower the
dissimilarity within the clusters (denominator), the higher
the QCI. The numerator is averaged across all possible
combinations of subjects (clusters) while the denominator across
subjects (clusters). The first term was used to equalize the effect

of between-subject (clusters) comparisons vs. within-subject
comparisons (clusters). This inversed coefficient guarantees that
in the case of all the weights in the DM being equal then it
will take a value of one. Therefore, the higher the value of the
QCI above one, the higher the separability between the network
topologies of the subjects.

We first tabulated all the IWSBNTF across scans and subjects
into a 4D graph with dimensions equal to [subjects × scans ×
Rois × Rois] called D_ IWSBNTF. Afterward, we estimated the
QCI for each NWS and for both IWSBN and IWSBNTF.

The QCI was 1.45 for IWSBN and 6.45 for IWSBNTF while for
NSTR the QCI was 4.57. This result can be interpreted as a higher
separation of network topologies with our approach compared to
the best of NWS.
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FIGURE 7 | Group-averaged values of the adopted network metrics at each NWS. CPL, Characteristic Path Length; ECC, Eccentricity; R, Radius; GE, Global

Efficiency; LE, Local Efficiency; STR, mean strength.

FIGURE 8 | ICC values for basic network metrics on the network level for both (A) IWSBN and (B) IWSBNTF. CPL, Characteristic Path Length; ECC, Eccentricity; R,

Radius; GE, Global Efficiency; LE, Local Efficiency; STR, mean strength.

FIGURE 9 | Group-averaged values of the adopted network metrics for both (A) IWSBN and (B) IWSBNTF. CPL, Characteristic Path Length; ECC, Eccentricity; R,

Radius; GE, Global Efficiency; LE, Local Efficiency; STR, mean strength.

To further enhance the integration of the nine alternative
WNS for the construction of an integrated SBN, we repeated
the whole procedure splitting the nine weighted versions of
SBN into three triads (the first three, the second three and
the last three). Figures 13–15 illustrate the DM and their
embedding into a 3D-space. The highest separability between
the network topologies of the subjects have been demonstrated
for ATL, SD, and ED, while the worst for NSTR, PSTR, and
TV, where three subjects overlapped on the same embedding
space (Figure 15B). The QCI score was lower compared to the

original approach where we combined the nine weighted SBN
(Figure 12).

Structural Connectomic Classification of
Healthy Controls (HC) from Individuals with
Psychotic Experiences (PE)
Our classification results demonstrated a higher classification
accuracy (65.3%) between the two groups for the proposed
IWSBNTF. The classification performance of the nine
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FIGURE 10 | ICC values for global and local efficiency on the node level for both IWSBN and IWSBNTF. (A) ICC node-wise score for global efficiency on IWSBN and

IWSBNTF. (B) ICC node-wise score for local efficiency on IWSBN and IWSBNTF. Blue/red bars refer to Automated Anatomical Labeling (AAL) ROIs for left/right

hemisphere correspondingly.

FIGURE 11 | Mean/std values for global and local efficiency on the node level for both IWSBN and IWSBNTF. (A) Mean/Std node-wise GE for global efficiency on

IWSBN and IWSBNTF. (B) Mean/Std node-wise LE for local efficiency on IWSBN and IWSBNTF. Blue/red bars refer to AAL ROIs for left/right hemisphere

correspondingly.

weighted strategies was lower than by chance (<50%; see
Table 1). Additionally, the data-driven topological filtering
via the OMST algorithm (Dimitriadis et al., 2017a,b) further
improved the classification accuracy (from 57.23 to 65.34%; see
Table 1).

DISCUSSION

We present, for the first time, the reliability of basic network
metrics at both whole-network and node level for nine
different NWS. We recruited five subjects who were scanned
five times at weekly intervals. The range of age was (mean
37.1 ± 4.9 years of age, five males) to minimize the effect
of the age on inter-subject variability. Additionally, for the
first time, we propose a completely data-driven algorithm
for the linear interpolation of the different NWS-based SBNs

into a single IWSBN. The whole approach is based on a
diffusion distance metric that quantifies the maximum distance
between two network topologies in terms of their information
flow. Complementarily, we propose a completely data-driven
topological filtering scheme for extracting the backbone of a
SBN on an individual level (scan-based) without attempting
to find any consistency among control subjects of a specific
age (Roberts et al., 2016). To reveal any gender, age or even
individualized differences in terms of dMRI-based SBNs, we
should adopt data-driven techniques applied to individual SBNs
without any a priori knowledge of the label of a subject’s scan
(age, gender, HC). Any adopted group or scan consistency
as a constraint to the main methodology will diminish
individual differences and across scan variability, respectively.
Our results can be summarized into the following key
points:
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FIGURE 12 | Dissimilarity matrices (DM) based on both IWSBN and IWSBNTF across scans and subjects using gDDM and graph embedding of DM. (A) The first row

illustrates the DM based on the IWSBN and its embedding in a 3D space, while the (B) second row demonstrates the DM based on the IWSBNTF and its embedding

in a 3D space. Each color corresponds to a single subject, while lines with the same color interconnect the NWS derived from repeat scans (MDS, multidimensional

scaling).

FIGURE 13 | Dissimilarity matrices (DM) based on both IWSBN and IWSBNTF across scans and subjects using gDDM and graph embedding of DM (as in Figure 12).

Both (A) IWSBN and (B) IWSBNTF were constructed based on FA, MD, and RD weighted structural brain networks.

• ICC values of network metrics derived from network levels
were high for six out of nine NWS

• ICC values of network metrics derived node-wise were
unreliable for all nine NWS

• ICC values for all the network metrics on the network level
for IWSBNTF were excellent and on the same level as the best
NWS

• We observed high ICCs of networkmetrics node-wise for both
IWSBN and IWSBNTF compared to each NWS with higher
values succeeding based on IWSBNTF

• We succeeded in achieving a higher discrimination of each
subject compared to the rest of the cohort based on the
IWSBNTF derived from each scan compared to IWSBN and
the best NWS which was the NSTR

• The construction of subject-specific IWSBNTF for two large
populations (HC and individuals with PE) further improved
the classification performance compared to each of the nine
weighted versions of their structural connectome.

Previous studies explored different aspects of network reliability
using repeat dMRI scans of healthy human volunteers. Hagmann
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FIGURE 14 | Dissimilarity matrices (DM) based on both IWSBN and IWSBNTF across scans and subjects using gDDM and graph embedding of DM (as in Figure 12).

Both (A) IWSBN and (B) IWSBNTF were constructed based on ATL, SD, and ED weighted structural brain networks.

FIGURE 15 | Dissimilarity matrices (DM) based on both IWSBN and IWSBNTF across scans and subjects using gDDM and graph embedding of DM (as in Figure 12).

Both (A) IWSBN and (B) IWSBNTF were constructed based on NSTR, PSTR, and TV-weighted structural brain networks.

et al. (2008) assessed structural networks obtained from
diffusion spectrum imaging (DSI), while Vaessen et al. (2010)
assessed reproducibility over different sets of diffusion gradient
directions using DT-MRI. Bassett et al. (2011) compared
reliability in both DT-MRI and DSI, and Cammoun et al.
(2012) investigated the effect of network resolution using DSI.
Finally, Cheng et al. (2012) assessed test-retest reliability using
DT-MRI, with a focus on the differences between binary and

weighted networks. A recent study explored the reliability of
network metrics on a network and node-wise level using dMRI
and two alternative tractography algorithms, two alternative
seeding strategies, a white matter way point constraint and
three alternative network weightings (Buchanan et al., 2014).
Their best performing configuration, the global within-subject
differences, showed ICCs between 0.62 and 0.76, while the mean
nodal within-subject differences demonstrated ICCs between
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TABLE 1 | Accuracy, sensitivity, and specificity of the nine weighted strategies, the

IWSBN and the IWSBNTF following a binary classification of HC vs. individuals

with PE via a 10-fold cross-validation strategy.

LOOCV Accuracy Sensitivity Specificity

FA 43.44 ± 5.43 42.12 ± 4.99 42.19 ± 5.08

MD 42.81 ± 4.82 42.72 ± 5.12 43.06 ± 4.91

RD 44.17 ± 5.67 43.65 ± 4.92 43.57 ± 5.24

ATL 45.78 ± 5.61 44.73 ± 5.32 44.82 ± 5.39

SD 45.81 ± 6.71 44.89 ± 5.21 44.71 ± 5.96

ED 46.07 ± 5.92 45.39 ± 5.66 45.87 ± 5.23

NSTR 45.91 ± 5.11 45.44 ± 5.43 45.21 ± 4.89

PSTR 46.17 ± 5.42 46.79 ± 6.13 45.94 ± 5.69

TV 46.38 ± 5.76 46.45 ± 6.32 45.82 ± 5.73

IWSBN 57.23 ± 6.89 56.79 ± 6.20 55.89 ± 5.81

IWSBNTF 65.34 ± 6.71 64.36 ± 5.87 65.04 ± 6.05

We underlined with bold font the best classification accuracy succeeded with the

proposed IWSBNTF .

0.46 and 0.62. In the present study, we revealed higher ICC
values, both node and network-wise, based on the IWSBNTF.
Furthermore, applying our network analysis on IWSBNTF,
we observed higher between-subject differences compared to
within-subject variation (see Figure 9B).

Buchanan et al. (2014), concluded that regional reliability
of dMRI networks is low suggesting that connections between
specific pairs of nodes are unreliable across sessions. Here,
we showed the same issue for each of the nine NWS leading
to very small ICCs (<0.1). Applying the proposed topological
filtering scheme to each of the NWS, we failed to further
improve the nodal ICC, which can be interpreted as technical
issues derived from tractography (data not shown). Errors in
tractography in estimating axonal tracts may reflect both the
segmentation of each ROI affecting the streamline construction.
Tractography is strongly affected bymeasurement noise resulting
in both false negative and positive connections (Zalesky and
Fornito, 2009). Yo et al. (2009) compared different tractography
algorithms focusing on the uncertainty of fiber directions in a
noisy environment which could be a factor for poor ICC values
for node-wise estimated network metrics.

Common poor ICC values for node-wise network metrics
for each of the nine NWS and simultaneously excellent ICC
values for network-wise network metrics for six out of nine NWS
could be interpreted as a common error of the tractography for
the former and as a denoising procedure from the latter after
integrating across all nodes. It seems that the proposed dual-step
scheme for combining NWS into a single IWSBNTFdiminished
any bias of probabilistic tractography and led to a reliable nodal
ICC which was higher than that demonstrated in previous
work (Buchanan et al., 2014). Both steps proved crucial to
simultaneously elevating the ICC values of network metrics
network-wise to excellent levels—comparable to the best NWS—
and the ICC node-wise values linked to network metrics to fair to
good levels (see Figure 8).

It is important to mention here that Buchanan et al. (2014)
preferred not to threshold the derived weighted SBNs in

order to avoid biasing their results. We completely agree with
this approach since, until now, none of the non-data-driven
thresholding schemes can work without any bias selection of any
criterion. With the present study, we proposed a solution for
uncovering the backbone of a SBN by increasing the information
flow within the network constrained by the overall cost of the
selected connections.

The majority of studies focusing on SBNs have worked on
region-to-region connectivity using an anatomical map while
they ignored the rich information in the local white matter
architecture (Yeh et al., 2016). In this study, the authors
analyzed local connectomes, termed connectometry, which
tracks the local connectivity patterns along the fiber pathways
to further extract the subcomponents of the pathways that are
associated with the parameters of study. They demonstrated
that connectometry complements global brain networks while
they are more sensitive and less affected by fiber tracking
issues.

The proposed IWSBNTF was derived after first linearly
combining the nine NWS and then topologically filtering the
derived IWSBN. Our second thought was to independently
weight each node within each of the nine NWS first and
secondly to weight the whole NWS-network with the proposed
methodology. The whole procedure was added as a first
preliminary step before the proposed network-wise linear
combination of the NWS-network into a single IWSBN. The
topological filtering of each NWS-network prior to the node
and cluster-wise attacking strategies did not improve the ICC
values of network metrics, neither network or node-wise.
Additionally, the recognition accuracy was worse compared
to the proposed method. One possible interpretation of these
results could be that specific connections cause a major
effect on the reliability of the whole-network topology. Future
strategic artificial lesion approaches on a connection level could
reveal where (anatomically) and when (protocols, scanners,
other factors) a tractography algorithm produces errors. This
methodology could be useful to improve the algorithm between
specific tracts.

Future study will shed light on how the proposed dual-step
methodology can affect the reliability of connectomic biomarkers
in conditions such as Alzheimer’s Disease, schizophrenia with
a genetic background and dyslexia. Here, we demonstrated the
effectiveness of the proposed methodology in discriminating HC
from individuals with PE. Additionally, we will compare
IWSBNTF between different dMRI protocols and also
between different scanners with the same or different field
strengths (3T and 7T). Finally, large publicly-available dMRI
cohorts can be analyzed with this method in order to reveal
developmental trends. For all these research questions—looking
at individual differences, longitudinal trajectories and case-
control difference—a high degree of reliability of the underlying
metrics is crucial, and thus our approach could be widely
adopted. This data-driven topological filtering algorithm can
be a baseline across different studies and big datasets e.g., the
Human Connectome Project, UK BIOBANK in order to share
metadata in a common feature space across institutes, research
centers, universities and research groups.
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Motivations Derived from the Current
Study
Analysis of reliability is challenging for neuroimaging as the
main results presented in a study depend on both the adopted
network metrics and the metrics used to characterize the weight
of a connection. Additionally, many neuroimaging studies based
on SBNs attempt to shed light on developmental differences,
differences between clinical populations and also between a
control group and a disease group. A basic reason why all these
proposed connectomic biomarkers are not used in daily practice
in hospitals is their reliability (Dimitriadis et al., 2015a). A second
reason is that there are many studies on the same topic (e.g.,
brain disease) based on small datasets that adopted different
NWS and arbitrary topological filtering schemes. Meaningful
aggregation of these, even in the case that their metadata are
free available, is impossible. A third reason is that until now, it is
not standard practice to assess the reliability of network metrics
derived from SBNs across repeat scans on the same population
but with different dMRI protocols and scanners (3T vs. 3T or 3T
vs. 7T). This is an issue that we would like to investigate in future
studies with the proposed scheme.

A basic issue with the ICC is that it needs large samples
in order to estimate scores to acceptable precision. A study
estimated that for two repeated measures, in order get an
acceptable ICC score of 0.8 with a 95% confidence interval of 0.2
width, then at least 52 subjects are needed (see Table 3 in Shoukri
et al., 2004). In a similar vein, for an ICC score of 0.6 with
95% confidence intervals of 0.2 width, repeated measures from
158 subjects would be required. Clearly for most MRI-based
studies, this scenario of repeated scans for hundreds of scans
is unrealistic. However, our analysis provided a methodology
of how to combine different NWSs into a single integrated
graph based on a gDDM that counts the network topology
as a whole and quantifies the distance between two SBNs in
terms of their information flow. The results of the proposed
methodology presented here, even in a small dataset, are of
paramount importance since they are completely data-driven
in any preprocessing step. Simultaneously, they provided novel
directions of how to untangle hidden information within
dMRI-based brain networks by working on an individualized
manner and without any averaging approach (group or scan-
wise). Additionally, we proposed a data-driven thresholding
scheme applied to the IWSBN that improved the ICCs of basic
network metrics at both node and network levels compared
to the original IWSBN and each of the adopted NWS. Our
data-driven method can be seen as a methodology for improving
network reliability on SBNs (Zalesky et al., 2010; Drakesmith
et al., 2015b). Complementarily, our approach provided excellent
discrimination of the network patterns of the five subjects based
on the recognition of each scan to the targeted subject. Finally,
our method better separated the five groups of scans based on
the topological filtering version of IWSBN compared to the best
NWS.

Limitations of the Study
It is important to mention here the limitations of the current
study due to the small dataset for exploring the test-retest
reliability statistics. In the era of open science resource where

multisite worldwide neuroimaging labs share neuroimaging
datasets, it is important to demonstrate novel techniques
that improve the reliability of connectomics in common
neuroimaging data (Zuo et al., 2014). A recent Consortium for
Reliability and Reproducibility (CoRR) is working to address this
gap and establish test-retest reliability as a minimum standard
for methods development in functional connectomics (Zuo and
Xing, 2014; Zuo et al., 2014) and morphological measurements
(MacLaren et al., 2014). Reliability is important to build reliable
connectomic biomarkers across multi-site (Nielsen et al., 2013;
Abraham et al., 2017) and also longitudinal trajectories of
structural and functional brain networks across the life-span
(Zuo et al., 2017).

Our future goal is to test the proposed methodology in a larger
sample for validating the test-retest reliability of our scheme and
also on multi-site diffusion-based structural brain networks for
building reliable connectomic biomarkers.

CONCLUSION

Reliability analysis of both node and network-wise network
metrics in IWSBN and its topological filtering version revealed:
(1) similar ICC values for all the network metrics on the network
level for IWSBNTF compared to the best NWS; (2) higher ICC
of network metrics node-wise for both IWSBN and IWSBNTF

compared to each NWS with higher values succeeding based
on IWSBNTF; and (3) higher discrimination of each subject
compared to the rest of the cohort based on the IWSBNTF

derived from each scan compared to IWSBN and the best NWS
which was the NSTR. We thus provided a new approach to
identifying highly reliable and discriminative network metrics
that can be the basis for studies of interindividual differences,
longitudinal trajectories, and pathological changes in structural
brain connectivity.
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