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Background-—Population densities of many cities are increasing rapidly, with the potential for impacts on cardiovascular health.
This longitudinal study examined the potential impact of population-density increases in urban areas (urban densification) on
cardiovascular risk markers among Australian adults.

Methods and Results-—Data were from the Australian Diabetes, Obesity and Lifestyle Study, in which adult participants’
cardiovascular risk markers were collected in 3 waves (in 1999–2000, 2004–2005, and 2011–2012). We included 2354
participants with a mean age of 51 years at baseline who did not change their residence during the study period. Outcomes were
12-year changes in waist circumference, weight, systolic and diastolic blood pressure, fasting and 2-hour postload plasma glucose,
high-density lipoprotein cholesterol, and triglycerides. The exposure was neighborhood population densification, defined as 12-year
change in population density within a 1-km radius buffer around the participant’s home. Multilevel linear growth models, adjusting
for potential confounders, were used to examine the relationships. Each 1% annual increase in population density was related with
smaller increases in waist circumference (b=�0.043 cm/y; 95% CI, �0.065 to �0.021 [P<0.001]), weight (b=�0.019 kg/y; 95%
CI, �0.039 to 0.001 [P=0.07]), and high-density lipoprotein cholesterol (b=�0.035 mg/dL per year; 95% CI, �0.067 to �0.002
[P=0.04]), and greater increases in diastolic blood pressure (b=0.032 mm Hg/y; 95% CI, �0.004 to 0.069 [P=0.08]).

Conclusions-—Our findings suggest that, at least in the context of Australia, urban densification may be protective against obesity
risk but may have adverse effects on blood lipids and blood pressure. Further research is needed to understand the mechanisms
through which urban densification influences cardiovascular health. ( J Am Heart Assoc. 2019;8:e013199. DOI: 10.1161/JAHA.
119.013199.)

Key Words: environmental epidemiology • heart disease • population health • type 2 diabetes mellitus • urbanization

T he global burden of cardiometabolic disease is increas-
ing.1,2 In 2015, an estimated 423 million people world-

wide experienced cardiovascular disease1 and 415 million
had diabetes mellitus3 A basic premise of preventive medicine
is that a large number of people at low risk will contribute
more to the burden of disease than a small number who are at
high risk.4 Thus, along with clinical approaches for those who
are at high risk, community-wide strategies are also necessary
to lower the risk for the total population. In this context,

investigating the role of contextual factors has been identified
as one of the key directions for the future of cardiovascular
epidemiology.5,6

Population density—the number of people living per unit
area can be a fundamental health-related attribute of
neighborhood environments.7 A number of studies, mostly
conducted in Western countries, have reported associations
of population density with health behaviors and outcomes. For
example, an Australian study reported that higher-density
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urban neighborhoods with better access to local stores and
services can facilitate active modes of travel, such as
walking,8 which are associated with lower cardiovascular
risk.9 Car use is predominant in sprawling lower-density outer
suburbs in Australia.10 Living in outer suburban neighbor-
hoods has also been shown to increase obesity risk in
Australia.11 Cross-sectional studies have shown associations
of higher population density with lower risk of obesity and
type 2 diabetes mellitus in North America12,13 and with lower
risk of hypertension in France.14 A longitudinal study has
found that higher density at baseline was associated with
reduced incidence of cardiovascular events in women in the
United States.15 A systematic review of longitudinal studies
found evidence for potential long-term protective effects of
higher walkability, typically consisting of measures related to
population density, land use, and street layout, against
cardiometabolic disease risk.16

Little is known, however, about how changes in population
density in neighborhoods may influence residents’ cardiovas-
cular health. Examining the potential impacts of population-
density increases (densification) is timely in the global context
of widespread, rapid urbanization.17 Urban dwellers increased
from 30% of the world population in 1950 to 54% in 2015, and
this is expected to reach 60% in 2030.18 Although urban
densification is a global trend, only a few studies have examined
the cardiovascular health impacts of population density change
over time.16 For example, an increase in population density,
measured at a large scale (metropolitan statistical area), was
found to be inversely associated with an increase in body mass
index over 30 years in the United States.19 Also, increases in a
composite environmental index (consisting of population
density, land use, and density of destinations) have been found
to be associated with smaller increases in body mass index and
waist circumference over 9 years in the United States.20 To

better understand such impacts, research is needed on
whether population-density increases at a local scale can
influence indices of cardiovascular risk.

We examined longitudinal relationships of urban population
densification with changes in Australian adults’ cardiovascular
risk markers over 12 years.

Methods

Data Source and Study Participants
We used data from the AusDiab (Australian Diabetes, Obesity
and Lifestyle Study), an Australian national cohort study
examining the risk factors, prevalence, and incidence of
diabetes mellitus and cardiovascular disease. Survey and
biomedical data were collected in 3 waves: 1999–2000
(AusDiab1), 2004–2005 (AusDiab2), and 2011–2012 (Aus-
Diab3). Detailed descriptions of study design, recruitment
procedures, and measurement methods have been pub-
lished.21 Briefly, AusDiab1 used a 2-stage stratified cluster
sampling method in which study participants were randomly
selected from 42 urban sites chosen from each of six Australian
states and Northern territory. Each site consisted of contiguous
Census Collection Districts (CCDs). A CCD was the smallest
geographic area unit for the collection of Census data at the
time of AusDiab1, averaging�225 dwellings.22 In total, 11 247
adults aged 25 years and older with no physical or intellectual
disabilities and who resided at their addresses for 6 months or
longer before the survey were recruited. The overall response
rate for biomedical examinations at baseline was 55.3%.21

From the baseline cohort, 6400 (59.3%) and 4614 (44.6%)
participants completed surveys and biomedical examination
for AusDiab2 and AusDiab3, respectively. There were 3968
participants who provided data in all 3 waves, and 646 who
attended both AusDiab1 and AusDiab3. We excluded partic-
ipants whose addresses were not accurately geocoded
(n=81), those who were pregnant (n=39) during the data
collection, and those who changed their residence during the
study period (n=2140). “Movers” were excluded because their
relocation date was not recorded, which prevented us from
accurately examining neighborhood effects. The final sample
retained for analyses was 2354 (2119 provided data at 3
waves, and 235 at the first and third waves only). The
International Diabetes Institute and the Alfred Hospital ethics
committee (no. 39/11) approved the study, and written
informed consent was obtained from all participants.

Outcome Measures
The outcomes of this study were the changes in cardiovas-
cular risk markers over 12 years. These included waist
circumference (WC), body weight (weight), systolic blood

Clinical Perspective

What Is New?

• In the global context of urbanization, where cities are
growing in size and urban population densities are increas-
ing, this longitudinal study identified the potential impacts of
urban densification on Australian adults’ cardiovascular risk.

What Are the Clinical Implications?

• Characteristics of urban environments may have complex
impacts on the susceptibility to cardiovascular disease:
population-density increase may be protective against
obesity but may elevate risk of hypertension.

• Clinicians can take into account such emerging risk
exposures, which are broader and ubiquitous determinants
of cardiovascular health.

DOI: 10.1161/JAHA.119.013199 Journal of the American Heart Association 2

Urban Densification and Cardiovascular Risk Chandrabose et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H

D
ow

nloaded from
 http://ahajournals.org by on July 24, 2019



pressure (BP), diastolic BP (DBP), fasting plasma glucose (fpg),
2-hour postload plasma glucose (2-hour PG), high-density
lipoprotein cholesterol (HDL-C), and triglycerides. They were
measured at local data collection centers at each time point.
Details of the instruments used to measure these markers
have been described elsewhere.21 Methods to calculate the
annual change for each outcome are described below in the
Statistical Analysis section.

Exposure Measure
The exposure variable was population densification, which
was defined as the change in population density during the
study period. Population density is defined as the number of
individuals living in a geographical unit divided by its area.23 In
this study, we calculated population density for each partic-
ipant for the area within a 1-km radius buffer around his/her
residence using Census data corresponding to each data
collection time point. We used a straight-line buffer rather
than a street-network buffer to have the same geographical
area across all the waves. The population count data in the
smallest geographical units covering all Australia (CCDs in
2001 for AusDiab1; mesh blocks in 2006 and 2011 for
AusDiab2 and AusDiab3) were obtained from the relevant
Census unit. Population counts for an individual buffer were
calculated by summing the population counts of the Census
areas included in the buffer. If the buffer intersected a Census
unit (CCD or mesh block), that unit’s population count
corresponding to the percentage of the area within the buffer
was added. Population density was expressed as persons per
hectare (pph). Methods to calculate population densification
are explained below in Statistical Analysis. We expressed the
population densification as a relative measure in percentage
[(density change/baseline density)9100] so that a unit
increase had the same magnitude relative to the baseline
density. We also used an absolute measure of densification,
pph per year, as a secondary unit. ArcGIS (version 10.6) was
used for calculating population density.

Covariates
Potential covariates included time, which corresponded to
repeated measures of outcome variables; time-constant
covariates: sex, education, height (only for weight), family
history of diabetes mellitus, baseline population density; and
time-varying covariates assessed at each wave: age, marital
status, employment status, household income, household
children status (having a child or children in the household),
medication use for hypertension, medication use for high
cholesterol, energy intake, tobacco smoking, alcohol intake,
and area-level socioeconomic status. For area-level socioe-
conomic status, we used the Index of Relative Socio-

Economic Disadvantage (IRSD),24 which is a composite
variable defined for geographic areas, derived using measures
such as income, education, employment, household structure,
and car ownership, with higher scores indicating lower levels
of disadvantage. The IRSD was defined at the Statistical Local
Area of participants’ residence and obtained for each AusDiab
wave from the corresponding Censuses. Because of potential
overadjustment, we did not adjust for physical activity
variables (eg, walking) that may mediate the relationships
examined.25

Statistical Analysis
To calculate participants’ annual change in cardiovascular risk
markers, we fitted an unconditional linear growth model, in
which we used fixed continuous time metrics: t=0 for
AusDiab1 (baseline); t=5 for AusDiab2 (5-year follow-up);
and t=12 for AusDiab3 (12-year follow-up). The participant-
specific random slopes of this growth model were used as the
annual changes in the risk marker.26 We also fitted an
unconditional linear growth model of population density with
corresponding Census years as time metrics (t=1 for 2001,
t=6 for 2006, and t=11 for 2011). The participant-specific
random intercepts (at t=0) and the random slopes of this
growth model were used as the baseline population density at
year 2000 and annual population densification, respectively.
This method enabled us to obtain robust estimates of annual
changes in outcomes and exposure by utilizing the informa-
tion available at all 3 waves and corresponding Census
years.27

Multilevel linear growth models28 were used to examine
associations of population densification with changes in
cardiovascular risk markers. In the multilevel models, the
model intercept was allowed to vary between participants and
between study sites, to account for intraindividual correla-
tions attributable to repeated measures and area-level
clustering attributable to stratified cluster sampling. Three
sets of models were fitted for each outcome. Model 1
adjusted for baseline population density. Model 2 further
adjusted for individual-level sociodemographic variables and
IRSD. Model 3 further adjusted for health- and behavior-
related factors including family history of diabetes mellitus
(only for fpg and 2-hour PG), medication use for hypertension
(only for systolic BP and DBP), medication use for high
cholesterol (only for HDL-C and triglycerides), energy intake,
tobacco smoking, and alcohol intake. Further details of
multilevel growth models are explained in accompanying text
S1 and Figure S1.

We conducted sensitivity analyses focusing on residents of
metropolitan areas. The AusDiab study included sites from
both metropolitan and regional cities of Australia. Since
population densification can be considered more prominent in
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metropolitan areas, we ran model 3 after excluding partici-
pants who resided in regional cities (n=1080), as defined by
Australian Statistical Geography Standard Remoteness Area
Classification.29

Multilevel modeling of repeated measures over time
assumes a missing at random mechanism implying that
models will result in unbiased estimates if all variables related
to attrition are included in the model.28 Statistical analyses
were performed in STATA (version 15.0; StataCorp). Statisti-
cal significance was set at P<0.05.

Results
Table 1 shows the baseline characteristics of study partici-
pants. The mean follow-up duration was 11.9 years (range:
11.0 to 12.4 years). The comparison of baseline character-
istics of those included in the current study (stayers),
excluded from the study (movers), and who dropped out of
the AusDiab study is shown in Table S1. Compared with the
stayers, the movers consisted of slightly more women and
more workers, and the dropouts were more likely to be older,
had lower educational qualifications, had lower income levels,
did not work, did not live with a partner or children, and had
poorer health profiles at baseline.

Table 2 shows the mean overall change (from AusDiab1 to
AusDiab3) and the mean annual change (estimated from the
unconditional growth models) of each cardiovascular risk
marker. On average, participants increased their WC, weight,
BP, and glucose levels but improved their lipid profiles
(increased HDL-C and decreased triglycerides) over the 12-
year period.

The mean baseline population density was 13.0 pph
(SD=7.4, median=12.1, range: 0.5 to 52 pph). The mean
annual relative population densification estimated from the
unconditional growth model was 0.8% per year (SD=1.3,
median=0.7, range: �4.1 to 7.8% per year). The mean annual
absolute population densification was 0.09 pph/y (SD=0.13,
median=0.08, range: �0.20 to 1.23 pph/y). Approximately
one fifth of participants (19%) lived in areas where population
density decreased during the study period. It should be noted
that the relative and absolute densification are distinct
measures of population-density changes. Although they were
correlated (r=0.65, P<0.01), higher relative densification
tended to occur in areas with lower baseline density, while
higher absolute densification was more likely to take place in
areas with higher baseline density (Figure S1 and S2).

Table 3 shows the results of multilevel linear growth
models, examining linear associations of annual relative
densification with annual changes in cardiovascular risk
markers. After adjusting for baseline population density
(model 1), a 1% annual increase in population density was

associated with smaller increases in WC (b=�0.047 cm/y;
95% CI, �0.067 to �0.026 [P<0.001]), weight
(b=�0.025 kg/y; 95% CI, �0.044 to �0.006 [P=0.01]), and
HDL-C (b=�0.038 mg/dL per year; 95% CI, �0.067 to

Table 1. Selected Characteristics of Study Participants
(N=2354) at Baseline in AusDiab (1999–2012)

Baseline Characteristics Mean�SD or Percentage

Age, y 51.1�10.8

Women 53.6

Education

High school or less 34.5

Technical or less 43.3

Bachelor’s degree or higher 22.2

Employment status

Working 70.7

Not working 28.8

Other 0.4

Weekly household income

<$600 31.0

$600 to 1500 46.2

>$1500 22.8

Marital status, couple 85.2

Children in household 45.2

Cardiovascular risk markers

WC, cm 89.7�13.4

Weight, kg 76.2�15.6

SBP, mm Hg 128.3�17.5

DBP, mm Hg 70.8�11.5

FPG, mg/dL 99.5�18.9

2-h PG, mg/dL 109.2�37.4

HDL-C, mg/dL 55.4�14.4

Triglycerides, mg/dL 131.5�87.9

Health-related behaviors

Energy intake, kJ/d 8131�3277

Tobacco smoking, current or past smoker 38

Alcohol intake, g/d 14.3�17.9

Family history of diabetes mellitus 19.6

Medication use

For hypertension 12.1

For high cholesterol 7.7

Index of relative socioeconomic disadvantage 1023�62

2-h PG indicates 2-hour postload plasma glucose; AusDiab, Australian Diabetes Obesity
and Lifestyle Study; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HDL-C,
high-density lipoprotein cholesterol; SBP, systolic blood pressure; WC, waist
circumference.
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�0.009 [P=0.009]). Statistical adjustment for sociodemo-
graphic (model 2) and behavior- and health-related factors
(model 3) did not markedly alter the regression coefficients
and statistical significance for WC but slightly attenuated the
associations for weight (P=0.07 in model 3) and HDL-C
(P=0.04 in model 3). Additionally, in model 3, a 1% annual
increase in population density was marginally associated with
a greater increase in DBP (b=0.032 mm Hg/y; 95% CI,
�0.004 to 0.069 [P=0.08]).

The regression results obtained using the absolute mea-
sure of densification (pph/y) are shown in Table S2. We

observed consistent but more statistically significant inverse
associations for WC, weight, and HDL-C, and an additional
significant association for 2-hour PG. In model 3, each 1-pph
annual increase in population density was associated with
smaller increases in WC (b=�0.38 cm/y; 95% CI, �0.60 to
�0.15 [P<0.001]), weight (b=�0.19 kg/y; 95% CI, �0.40 to
0.02 [P=0.08]), 2-hour PG (b=�1.96 mg/dL per year; 95% CI,
�3.16 to �0.77 [P=0.001]), and HDL-C (b=�0.59 mg/dL per
year; 95% CI, �0.93 to �0.25 [P=0.001]).

The results of the sensitivity analyses, focusing only on
participants who resided in metropolitan areas (n=1274), are
shown in Table S3. Similar to those reported in Table 3
(model 3), relative densification was associated with changes
in WC and HDL-C (borderline significant). However, relative
densification in metropolitan areas was also associated with
greater increases in DBP and systolic BP (borderline signif-
icant). The absolute population densification in metropolitan
areas was associated with changes in HDL-C (same as model
3 in Table S2) but was not associated with WC and 2-hour PG
changes.

Discussion
In this cohort of Australian adults, participants’ cardiovascular
risk increased on average during the 12-year study period,
with the exception of a slight improvement in lipid profiles. In
Australia, the mean annual increase in WC is about 0.45 cm
among adults,30 which is consistent with the estimated
annual increase in our sample. We found that changes in
some cardiovascular risk markers varied by population
densification. Increases in urban population density were

Table 2. Overall Changes and Annual Change Rates in
Cardiovascular Risk Markers in AusDiab (1999–2012)

Cardiovascular
Risk Marker

Mean�SD Overall
Changes*

Mean�SD Annual
Change Rates†

WC, cm 5.20�7.53 0.433�0.237

Weight, kg 2.02�7.08 0.163�0.322

SBP, mm Hg 2.77�18.18 0.283�0.167

DBP, mm Hg 1.81�12.69 0.169�0.462

FPG, mg/dL 0.37�20.32 0.042�0.855

2-h PG, mg/dL 2.73�36.01 0.307�0.988

HDL-C, mg/dL 3.39�10.63 0.292�0.278

Triglycerides, mg/dL �12.66�75.53 �1.076�2.377

2-h PG indicates 2-hour postload plasma glucose; DBP, diastolic blood pressure; FPG,
fasting plasma glucose; HDL-C, high-density lipoprotein cholesterol; SBP, systolic blood
pressure; WC, waist circumference.
*Measure at AusDiab3 (Australian Diabetes Obesity and Lifestyle Study)—measure at
AusDiab1.
†Estimated from the unconditional growth model.

Table 3. Associations of Annual Relative Population Densification With Changes in Cardiovascular Risk Markers in AusDiab (1999
–2012)

Cardiovascular Risk Markers

Unstandardized Regression Coefficients (95% CI)

Model 1 Model 2 Model 3

WC, cm �0.047 (�0.067 to �0.026)* �0.048 (�0.069 to �0.026)* �0.043 (�0.065 to �0.021)*

Weight, kg �0.025 (�0.044 to �0.006)† �0.018 (�0.038 to 0.002)‡ �0.019 (�0.039 to 0.001)‡

SBP, mm Hg 0.020 (�0.029 to 0.070) 0.021 (�0.031 to 0.073) 0.018 (�0.037 to 0.072)

DBP, mm Hg 0.025 (�0.01 to 0.059) 0.028 (�0.007 to 0.063) 0.032 (�0.004 to 0.069)‡

FPG, mg/dL �0.018 (�0.073 to 0.038) �0.019 (�0.071 to 0.033) �0.008 (�0.062 to 0.045)

2-h PG, mg/dL �0.077 (�0.182 to 0.027) �0.084 (�0.193 to 0.026) �0.076 (�0.191 to 0.039)

HDL-C, mg/dL �0.038 (�0.067 to �0.009)§ �0.036 (�0.067 to �0.006)† �0.035 (�0.067 to �0.002)†

Triglycerides, mg/dL 0.007 (�0.197 to 0.211) 0.058 (�0.155 to 0.271) 0.034 (�0.190 to 0.258)

Regression coefficients correspond to 1% annual increase in population density relative to the baseline population density. Model 1: adjusted for baseline population density and corrected
for clustering. Model 2: further adjusted for age, sex, education, employment status, household income, marital status, household children status, height (only for weight), and Index of
Relative Socio-Economic Disadvantage. Model 3: further adjusted for energy intake, tobacco smoking, alcohol intake, family history of diabetes mellitus (for fasting plasma glucose [FPG]
and 2-hour plasma glucose [2-hour PG] only), hypertensive medication use (for systolic blood pressure [SBP] and diastolic blood pressure [DBP] only), and cholesterol medication use (for
high-density lipoprotein cholesterol [HDL-C] and triglycerides only). AusDiab indicates Australian Diabetes Obesity and Lifestyle Study; WC, waist circumference.
*P<0.001; †P<0.05; ‡P<0.10; §P<0.01.
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beneficially associated with changes in obesity-related mea-
sures, after adjusting for multiple potential confounders
including energy intake. The estimated effect size was greater
for WC change than for body weight change, suggesting that
increasing urban densification may have a protective effect
against abdominal obesity, which is a strong marker of
cardiometabolic disease risk.31

We found that the study areas varied by 12% in their annual
population densification (range: �4% to 8%). Since the regres-
sion coefficient for WC change was �0.043 cm for 1% annual
density increase, those living in areas with �4% densification
would have an additional 0.52 cm (=0.043912) greater
increase in WC per year, relative to those living in areas with
8% densification. At the population level, such differences inWC
increases accumulated over years would be substantial. The
potential protective effects of increasing population density
against obesity may be greater in Australian capital cities such
as Sydney and Melbourne, where large populations reside in
neighborhoods with increasing density, which was around 4%
annually in the past 5 years.32

Our findings on the associations between population
densification and obesity measures are consistent with 2
previous longitudinal studies conducted in the United
States.19,20 Although these studies did not use a direct
measure of population-density change measured at a local
scale, our findings along with these studies suggest that
increasing population density may reduce the risk of obesity in
localities with lower population density. Increasing population
density can increase access to more walkable destinations in
the neighborhood.17 Residents in such neighborhoods may, for
example, engage in more active travel and rely less on cars for
transport, which can have a protective effect against chronic
diseases over time.33,34 Further research is needed to examine
the potential role of active travel and car use in the impact of
densification on obesity.

We did not find associations of relative or absolute
densification with BP changes, except for a borderline adverse
association between relative densification and DBP. However,
in the sensitivity analysis undertaken on metropolitan partic-
ipants, we found higher relative densification to be associated
with greater increases in the BP measures. This finding was
unexpected. There is strong longitudinal evidence for the
relationships between higher walkability (a composite mea-
sure including population density) and lower risk of hyper-
tension.16,35 Thus, it was anticipated that increasing
population density would have beneficial effects on BP. It is
not possible to explain our present findings (no associations
for the whole sample, but adverse associations for the
metropolitan sample). Potential explanations may include
nonlinear relationships between densification and BP
changes, or detrimental impacts by unmeasured factors
related to urban densification (eg, increased air and noise

pollution from traffic, reduced exposure to green space, and
enhanced access to unhealthy food and alcohol). If the
beneficial impact of densification on obesity-related measures
is attributable to physical activity, there may be other
pathways for BP that overshadow the benefits from being
active. Given that cities across the globe are increasing their
density, further studies are needed to examine multiple
pathways and quantify each of their potential mediating
effects to fully understand both the beneficial and detrimental
impacts of urban densification. Future research can explore
further how to avoid or mitigate harmful cardiovascular health
effects of densification.

No associations were found between relative densification
and blood glucose measures. However, absolute densification
was beneficially associated with 2-hour PG in all models, but
not with fasting plasma glucose (Table S2). Overall, it can be
argued that increasing population density has some modest
benefits for blood glucose, potentially attributable to physical
activity increases. On the contrary, we found that both relative
and absolute densification measures had adverse effects on
HDL-C, but they were not associated with triglycerides
(Table 3 and Table S2). It is unclear as to why densification
had differential impacts on blood glucose and lipid measures.
It is also unclear why the 2 densification measures produced
distinct results for postload blood glucose (significant results
found for absolute densification). It is not possible to
disentangle the effects of densification on blood glucose
and lipids, but these findings suggest that densification may
be both beneficial and detrimental to cardiometabolic health.
Studies on potential mediating factors may provide insights
into the way population densification influences residents’
blood glucose and lipid measures.

Study Strengths and Limitations
Our study has several strengths. We used robust objective
measures for both the outcomes and exposure at 3 time
points with a 12-year follow-up duration. The study sites
ranged from metropolitan to regional cities, which provided a
wide range of variation in population density changes. We
used multilevel growth models to analyze the relationships
between densification and within-participant changes in
cardiovascular risk markers, sequentially adjusting for poten-
tial time-constant and time-varying confounders. A limitation
is that while our findings may be generalizable to localities
with lower population density, they may not be applicable to
very high-density cities. Future research needs to investigate
the impacts of density increase in higher-density localities as
further densification may produce adverse cardiovascular
health effects. The attrition rate was relatively high because of
the longer follow-up period (55%). Our modeling approach
assumes a “missing at random” mechanism, where it has
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been shown that up to 60% attrition was less likely to produce
biased estimates under this missingness mechanism.36

However, if attrition was caused by a “missing not at random”

mechanism, the effect sizes may have been underesti-
mated.36 Further selection of participants as a result of their
relocation status could also lead to selection bias, if the
relocation status is patterned by participants’ cardiovascular
risk status.36 Since the aim of our study was to examine the
total effects (through direct and potential pathways) of
population densification on cardiovascular risk changes over
time, we did not examine the mediating mechanisms or effect
modifications. Understanding mechanisms (contextual vari-
ables such as access to public transport or individual
behaviors such as physical activity) through which urban
densification influences cardiovascular health is an important
future research topic. Research is also needed to examine
whether the potential cardiovascular impacts of densification
varies by population subgroups (eg, sex, socioeconomic
status, and ethnicity) and among different levels of area-level
socioeconomic status, for whom disparities in cardiovascular
health has been observed.37

Conclusions
Urban densification is a global phenomenon, which also
applies to Australian cities. The expansion of growth bound-
aries to allow low-density residential development in urban
peripheries is a commonly used strategy to accommodate
urban population increases. Our findings suggest that
increasing population in existing neighborhoods (while not
expanding the growth boundary) may be protective against
obesity. However, we also found potential detrimental effects
of densification on BP and on blood lipids. Further studies in
different localities with higher baseline density such as Asian
and European cities and investigating behavioral and other
factors that may mediate the effects are warranted to better
understand the potential cardiovascular impacts of urban
densification. Research is also needed to test whether there
are population-density thresholds above which further popu-
lation increases may elevate cardiovascular disease risk.
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Data S1. 

 

Multilevel Growth Models  

Multilevel modeling (MLM) is a commonly used statistical method in studies on 

neighborhood and health, where participants are clustered within study sites. Failing to 

account for this clustering (violation of independent observations) in the regression modeling 

can increase the probability of committing Type I error (so resulting in false “significant” 

findings). MLM is one way of appropriately analyzing such data structures. A longitudinal 

study design in the context of neighborhood and health research has an additional level of 

clustering due to repeated measures for each participant. For data with three-level structure 

(i.e., repeated observations are nested within study participants who are in turn nested within 

study sites, see Figure S1), multilevel growth models (MGM) can account for both the 

dependence between repeated measures within participants, and the spatial clustering within 

study sites.  

 

Further, MGM can be used to answer the question about if and to what extent between-

participant differences in changes of the outcome variables (within-participant) can be 

explained by between-participant differences in the explanatory variables that may or may 

not vary over time. In the current study, MGM was used to examine associations of changes 

in cardiovascular risk markers with neighborhood population densification, by adjusting for 

potential time-constant and time-varying confounders. In this supplementary material, we 

describe the development of MGM with explanations of the model parameters and the 

analytical strategy used in the current study. 

 

Development of the MGM 

For simplicity, we first explain the development of a two-level MGM, in which repeated 

observations (Level 1) are nested within study participants (Level 2). Then, we outline the 

three-level MGM used in the current study.  

 

• The null model (no-growth model) 

The null model (no-growth model) is used as a starting point because this model hypothesizes 

that the outcome variable does not change with time. A null model can be written as a 

sequence of two model equations for each level as follows: 
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• Level 1 (time-level) model ⇒  𝑦𝑡𝑖 = 𝑏0𝑖 + 𝑒𝑡𝑖  

• Level 2 (participant-level) model ⇒ 𝑏0𝑖 =  𝛽0 + 𝑢0𝑖, 

where at Level 1 (time-level), 𝑦𝑡𝑖 is the value of the outcome variable measured at time point 

𝑡 for study particpant 𝑖; 𝑏0𝑖 is the randon intercept indicating the mean of 𝑦𝑡𝑖 across the 

multiple time points for particpant 𝑖; 𝑒𝑡𝑖 is the time-specifc residual [𝑒𝑡𝑖 ~𝑁(0, 𝜎𝑒
2)]. At Level 

2 (particpant-level), 𝛽0 is the overall mean of 𝑦𝑡𝑖 across all participants; 𝑢0𝑖 is the random 

part of the intercept indicating the deviation of 𝑏0𝑖 from 𝛽0 [𝑢0𝑖  ~𝑁(0, 𝜎𝑢0
2 )] for participant i.  

 

• The unconditional linear growth model 

The above-specified model can be extended as a “growth model” by entering the time metric 

(e.g., measurement time in the study) into the Level 1 equation and allowing its coefficient 

(time slope) to vary between participants. The sequence of the models are written as  

• Level 1 (time-level)  model ⇒ 

 𝑦𝑡𝑖 = 𝑏0𝑖 + 𝑏1𝑖𝑡 + 𝑒𝑡𝑖 

• Level 2 (participant-level)  models ⇒ 

𝑏0𝑖 =  𝛽0 + 𝑢0𝑖 

𝑏1𝑖 =  𝛽1 + 𝑢1𝑖 , 

where, 𝑏0𝑖 is the random intercept at 𝑡=0 of the outcome variable for particpant 𝑖 (i.e., starting 

point);  𝑏1𝑖  is the random slope of the time metric – indicating the linear change in the 

outcome variable for one-unit incease in time for particpant 𝑖  (i.e., the rate of change). 

Together, 𝑏0𝑖 and 𝑏1𝑖 capture the growth trajectory of the outcome variable for particpant 𝑖. 

As the statrting point and rate of change can have a specific value for each participant, they 

are allowed to vary between particpants at Level 2 by specifying the mean intercept (𝛽0) and 

mean slope of the time metric (𝛽1) of the population. The random components (𝑢0𝑖 and 𝑢1𝑖) 

indicate the between-person variability in the individual intercepts and slopes. Jointly, 𝑢0𝑖 

and 𝑢1𝑖 are assumed to follow a Multivariate Normal distribution with a null mean vector and 

a covariance matrix (i. e.  𝑢0𝑖, 𝑢1𝑖 ~𝑀𝑉𝑁 ([
0
0

] , [
𝜎𝑢0

2

𝜎𝑢01 

 
 

𝜎𝑢1
2

])). In the unconditional linear 

growth model, there are six parameters to be estimated: 𝛽0, 𝛽1, 𝜎𝑢0
2 , 𝜎𝑢1

2 , 𝜎𝑢01, 𝜎𝑒
2. Note that 

the no-growth model should be rejected in favor of the unconditional linear growth model in 

order to have a significant change in the outcome.  

• MGM with time-invariant and time-varying covariates 
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Now the above specified unconditional linear growth model can be extended by entering the 

covariates (the term covariates include both exposure and confounding variables) into the 

models. Here, two type of covariates can be entered: time-constant and time-varying 

covariates. Time-constant covariates (TCC) are participant-specific characteristics which do 

not change with time (e.g., gender). Time-varying covariates (TVC) do change with time 

(e.g., age). Note that TVCs are entered into the Level 1 equation and TCCs are entered into 

the Level 2 equation. Let 𝑥 be a TCC and 𝑧 be a TVC. Then, the sequence of the models are 

written as 

• Level 1(time-level) model ⇒ 

𝑦𝑡𝑖 = 𝑏0𝑖 + 𝑏1𝑖𝑡 + 𝑏2𝑧𝑡𝑖 + 𝑒𝑡𝑖 

• Level 2 (participant-level) models ⇒ 

𝑏0𝑖 =  𝛽0 + 𝛽01𝑥𝑖 + 𝑢0𝑖 

𝑏1𝑖 =  𝛽1 + 𝛽11𝑥𝑖 + 𝑢1𝑖, 

 

where,  𝑧𝑡𝑖 is the value of a TVC measured at time point 𝑡 for particpant 𝑖, and 𝑥𝑖 is the value 

of a TCC for particpant 𝑖. For TCC 𝑥,  𝛽01 and 𝛽11 are the regression coefficients indicating 

the relationship between 𝑥 and individual intercepts and time slopes of the outcome variable, 

respectively. For instance,  𝛽11 is interpreted as expected difference in the time slope of the 

outcome variable (i.e., the rate of change in the outcome) for one unit difference in 𝑥. For 

time-varying covariate 𝑧, 𝑏2 is the regression coefficient indicating the expected difference in  

𝑦 for one unit difference in 𝑧. Thus, any given repeated measure of the outcome variable is 

jointly determined by the underlying growth trajectory (i.e., the starting point and the rate of 

change – both depend on TCCs) and the impact of the TVCs at that time period.  

 

The single equation model by combining the Level 1 and Level 2 models: 

𝑦𝑡𝑖 = 𝛽0 + 𝛽1𝑡 + 𝛽01𝑥𝑖 + 𝛽11𝑥𝑖𝑡 + 𝑏2𝑧𝑡𝑖 + 𝑢0𝑖 + 𝑢1𝑖𝑡 + 𝑒𝑡𝑖 

 

Analytical Strategy of the Current Study  

The current study has a three-level data structure; time (three repeated measures), 

participants, and study sites. The exposure variable of the study is neighborhood population 

densification (i.e., the annual change in neighborhood population density). To calculate this 

exposure variable, we first fitted a two-level unconditional linear growth model of 

neighborhood population density with Census years as time metrics (t=1 for 2001, t=6 for 
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2006, t=11 for 2011). The estimated random intercepts (at t=0) and the random slopes were 

used as the baseline neighborhood population density at the year 2000 and the annual 

neighborhood population densification, respectively, and entered into the Level 2 models. 

Participants’ gender and education were treated as TCCs (as participants were 25 years and 

over at baseline), and entered into the Level 2 models. Participants’ characteristics which 

may change with time (age, marital status, employment status, household income, household 

children status, energy intake, tobacco smoking, and alcohol intake) were treated as TVCs, 

and were entered into the Level 1 model. Area-level socioeconomic status (Index of Relative 

Socioeconomic Disadvantage- IRSD), which is a study site characteristic but available for 

three corresponding waves from Australian Census, was treated as a TVC, and entered into 

the Level 1 model. In the current analyses, we sequentially adjusted for baseline density, 

socio-demographic covariates, and health- and behavior-related covariates. In the multilevel 

growth model analysis, when modelling each risk marker, we excluded participants who had 

only one time point value for the relevant risk marker (as it is not possible to calculate a 

change measure). Multilevel models utilized the available information on covariates, 

assuming those missing data are missing at random.  

 

The null-model fitted in the current study: 

• Level 1 (time-level) model ⇒  𝑦𝑡𝑖𝑗 = 𝑏0𝑖𝑗 + 𝑒𝑡𝑖𝑗 

• Level 2 (participant-level) model ⇒ 𝑏0𝑖𝑗 =  𝛽00𝑗 + 𝑢0𝑖𝑗 

• Level 3 (site-level) model ⇒ 𝛽00𝑗 =  𝛾000 + 𝑣00𝑗, 

where, 𝑦𝑡𝑖𝑗 is the value of the outcome variable (i.e., cardiovascular risk marker) measured at 

time point 𝑡 for study particpant 𝑖 who is in study site 𝑗; the random intercept 𝑏0𝑖𝑗  is the mean 

of 𝑦𝑡𝑖𝑗 across the time points for a particpant 𝑖 who is in a site 𝑗; 𝑏0𝑖𝑗 is allowed to vary 

between-particpants at Level 2 around 𝛽00𝑗 (mean of 𝑦𝑡𝑖𝑗 across the time points for all 

particpants in a study site 𝑗); 𝛽00𝑗 is allowed to vary between-sites at Level 3 around the 

overall mean 𝛾000.  

 

The multivariate MGM (model 3) fitted in the current study: 

• Level 1 (time-level) model ⇒ 
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𝑦𝑡𝑖𝑗 = 𝑏0𝑖𝑗 + 𝑏1𝑖𝑡 + 𝑏2𝑎𝑔𝑒𝑡𝑖 + 𝑏3𝑚𝑎𝑟𝑖𝑡𝑎𝑙 𝑡𝑖 + 𝑏4 𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑡𝑖 + 𝑏5 𝑖𝑛𝑐𝑜𝑚𝑒𝑡𝑖

+ 𝑏6 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑡𝑖 + 𝑏7 𝑒𝑛𝑒𝑟𝑔𝑦𝑡𝑖 + 𝑏8 𝑠𝑚𝑜𝑘𝑖𝑛𝑔 𝑡𝑖 + 𝑏9 𝑎𝑙𝑐𝑜ℎ𝑜𝑙 𝑡𝑖

+ 𝑏10 𝐼𝑅𝑆𝐷 𝑡𝑖 + 𝑒𝑡𝑖𝑗 

• Level 2 (participant-level) models ⇒  

𝑏0𝑖𝑗 =  𝛽00𝑗 + 𝛽01 𝑑𝑒𝑛𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 + 𝛽02 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒. 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑖  

+𝛽03 𝑔𝑒𝑛𝑑𝑒𝑟 𝑖 + 𝛽04 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 + 𝑢0𝑖𝑗  

𝑏1𝑖 =  𝛽1 + 𝛽11 𝑑𝑒𝑛𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 + 𝛽11 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒. 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑖  

+𝛽11 𝑔𝑒𝑛𝑑𝑒𝑟 𝑖 + 𝛽11 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 + 𝑢1𝑖 

• Level 3 (site-level) model ⇒ 

𝛽00𝑗 =  𝛾000 + 𝑣00𝑗 

 

Further, family history of diabetes as a TCC (only for blood glucose outcomes in Level 2), 

hypertension medication use as a TVC (only for blood pressure outcomes in Level 1), and 

cholesterol medication use as a TVC (only for lipid outcomes in Level 1), were also entered.  

 

By incorporating the Level 3 and Level 2 equations in the Level 1 equation, we obtain the 

single equation model. The estimated values of 𝛽11 and their confidence intervals were used 

to report the associations between neighboourgood population densification and changes in 

cardiovascular risk markers.  
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Table S1. Baseline characteristics of stayers, movers, and drop-outs, AusDiab study 

(1999-2012). 

Baseline characteristics Mean (SD) or Percentage 

 Stayers 

(N=2,354) 

Movers 

(N=2,140) 

Drop-outs 

(N=6,588) 

Age, years 51.1 (10.8) 50.0 (11.3) 53.5 (16.0) 

Sex, % Women 53.6% 56.2% 54.7% 

Education 

% High school or less 

% Technical or less 

% Bachelor’s degree or more 

 

34.5% 

43.3% 

22.2% 

 

32.4% 

44.3% 

23.2% 

 

46.4% 

41.0% 

12.7% 

Employment status 

% Working (incl. students) 

% Not working 

% Others 

 

70.7% 

28.8% 

0.4% 

 

76.2% 

23.5% 

0.3% 

 

50.6% 

49.0% 

0.4% 

Weekly household income 

% Less than $600 

% $600-1500 

% >$1500 

 

31.0% 

46.2% 

22.8% 

 

29.2% 

48.6% 

22.2% 

 

51.3% 

36.5% 

12.2% 

Marital status, % couple 85.2% 78.5% 72.1% 

Children in household, % yes 45.2% 46.7% 34.5% 
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Cardiovascular risk markers 

WC (cm) 

Weight (kg) 

SBP (mmHg) 

DBP (mmHg) 

FPG (mg/dL) 

2-hr PG (mg/dL) 

HDL-C (mg/dL) 

TG (mg/dL) 

 

89.7 (13.4) 

76.2 (15.6) 

128.3 (17.5) 

70.8 (11.5) 

99.5 (18.9) 

109.2 (37.4) 

55.4 (14.4) 

131.5 (87.9) 

 

89.2 (13.7) 

76.4 (16.1) 

124.7 (16.0) 

69.0 (11.3) 

98.3 (19.4) 

107.2 (35.3) 

55.8 (14.7) 

126.9 (83.6) 

 

92.0 (14.2) 

76.7 (16.6) 

131.6 (19.9) 

70.3 (12.0) 

102.4 (23.8) 

118.7 (47.3) 

54.7 (14.9) 

143.6 (100.9) 

Health-related behaviors 

Energy intake (kJ/day) 

Tobacco smoking, % current /past 

smoker 

Alcohol intake (g/day) 

 

8131 (3277) 

38% 

14.3 (17.9) 

 

8155 (3147) 

41% 

13.6 (16.8) 

 

7909 (3764) 

49% 

12.4 (18.0)  

Family history of diabetes, % yes 19.6% 18.7% 18.1% 

Medication use 

For hypertension, % yes 

For high cholesterol, % yes 

 

12.1% 

7.7% 

 

9.1% 

5.8% 

 

19.5% 

10.1% 

Population density (persons/ hectare) 13.0 (7.4) 12.6 (7.4) 13.7 (8.0) 

AusDiab, Australian Diabetes Obesity and Lifestyle Study; WC, Waist Circumference; SBP, 

Systolic Blood Pressure; DBP, Diastolic Blood Pressure; FPG, Fasting Plasma Glucose; 2-hr 

PG, 2-hour Postload Plasma Glucose; HDL-C, High-Density Lipoprotein Cholesterol; TG, 

Triglycerides; pph, persons per hectare . In total, 11,247 participants were recruited at the 

baseline. Of those, 4,614 participants completed surveys and biomedical examination at the 

12-years follow-up. After excluding participants whose addresses were not geocoded (N=81), 

there were 2,369 stayers and 2,164 movers. Participants who were pregnant during the data 

collection time were further excluded from each category [stayers (N=15), movers (N=24), 

drop-outs (N=45)]. 
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Table S2. Associations of annual absolute population densification with changes in cardiovascular risk markers, AusDiab study (1999-

2012). 

Cardiovascular risk 

markers 

Unstandardized regression coefficients (95% CI) 

Model 1 Model 2 Model 3 

WC (cm) -0.393 (-0.598,  -0.188) *** -0.431 (-0.652,  -0.210) *** -0.377 (-0.604,  -0.150) ** 

Weight (kg) -0.225 (-0.419,  -0.031) * -0.216 (-0.420, -0.012) * -0.190 (-0.400, 0.019) † 

SBP (mmHg) 0.370 (-0.129, 0.868) 0.372 (-0.163, 0.906) 0.295 (-0.270, 0.859) 

DBP (mmHg) 0.192 (-0.154, 0.538) 0.247 (-0.112, 0.607) 0.241 (-0.136, 0.619) 

FPG (mg/dL) -0.347 (-0.905, 0.212) -0.446 (-0.979, 0.087) -0.409 (-0.962, 0.143) 

2-hr PG (mg/dL) -1.480 (-2.536 -0.423) ** -1.866 (-2.994 -0.738) ** -1.964 (-3.160 -0.768) ** 

HDL-C (mg/dL) -0.656 (-0.946, -0.367) *** -0.608 (-0.922, -0.293) *** -0.590 (-0.925, -0.254) ** 

TG (mg/dL) 0.362 (-1.689, 2.412) 0.557 (-1.623, 2.736) 0.308 (-2.006, 2.622) 

AusDiab, Australian Diabetes Obesity and Lifestyle Study; WC, Waist Circumference; SBP, Systolic Blood Pressure; DBP, Diastolic Blood 

Pressure; FPG, Fasting Plasma Glucose; 2-hr PG, 2-hour Postload Plasma Glucose; HDL-C, High-Density Lipoprotein Cholesterol; TG, 

Triglycerides. 

Regression coefficients correspond to 1 pph/year increase in population density.  
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*** P<0.001, **P<0.01, * P <0.05; † P <0.10.  

Model 1: adjusted for baseline population density and corrected for clustering 

Model 2: further adjusted for age, sex, education, work status, household income, marital status, household children status, height (only for 

weight), and Index of Relative Socio-economic Disadvantage 

Model 3: further adjusted for energy intake, tobacco smoking, alcohol intake, family history of diabetes (for FPG and 2-hr PG only), 

hypertension medication use (for SBP and DBP only), and cholesterol medication use (for HDL-C and TG only) 
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Table S3. Associations of annual population densification with changes in 

cardiovascular risk markers among metropolitan residents (N = 1,274 [54% of 

analytical sample] after excluding 1,080 participants resided in the regional cities), 

AusDiab study, 1999-2012. 

Cardiovascular risk markers Unstandardized regression coefficients (95% CI) 

Relative densification Absolute densification 

WC (cm) -0.032 (-0.062, -0.001)* -0.153 (-0.461, 0.155) 

Weight (kg) -0.010 (-0.038, 0.018) -0.035 (-0.316, 0.246) 

SBP (mmHg) 0.063 (-0.011, 0.136) † 0.129 (-0.622, 0.881) 

DBP (mmHg) 0.062 (0.013, 0.112) * 0.109 (-0.397, 0.614) 

FPG (mg/dL) 0.039 (-0.035, 0.114) 0.066 (-0.692, 0.824) 

2-hr PG (mg/dL) -0.045 (-0.205, 0.115) -1.324 (-2.964, 0.316) 

HDL-C (mg/dL) -0.041 (-0.086, 0.005) † -0.661 (-1.122, -0.200) ** 

TG (mg/dL) -0.040 (-0.336, 0.256) -0.025 (-3.035, 2.984) 

AusDiab, Australian Diabetes Obesity and Lifestyle Study; WC, Waist Circumference; SBP, 

Systolic Blood Pressure; DBP, Diastolic Blood Pressure; FPG, Fasting Plasma Glucose; 2-hr 

PG, 2-hour Postload Plasma Glucose; HDL-C, High-Density Lipoprotein Cholesterol; TG, 

Triglycerides. 

For relative densification: regression coefficients correspond to 1% annual increase in 

population density relative to the baseline population density. 

For absolute densification: regression coefficients correspond to 1 pph/year increase in 

population density 

**P<0.01, * P <0.05; † P <0.10.  

Model was adjusted for baseline population density, age, sex, education, work status, 

household income, marital status, household children status, height (only for weight), Index 

of Relative Socio-economic Disadvantage, energy intake, tobacco smoking, alcohol intake, 

family history of diabetes (for FPG and 2-hr PG only), hypertensive medication use (for SBP 

and DBP only), and cholesterol medication use (for HDL-C and TG only). 
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Figure S1. Three-level data structure of the current study. 

 

Study site (n=42) Level 3 

 

 

Participant (n=2354) Level 2 

 

 

Repeated measures (n=3) Level 1 
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Figure S2. Scatterplots showing the relationships of annual relative population 

densification (top) and annual absolute population densification (bottom) with baseline 

population density. 

 

 

 

 

Vertical lines indicate the baseline population density tertiles. Higher values of relative 

densification are found where baseline density is low (top), while higher values of absolute 

densification are found where baseline density is high (bottom).  
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