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Abstract. Structural networks contain high dimensional data that
raise huge computational and visualization problems, especially when
attempting to characterise them using graph theory. As a result, it can
be non-intuitive to grasp the contribution of each edge within a graph,
both at a local and global scale. Here, we introduce a new platform that
enables tractography-based networks to be explored in a highly interac-
tive real-time fashion. The framework allows one to interactively tune
graph-related parameters on the fly, as opposed to conventional visual-
ization softwares that rely on pre-computed connectivity matrices. From
a neurosurgical perspective, the method also provides enhanced under-
standing regarding the potential removal of a specific node or transection
of an edge from the network, allowing surgeons and clinicians to discern
the value of each node. AQ1

1 Introduction

The human brain can be viewed as a network [1]. This highly specialized network
can be conceptualized to as a set of gray matter (GM) regions that are linked
together by white matter (WM) connections, represented by graph nodes and
edges respectively. Brain networks derived from graph theory analyses are often
dense and complex, and thus perceptually challenging to visualize [11]. While
thresholding edges can help reduce the complexity of a network, it often leads
to high variance in graph metrics [6,8,13]. Moreover, false positive in tractogra-
phy [4,10] pollute connectivity matrices and adversely impact on chosen graph
metric.

To better understand the role of these confounding factors on network
topology, we develop a new visualization framework for exploring structural
networks in a highly-interactive fashion. More specifically, the proposed visual-
ization framework: (1) provides real-time insight of various thresholds on graph
metrics; and (2) enables a seamless transition between an graph abstract (nodes
and edges) and an anatomical (streamlines) representation, allowing one to
inspect the underlying architecture of a specific edge.
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2 Methods

2.1 Structural Connectivity

Diffusion-weighted images of a single-subject were acquired along 64 uniformly-
distributed directions at b = 1000 s/mm2, using single-shot EPI on a 1.5 Tesla
SIEMENS Magnetom (128 × 128 matrix, 2 mm isotropic resolution, TR/TE
11000/98 ms) and a GRAPPA factor of 2. An anatomical T1-weighted 1 mm
isotropic MPRAGE (TR/TE 6.57/2.52 ms) image was also acquired for the
estimation of partial volume maps (PVE). The diffusion-weighted images were
upsampled to the anatomical resolution (1 mm isotropic). Fiber Orientation Dis-
tribution Functions from spherical deconvolution [12] were used for tractography.
PVE maps were used in the tracking process to provide a better tracking domain
as opposed to fractional anisotropy (FA)-based mask where streamline propaga-
tion is often prematurely halted in crossing regions.

Probabilistic Particle Filtering Tractography [9] was done seeding from the
WM and GM interface (1 × 1 × 1 mm3, 2M seeds). The particle filtering trac-
tography algorithm ensured that streamlines did not terminate prematurely in
the WM by the application of a back-tracking rule to allow the tractography
algorithm to find alternative pathways. Freesurfer [7] was used to parcellate the
brain into 163 labels [5]. Subcortical regions were included to ensure an accurate
representation of WM connections throughout the brain (e.g. thalamocortical
radiations). The same reasoning was applied to the brain stem and cerebellum
regions to ensure the inclusion of the corticospinal/corticocerebellar tracts within
the graph. A 3 mm dilation was used to ensure a robust overlap between stream-
lines end-points (e.g. GM/WM interface) and anatomical labels [14]. Finally,
streamlines and brain labels were loaded in FiberNavigator1 [3].

3 Visualization

First, an iso-surface is derived from the T1-weighted image for contextual ref-
erence as shown in Fig. 1. Next, a spherical node (red) is positioned at the

Fig. 1. Graph construction. (a) Mesh derived from anatomical T1 image. (b) Nodes
derived from anatomical labels. (c) Edges derived from tractogram. (Color figure online)

1 Open source software available at: chamberm.github.io/fibernavigator single.html.
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barycenter of each label. A default weighted connectivity matrix M is built by
normalizing the number of streamlines linking each anatomical region2. A trans-
fer function is responsible for mapping values of M towards edge thickness and
opacity. The default view also re-sizes each node by its degree and a side panel
shows a set of global graph metrics (e.g., mean degree, global efficiency).

Selecting a node instantly initiates the computation of node-related metrics
(e.g. degree, strength, centrality, efficiency). In addition, selecting any 2 nodes
immediately reveals the underlying streamlines forming the edge between them.
An interactive global threshold (acting on the weights of M) is also available,
which automatically updates the global and local metrics of the network on the
fly, as well as the visualization of the graph. Finally, to reduce visual ambiguity
in node selection, nodes are depth sorted and color-graded in real-time according
to the current viewpoint. Importantly, although very fast, the new framework
is implemented on CPU using C++ and GLSL shaders, can run on a single
core computer, and does not require any specific hardware. Experiments were
performed on a laptop with the following specifications: System: Windows 8,
Video card: Geforce GT 640 M memory 2 GB, NVIDIA Driver: 306.97, CPU:
Intel(R)Core(TM) i7-3632QM @ 2,20 GHz, 16 GB RAM.

4 Results

Underlying streamlines linking 2 nodes are illustrated in Fig. 2. From left to right:
corpus callosum (CC), optic radiation (OR) and corticospinal tract (CST). Con-
troversial streamlines forming thick edges in the graph (number of streamlines
in this case) are easily identified (e.g. Frontal Aslant Tract (FAT) [2]) and can
potentially be removed from the network (e.g. Mij = 0) as shown in Fig. 3.

Fig. 2. Bundle selection using node picking (white).

2 Demo available online at: goo.gl/ay1PpR.
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Fig. 3. Frontal aslant tract (FAT) [2] rapidly identified by the selection of 2 nodes.

Figure 4 shows two versions of the whole-brain network (i.e. unthresholded vs
thresholded) as well as its associated global and nodal graph metrics (Tables 1
and 2). Given a specific node of interest (e.g. pre-central gyrus, Fig. 4 yellow),
the user can instantaneously observe variations in the different metrics related
to that node by dragging the threshold slider (2% threshold). A 30 frame-per-
second (FPS) ratio was maintained during the process.

Table 1. Real-time global graph metrics

Metrics Default graph Thresholded graph (2%)

# of nodes 161 160

# of edges 4632 938

Density 0.36 0.07

Mean degree 62.59 12.68

Global efficiency 0.446 0.104

Finally, Fig. 5 shows how depth-sorting can help differentiate occipital nodes
from frontal nodes. For any viewpoint, a transfer function assigns a color grading
to each node based on their Z position in the scene. In this example, nodes located
in the posterior aspect of the brain appear brighter than the ones located in the
frontal lobe since the camera is looking at the brain from behind.
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Fig. 4. Threshold graph visualization. Node sizes are recomputed on the fly according
to their new strength. Yellow: pre-central gyrus (R). (Color figure online)

Table 2. Real-time local graph metrics (right pre-central gyrus)

Metrics Default graph Thresholded graph (2%)

Degree 88 24

Strength 3.73 3.49

Eigen centrality 0.165 0.161

Closeness centrality 0.919 0.691

Local efficiency 0.896 0.955

5 Discussion

To the best of our knowledge, this is the first visualization platform support-
ing comprehensive exploration of structural connectomics in real-time. The tool
allows the user to easily prune undesired edges of the graph (e.g. false-positive
streamlines). The mean FPS ratio was above 30 during all steps, indicating no
latency. Initial piloting of the tool (by users new to graph theory) revealed the
following consensus: hubs and underlying streamlines were easily identifiable by
all. Moreover, participants were mostly curious how simple threshold manipula-
tion altered local and global network metrics.

After discussing with neurosurgeons, the framework also incorporates various
representation of M by allowing direct manipulation of bundle-specific edge

A
u

th
o

r 
P

ro
o

f



6 M. Chamberland et al.

Fig. 5. Depth-sorted nodes provide increase visual cues when compared to default
rendering.

weights (e.g. to simulate de- or re-myelination and its effect on the network).
The current version also allows users to input a more general connectivity matrix
(e.g. derived from other software or image modalities such as functional MRI or
MEG). In other words, the users are not bound to a specific tractography pipeline
to generate the aforementioned connectivity matrix. Moreover, it is important to
specify that any set of brain parcellation can be used here (i.e. varying number
of labels).

6 Conclusion

With the large variety of metrics and parameters involved in connectomics (e.g.
weights of M, threshold techniques [6]), the proposed growing visualization
framework will also serve as a quality assurance tool for close inspection of
data prior to launching massive analyses. From a clinical perspective, the pro-
posed platform will also provide neurosurgeons with a better understanding of
the effect of transecting pathways underlying critical hubs, and perhaps phys-
iotherapists insight into the impact of strengthening a given edge on network
characteristics.
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