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Abstract: Traffic-related air pollution (TRAP) is associated with lower cognitive function and diabetes
in older adults, but little is known about whether diabetes status moderates the impact of TRAP on
older adult cognitive function. We analysed cross-sectional data from 4141 adults who participated
in the Australian Diabetes, Obesity and Lifestyle (AusDiab) study in 2011–2012. TRAP exposure
was estimated using major and minor road density within multiple residential buffers. Cognitive
function was assessed with validated psychometric scales, including: California Verbal Learning Test
(memory) and Symbol–Digit Modalities Test (processing speed). Diabetes status was measured using
oral glucose tolerance tests. We observed positive associations of some total road density measures
with memory but not processing speed. Minor road density was not associated with cognitive
function, while major road density showed positive associations with memory and processing speed
among larger buffers. Within a 300 m buffer, the relationship between TRAP and memory tended
to be positive in controls (β = 0.005; p = 0.062), but negative in people with diabetes (β = −0.013;
p = 0.026) and negatively associated with processing speed in people with diabetes only (β = −0.047;
p = 0.059). Increased TRAP exposure may be positively associated with cognitive function among
urban-dwelling people, but this benefit may not extend to those with diabetes.

Keywords: air pollution; diabetes; cognitive function

1. Introduction

The prevalence of cognitive decline, impaired cognitive function and neurocognitive
diseases is increasing globally and represents a substantial burden of disease for individuals,
families, communities and health systems [1]. Understanding the complex relationship
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of modifiable factors which contribute to cognitive decline is important so that impaired
health can be avoided or delayed significantly.

There is increasing evidence that air pollution is associated with lower cognitive func-
tion or cognitive decline [2], and in many countries traffic-related air pollution (TRAP) has
substantially increased and is often the major source of ambient air pollution in residential
areas [3]. Long-term exposure to TRAP can have diverse adverse effects on the central
nervous system depending on the pollutant, dose, exposure period, health status and
age of individuals [4]. Current mechanisms and physiological pathways linking TRAP
to cognitive decline are not well-understood, but it has been suggested that exposure to
fine particulate matter, diesel particles and gases such as ozone or nitrogen dioxide may
enter the central nervous system via inhalation into the lungs and then travel through the
blood circulatory system to the brain; or they can enter the brain directly by damaging
and crossing the olfactory mucosa at the rear of the nose and directly into the brain [5,6].
On entering the central nervous system, these pollutants can trigger inflammation and the
formation of free radicals that lead to oxidative stress, can damage nerve cells and promote
the accumulation of tau and amyloid-B proteins in the brain, which can lead to neuronal
dysfunction [7].

In addition to environmental factors, there are individual chronic conditions that
can impact cognition. There is increasing evidence for middle-aged adults [8] and older
adults [9] showing that poorly controlled type 2 diabetes mellitus (T2DM) increases the
risk of late-life cognitive decline, Alzheimer’s disease (AD) and all-cause dementia [10,11].
Poorly controlled T2DM can lead to chronically elevated blood glucose levels which,
in turn, are associated with vascular and neurodegeneration pathologies [12] through
neuroinflammatory pathways [9].

Emerging evidence suggests that cardiovascular disease risk factors such as T2DM
or hypertension may modify the relationship between exposure to air pollutants and neu-
rological decline and neurodegenerative disease [13]. The nature of these relationships
is not clear; however, it has been postulated that the effects that air pollutants have on
impaired endothelial function, elevated systemic inflammation, mitochondrial dysfunction
and oxidative stress [14] are also common to the effects of T2DM [15]. For example, a recent
German study demonstrated a significant association between exposures to particulate air
pollutants and elevated levels of glycated haemoglobin in red blood cells (HbA1c), which
reflects the elevated mean plasma glucose levels over at least three months [16]. Chroni-
cally elevated blood glucose levels are associated with vascular and neurodegeneration
pathologies [12]. While this suggests that adults with poor diabetic control are at greater
risk for poorer cognitive function, it is not well-established if diabetes can modify the
impact that air pollution exposure may have on cognitive function. With the prevalence of
diabetes increasing globally [17], it is important to understand if having diabetes increases
the adverse impacts of TRAP exposure on cognitive function.

Findings from our previous study of the contribution of urban neighbourhood envi-
ronments to cardiometabolic health and cognitive function [18] indicated that modelled
ambient average nitrogen dioxide (NO2) levels (another proxy measure of TRAP) were
directly positively associated with increased HbA1c levels (expβ = 1.003, p < 0.05) and with
processing speed (cognitive function) (β = 0.243, p < 0.01). This finding with processing
speed did not fit with the current understanding of the impact of TRAP on cognitive func-
tion [19,20] and raised the question of whether exposure misclassification could possibly
explain these results. In the absence of objective measures of TRAP levels around these
residential areas, to explore this relationship in greater depth, we revisited the data to
establish if there were different proxy measures of TRAP that could be used to better
understand the effects of this particular exposure on cognitive health for this population.

The objectives of this study were two-fold: (1) to investigate whether TRAP, measured
by neighbourhood road density at the residential address, is associated with cognitive
function; and (2) if these effects differ between people with or without diabetes.
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2. Materials and Methods

The details of the methods for this study have been previously reported [18]. In brief,
this study used data from the Australian Diabetes, Obesity and Lifestyle (AusDiab) study,
a three-wave national population-based survey designed to examine the prevalence, inci-
dence and determinants of diabetes in Australian adults aged 25 years and over from 1999
to 2000 [21,22]. Participants were recruited using a stratified cluster sampling methodology
from 42 randomly selected areas which consisted of 1296 contiguous census administrative
units (Statistical Areas 1 [SA1]) across metropolitan and regional cities in seven Australian
states/territories. SA1s have an average population size of 400 people. Eligible participants
were aged ≥25 years, had lived at their address for at least 6 months, had no physical
or intellectual disabilities and had provided written informed consent. This study used
data from the second follow-up of AusDiab, conducted from 2011 to 2012, which was the
only wave that collected data on cognitive function and for which relevant environmental
exposures were available. As this study focused on urban environments, we excluded 473
participants who resided in towns or cities of <10,000 people from the analyses, which
resulted in a final analytical sample of 4141 participants.

This study was conducted according to the guidelines of the Declaration of Helsinki,
and approved by the Alfred Hospital Ethics Committee, Melbourne, Australia: Ref. no
39/11; 2 March 2011.

2.1. Measures
2.1.1. Exposures: TRAP Measures

Proxy measures of exposure to TRAP sources were generated using Geographic Infor-
mation Systems (GIS) software (ArcGIS v.10.5: ESRI, Redlands). We computed road density
measures within Euclidean (aerial) polygon buffers of various sizes around geocoded
participants’ residential addresses. Euclidean distances are calculated between two points,
and the radii used to generate the buffers were: 200, 300, 500, 1000 and 1600 metres. These
buffers were selected as they corresponded to the distance a mobile older person can walk
within 30 min from home [23]. Road types were defined by PSMA Australia Ltd., Griffith,
Australia [24] with major roads being 301 (national or state highway) or 302 (arterial road)
or 303 (subarterial road); minor roads being 304 (collector road) or 305 (local road) or 306
(track). Road data were derived from Geoscape Australia’s 2012 Transport and Topography
dataset [25]. The buffers included the density of all available roads, major roads only and
minor roads only (m/km2). We also examined the straight-line distance, in metres, to the
nearest ‘busy road’, which was defined as road types 301, 302 or 303.

2.1.2. Outcomes: Cognitive Function Measures

Processing speed and memory were the cognitive functions examined in this study
as they are essential to reasoning and learning. Processing speed was measured using the
Symbol–Digit Modalities Test (SDMT) [26], which required participants to use a reference
key to find and report numbers corresponding to nine geometric figures as rapidly as
possible in a 90 s period (score range: 0–60). Memory was assessed using the California
Verbal Learning Test (CVLT) [27], in which participants recalled 16 common shopping items
after a 20 min delay (score range: 0–16).

2.1.3. Confounding Factors and Covariates

Causal directed acyclic graphs (DAGs) were used to inform the selection of a suffi-
cient set of confounders to be included in the statistical analyses (Figure S1). The DAGs
were based on previous research which established the hypothesised causal effects among
the variables. The covariates included were age, sex, household income, area-level socio-
economic status (SES), educational attainment, employment status, English-speaking back-
ground, living arrangements, neighbourhood self-selection indices for recreational pur-
poses and accessibility to destinations/amenity, density of greenspace as calculated by the
normalised difference vegetation index (NDVI), population density (numbers of persons
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per hectare) and a land use mix score related to outdoor physical activity that was computed
to quantify the heterogeneity of residential, parkland and blue space (water bodies). Details
of these measures are reported in Supplementary Material S1. Other self-reported variables
which were considered in the causal DAG but not included in the final models because they
were not identified as confounders included: history of cardiovascular disease, namely,
angina, coronary heart disease or stroke; and tobacco smoking status (current smoker,
previous smoker or never/non-smoker).

2.1.4. Diabetes Status as an Effect Modifier

Diabetic status, as detected through oral glucose tolerance tests [28], was categorised as:
diagnosed diabetes (physician-diagnosed diabetes mellitus and taking hypoglycemic medica-
tion or fasting plasma glucose (FPG) ≥ 7 mmol/L or 2 h plasma glucose (PG) ≥ 11.1 mmol/L);
impaired glucose tolerance (IGT) (2 h PG ≥ 7.8 and < 11.1 mmol/L with FPG < 7.0 mmol/L);
or impaired fasting glucose (IFG) (FPG ≥ 6.1 and < 7.0 mmol/L with 2 h PG < 7.8 mmol/L).
Those with normal glucose tolerance were categorised as normal glucose tolerance controls
(FPG < 6.1 mmol/L and 2 h PG < 7.8 mmol/L).

2.2. Data Analytic Plan

Descriptive statistics were computed for all variables for the entire sample and by
diabetes status. Over 21% of the cases had missing data on at least one variable, and miss-
ingness was related to individual-level socio-demographic characteristics, neighbourhood
environmental characteristics and cognitive function (see Supplementary Material S2). As
data were at least missing at random (MAR) rather than missing completely at random
(MCAR) (see section S1 in Supplementary Material), ten imputed datasets were created
for the regression analyses as recommended by Rubin [29] and van Buuren [30]. Multiple
imputations by chained equations were performed following currently recommended
model-building and diagnostic procedures and using the package ‘mice’ [31] in R version
4.0.0 [32].

Associations of TRAP with cognitive function and the moderating effects of diabetes
status on these associations were estimated using generalised additive mixed models
(GAMMs) with random intercepts to account for possible curvilinearity in associations
and clustering effects at the SA1 level [33]. As both cognitive function measures were
approximately normally distributed, GAMMs used Gaussian variance and identity link
functions. To test the moderating effects of diabetes status on TRAP–cognitive function
associations, diabetes status (represented by two dummy variables with ‘normal glucose
tolerance controls’ as the reference category) and its interaction terms with TRAP (two
interaction terms, one for each dummy variable) were added to the main-effect models
of TRAP and cognitive function. The overall statistical significance of the two interaction
terms was determined using the F-test, which compared the fit of a GAMM with and
without the two interaction terms [33]. Significant moderating effects of diabetes status
(p < 0.05) were probed by estimating TRAP–cognitive function associations for the different
categories of diabetes status (diabetes, IGT/IFG with normal glucose tolerance controls as
the reference category). This was accomplished using appropriate linear combinations of
regression coefficients derived from the relevant GAMMs [34] All regression analyses were
performed on the imputed datasets (main analyses) as well as for only those participants
with complete data (supplementary analyses).

3. Results

Participants with diagnosed diabetes or IGT/IFG were more likely to be of a non-
English-speaking background, not employed, male, older, less educated, have a lower
household income and reside in lower SES areas than normal glucose tolerance controls
(Table 1). They also had lower scores on cognitive function tests and were more likely to
have had heart problems or a stroke and be a current or ex-smoker. Participants diagnosed
with diabetes tended to live in neighbourhoods with higher levels of TRAP, that is, higher



Toxics 2022, 10, 289 5 of 12

road density within all buffers (Table 2) and dwelling density (Table S2), than other partici-
pants, while normal glucose tolerance controls tended to reside in greener neighbourhoods,
as defined using the NDVI (Table S2).

Table 1. Descriptive statistics of the AusDiab sample 2011–2012.

Characteristic Total Sample
n = 4141

Diabetes Status

Diabetes (n = 405) IGT/IFG (n = 620) Normal Glucose
Tolerance (n = 3003)

Socio-demographics
Age (years), M ± SD 61.1 ± 11.4 67.2 ± 10.1 64.5 ± 11.4 59.6 ± 11.0

Sex, female, % 55.2 45.4 47.1 58.0
Educational attainment, %

Up to secondary 32.7 39.3 41.1 30.1
Trade, associate diploma 43.6 41.0 31.13 44.2

Bachelor degree, postgraduate 23.1 18.3 17.1 25.2
Missing data 0.6 1.5 0.7 0.5

Employment status, %
Not employed 30.4 47.7 38.9 26.4

Paid employment 52.2 34.8 45.2 56.3
Volunteer 15.1 14.6 13.4 15.7

Missing data 2.3 3.0 2.6 1.7
Household income (annual), %

Up to AUD 49,999 32.9 47.9 39.0 29.9
AUD 50,000–AUD 99,999 26.8 21.5 26.0 28.0

AUD 100,000 and over 28.9 14.6 23.1 32.1
Missing data 11.5 16.0 11.9 10.0

Living arrangements, %
Couple without children 48.2 50.9 53.6 47.2

Couple with children 26.8 15.6 21.1 29.4
Other 22.4 30.4 22.6 21.6

Missing data 2.4 3.2 2.7 1.8
English-speaking background, % 89.9 83.7 87.4 91.5

Area-level IRSAD, M ± SD 6.4 ± 2.7 5.9 ± 2.8 6.3 ± 2.7 6.5 ± 2.7
Residential self-selection—access to

destinations, M ± SD 3.0 ± 1.4 3.0 ± 1.3 3.0 ± 1.3 2.9 ± 1.3

Missing data, % 9.0 9.4 10.5 8.0
Residential self-selection—recreational

facilities, M ± SD 3.1 ± 1.5 3.0 ± 1.6 3.1 ± 1.5 3.1 ± 1.4

Missing data, % 8.7 9.1 10.2 7.7
Health-related variables

Diabetes status, %
Diabetes 9.8 - - -
IGT/IFG 15.0 - - -

Normal glucose tolerance 72.5 - - -
Missing data, % 2.7 - - -

Heart problems/stroke history, % 8.7 19.8 10.5 6.8
Missing data, % 1.0 1.5 0.2 0.0

Tobacco-smoking status, %
Current smoker 7.0 4.2 8.7 7.2
Previous smoker 35.9 44.0 37.6 34.4

Non-smoker 54.5 48.6 51.0 56.6
Missing data, % 2.6 3.2 2.7 1.8

Cognitive function, M ± SD
Memory, CVLT score 6.5 ± 2.4 5.6 ± 2.4 6.2 ± 2.4 6.7 ± 2.4

Missing data, % 2.3 5.2 1.5 1.7
Processing speed, SDMT score 49.7 ± 11.6 43.6 ± 12.4 47.2 ± 12.1 51.1 ± 11.0

Missing data, % 2.0 4.0 1.3 1.6

M, mean; SD, standard deviation; IRSAD, Index of Relative Socioeconomic Advantage and Disadvantage; IGT,
impaired glucose tolerance; IFG, impaired fasting glucose; CVLT, California Verbal Learning Test; SDMT, Symbol–
Digit Modalities Test.
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Table 2. Descriptive statistics of traffic-related air-pollution measures (M ± SD).

Characteristic Total Sample
n = 4141

Diabetes Status

Diabetes (n = 405) IGT/IFG (n = 620) Normal Glucose
Tolerance (n = 3003)

Road density (100 m/km2)
200 m Euclidean buffer 117.1 ± 42.0 120.7 ± 42.9 116.8 ± 42.4 117.1 ± 41.8
300 m Euclidean buffer 114.9 ± 40.1 118.9 ± 39.0 114.6 ± 39.7 114.6 ± 40.4
500 m Euclidean buffer 107.4 ± 37.7 111.0 ± 35.5 107.4 ± 36.5 107.1 ± 38.2

1000 m Euclidean buffer 95.8 ± 34.0 99.5 ± 33.2 96.6 ± 33.2 95.1 ± 34.2
1600 m Euclidean buffer 87.6 ± 32.3 91.2 ± 31.9 89.1 ± 31.5 86.8 ± 32.4

Minor road density (100 m/km2)
200 m Euclidean buffer 88.6 ± 36.7 92.1 ± 37.6 89.3 ± 36.4 88.1 ± 36.7
300 m Euclidean buffer 83.0 ± 32.7 86.7 ± 32.4 84.0 ± 32.9 82.4 ± 32.6
500 m Euclidean buffer 75.7 ± 29.1 79.3 ± 28.8 77.1 ± 28.9 75.0 ± 29.1

1000 m Euclidean buffer 66.1 ± 26.3 70.0 ± 26.3 67.9 ± 25.8 65.1 ± 26.2
1600 m Euclidean buffer 59.6 ± 25.2 63.6 ± 25.3 61.7 ± 24.9 58.5 ± 25.2

Major road density (100 m/km2)
200 m Euclidean buffer 9.7 ± 16.9 10.6 ± 17.7 9.6 ± 17.5 9.5 ± 16.6
300 m Euclidean buffer 13.3 ± 17.0 14.7 ± 17.2 13.7 ± 17.7 13.1 ± 16.9
500 m Euclidean buffer 13.6 ± 13.3 14.6 ± 13.4 13.9 ± 13.4 13.4 ± 13.3

1000 m Euclidean buffer 13.1 ± 8.9 14.0 ± 9.0 13.4 ± 9.0 13.0 ± 8.9
1600 m Euclidean buffer 12.4 ± 7.4 12.9 ± 7.5 12.8 ± 7.6 12.2 ± 7.3

Distance to nearest busy road (100 m) 4.57 ± 4.98 4.38 ± 5.05 4.48 ± 4.86 4.59 ± 4.91
NO2 (ppb) 5.53 ± 2.05 5.68 ± 2.10 5.47 ± 1.88 5.50 ± 2.07

M, mean; SD, standard deviation; IGT, impaired glucose tolerance; IFG, impaired fasting glucose; ppb, parts per
billion.

Table 3 reports the adjusted associations of TRAP measures with cognitive function
estimated from the total-effect models (using 10 multiple imputed datasets) described in
Table S1. We observed positive associations of total road density measures with memory but
not processing speed. The associations were stronger for measures based on the smallest
and two largest residential buffers. In general, minor road density was not significantly
associated with cognitive function, while major road density showed positive associations
with both memory and processing speed but only for measures based on larger residential
buffers (Table 3). Distance to the nearest busy road was not significantly related to either
cognitive function measures. Similar patterns of associations were observed in complete
case analyses (Table S3).

A few significant moderating effects of diabetes status on TRAP–cognition associations
were observed, especially in the multiple imputation analyses (Table 4 and Table S4). The F-
ratio values reported in these tables represent tests of significance of the overall moderating
effect of diabetes status on the relationships between TRAP measures and cognitive function.
The moderating effects were represented by two regression coefficients: one estimating
the difference in TRAP–cognition associations between normal glucose tolerance controls
and participants with IGT/IFG and the other estimating the difference in TRAP–cognition
associations between normal glucose tolerance controls and those with diabetes. The F-ratio
tested the overall significance of both regression coefficients.

Interpretation of the multiple imputation analysis (Table 4) indicates that while the
relationship between memory and major road density within 300 m residential buffers
tended to be positive in normal glucose tolerance controls (β = 0.005; 95% CI: −0.0002,
0.011; p = 0.062), it was negative in those with diabetes (β = −0.013; 95% CI: −0.025, −0.002;
p = 0.026). The same TRAP measure tended to be negatively related with processing speed
in diabetics only (β = −0.047; 95% CI: −0.096, 0.002; p = 0.059). Major road density within
1600 m residential buffers was significantly positively associated with memory only in
normal glucose tolerance controls (β = 0.019; 95% CI: 0.005, 0.033; p = 0.033) and unrelated
to memory in those with IGT/IFG or diabetes (ps > 0.180).
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Table 3. Associations of transport-related air pollution (TRAP) measures with cognitive function
(multiple imputation analyses; all participants n = 4141).

TRAP Measures
Memory (CVLT Score) Processing Speed (SDMT Score)

β 95% CI p β 95% CI p

Road density (100 m/km2)
200 m Euclidean buffer 0.003 0.001, 0.005 0.008 0.005 −0.002, 0.012 0.173
300 m Euclidean buffer 0.002 −0.0003, 0.004 0.088 0.005 −0.003, 0.013 0.257
500 m Euclidean buffer 0.002 −0.0003, 0.004 0.084 0.003 −0.006, 0.012 0.507
1000 m Euclidean buffer 0.003 0.001, 0.006 0.018 0.002 −0.008, 0.013 0.678
1600 m Euclidean buffer 0.004 0.001, 0.007 0.015 0.007 −0.005, 0.018 0.263

Minor road density (100 m/km2)
200 m Euclidean buffer 0.002 −0.0001, 0.004 0.058 0.001 −0.008, 0.010 0.831
300 m Euclidean buffer 0.001 −0.002, 0.004 0.424 −0.0004 −0.010, 0.010 0.932
500 m Euclidean buffer 0.001 −0.002, 0.004 0.686 −0.009 −0.021, 0.003 0.145
1000 m Euclidean buffer 0.002 −0.002, 0.005 0.425 −0.012 −0.026, 0.003 0.106
1600 m Euclidean buffer 0.001 −0.003, 0.006 0.510 −0.008 −0.024, 0.008 0.311

Major road density (100 m/km2)
200 m Euclidean buffer 0.003 −0.002, 0.007 0.268 0.005 −0.012, 0.023 0.558
300 m Euclidean buffer 0.001 −0.003, 0.006 0.614 0.006 −0.012, 0.024 0.535
500 m Euclidean buffer 0.005 −0.001, 0.011 0.097 0.020 −0.005, 0.044 0.116

1000 m Euclidean buffer 0.010 0.001, 0.020 0.038 0.034 −0.007, 0.079 0.101
1600 m Euclidean buffer 0.014 0.002, 0.026 0.026 0.055 0.004, 0.105 0.036

Distance to nearest busy road (100 m) −0.0004 −0.017, 0.016 0.963 −0.054 −0.118, 0.011 0.102

β, regression coefficient; CI, confidence intervals; p, p-value; CVLT, California Verbal Learning Test; SDMT,
Symbol Digit Modality Test. Estimates of regression coefficient adjusted for covariates listed in Table S1. In bold
are statistically significant associations at a probability level of 0.05. In bold italics are statistically significant
associations at a probability level of 0.10.

Table 4. Moderation effects of diabetes status on the associations between traffic-related air pollution
measures with cognitive function (multiple imputation analyses; n = 4141).

TRAP Measures
Memory (CVLT Score) Processing Speed (SDMT Score)

F (2, 4114) p F (2, 4114) p

Road density (100 m/km2)
200 m Euclidean buffer 0.75 0.472 0.27 0.766
300 m Euclidean buffer 0.96 0.383 0.57 0.566
500 m Euclidean buffer 0.56 0.573 0.61 0.542
1000 m Euclidean buffer 1.18 0.307 1.93 0.145
1600 m Euclidean buffer 1.51 0.221 2.60 0.074

Minor road density (100 m/km2)
200 m Euclidean buffer 0.22 0.800 0.30 0.741
300 m Euclidean buffer 0.20 0.818 0.28 0.753
500 m Euclidean buffer 0.36 0.701 0.20 0.819
1000 m Euclidean buffer 0.20 0.815 1.46 0.231
1600 m Euclidean buffer 0.08 0.921 2.94 0.053

Major road density (100 m/km2)
200 m Euclidean buffer 2.22 0.108 0.61 0.543
300 m Euclidean buffer 4.80 0.008 2.98 0.050
500 m Euclidean buffer 2.28 0.102 1.16 0.314
1000 m Euclidean buffer 1.76 0.172 0.57 0.567
1600 m Euclidean buffer 3.16 0.043 1.66 0.190

Distance to nearest busy road (100 m) 0.84 0.432 1.33 0.265

Notes. F, F-ratio; p, p-value; CVLT, California Verbal Learning Test; SDMT, Symbol Digit Modality Test. Estimates of
regression coefficient (β) adjusted for covariates listed in Table S1. In bold are statistically significant associations
at a probability level of 0.05. In bold italics are statistically significant moderation effects of diabetes status on
TRAP–cognitive function at a probability level of 0.10.

4. Discussion

This confirmatory exploration of the impact of TRAP on cognitive function in urban
Australian settings provided further mixed results with a range of proxy TRAP measures
having positive or null associations with processing speed and memory amongst the full
study sample. However, importantly, there were some indications that people with diabetes
with higher major road density within 300 m of their residence, but not within other buffers,
are at higher risk of poorer memory and processing speeds. Overall, however, most TRAP
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measures had null or positive associations with memory and processing speed amongst
those with a diabetic status.

Multiple international studies examining air pollution and cognitive function have
produced inconsistent results [35] and weak negative associations [20,36], but almost
none have reported positive associations [19,37]. It is important to consider the high
heterogeneity that exists between these studies with respect to the exposure assessment,
the outcome assessments and the settings. Comparability or meta-analyses of findings
have not been successfully conducted to date [19]. The absence of positive associations in
the literature could be a consequence of publication bias as these findings do not support
the biological evidence arising from animal studies, which indicates that there are plausible
pathways through which air pollution may adversely impact cognitive function, as outlined
in the Introduction.

The findings from this study indicate that those with a diabetic status of IGT/IFG
or a diabetes diagnosis were at higher risk of having lower cognitive function if there
was higher road density and associated traffic within 300 m of their residence, but not
closer. To date, there are no published studies that have examined the impact of TRAP on
cognitive function with diabetic status as a moderator, so comparison with other studies is
not possible. Diabetes is associated with decrements in cognitive function [9] with higher
levels of HbA1c (indicating medium- to long-term uncontrolled diabetes) associated with
reduced processing speed and poorer memory [11]. These physiological factors alone
may be impacting cognitive function, or their presence may be additive to the impact of
TRAP on cognitive function. Disentangling the relationship between these factors will be
important as TRAP is a modifiable risk factor but inequitably impacts those who are most
disadvantaged.

The positive direct effects found in this study are inconsistent with the findings from
our previous study, which used modelled NO2 as a proxy for exposure to TRAP and
reported positive direct effects on processing speed but not memory [18]. These findings
remain surprising given the evidence that currently exists that TRAP has weak or null
associations with lower cognitive function [19].

Australian cities have relatively low levels of TRAP compared with most cities around
the world [38]; however, air pollution levels are still above the standards recommended by
the World Health Organization for protecting human health [39]. It is possible that if the
air pollution levels were higher, the relationship between air pollution and these cognitive
measures would be more negative, which would be in line with international findings.

We have hypothesised that these positive associations may exist due to higher road
density being associated with easier access to cognition-enhancing destinations [18,40,41].
For example, commercial destinations that offer opportunities for cognition-enhancing
activities, such as food outlets, shopping and entertainment venues, can be major sources
of air pollution generated by high population volumes and, hence, traffic. Additionally,
these streets may encourage walking and, although there is a risk of being exposed to
more TRAP, the decision making required at street junctions may involve more cognitive
processes [42] Additionally, street networks with greater connectivity have been associated
with higher participation in walking for transport [43,44]. Further detailed examination
of the built and natural environment in denser, destination-rich urban areas with more
variability in TRAP would enable the differentiation of the positive effects of participating
in cognition-enhancing activities from the potential negative effects of higher levels of
TRAP.

Strengths and Limitations

This study has utilised data from a significant Australian national cohort which has
sampled from diverse urban environments in Australia. This cohort provided a unique
opportunity to examine whether people with diabetes or impaired glucose tolerance were
at risk of lower cognitive function if exposed to long-term TRAP. Although this wave
of the AusDiab study was conducted 10 years ago, it is only now that environmental
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factors have now been retrospectively calculated and incorporated into the dataset so that
complex relationships between select environmental exposures and cognitive function can
be explored.

This study is limited by its cross-sectional design and the use of relatively coarse
measures of TRAP exposure and land use characteristics. The TRAP exposures are proxy
measures only and were not confirmed with objective measures of TRAP within the
residential buffer zones. Hence, these exposure estimates may be subject to exposure
misclassification. To overcome this, we used a national classification system for road types
to harmonise the differences between different regions within Australia. This study did
not include detailed information on access to cognition-enhancing destinations. As such,
we are unable to disentangle impacts of the urban environment, which include positive
effects on cognition associated with destinations which support healthy behaviours and
negative effects, which include exposure to various pollutants or destinations which lead
to unhealthy behaviours. This study does not include information on important factors
such as genetic predisposition to cognitive impairment (for example, the presence of the
ApoE4 lipoprotein gene [45]), or environmental exposures such as indoor air pollution [46]
or exposure to noise [47].

Future research needs to address these limitations and examine the relationships in a
longitudinal manner to identify the impacts of changes in exposures on cognitive function.

5. Conclusions

This study has demonstrated that, within Australian urban areas, increased levels
of TRAP exposure proxies (road density) may be positively associated with cognitive
function among urban-dwelling people, but this benefit may not extend to those with
diabetes or impaired glucose metabolism. Further longitudinal and fine-grained research
which incorporates measures of built and natural environmental exposures is needed to
disentangle the effects of access to cognition-enhancing destinations and exposure to TRAP
in those areas.
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