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ABSTRACT 

Background/aim: To determine which factors were most predictive of hamstring strain 

injury (HSI) during different stages of the competition in professional Australian Football.  

Methods: Across two competitive seasons, eccentric knee flexor strength and biceps femoris 

long head (BFlh) architecture of 311 Australian Football players (455 player seasons) were 

assessed at the start and end of pre-season and in the middle of the competitive season. 

Details of any prospective HSIs were collated by medical staff of participating teams. 

Multiple logistic regression models were built to identify important risk factors for HSI at the 

different time points across the season. Results: There were 16, 33 and 21 new HSIs reported 

in preseason, early in-season, and late in-season, respectively across two competitive seasons. 

Multivariate logistic regression and recursive feature selection revealed that risk factors were 

different for pre-season, early in-season and late in-season HSIs. A combination of prior HSI, 

age, height and muscle thickness were most associated with pre-season injuries (median AUC, 

0.83). Pennation angle and fascicle length had the strongest association with early in-season 

injuries (median AUC, 0.86). None of the input variables were associated with late in-season 

injuries (median AUC, 0.46). Identification of early in-season HSIs and late in-season HSIs 

was not improved by the magnitude of change of data across pre-season (median AUC, 0.67). 

Conclusions:  Risk factors associated with prospective HSIs were different across the season 

in Australian Rules Football, with non-modifiable factors (prior HSI, age, and height) mostly 

associated with pre-season injuries. Early in-season HSIs were associated with modifiable 

factors, notably BFlh architectural measures. The prediction of in-season HSIs was not 

improved by assessing the magnitude of change in data across pre-season. 

 

Key Words: HAMSTRING, INJURY, AUSTRALIAN FOOTBALL SEASON 
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INTRODUCTION 

Hamstring strain injuries (HSIs) are a common injury across many sports (1) 

including Australian Football (2) and significant work has been conducted to identify factors 

associated with an increased risk of future injury (3). These risk factors are often categorized 

as either modifiable or non-modifiable. Older age and a history of HSI are the two most 

commonly reported non-modifiable risk factors (3). Modifiable risk factors, which can be 

addressed through intervention, are extensive, but biceps femoris long head (BFlh) fascicle 

length (4) and eccentric hamstring strength (5) are current prominent variables.  

 

 Most prospective cohort studies assess risk factors at a single time-point, typically the 

beginning of a season (e.g., in the pre-season) (6)). This approach has limitations, as any 

changes in the measured variables leading up to injury, which could be up to nine months 

after the pre-season assessment, are not accounted for. Few have explored if more frequent 

assessments of risk factors improve the association with and/or prediction of future HSI risk. 

It was recently reported that more frequent assessments of eccentric knee flexor strength and 

biceps femoris long head (BFlh) architecture did not improve the ability to predict new HSIs 

in Australian Football (7). However, that study did not consider the possibility that risk 

factors may vary depending on the time of season, nor did it examine if changes in possible 

risk factors across time (e.g., an increase in eccentric strength from the start to the end of pre-

season) at an individual level altered the ability to predict HSI. 

 

 Therefore, the primary aim of this study was to determine which factors were most 

predictive of the risk of HSI during pre-season, early in-season and late in-season in 

professional Australian Football. The secondary aim was to determine if the magnitude of 

change in possible risk factors across pre-season was predictive of future in-season HSIs. 
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METHODS 

The methods used in this study pertaining to the study design, participants, and data 

collection have been described previously (7) but are included in detail here for the ease of 

the reader.    

 

Study design and participants 

This study was approved by the ACU Human Research Ethics Committee (approval 

number: 2017-208H) and was conducted across two Australian Football League seasons 

(November 2017 to August 2018 and November 2018 to August 2019, including pre-season 

but not including finals). Each player from six teams competing in the Australian Football 

League provided written informed consent prior to their participation.  

 

 At the start of pre-season, team medical staff were responsible for providing details of 

individual players’ history of HSI in the past 12 months and if they had ever sustained an 

anterior cruciate ligament (ACL) injury. Eccentric knee flexor strength and BFlh architecture 

were assessed at the start of pre-season (November/December), end of pre-season 

(February/March), and middle of the competitive season (May/June), respectively. Due to 

scheduling constraints, the actual dates for assessments were not identical across the six 

different teams involved in this study. A standardised injury report form was completed by 

the medical staff if any player sustained a HSI during the study period.  

 

Eccentric knee flexor strength 

The assessment of eccentric knee flexor strength was performed during the execution 

of the Nordic hamstring exercise similar to previous studies using an instrument device 

(NordBord, VALD, Queensland, Australia) (2, 4, 5, 8). Players knelt on a cushioned board 

with their ankles secured immediately superior to the lateral malleolus by individual ankle 
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hooks attached to uniaxial load cells. All players completing this assessment were familiar 

with the Nordic hamstring exercise. Participants were told to slowly lean forward forcefully 

contracting their knee flexors to control their descent. All players maintained their trunk and 

hips in a neutral position while holding their hands across the chest throughout the exercise. 

Players performed a single set of 1-3 maximal repetitions as determined by each team’s 

practices after a self-selected warm-up. The highest peak force produced by each leg 

throughout the test were recorded as eccentric knee flexor strength. Relative eccentric knee 

flexor strength was obtained by scaling its value relative to the mass of the player (N/kg) (7). 

 

Biceps femoris long head architecture  

The assessment of BFlh architecture has been reported previously (9-12). The 

measurements of muscle thickness, pennation angle, and fascicle length of the BFlh were 

obtained from ultrasound images taken along the longitudinal axis of the muscle belly 

utilising a two-dimensional, B-mode ultrasound (frequency, 12 MHz; depth, 8cm; field of 

view, 14 x 47mm) (GE Healthcare Vivid-i, Wauwatosa, U.S.A). Along the line of BFlh, the 

halfway point between the ischial tuberosity and the knee joint fold was determined as the 

scanning site. The architecture assessments were conducted on players lying on a massage 

plinth after at least 5 minutes of inactivity. The assessor (RGT) adjusted the orientation of the 

probe accordingly. The reliability of the assessor has been previously established with an 

intraclass correlation > 0.90 reported for BFlh fascicle length.  

 

 Offline analysis was undertaken after the images were collected (MicroDicom, 

Version 0.7.8, Bulgaria). Muscle thickness was determined by the distance between the 

superficial and intermediate aponeuroses of the BFlh. Pennation angle was determined by the 

angle between the intermediate aponeurosis and a fascicle of interest. The angles of 

superficial and intermediate aponeurosis were defined as the angle between the line marked 
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as the aponeurosis and an intersecting horizontal reference line across the capture image (13). 

Due to part of the fascicle not being visible in the ultrasound probe’s field of view, the 

following equation from Blazevich and colleagues was used for estimation (13): 

 

𝐹𝐿 =  𝑠𝑖𝑛(𝐴𝐴 + 90°)  ×  𝑀𝑇/𝑠𝑖𝑛(180° − (𝐴𝐴 + 180° − 𝑃𝐴)) 

 

where FL=fascicle length, AA=aponeurosis angle, MT=muscle thickness and PA=pennation 

angle. Fascicle length was reported in absolute terms (cm) and relative to muscle thickness 

from a single image. The same assessor (RGT) collected and analysed all scans. The assessor 

has evidenced reliability in determining measures of BFlh muscle architecture at rest with 

ICCs >0.95 and %TE <5.0% across the measurement of all architectural variables. 

 

Prospective hamstring strain injury reporting 

An HSI was defined as posterior thigh pain that prevented a player from performing 

subsequent exercise and was confirmed by physical examination by the team physiotherapist 

or doctor (14, 15). The team medical staff filled out a standard injury report form for each 

HSI, which requested details about the injured limb, injured muscle, activity type performed 

when the injury occurred, and the number of days required for the player to return to full 

participation in training and competition. 

 

Statistical Analysis 

Statistical analyses were performed using the python 3.9.2 programming language (Python 

Software Foundation, https://www.python.org/) and the following packages: scikit-learn, 

statsmodel, panda, numpy, matplotlib and seaborn. 

 

Copyright © 2023 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.

ACCEPTED



General Modelling Approach 

The general modeling approach applied to this study can be found in Figure 1a.  

 

Data pre-processing. For all analyses, an observation was removed if it consisted of at least 

one missing value. Additionally, players who sustained an HSI in previous time points within 

a season were censored from building models to predict HSIs that occurred in later 

timepoints. For example, a player who sustained an HSI in pre-season was excluded from 

training models to predict HSIs that occurred in early in-season and later in-season. Likewise, 

players who sustained an HSI in early in-season were excluded from training models to 

predict HSIs occurring in late in-season. 

 

 Correlation analysis was conducted on input predictor variables to identify redundant 

predictors. A Pearson’s correlation coefficient threshold of > 0.8 was applied and if the 

pairwise correlation between two predictors exceeded the threshold of 0.8, the predictor with 

the higher mean pairwise correlation across all other predictor variables was removed. 

 Following this, the remaining input predictor variables were normalized (16) into the 

range of 0 and 1, using the following equation:  

 

𝑥norm =
𝑥 − 𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
 

 

where 𝑥 is the value to scale, 𝑚𝑖𝑛(𝑥) is the smallest value of the predictor, and 𝑚𝑎𝑥(𝑥) is 

the largest value of the predictor. 

 

Predictor selection. The aim of the predictor selection process in the current study was to 

eliminate redundant predictors and identify which subset of risk factors achieved the highest 

predictive performance across the different time points. A wrapper feature selection method, 
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specifically recursive feature elimination, was used to search through different subsets of risk 

factors associated with HSI (17). Recursive feature elimination, which is robust to overfitting 

(18), was conducted in this study by fitting a logistic regression with all input predictor 

variables and recursively eliminating predictors that were less important based on the 

coefficients. Once the predictor with the lowest coefficient was removed, the model was 

fitted with the remaining predictors to repeat the process. This process was repeated until 

there was only one remaining predictor, after which the importance of individual predictors 

was ranked. Preliminary analyses using this dataset showed that models built using recursive 

feature elimination outperformed models built using all predictors. Recursive feature 

elimination, however, does not identify the optimal number of predictors. 

 

Finding the optimal number of predictors. Stratified k-fold cross validation was utilised to 

determine the optimal number of predictors. In this study, k = 5 was applied to divide data 

into 5 stratified folds. For each split, 1-fold of the data was used as testing data and the 

remaining folds (k-1) were used as training data. The number of selected predictors resulting 

in the highest AUC averaged across 5 folds was chosen as the optimal number of predictors. 

 

Performance evaluation. Once the optimal number of risk factors was determined, the final 

step was to evaluate the performance of logistic regression with selected risk factors. It is a 

common practice to allocate 20-30% of data for testing and 70%-80% of data for training (6). 

Any split within this threshold has been shown to have an accurate estimation of the model’s 

performance (19). A 20%/80% train-test split was used in this study. Stratified cross 

validation was utilised to preserve the percentage of injured and uninjured athletes for all 

iterations. Since the given dataset was relatively small (<455 observations), 1000 iterations of 

evaluation were performed. The metric used to evaluate predictive performance was area 

under the curve (AUC) (20). AUC measures the ability of the models to correctly predict 
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prospectively injured and uninjured players. An AUC of 0.5 indicates prediction no better 

than random chance whereas an AUC of 1.0 indicates perfect prediction.  

 

Analysis 1 

The aim of Analysis 1 was to determine which risk factors best predicted HSIs at 

different time points throughout the season. 

 

 The general modelling approach was applied to Analysis 1. The subset of data utilised 

for Analysis 1 has been illustrated in Figure 1b, where d1 are data assessed at the start of pre-

season, d2 are data assessed at the end of pre-season, and d3 are data assessed in the middle 

of in-season. i1 is the window following d1 during which prospective HSIs could have 

occurred throughout pre-season, i2 is the window following d2 during which prospective 

HSIs could have occurred early in-season, and i3 is the window following d3 during which 

prospective HSIs could have occurred during late in-season. 

 

 Analysis 1 utilised all non-modifiable risk factors assessed at the start of pre-season 

and modifiable risk factors assessed at multiple time points (d1 or start of pre-season, d2 or 

end of pre-season, and d3 or middle of in-season) as predictor variables. Prospective HSIs 

that occurred between individual assessment time frames (i1 or between the start and end of 

pre-season, i2 or between the end of pre-season and the middle of in-season, and i3 or 

between the middle of in-season and the end of the in-season prior to the commencement of 

finals) were the target of the prediction models. (Refer to Table 1 for types of input predictor 

variables and target variables included in each of the individual models). 
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Analysis 2 

Analysis 2 aimed to determine whether the magnitude of change in data between the 

start and end of pre-season, as well as more frequent assessment during pre-season, improved 

the ability to predict in-season HSIs, beyond the data collected at the start and end of pre-

season alone. 

 

 The general modelling approach was applied to Analysis 2. The subset of data utilised 

for Analysis 2 has been illustrated in Figure 1c, where d1 are data assessed at the start of pre-

season, d2 are data assessed at the end of pre-season, d2-d1 is the magnitude of change in the 

risk factors across pre-season. i2 is the window during which prospective HSIs could have 

occurred early in-season and i3 is the window during which prospective HSIs could have 

occurred during late in-season. 

 

 Analysis 2 utilised all non-modifiable risk factors assessed at the start of pre-season 

and modifiable risk factors assessed at the start and end of pre-season as predictor variables. 

Prospective HSIs that occurred during the in-season periods (i2 and i3) were the target of the 

prediction models. Additionally, the magnitude of change in modifiable risk factors was 

determined as the absolute difference between values captured at the end of pre-season and 

values captured at the start of pre-season. (Refer to Table 1 for types of input predictor 

variables and target variables included in individual modelling approaches). 

 

RESULTS 

Three-hundred and eleven male Australian Football players, with a total number of 

455 player seasons (23.7 ± 3.8yrs, 188.1 ± 7.6cm, 86.5 ± 8.8kg) across the 2018 and 2019 

seasons were evaluated on at least one occasion. Of these player seasons, 381 (83.7%) did not 

sustain an HSI and 74 (16.3%) did.  
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 After the removal of missing values for Analysis 1, the total number of injured and 

uninjured player seasons during i1 was 14 and 339 respectively (d1->i1; Table 2). For i2, the 

total number of injured and uninjured player seasons with complete datasets assessed at d2 

was 24 and 259 respectively (d2->i2; Table 2). For i3, the total number of injured and 

uninjured player seasons (with complete datasets assessed at d3) was 11 and 225 respectively 

(d3->i3; Table 2).  

 

 For Analysis 2, the total number of injured and uninjured player seasons with 

complete datasets during early in-season (i.e. i2) was 23 and 219 respectively (i2; Table 3). 

For late in-season (i.e. i3), the total number of injured and uninjured player seasons with 

complete datasets was 9 and 210 respectively. 

 

Analysis 1 

The performance of the individual models in Analysis 1 can be found in Figure 2. 

Data that were assessed at the end of pre-season and used to predict HSIs that occurred early 

in-season displayed the best predictive performance (median AUC = 0.86, interquartile range 

(IQR) = 16; Table 2) (d2->i2, Figure 2). The prediction of pre-season HSIs utilising data 

assessed at the start of pre-season (d1->i1; Figure 2) resulted in a median AUC of 0.83 and 

an IQR of 0.16. In contrast, data assessed at the middle of the in-season period and used to 

predict HSIs that occurred late in-season (d3->i3, Figure 2) resulted in the poorest predictive 

performance (median AUC = 0.46, interquartile range (IQR) = 0.25; Table 2).  

 

Pre-season HIS. Players with history of HSI are more likely to sustain an HSI in pre-season 

(Figure 3a-c, p < 0.01). Shorter players displayed a higher risk of sustaining HSI in pre-

season (Figure 3a). Results also showed that older athletes were associated with an increased 

risk of HSI in pre-season (Figure 3b, p < 0.05; Supplemental Table 1, Supplemental Digital 
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Content, http://links.lww.com/MSS/C912, The p-value of individual risk factors determined 

by multivariate logistic regression models in Analysis 1) and players who had thicker BFlh 

muscles were also more susceptible to HSI in pre-season (Figure 3c).  

 

Early in-season HIS. Players with a greater BFlh pennation angle and shorter fascicle length 

were at significantly increased risk of sustaining HSI during the early in-season period 

(Figure 3d, 3e; p < 0.05; Supplemental Table 1, Supplemental Digital Content, 

http://links.lww.com/MSS/C912).  

 

Late in-season HIS. Although height, age, history of ACL injury, BFlh pennation angle, 

fascicle length, relative eccentric knee flexor strength, as well as relative eccentric knee 

flexor strength imbalance were selected as predictive predictors (Figure 3f-k), the overall 

predictive performance of AUC was below 0.5 (median AUC = 0.46, interquartile range 

(IQR) = 0.25; Table 2).  

 

Analysis 2 

The performance of the individual models in Analysis 2 can be found in Figure 4a and 

4b. Neither the predictions of early in-season HSIs (median AUC = 0.67, interquartile range 

(IQR) = 0.15; Table 3) nor late in-season HSIs (median AUC = 0.67, interquartile range (IQR) 

= 0.26; Table 4) were improved by assessing the magnitude of change in data across 

preseason. For HSIs occurring early in-season, the model with the best predictive 

performance utilised BFlh fascicle length and pennation angle, which were assessed at the 

end of pre-season. The resulting median AUC was 0.84 and the IQR was 0.16 (Table 3). 

Predicting late in-season injuries utilising the absolute change in BFlh pennation angle and 

fascicle length across pre-season, as well as history of ACL displayed the best predictive 

performance (median AUC = 0.67, interquartile range (IQR) = 0.26; Table 4). However, the 
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predictive performance was not significantly improved when compared to relative BFlh 

fascicle length and fascicle length, which were assessed at the start of pre-season only 

(median AUC = 0.65, interquartile range (IQR) = 0.25; Table 4). 

 

DISCUSSION 

This study aimed to assess whether the factors associated with HSI in professional 

Australian Football changed across the season. The current study found that the subset of risk 

factors that best predicted the occurrence of HSI was different between the pre-season and in-

season periods. This study also aimed to assess whether the magnitude of change in HSI risk 

factors across the pre-season period improved the prediction of HSIs sustained in-season 

beyond using measures taken at the start or end of pre-season alone. The magnitude of 

change in eccentric knee flexor strength and BFlh muscle architecture variables across the 

pre-season period generally displayed poorer predictive performance than the absolute 

measures themselves (particularly those taken at the end of pre-season).  

 

Did more frequent assessment of risk factors improve the prediction of future HSI? 

The best performing model in the current study was built using BFlh fascicle length 

and pennation angle assessed at the end of pre-season and aimed to predict only HSIs that 

occurred during the first half of the in-season period. This model predicted prospective HSIs 

with a median AUC of 0.86. A previous study attempted to predict HSIs in elite Australian 

Footballers using age, previous HSI and eccentric knee flexor strength data, collected across 

two AFL seasons (6). When predicting HSIs that occurred within the same season, the 

median AUC values for the 2013 and 2015 AFL seasons were 0.58 and 0.57, respectively (6). 

In this previous study, when data from the 2013 AFL season were used to predict HSIs that 

occurred during the 2015 AFL season, the median AUC was 0.52 (6). It was suggested that 

more frequent measures of the risk factors examined may have improved predictive 
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performance. However, another study reported that more frequent measurements of 

modifiable risk factors did not improve the ability to identify athletes at an increased risk of 

HSI beyond data collected at a single timepoint (7). In support of these previous findings (7), 

we observed that more frequent measurements did not improve the ability to predict the 

occurrence of HSI. However, the assessment of different risk factors at different timepoints 

did improve predictive performance. In addition, we utilised recursive feature elimination to 

optimise predictive performance and improve the interpretability of built models. Results 

from preliminary analyses suggest that the selected predictors are likely to deliver better 

predictive performance than utilising all predictors. The findings of our study suggest that a 

subset of risk factors, as opposed to all risk factors, used in previous studies may have been 

more effective in predicting prospective HSIs. 

 

Does the magnitude of change in risk factor data across pre-season improve the ability 

to predict HSI throughout the season beyond the absolute values? 

In addition to suggesting that more frequent measures of the risk factors examined 

may improve predictive performance (6), prior work has also noted that assessing risk factors 

at the start of pre-season alone assumes that these factors will remain constant throughout the 

season (or up to the point of HSI). It is suggested that changes in HSI risk factors may 

influence the risk of injury to a greater extent than the absolute values of those risk factors 

measured at a single timepoint (6, 21). AUC values of 0.7 and above are regarded as having 

significant impacts in sport science domains (22). In the current study, models built with the 

magnitude of change in risk factors across pre-season were less optimal when attempting to 

predict HSIs during early in-season, or i2 (median AUC of 0.66), as well as HSIs during late 

in-season, or i3 (median AUC of 0.63). Conversely, models built using the absolute values 

measured at the end of pre-season, or d2, performed better when predicting HSIs during early 
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in-season, or i2 (median AUC of 0.83). However, the performance of all models attempting 

to predict late in-season HSIs, or i3, were the poorest. 

 

 The current results suggest that risk factor data assessed at the end of pre-season 

provides the strongest performance when predicting in-season HSIs. Despite the magnitude 

of change in modifiable risk factor data performing poorly from a prediction standpoint, it is 

important to acknowledge that significant adaptations in eccentric knee flexor strength and 

BFlh muscle architecture can be elicited in as little as two weeks (23). For example, an 

increase of BFlh fascicle length and a reduction in BFlh pennation angle has been observed 

following just 14 days of an eccentric strength training intervention (23). Given this, it is 

likely that athletes saw significant adaptations across the pre-season period and that 

modifiable risk factor data assessed at the end of pre-season provided a better indication of 

athletes' physical status during the in-season period compared to data collected at the start of 

pre-season. In contrast to this, data collected at the midpoint of the in-season period displayed 

the worst predictive performance when used to predict injuries that occurred during the 

second half of the in-season period. This suggests that despite this data being more 

aetiologically relevant, there may exist other factors that influence the risk of HSIs occurring 

during the latter half of the season to a greater extent than those examined in this study. 

 

In which phase of the season was the predictive performance for HSI best? 

The best performing model aimed to predict HSIs during the first half of the in-season 

period and was built using data collected at the end of pre-season (median AUC of 0.86; 

Table 2). In contrast, the poorest performing model was built using data collected at the 

midpoint of the in-season period and aimed to predict HSIs in the second half of the in-

season period (median AUC of 0.46; Table 2). It has previously been reported that an 

increase in BFlh fascicle length during early in-season can be observed across all players (9). 
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However, it was observed that players with a history of HSI saw greater decreases in BFlh 

fascicle length during the latter part of the in-season period when compared to players 

without a history (9). This may, to an extent, explain why BFlh fascicle length assessed at the 

end of pre-season did not present strong association with late in-season HSIs, when compared 

to early in-season HSIs (9). 

 

 Absolute risk factor data assessed at the end of pre-season may provide practitioners 

with the most insight regarding HSI risk, and that additional assessments of the studied 

variables throughout the in-season period may not add further value. The relatively poor 

performance of the models built to predict late in-season HSIs suggests that there may be 

additional factors that influence the risk of injury to a greater extent in the latter stages of the 

season. 

 

Limitations 

Since BFlh fascicles were longer than the ultrasound field of view (14x4.7mm), 

extrapolation methods were used to calculate BFlh fascicles (24). Although the extrapolation 

method was proven to be highly reliable in an earlier study (ICC>0.97) when validated 

against cadaveric data (13), the drawback is that it may overestimate BFlh fascicle length 

(25). Due to the lack of a standardised classification system (26), not all HSIs reported in this 

study offer details pertaining to the muscle that was injured. Further subgroup analysis may 

be conducted if more injury data of the injured muscle were recorded. Since player exposure 

data were not presented in this study, reported HSI incidence did not consider the amount of 

time spent training and competing. In addition, the use of athlete tracking technologies to 

account for high-speed running and strength training exposure may offer more insights 

regarding HSI risk. Warm up procedures were not standardised for strength assessments. 

Future studies should consider standardising warm-up practices to limit the impact it may 

Copyright © 2023 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.

ACCEPTED



have on the strength outcomes. The data utilised in the current study were collected across 

multiple clubs at differing time points as part of their routine practices. Accordingly, it was 

not possible to standardise the warm-up and testing protocols for the assessment of eccentric 

knee flexor strength. The impact that a standardised warm-up protocol across all participating 

teams could have had on the peak eccentric knee flexor force values observed is unknown. 

Additionally, whether identifying peak eccentric knee flexor force from one versus three 

repetitions of the NHE would have impacted the current results is also unknown. It is 

possible that there is a learning/feedback effect that may influence the results observed after 

three repetitions compared to one repetition, however, participants in this study were all very 

familiar with the assessment of eccentric knee flexor force during the NHE, which likely 

reduced the possibility of this. The use of logistic regression in this study assumes linearity 

between target variable and risk factors. Complex non-linear models may be utilised with 

proper hyperparameter tuning practice. Although previous studies showed the use of non-

linear models outperformed logistic regression in injury prediction (22, 27), these studies 

were conducted on a larger dataset. Earlier work showed no improvements in predictive 

performance when complex modelling approach was used (6). The absence of a standardised 

fine-tuning process on small and imbalanced dataset may be the cause, which result in 

overfitting. Despite this study recording a high number of prospective HSIs in comparison to 

previous research (28), the relatively low injury rates and the class imbalance problem that 

this presents remains a limitation of this study and as well as most prospective sports injury 

studies in general. It is unclear whether predictive performance would be improved if class 

imbalance was addressed. Furthermore, the presence of missing data results in reduced 

numbers of player seasons used for the analysis in this study. Although AUC is used in many 

studies (6, 7, 29), other metrics should be considered thoroughly when evaluating the 

generalisation of binary classifiers. In addition, future studies should utilise interpretability 

methods in machine learning to help experts better understand the decisions of trained models 
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beyond predictive performance. Finally, previous work suggests that HSI risk factors are not 

transferable to different sporting populations (30) so applications of the current findings to 

other sports (e.g., soccer, rugby) should be done with caution. 

 

CONCLUSIONS 

This study has demonstrated that the risk factors most associated with prospective 

HSIs change throughout an Australian Football season. Non-modifiable risk factors (history 

of HSI, age and height) demonstrated a strong association with pre-season HSIs, whereas 

early in-season HSIs were better explained by modifiable risk factors. Conversely, late in-

season injuries did not present any strong associations with either modifiable or non-

modifiable risk factors examined in this study.  The magnitude of change in modifiable risk 

factors across pre-season did not improve the prediction of in-season HSIs. The results of this 

study suggest that assessing the same risk factors at multiple time points throughout the 

season may not be the best approach when identifying athletes at an increased risk of HSI. 

Instead, assessing different risk factors at specific time points may provide practitioners with 

more insight, however, the practical relevance of this is questionable. Future research is 

warranted to investigate the effectiveness of assessing risk factors at varying time points to 

improve HSI risk mitigation efforts.  
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FIGURE LEGENDS 

 

Figure 1a. Adopted workflow process to identify important risk factors and build optimal 

models for performance evaluation. 

 

Figure 1b. The modelling approach for Analysis 1. d represents data assessment at different 

time points where d1 are data assessed at the start of pre-season; d2 are data assessed at the 

end of pre-season; d3 are data assessed in the middle of in-season. i represents hamstring 

strain injuries (HSIs) that occurred within individual assessment time frames where i1 are 

prospective HSIs that occurred in pre-season; i2 are prospective HSIs that occurred in early 

in-season; i3 are prospective HSIs that occurred in late in-season. 

 

Figure 1c. The modelling approach for the Analysis 2. d represents data assessment in 

different time points where d1 are data assessed at the start of pre-season; d2 are data 

assessed at the end of pre-season, d2-d1 are magnitude of change of data in preseason. i 

represents hamstring strain injuries (HSIs) that occurred within individual assessment time 

frames where i2 are prospective HSIs that occurred in early in-season; i3 are prospective 

HSIs that occurred in late in-season; i2+i3 are prospective HSIs that occurred throughout in-

season. 

 

Figure 2. The results of Analysis 1. The performance of models built with selected predictors 

assessed and evaluated at the start of pre-season and hamstring strain injuries (HSIs) that 

occurred in pre-season (d1->i1), end of preseason and HSIs that occurred in early in-season 

(d2->i2), in the middle of preseason and HSIs that occurred in late in-season (d3->i3).  
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Figure 3a. The impact of change in height on hamstring strain injury (HSI) probability in 

pre-season with other factors set as mean constants (Age = 23.54 years, Muscle thickness = 

2.64 cm). 

 

Figure 3b. The impact of change in age on hamstring strain injury (HSI) probability in pre-

season with other factors set as mean constants (Height = 188.07 cm, Muscle thickness = 2.64 

cm). 

 

Figure 3c. The impact of change in muscle thickness on hamstring strain injury (HSI) 

probability in pre-season with other factors set as mean constants (Height = 188.07 cm, Age = 

23.54 years). 

 

Figure 3d. The impact of change in pennation angle on hamstring strain injury (HSI) 

probability in early in-season with fascicle length set as mean constant (Fascicle length = 

10.72 cm). 

 

Figure 3e. The impact of change in fascicle length on hamstring strain injury (HSI) 

probability in early in-season with pennation angle set as mean constant (Pennation angle = 

15.37 degrees). 

 

Figure 3f. The impact of change in height on hamstring strain injury (HSI) probability in late 

in-season with other factors set as mean constants (Age = 23.13 years, Pennation angle = 

15.39 degrees, Fascicle length = 10.74 cm, Relative eccentric knee flexor force = 5.45 N/kg, 

Eccentric knee flexor force imbalance = 9.33%). 

 

Copyright © 2023 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.

ACCEPTED



Figure 3g. The impact of change in age on hamstring strain injury (HSI) probability in late 

in-season with other factors set as mean constants (Height = 188.05 cm, Pennation angle = 

15.39 degrees, Fascicle length = 10.74 cm, Relative eccentric knee flexor force = 5.45 N/kg, 

Eccentric knee flexor force imbalance = 9.33%). 

 

Figure 3h. The impact of change in pennation angle on hamstring strain injury (HSI) 

probability in late in-season with other factors set as mean constants (Height = 188.05 cm, 

Age = 23.13 years, Fascicle length = 10.74 cm, Relative eccentric knee flexor force = 5.45 

N/kg, Eccentric knee flexor force imbalance = 9.33%). 

 

Figure 3i. The impact of change in fascicle length on hamstring strain injury (HSI) 

probability in late in-season with other factors set as mean constants (Height = 188.05 cm, 

Age = 23.13 years, Pennation angle = 15.39 degrees, Relative eccentric knee flexor force = 

5.45 N/kg, Eccentric knee flexor force imbalance = 9.33%). 

 

Figure 3j. The impact of change in relative eccentric knee flexor force on hamstring strain 

injury (HSI) probability in late in-season with other factors set as mean constants (Height = 

188.05 cm, Age = 23.13 years, Pennation angle = 15.39 degrees, Fascicle length = 10.74 cm, 

Eccentric knee flexor force imbalance = 9.33%). 

 

Figure 3k. The impact of change in eccentric knee flexor force imbalance on hamstring 

strain injury (HSI) probability in late in-season with other factors set as mean constants 

(Height = 188.05 cm, Age = 23.13 years, Pennation angle = 15.39 degrees, Fascicle length = 

10.74 cm, Relative eccentric knee flexor force = 5.45 N/kg). 
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Figure 4a. The performance of models built with selected predictors assessed at start of pre-

season (d1), end of pre-season (d2), start and end of pre-season (d1, d2), the magnitude of 

change of data in pre-season (d2-d1), data assessed at the start and end of pre-season and the 

magnitude of change of data in pre-season (d1, d2, (d2-d1)) as predictor variables, and 

hamstring strain injuries (HSIs) that occurred in early in-season (i2) as target variable. AUC 

= area under the curve  

 

Figure 4b. The performance of models built with selected predictors assessed at start of pre-

season (d1), end of pre-season (d2), start and end of pre-season (d1, d2), the magnitude of 

change of data in pre-season (d2-d1), data assessed at the start and end of pre-season and the 

magnitude of change of data in pre-season (d1, d2, (d2-d1)) as predictor variables, and 

hamstring strain injuries (HSIs) that occurred in late in-season (i3) as target variable. AUC = 

area under the curve 
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SUPPLEMENTAL DIGITAL CONTENT 

 

SDC 1: Supplemental Material 1.docx 

 

Table S1: The p-value of individual risk factors determined by multivariate logistic 

regression models in Analysis 1.  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Table 1. Types of predictor variables and target variables included in individual models for 

Analysis 1 and Analysis 2. 

Model Input predictor variables Target variables 

Non-modifiable risk factors Modifiable risk factors HSIs 

d1 d1 d2 d3 d2-d1 i1 i2 i3 

Analysis 1 

d1->i1 ✓ ✓ 

 

   ✓ 

 

  

d2->i2 ✓  ✓ 

 

   ✓ 

 

 

d3->i3 ✓   ✓ 

 

   ✓ 

 

Analysis 2 

HSI occurred in early in-season (i2) 

d1 ✓ 

 

✓ 

 

    

 

✓ 

 

 

d2 ✓  

 

✓ 

 

   ✓ 

 

 

d1&d2 ✓ 

 

✓ 

 

✓ 

 

   ✓ 

 

 

d2-d1 ✓    ✓  ✓  
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Non-modifiable risk factors: Height, weight, age, prior hamstring strain injury (HSI), and 

prior anterior cruciate ligament (ACL) injury;  

Modifiable risk factors: muscle thickness (cm), pennation angle (degrees), fascicle length 

(cm), relative fascicle length (fascicle length divided by muscle thickness), eccentric knee 

flexor strength (N), relative eccentric flexor strength (N/kg), and between-limb imbalance 

(%); 

d1: data assessed at the start of pre-season, d2: data assessed at the end of pre-season, d3: 

data assessed in the middle of in-season, d1&d2: data assessed at start and end of pre-season, 

d2-d1: magnitude of change in data between start and end of pre-season; 

i1: HSIs occurred in pre-season, i2: HSIs occurred in early in-season; i3: HSIs occurred in 

late in-season. 

    

d1&d2&(d2-d1) ✓ ✓ ✓  ✓  ✓  

HSI occurred in late in-season (i3) 

d1 ✓ 

 

✓ 

 

     ✓ 

 

d2 ✓ 

 

 ✓ 

 

    ✓ 

 

d1&d2 ✓ 

 

✓ 

 

✓ 

 

    ✓ 

 

d2-d1 ✓ 

 

   ✓ 

 

  ✓ 

 

d1&d2&(d2-d1) ✓ ✓ ✓  ✓   ✓ 
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Table 2. The results of Analysis 1. The performance of models built with selected predictors assessed and evaluated at start of pre-season and 

hamstring strain injuries (HSIs) that occurred in pre-season (d1->i1), end of pre-season and HSIs that occurred in early in-season (d2->i2), and 

middle of in-season and HSIs that occurred in late in-season (d3->i3). The descriptive summary is the outcome of 1000 iterations of train-test 

splits.  

Model Risk factors* Frequency AUC 

HSI Non-

HSI 

Total Interquar

tile range  

Standard 

Deviatio

n 

Minimu

m 

Lower 

quartile 

Median Upper 

quartile 

Maximu

m 

d1->i1 prior HSI, height, age, muscle 

thickness 
14 339 353 0.16 0.12 0.40 0.73 0.83 0.89 0.99 

d2->i2 pennation angle, fascicle 

length 
24 259 283 0.16 0.11 0.37 0.77 0.86 0.93 1.00 

d3->i3 prior ACL, height, age, 

pennation angle, fascicle 

length, relative eccentric knee 

11 225 236 0.25 0.17 0.02 0.33 0.46 0.58 0.91 
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flexor force, eccentric knee 

flexor force imbalance 

Performance is measured as area under the curve (AUC). 

*Risk factors were selected by recursive feature elimination and 5-fold cross validation. 
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Table 3. The results of Analysis 2. The performance of models built with selected predictors assessed at start of pre-season (d1), end of pre-season 

(d2), start and end of pre-season (d1, d2), the magnitude of change of data in pre-season (d2-d1), data assessed at the start and end of pre-season 

and the magnitude of change of data in pre-season (d1, d2, (d2-d1)) as predictor variables, and hamstring strain injuries (HSIs) occurred in early 

in-season (i2) as target variable. 

Models Risk factors* 

  

Frequency AUC 

HSI Non-

HSI 

Total Interquar

tile range 

Standard 

Deviatio

n 

Minimu

m 

Lower 

quartile 

Median Upper 

quartile 

Maximu

m 

d1 fascicle length (d1), 

relative fascicle length 

(d1) 

23 219 242 0.15 0.11 0.29 0.60 0.68 0.75 0.96 

d2 pennation angle (d2), 

fascicle length (d2) 

23 219 242 0.16 0.11 0.44 0.75 0.84 0.91 1.00 

d1&d2 pennation angle (d2), 

fascicle length (d2) 

23 219 242 0.16 0.11 0.44 0.75 0.84 0.91 1.00 

d2-d1 prior HSI, pennation 23 219 242 0.15 0.11 0.25 0.59 0.67 0.74 0.98 
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angle (c1), fascicle 

length (c1), eccentric 

knee flexor force 

imbalance (c1) 

d1&d2&(d2-

d1) 

pennation angle (d2), 

fascicle length (d2) 

23 219 242 0.16 0.11 0.44 0.75 0.84 0.91 1.00 

Performance is measured as area under the curve (AUC). 

*Risk factors were selected by recursive feature elimination and 5-fold cross validation. 

d1&d2; models built with non-modifiable risk factors assessed at the start of pre-season and modifiable risk factors assessed at the start and end of 

pre-season. 

d2-d1; models built with non-modifiable risk factors assessed at the start of pre-season and magnitude of change of modifiable risk factors 

between start and end of pre-season. 

c1; magnitude of change of specific risk factor between start and end of pre-season. 
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Table 4. The results of Analysis 2. The performance of models built with selected predictors assessed at start of pre-season (d1), end of pre-season 

(d2), start and end of pre-season (d1, d2), the magnitude of change of data in pre-season (d2-d1), data assessed at the start and end of pre-season 

and the magnitude of change of data in pre-season (d1, d2, (d2-d1)) as predictor variables, and hamstring strain injuries (HSIs) occurred in late in-

season (i3)  as target variable. 

Models Risk factors* 

  

Frequency AUC 

HSI Non-

HSI 

Total Interquar

tile range 

Standard 

Deviatio

n 

Minimu

m 

Lower 

quartile 

Median Upper 

quartile 

Maximu

m 

d1 fascicle length (d1), 

relative fascicle length 

(d1) 

9 210 219 0.25 0.16 0.20 0.54 0.65 0.79 0.98 

d2 eccentric knee flexor 

force imbalance (d2) 

9 210 219 0.23 0.16 0.17 0.44 0.55 0.67 0.93 

d1&d2 prior ACL, pennation 

angle (d1), fascicle 

length (d1) 

9 210 219 0.29 0.18 0.12 0.45 0.58 0.74 0.98 
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d2-d1 prior ACL, pennation 

angle (c1), fascicle 

length (c1) 

9 210 219 0.26 0.19 0.17 0.50 0.67 0.76 1.00 

d1&d2&(d2-

d1) fascicle length (c1) 

9 210 219 0.27 0.20 0.14 0.46 0.64 0.73 1.00 

Performance is measured as area under the curve (AUC). 

*Risk factors were selected by recursive feature elimination and 5-fold cross validation. 

d1&d2; models built with non-modifiable risk factors assessed at the start of pre-season and modifiable risk factors assessed at the start and end of 

pre-season. 

d2-d1; models built with non-modifiable risk factors assessed at the start of pre-season and magnitude of change of modifiable risk factors 

between start and end of pre-season. 

c1; magnitude of change of specific risk factor between start and end of pre-season. 
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Supplemental Material 1. The p-value of individual risk factors determined by multivariate 

logistic regression models in Analysis 1. 

Model Risk Factors* p-value 

d1->i1 Prior HSI < 0.01 

Height 0.112 

Age 0.047 

Muscle thickness 0.267 

Intercept 0.948 

d2->i2 Fascicle length < 0.001 

Pennation angle < 0.001 

Intercept 0.226 

d3->i3 Prior ACL 0.999 

Height 0.809 

Age 0.322 

Pennation angle 0.316 

Fascicle length 0.322 

Relative eccentric knee 

flexor force 

0.348 

Eccentric knee flexor 

force imbalance 

0.293 

Intercept 0.448 
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*Risk factors were selected by recursive feature elimination and 5-fold cross validation. 

Prior HSI: prior hamstring strain injury (HSI),  

Prior ACL: prior anterior cruciate ligament (ACL) injury, 

d1->i1: data assessed at start of pre-season and hamstring strain injuries (HSIs) that occurred 

in preseason, d2->i2: data assessed at end of pre-season and hamstring strain injuries (HSIs) 

that occurred in early in-season, d3->i3: data assessed in the middle of in-season and 

hamstring strain injuries (HSIs) that occurred in late in-season. 
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