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Abstract
If the laws are deterministic, then standard theories of
counterfactuals are forced to reject at least one of the fol-
lowing conditionals: 1) had you chosen differently, there
would not have been a violation of the laws of nature;
and 2) had you chosen differently, the initial conditions
of the universe would not have been different. On the
relevant readings—where we hold fixed factors causally
independent of your choice—both of these conditionals
appear true. And rejecting either one leads to trouble for
philosophical theories which rely upon counterfactual
conditionals—like, for instance, causal decision theory.
Here, I outline a semantics for counterfactual condi-
tionals which allows us to accept both (1) and (2). And
I discuss how this semantics deals with objections to
causal decision theory from Arif Ahmed.

If the laws of nature are deterministic, then standard theories of counterfactuals are forced to deny
one of the following:

(A1) Had you chosen differently, no law of nature would have been violated.
(A2) Had you chosen differently, the initial conditions of the universe would not have been

changed.

On the relevant readings, where we hold fixed factors causally independent of your choice,
both of these conditionals appear true. And denying either leads to trouble for philosophical
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2 GALLOW

theories which rely upon counterfactual conditionals—like, for instance, causal decision
theory.
In §1 below, I will explain more carefully why standard theories of counterfactuals are forced to

deny one of these conditionals at deterministic worlds, and why this leads to problems for causal
decision theory. Then, in §§2–3, I will outline a different semantics for counterfactual condition-
als. And in §4, I will demonstrate that this semantics allows us to accept both (A1) and (A2). §5
concludeswith some further discussion of the theory andwhat it has to say about conditionals like
“Had you chosen differently, it would have been the case that either a law of nature was violated
or the initial conditions were different”.

1 A PUZZLE ABOUT CAUSAL COUNTERFACTUALS

1.1 Causal counterfactuals

A counterfactual conditional is a claim expressible by a sentence in the following form: if it were
the case that 𝑃, then it would be the case that 𝑄. I’ll abbreviate conditionals like this with: 𝑃 > 𝑄.
When the antecedent is false, evaluating a counterfactual conditional requires us to suppose that
some part of the world is different, and then to work out what else about the world would have to
change as a result.
In general, there will be many ways of doing this, depending upon which parts of the world we

hold fixed and which we allow to vary. Suppose you stand on the top of a building with no safety
net below. In this context, consider the following dialogue:

Me: We’re high enough that, if you were to jump, you would die.
You: I don’t have a death wish! If I were to jump, there would be a safety net, and I wouldn’t die.

Neither of us appear to have said anything false, but I uttered a counterfactual of the form 𝐽 > 𝐷,
and you uttered a counterfactual of the form 𝐽 > ¬𝐷. Assuming a principle of conditional non-
contradiction, these cannot both be true at once.1 (The principle I have in mind is this: so long as
𝑃 is possible, ¬[(𝑃 > 𝑄) ∧ (𝑃 > ¬𝑄)]. I’ll take this principle for granted throughout.)
The standard resolution is to acknowledge context-sensitivity in counterfactuals.2 My claim

held fixed the lack of a safety net, whereas yours held fixed your lack of a death wish. Because
we held different things fixed, we made different claims. You said something about the neces-
sary causal precursors of your jumping, holding fixed your lack of a death wish. Whereas I said
something about the inevitable causal consequences of your jumping, holding fixed the lack of a
safety net.
My focus here is on this second kind of counterfactual, which I will call a causal counterfactual.

In general, causal counterfactuals hold fixed factors which are not causally influenced by the
antecedent.3 (Throughout, then, ‘counterfactual’ always means ‘causal counterfactual’, and ‘>’
always stands for the causal counterfactual conditional.)

1 This example comes from Jackson (1977, p. 9). Jackson’s reaction to the case differs from my own; he suggests that you
have confused an indicative conditional for a counterfactual—and that, interpreted as a counterfactual, your claim is false.
2 Cf. Lewis (1979).
3 Theories of causal counterfactuals like these have been explored by Jackson (1977), Galles & Pearl (1998), Woodward
(2003), Kment (2006), Briggs (2012), Huber (2013), and Hiddleston (2005), among others.
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GALLOW 3

1.2 The puzzle

There is a puzzle about how causal counterfactuals interact with determinism. This puzzle
puts pressure on us to deny some intuitive counterfactual judgements. And denying these intu-
itive judgements leads to powerful objections to philosophical theories formulated in terms of
causal counterfactuals.
To appreciate this puzzle: say that laws are deterministic only if two metaphysically possible

worlds satisfying those laws differ iff they have different initial conditions.4,5 And, given some
laws, say that there is amiracle iff one of those laws is violated.6 Now, suppose the laws are deter-
ministic andunviolated, so that, actually, there are nomiracles. And suppose that you face a choice
between two options, which I’ll call ‘𝑎’ (for ‘actual’) and ‘𝑏’. Actually, you choose 𝑎. Then, the puz-
zle is that each of the following claims are plausible, but they are jointly inconsistent.7 (The fourth
claim is schematic; to endorse it is to endorse all of the claims you get by substituting any claims
for 𝑃,𝑄, 𝑅, and 𝑆.)

(B1) If you hadn’t chosen 𝑎, there would not have been a miracle.
(B2) If you hadn’t chosen 𝑎, the initial conditions would not have been changed.
(B3) For some true 𝑃, if you hadn’t chosen 𝑎, 𝑃 wouldn’t have been true.
(B4) If 𝑃 > 𝑄, 𝑃 > 𝑅, and 𝑄 ∧ 𝑅 metaphysically necessitates 𝑆, then 𝑃 > 𝑆.

Pick any true proposition, 𝑃. Since the laws are deterministic, there is no metaphysically possible
world at which the initial conditions are unchanged, there is no miracle, and 𝑃 is false. So, the
initial conditions being the same and there being no miracle metaphysically necessitates 𝑃. So
(B1), (B2), and (B4) tell us that, if you hadn’t chosen 𝑎, 𝑃 would have been true. 𝑃 was arbitrary,
so the same goes for any true proposition 𝑃. So, for any true 𝑃, if you hadn’t chosen 𝑎, 𝑃 would
have been true. And this contradicts (B3), given conditional non-contradiction.8
Standard semantics for counterfactual conditionals validate (B4). So they force a choice

between denying (B1), denying (B2), and denying (B3). This is a difficult choice to make. If (B3) is
false, then it is hard to understand the point of counterfactual thinking in a deterministic world.
For, if (B3) is false and the world is deterministic, then nothing counterfactually depends upon
your choice. Some incompatibilists may welcome this result, insisting that, in a deterministic
world, counterfactual thinking has no role to play in rational deliberation. If you’re determined to

4 A possible world satisfies some laws iff the laws are true at that world. Likewise, laws are violated at a possible world iff
the laws are false at that world.
5 The initial conditions of the world are just some brief temporal interval at the beginning of the universe (or, in light of
relativity: the past Cauchy development of a Cauchy surface near the beginning the universe).
6 Lange (2000), Braddon-Mitchell (2001), and Kment (2006) have responded to variants of this puzzle by allowing that
it is possible for the actual laws to remain laws at worlds where they are violated. (See Gibbs (2020) for criticism of this
approach.) As I’m using the term ‘miracle’, whether a miracle occurs at another possible world does not depend upon
whether the laws at the actual world are laws at that world. It only matters whether the actual laws are violated at that
world or not.
7 My presentation of the puzzle closely follows Dorr (2016).
8 I am taking conditional non-contradiction for granted, but not everyone to discuss this puzzle has done so. In particular,
in a letter to JonathanBennett, David Lewis proposed—but did not endorse—a semantics for counterfactualswhich allows
us to hold on to each of (B1), (B2), and (B3) by denying conditional non-contradiction along with the principle (B4). See
Lewis (2020).
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4 GALLOW

choose 𝑎, then there’s no point to deliberating about whether to choose 𝑏 instead. I disagree—
but even if I concede that we are not free to do otherwise in a deterministic world, and that
for this reason, counterfactuals have no role to play in rational deliberation in a deterministic
world, we should still be able to adequately explain why things happen as they do. Whether
these explanations are given freely is a separate question from whether the explanations are any
good. But since many good scientific explanations appeal to counterfactual facts about how some
things depend upon others,9 denying (B3) would undermine our ability to adequately explain in
a deterministic world.
At least when it comes to “standard” counterfactuals—which may or may not be causal coun-

terfactuals, as I’m using the term here—Dorr (2016) denies (B2). Not only does he deny (B2), he
affirms (C2):

(C2) If you hadn’t chosen 𝑎, the initial conditions would have been changed.

To accept (C2) and similar counterfactuals is to say that, in deterministic worlds, causal coun-
terfactuals regularly backtrack. As I’ll use the term here, a causal counterfactual backtracks iff
it says that, were things different at some time 𝑡, things would also have been different at some
time earlier than 𝑡. For instance, on its true reading, your counterfactual “If I were to jump, there
would be a safety net” backtracks. It says that, if you were to jump now, then there would have
been a safety net before you jumped, even though, in fact, there is no safety net. (It’s relatively
uncontroversial that this counterfactual backtracks. What’s more controversial is whether causal
counterfactuals backtrack.) Dorr says that standard counterfactuals backtrack all the way to the
initial conditions.10
Many think that (C2) follows from the negation of (B2). They accept the principle of conditional

excludedmiddle, cem, according to which there is no middle ground between 𝑃 > 𝑄 and 𝑃 > ¬𝑄
(for any 𝑃, 𝑄):11

CEM (𝑃 > 𝑄) ∨ (𝑃 > ¬𝑄)

However, not everyone accepts cem. This opens up the possibility of denying (B2) without accept-
ing (C2).Unfortunately, it doesn’t appear tome that this offers a satisfying resolution of our puzzle.
Those who think that there is a ‘middle ground’ between 𝑃 > 𝑄 and 𝑃 > ¬𝑄 typically think that
this middle ground is occupied by so-called “might” ‘counterfactuals’—propositions expressed by
sentences of the form ‘if it were the case that 𝑃, itmight have been the case that 𝑄’.12 And, on this
view, the negation of (B2) commits us to (D2), which doesn’t seem much better than (C2).

9 See, e.g., Woodward (2003) for the role of counterfactual thinking in causal explanation.
10 ForDorr’s distinction between “standard” and “non-standard” counterfactuals, see p. 245. Similar positions are defended
by Bennett (1984), Nute (1980, §5.3), Goggans (1992), Albert (2003), Kutach (2002), Loewer (2007), Wilson (2014), and
Goodman (2015), among others.
11 See, e.g., Stalnaker (1980) and DeRose (1999).
12 Defenders of cem say that these ‘might’ counterfactuals are just epistemic modals scoping over ordinary ‘would’ coun-
terfactuals. That is, the logical form of ‘if it were the case that 𝑃, it might have been the case that 𝑄’ is ◊𝑒(𝑃 > 𝑄), where
‘◊𝑒 ’ is an epistemic possibility operator.
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GALLOW 5

(D2) If you hadn’t chosen 𝑎, the initial conditions might have been changed.

If we accept (D2) and similar counterfactuals, we will say that ‘might’ counterfactuals regularly
backtrack. But these backtracking ‘might’ counterfactuals seem false for the same reason that the
backtracking ‘would’ counterfactuals seem false: it seems thatwe do not have any causal influence
over the initial conditions. And so it seems that, had you not chosen 𝑎, the initial conditions
would not have been any different; it’s not the case that they might have been changed, had you
chosen differently.
Lewis (1979) denies (B1).13 Not only does he deny (B1), he accepts (C1):

(C1) If you hadn’t chosen 𝑎, there would have been a miracle.

To accept (C1) is to say that your choosing differently would have been a miraculous, inexplicable
event. It is to say that, had you chosen to not read this paper, that choice would have had profound
implications for our best theories of fundamental physics. (Lewis also says that causal counter-
factuals generally backtrack, though he thinks the backtracking is limited to the very recent past;
Lewisian counterfactuals don’t backtrack all the way to the initial conditions.)
Again, if we reject cem, we could reject (B1) without accepting (C1). However, if we think that

the ‘middle ground’ between 𝑃 > 𝑄 and 𝑃 > ¬𝑄 is occupied by a ‘might’-counterfactual, then we
will still end up accepting (D1), which doesn’t seem much better than (C1):

(D1) If you hadn’t chosen 𝑎, there might have been a miracle.

Amiraculous ‘might’ counterfactual like (D1) appears false for the same reasons that amiraculous
‘would’ counterfactual like (C1) appears false: whether you choose 𝑎 or not doesn’t appear to have
any causal influence over whether the laws of nature are violated. Just as it seems incorrect to say
that our best fundamental physical theories would have been false, had you chosen differently, it
also seems incorrect to say that theymight have been false, had you chosen differently.
So long as we adhere to the principle (B4), we are forced to deny one of (B1), (B2), and (B3). This

is puzzling in part because each of (B1), (B2), and (B3) appears true when they are given a causal
reading. So there’s a puzzle for the semantics of English language counterfactuals. But there are
additional puzzles for those of us who want to use causal counterfactuals in our philosophical
theorising—whether or not we tether those counterfactuals to their English language counter-
parts. For instance, many of us appeal to something like causal counterfactual conditionals in our
theorising about rational choice.Wemay not be bothered if these theoretical tools end up differing
from the English conditionals which inspired them. But whatever we say about the connection
between the English language and the causal counterfactuals used in philosophical theorising, so
long as our theoretical tools satisfy (B4), we will have to deny one of (B1), (B2), and (B3) when
the claims are understood in our favoured theoretical sense. And doing so will carry theoretical
costs, quite apart from the counterintuitiveness of denying one the English sentences (B1), (B2), or
(B3).

13 Similar positions are defended by Jackson (1977), Halpin (1991), Lange (2000), Beebee (2003), and Kment (2006),
among others.
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6 GALLOW

1.3 Causal decision theory

Take, for instance, causal decision theory (CDT). Many formulations of CDT utilise causal coun-
terfactual conditionals.14 Just for illustrative purposes, take the version of CDT from Gibbard &
Harper (1978) and Stalnaker (1981). According to this theory, you should choose whichever act
would bring about the best outcome, in expectation. That is, if  is the collection of potential out-
comes, Pr your probability function, and (𝑜) the desirability of the outcome 𝑜, then you should
choose whichever option 𝑥 maximises (𝑥), where

 (𝑥)
def
=

∑

𝑜∈

Pr(𝑥 > 𝑜) ⋅(𝑜)

In the discussion below, I’ll appeal to a helpful fact about utility. To appreciate this fact, first define
 (𝑥 ∣ 𝑦) to be the utility that 𝑥 has, conditional on you choosing 𝑦:

 (𝑥 ∣ 𝑦)
def
=

∑

𝑜∈

Pr(𝑥 > 𝑜 ∣ 𝑦) ⋅(𝑜)

Here’s the fact: in a choice between two options, 𝑎 and 𝑏, if both  (𝑏 ∣ 𝑎) >  (𝑎 ∣ 𝑎) and  (𝑏 ∣
𝑏) >  (𝑎 ∣ 𝑏)—that is: if the utility of 𝑏 exceeds the utility of 𝑎, conditional on both 𝑎 and 𝑏—
then the unconditional utility of 𝑏 will exceed the unconditional utility of 𝑎, and so CDT will say
that 𝑏 is rational and 𝑎 is irrational.15
Now, consider the following two decisions, adapted from Ahmed (2013, 2014a, 2014b):16

Betting on a miracle You are certain that the laws are deterministic, and that there are not and
will never be any miracles. You are given a choice between two bets. Bet
𝑎 pays out $10 if there’s no miracle and $0 if there is. Bet 𝑏 pays out $1 if
there’s no miracle and $11 if there is.

There’s no miracle There’s a miracle
Bet 𝑎 $10 $0
Bet 𝑏 $1 $11

Betting on the past You are certain that the laws are deterministic and that the initial condi-
tions were 𝑐. You are given a choice between two bets. Bet 𝑎 pays out $10 if
the initial conditions were 𝑐 and $0 otherwise. Bet 𝑏 pays out $1 if the initial
conditions were 𝑐 and $11 otherwise.

14 In addition to Gibbard & Harper (1978) and Stalnaker (1981), Lewis (1980) defines his causal dependency hypotheses
in terms of counterfactual independence, and the imaging functions from Sobel (1994) and Joyce (1999) are explicated in
terms of counterfactual conditionals.
15 To see this, first note that  (𝑥) =

∑
𝑜 Pr(𝑥 > 𝑜) ⋅(𝑜) =

∑
𝑜

∑
𝑦 (𝑜) Pr(𝑥 > 𝑜 ∣ 𝑦) ⋅ Pr(𝑦) =

∑
𝑦 Pr(𝑦) ⋅

∑
𝑜 Pr(𝑥 > 𝑜 ∣

𝑦) ⋅(𝑜) =
∑

𝑦 Pr(𝑦) ⋅ (𝑥 ∣ 𝑦). Therefore, unconditional utility (𝑥) is a linear average of conditional utilities (𝑥 ∣ 𝑦),
with weights given by your probability that you’ll select the options 𝑦. So if the conditional utility for 𝑏 is greater than the
conditional utility for 𝑎, given every option, then the unconditional utility for 𝑏 will exceed the unconditional utility for
𝑎, no matter what your option probabilities are.
16 For additional discussion of decisions like these, see Solomon (2021) and Elga (2022).
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GALLOW 7

Initial conditions are 𝒄 Initial conditions are not 𝒄
Bet 𝑎 $10 $0
Bet 𝑏 $1 $11

It seems that, in both decisions, it is rational for you to take bet 𝑎 and irrational for you to take
bet 𝑏. But, if we deny (B1), (B2), or (B3), then CDT will disagree. (By the way, in the following,
I will assume cem, so that denying (B1) commits us to (C1), and denying (B2) commits us to
(C2). I make this assumption in the interests of simplicity; similar troubles await even if we deny
cem.)
Suppose first that we deny (B1) and accept (C1). Then, CDT will give apparently bad advice

in Betting on a miracle. There are two cases to consider. Either you take 𝑎 or you take 𝑏. If
you take 𝑎, then you’re certain that, if you were to take 𝑎, there wouldn’t be any miracle, and
you’d get $10.17 And, if you were to take 𝑏, there would be a miracle, and you would win $11.
So Pr(𝑎 > $10 ∣ 𝑎) = Pr(𝑏 > $11 ∣ 𝑎) = 100%. And so (𝑎 ∣ 𝑎) = ($10) and (𝑏 ∣ 𝑎) = ($11).
Since $11 is more desirable than $10,  (𝑏 ∣ 𝑎) >  (𝑎 ∣ 𝑎). On the other hand, suppose you take
𝑏. Then, were you to take 𝑏, there wouldn’t be a miracle and you’d win $1. And, were you to take
𝑎, there would be a miracle, and you’d win $0. So Pr(𝑏 > $1 ∣ 𝑏) = Pr(𝑎 > $0 ∣ 𝑏) = 100%. And so
 (𝑎 ∣ 𝑏) = ($0) and (𝑏 ∣ 𝑏) = ($1). Since $1 is more desirable than $0, (𝑏 ∣ 𝑏) >  (𝑎 ∣ 𝑏).
So 𝑏 has a higher utility than 𝑎, whether you take 𝑎 or 𝑏. So CDT will say that 𝑏 is rational and 𝑎
is irrational. This looks like the wrong verdict.
Suppose on the other hand we deny (B2) and accept (C2). Then, CDT will give apparently bad

advice in Betting on the past. Suppose you take 𝑎. Then, you’ll expect to get $10 from bet 𝑎, and
you’ll expect that, were you to take 𝑏, you’d get $11 (since, were you to take 𝑏, the initial conditions
would be different). So we’ll again have that Pr(𝑎 > $10 ∣ 𝑎) = Pr(𝑏 > $11 ∣ 𝑎) = 100%. So  (𝑎 ∣
𝑎) = ($10) and  (𝑏 ∣ 𝑎) = ($11). Suppose on the other hand you take 𝑏. Then, you’ll expect
to get $1 from 𝑏, and you’ll expect that, were you to take 𝑎, you’d get $0 (since, were you to take
𝑎, the initial conditions would be different). So again: Pr(𝑎 > $0 ∣ 𝑏) = Pr(𝑏 > $1 ∣ 𝑏) = 100%, so
 (𝑎 ∣ 𝑏) = ($0) and (𝑏 ∣ 𝑏) = ($1). So 𝑏 will have a higher utility than 𝑎, whether you take
𝑎 or 𝑏. So CDT will say that 𝑏 is rational and 𝑎 is irrational.
Denying (B3) only makes matters worse. If we deny (B3), then every choice will always have

exactly the same utility, and no option will ever be deemed irrational.
Some have responded to cases like these by proposing modifications to CDT.18 Others have

suggested that Betting on a miracle and Betting on the past are not genuine decisions,19 or
that the kinds of situations in which you could plausibly face these decisions are so outré that our
judgements about rational choice in those decisions are not trustworthy.20 Frommyperspective, it

17 Here, I assume that, if you actually choose 𝑥, then were you to choose 𝑥, there wouldn’t be a miracle. We could instead
say that there are counterfactual miracles even when they aren’t needed to make the antecedent true. But saying this only
makes matters worse for CDT, in the sense that it will only lower the utility of bet 𝑎.
18 See, for instance, Williamson & Sandgren (forthcoming), Sandgren &Williamson (2021), and Kment (ms).
19 See Joyce (2016).
20 See, for instance, Dorr (2016, §7)’s discussion of decisions like Betting on the past. It is also important to bear in mind
the observation from footnote 37 of Dorr (2016): given some ways of presenting the proposition that the initial conditions
are 𝑐 (e.g., “the initial conditions are what they actually are”), there is no possibility in which bet 𝑎 fails to pay out $10, and
no possibility in which bet 𝑏 pays out more than $1. If the bet is presented in these ways, then taking bet 𝑎 will causally
dominate taking bet 𝑏. I am assuming that it is possible for you to be very confident that the initial conditions are 𝑐 even
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8 GALLOW

would be better to reject the causal counterfactualswhich leadCDT into trouble in these decisions.
If we say that both miracles and the past are counterfactually independent of your choice, then
CDT will advise you to take bet 𝑎 in both decisions.

∗∗∗

Each of (B1), (B2), and (B3) are very natural. Given that we are careful to understand them as
causal counterfactuals, their negations appear false. If we must deny one of (B1), (B2), and (B3),
then there are serious challenges to causal decision theory. Since I am inclined to accept a broadly
causalist theory of rational choice, I would prefer a semantics for causal counterfactuals which
denies (B4). I provide a semantics like this in Gallow (2016). In §§2 and 3 below, I will introduce
and motivate this semantics. Then, in §4, I will show that the semantics allows us to accept (B1)
and (B2)—it will obviously satisfy (B3). Finally, in §5, I will explain why the semantics violates
the schematic principle (B4), and discuss what the theory has to say about counterfactuals like
“If you hadn’t chosen 𝑎, then it would have been the case that either there was a miracle or the
initial conditions were different”.

2 CAUSAL INFLUENCE AND CAUSAL COUNTERFACTUALS

In my view, causal counterfactuals presuppose a system of causal influence. After all, what
makes a counterfactual causal is that it holds fixed factors which are not causally influenced
by the antecedent. It only allows to swing free those factors which are causally downstream of
the antecedent. So, before we evaluate a causal counterfactual, we must understand how the
antecedent fits into the world’s causal structure: what influences it, and what it influences.
The reason I will accept the counterfactual (B1) is that I will deny that there is any causal influ-

ence running from whether you choose 𝑎 to whether there is a miracle. Likewise, I will accept
(B2) because I will deny that there is any causal influence running from whether you choose 𝑎 to
whether the initial conditions are different.

2.1 Causal influence

Causal influence is a relation which holds between variables. Variables are the contrastive gener-
alisation of events. For illustration, let us begin with the Lewisian view that events are properties
of spacetime regions, or spacetime regions taken in intension. That is, a Lewisian event, 𝑒, is a
class of possible spacetime regions. Spacetime regions belonging to the class are regions in which
the event occurs; those not belonging to the class are regions in which it does not occur.21 Corre-
sponding to this class is a function from spacetime regions at possible worlds to {1, ∗}, where ‘∗’ is
some arbitrary entity. If this functionmaps a region, 𝑅, to 1, then 𝑅 is a region in which 𝑒 occurs. If
it maps 𝑅 to ∗, then 𝑅 is not a region in which 𝑒 occurs. (The choice of both ‘1’ and ‘∗’ is arbitrary.
Any other choice would do just as well. What’s important is how we divide up the possible space-
time regions—which we include and which we exclude—and not how we designate the included
and the excluded.) Now, a variable, 𝑉, is a contrastive property of a spacetime region. Taking the

under a “non-cheesy” guise, one which would pick out a false proposition in nearby possible worlds where the initial
conditions are different.
21 See Lewis (1986a)
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GALLOW 9

Lewisian view as our point of departure, we may say that a variable is a class of classes of possi-
ble spacetime regions. Spacetime regions belonging to one of the classes are regions in which the
variable takes on a value; those not belonging to any of the classes are regions in which it does not
take on a value. Spacetime regions which belong to the same class are alike with respect to the
variable property 𝑉. Corresponding to this class of classes is a function from possible spacetime
regions toℝ ∪ {∗}. If this function maps a region, 𝑅, to a real number 𝑣, then the variable takes on
a value in the region 𝑅, and that value is 𝑣. If the function maps 𝑅 to ∗, then the variable does not
take on a value in the region 𝑅. (Our choice of real numbers fromℝ is arbitrary. What’s important
is how we divide up the possible spacetime regions, and not how we designate the cells of the
division.)
Whereas events correspond to English expressions like “my throwing the ball”, “the dinner”,

and “the game’s end”, variables correspond to expressions like “whether I throw the ball”, “how
much I eat at dinner”, and “when the game ends”. When variables causally influence each other,
this is naturally expressed in English with the verbs “affects” and “influences”. For instance:
“whether I throw the ball affects when the game ends”, and “howmuch I eat at dinner influences
whether I throw the ball”.
When we build a mathematical model of a system of causal influence, we will introduce

names for variables and specify their possible values. Just as we distinguish numbers from
numerals, so too should we distinguish the causal relata—variables—from their mathematical
representation—variable names. The variablewhether I throw the ball is a class of classes of space-
time regions. But we can denote this variable with a label—for instance, ‘𝐵’. ‘𝐵’ is a variable name.
We could say that the possible values for the variable name ‘𝐵’ are 0 and 1, with 𝐵 = 0 corre-
sponding to me not throwing the ball and 𝐵 = 1 corresponding to me throwing the ball. Within
the mathematical model, ‘𝐵 =∗’ will not be a well-formed expression. That’s because the math-
ematical model will presuppose that all of the variables of interest take on some value or other.
A signature,  , gives us a name for every variable and specifies what its possible values are. It
additionally tells us which variables are exogenous and which are endogenous (a distinction I
will introduce below). Formally, a signature  is a triple ( , ,), where  is a set of exoge-
nous variable names,  a set of endogenous variable names, and is a function from the variable
names in  ∪  to their potential values. (From here on out, I won’t bother explicitly distin-
guishing variables from variable names. When I am talking about the labels in a mathematical
model, I mean ‘variable name’; when I am talking about the causal relata out in the world, I mean
‘variable’.)
Relations of causal influence can be represented with a system of structural equations. For

instance, suppose that you offer me a bet on whether a flipped coin will land heads. If I bet and
the coin lands heads, then I get $1. If I bet and the coin lands tails, then I lose $1. If I don’t bet,
then I get nothing. Let ‘𝐵’ represent the variable whether I bet. Say that 𝐵 takes on the value 1 if I
take the bet and it takes on the value 0 if I reject the bet. Likewise, let ‘𝐻’ represent the variable
whether the coin lands heads. It is 1 if the coin lands heads and −1 if it lands tails. And let ‘𝑊’
name the variable howmuch I win. It is 1 if I win $1, −1 if I lose $1, and 0 if I neither win nor lose.
Then, the following system of structural equations says that howmuch I win is causally influenced
both by whether I bet and by whether the coin lands heads.

𝑊 ∶= 𝐵 ⋅ 𝐻

This system of equations doesn’t just tell me that𝑊 is causally influenced by 𝐵 and𝐻. It addition-
ally tells me how 𝐵 and𝐻 causally influence𝑊. If 𝐵 = 0, then 𝐵 causally determines that𝑊 = 0.
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10 GALLOW

If 𝐵 = 1 and𝐻 = 1, then 𝐵 and𝐻 causally determine that𝑊 = 1. And if 𝐵 = 1 and𝐻 = −1, then
𝐵 and𝐻 causally determine that𝑊 = −1.
A structural equation is asymmetric. 𝐵 and 𝐻 causally influence𝑊, but𝑊 does not causally

influence either𝐵 or𝐻. Given the system of equations𝑊 ∶= 𝐵 ⋅ 𝐻, wemay produce the following
directed graph to illustrate the pathways along which the variables causally influence each other.

I said that 𝑊 ∶= 𝐵 ⋅ 𝐻 is a system of structural equations. It is a system with a single equa-
tion. We should distinguish the system of structural equations 𝑊 ∶= 𝐵 ⋅ 𝐻 from the structural
equation𝑊 ∶= 𝐵 ⋅ 𝐻. The latter could appear in the following system of structural equations:

Whereas the system of structural equations 𝑊 ∶= 𝐵 ⋅ 𝐻 tells us that 𝐵 and 𝐻 are causally
independent—neither causally influences the other—the structural equation 𝑊 ∶= 𝐵 ⋅ 𝐻 does
not. It is consistent with 𝐵 causally influencing 𝐻, 𝐻 causally influencing 𝐵, or neither causally
influencing the other. A system of equations effectively includes a that’s all clause, telling us that
the relations of causal influence the system describes are the only relations of causal influence
which obtain between the variables it includes.22
In a system of structural equations, the variables which appear on the left-hand-side of an equa-

tion are called endogenous, and the ones which do not are called exogenous. Whether a variable
is endogenous or exogenous is a property of which model we are looking at, and not the variable
itself. I’ll denote the set of exogenous variables in a model with ‘ ’, and the set of endogenous
variables in the model with ‘ ’. I’ll take for granted that no variable lies causally downstream of
itself. If that’s so, then the determinism of the equations implies that, once we know which val-
ues the exogenous variables take on, we know which values every variable in the model takes on.
So a model of a system of causal influence need only tell us which values each of the exogenous
variables take on.We can specifywhich values the exogenous variables take onwith an assignment
of values to the exogenous variables in .
In general, given a set of variables 𝐕, an assignment of values, 𝐯, to the variables in 𝐕 is a—

perhaps partial—function from the variables 𝑉 ∈ 𝐕 to the values in (𝑉). Since the function 𝐯
need not be total, it need not assign a value to every variable in𝐕. If 𝐯 is an assignment of values to
𝐕, then I’ll write ‘𝐕 = 𝐯’ for the claim that, for every𝑉 ∈ 𝐕 in the domain of 𝐯,𝑉 = 𝐯(𝑉). That is,
‘𝐕 = 𝐯’ says that, for each variable 𝑉 ∈ 𝐕 to which 𝐯 assigns a value, 𝑉 takes on the value which

22 In some applications, we may want to impose a stronger requirement on a system of structural equations: that the
variables are closed under common causal influence. That is: for all variables 𝑋,𝑌, 𝑍: if 𝑋 and 𝑌 are in the system and
𝑍 causally influences both 𝑋 and 𝑌, then 𝑍 is also included in the system. (This closure condition is often called causal
sufficiency—see Spirtes et al. (2000) and Hausman & Woodward (1999), for instance.) Common causes could make a
difference to the evaluation of backtracking counterfactuals, but they won’t make any difference to the evaluation of
causal counterfactuals. So I won’t be assuming causal sufficiency here.
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GALLOW 11

𝐯 assigns it. I’ll call a total assignment of values to the exogenous variables in  an exogenous
assignment.
What I will here call a causal model, , is a triple containing a signature,  , a system of

structural equations,  , and an exogenous assignment, 𝐮. Or, equivalently, a causal model is a
5-tuple of a set of exogenous variables, a set of endogenous variables, a specification of the vari-
ables’ potential values, a system of structural equations, and an exogenous assignment,  =
( , ,,  , 𝐮).
A causal model represents a system of causal influence. Ideally, we would want to be able to

model non-deterministic systems of causal influence. Thiswould requiremore complicated causal
models, but it would not affect anything I have to say here about the causal influence between
your choice, the laws, and the distant past. So I’ll stick to the deterministic case in the interests
of simplicity. In the deterministic case, causal influence between variables goes along with causal
determination between variable values. Thus, according to the structural equation𝑌 ∶= 𝜙(𝑋), the
variable 𝑋 causally influences the variable 𝑌, and a variable value 𝑋 = 𝑥 causally determines the
variable value 𝑌 = 𝜙(𝑥).

2.2 Causal counterfactuals

Because a causal model contains an exogenous assignment and a system of structural equations,
it tells us which value every variable in the model takes on. If the variable 𝑉 takes on the value 𝑣
in the model, then we may write ‘ ⊧ 𝑉 = 𝑣’, and say that validates the formula ‘𝑉 = 𝑣’.
This definition of validation may be extended to Boolean combinations of variable values in the
usual way.
Because causal models explicitly represent systems of causal influence, we can additionally say

whether a model validates a causal counterfactual conditional. Suppose we have an antecedent
variable, 𝐴, and a consequent variable 𝐶. And we wish to know whether, were 𝐴 to take on the
value 𝑎, 𝐶 would take on the value 𝑐, 𝐴 = 𝑎 > 𝐶 = 𝑐. In a causal counterfactual, we hold fixed
factors which are not causally downstream of the antecedent, and we allow to swing free factors
which are causally downstream of the antecedent. Within a causal model, we can achieve this
by removing 𝐴’s structural equation, effectively severing any causal influence between 𝐴 and its
causal parents and ‘exogenising’ the variable 𝐴. Then, we may solve for the values of the other
variables in the model as before. If it turns out that 𝐶 = 𝑐 in this minimally altered model, then
the counterfactual 𝐴 = 𝑎 > 𝐶 = 𝑐 was validated by the original model.
More carefully, given a causal model = ( , ,,  , 𝐮), let us define the minimally altered

model in which𝐴 takes on the value 𝑎,[𝐴 → 𝑎], as follows. If𝐴 = 𝑎, then[𝐴 → 𝑎] is just
itself.23 If 𝐴 ≠ 𝑎 and 𝐴 is exogenous, then[𝐴 → 𝑎] is just, with the exogenous assignment
𝐮 altered to assign the value 𝑎 to 𝐴. The most interesting case is when 𝐴 ≠ 𝑎 and 𝐴 is endoge-
nous (though this case won’t actually be relevant to our discussion here). If 𝐴 is endogenous and
𝐴 ≠ 𝑎, then[𝐴 → 𝑎] is the model you get by moving 𝐴 from the endogenous to the exogenous
variable set, removing 𝐴’s structural equation (the one with 𝐴 on the left-hand-side) from the
system of equations, and adding 𝐴 = 𝑎 to the exogenous assignment. Iff the minimally altered
model [𝐴 → 𝑎] validates ‘𝐶 = 𝑐’, the original model  validates the causal counterfactual

23Without this clause, causal counterfactuals will not satisfymodus ponens. See Briggs (2012).
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12 GALLOW

‘𝐴 = 𝑎 > 𝐶 = 𝑐’.

(>)  ⊧ 𝐴 = 𝑎 > 𝐶 = 𝑐 ⟺ [𝐴 → 𝑎] ⊧ 𝐶 = 𝑐

For illustration, consider the following causal model, which we can call ‘coin’:

This model contains the exogenous variable set = {𝐵,𝐻}, and the endogenous variable set  =
{𝑊}. The range of 𝐵,(𝐵), is {1, 0}. The range of𝐻,(𝐻) = {1, −1}. And the range of𝑊,(𝑊) =
{−1, 0, 1}. It contains the system of structural equations  = {𝑊 ∶= 𝐵 ⋅ 𝐻}. And the exogenous
assignmentmaps 𝐵 to 0 and𝐻 to 1. Incoin, the causal counterfactual ‘𝐵 = 1 > 𝑊 = 1’ (‘had you
taken the bet, you would have won’) is true. For consider theminimally alteredmodelcoin[𝐵 →
1]:

In this model, the consequent ‘𝑊 = 1’ is true. The reason this counterfactual comes out true is
that there is no causal influence from 𝐵 to 𝐻. So, when we consider what would have happened,
had you taken the bet, we hold fixed the actual value of𝐻.
Or considermiracle, whichmodels the decision you face inBetting on amiracle. Thismodel

contains the variable 𝐴, for which bet you choose. If you choose bet 𝑎, then 𝐴 = 1. If you choose
bet 𝑏, then𝐴 = 0. It also contains a variable,𝑀, for whether there is amiracle. If there is amiracle,
then𝑀 = 1; and if there is not, then𝑀 = 0. Finally, there is a variable,𝑊, for how much money
you win.𝑊 can take on any value in {0, 1, 10, 11}, and its value is equal to the number of dollars
you win. Suppose you actually take bet 𝑎, and there is no miracle.

(In this structural equation, ‘𝑋’ is the function 1 − 𝑋.) In miracle, the causal counterfactual
𝐴 = 0 > 𝑀 = 0 (‘had you not chosen 𝑎, there would not have been a miracle’) is true. For, in
the minimally altered modelmiracle[𝐴 → 0], the value of𝑀 remains 0. The reason the counter-
factual comes out true inmiracle is that there’s no causal influence between 𝐴 and𝑀. So, when
we consider what would have happened, had you not chosen 𝑎, we hold fixed whether there was
a miracle.
Finally, consider past, which models the decision you face in Betting on the Past. Like

𝑀miracle, this model contains the variables 𝐴 and 𝑊, with the same values and the same
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GALLOW 13

interpretations. It also contains the variable𝐶, for whether the initial conditions are 𝑐. If the initial
conditions are 𝑐, then 𝐶 = 1; and if they are not 𝑐, then 𝐶 = 0. Suppose you actually take the bet
𝑎, and the initial conditions are 𝑐.

Inpast, the counterfactual 𝐴 = 0 > 𝐶 = 1 (‘had you not chosen 𝑎, the initial conditions would
have been 𝑐’) is true. For, in the minimally altered modelpast[𝐴 → 0], the value of 𝐶 remains 1.
The reason the counterfactual comes out true inpast is that there’s no causal influence between
𝐴 and 𝐶. So, when we consider what would have happened, had you not chosen 𝑎, we hold fixed
the initial conditions.
It is one thing to write down these causal models and show that they validate the counter-

factuals (B1) and (B2). It is another thing to show that these are the correct models to be using
to evaluate the counterfactuals. Take any counterfactual you wish—‘had I not cut my toenails
on November 8th, 2016, Trump wouldn’t have won’, for instance. It’s completely trivial to write
down a causal model according to which this counterfactual is true. Just use the variable 𝐶, for
whether I cut my toenails, and 𝑇, for whether Trump wins, and include the structural equa-
tion 𝑇 ∶= 𝐶. Simply writing down this model isn’t enough to show that whether Trump won
counterfactually depends upon whether I cut my toenails. And likewise, writing down the mod-
els miracle and past above isn’t enough to show that the counterfactuals (B1) and (B2) are
true. We could after all just as easily have written down models according to which whether
you choose 𝑎 causally influences whether there’s a miracle or whether the initial conditions
are 𝑐.
(>) tells us what it is for a model to validate a causal counterfactual conditional. On its own,

that does not tell us what it is for a causal counterfactual conditional to be true or false. I will
take it for granted here that a causal counterfactual conditional is true if it is validated by a causal
model which adequately represents the relations of causal influence out in the world—or, for the
sake of brevity: the conditional is true if it is validated by a correct causal model. Likewise, the
counterfactual is false if its negation is validated by a correct causal model. (If there is no causal
model which validates either the counterfactual or its negation, then I say nothing about whether
the counterfactual is true or false.)

(>)
∃ ∶  is correct ∧[𝐴 → 𝑎] ⊧ 𝐶 = 𝑐 ⇒ 𝐴 = 𝑎 > 𝐶 = 𝑐
∃ ∶  is correct ∧[𝐴 → 𝑎] ⊧ 𝐶 ≠ 𝑐 ⇒ 𝐴 = 𝑎 ≯ 𝐶 = 𝑐

Then, if the models miracle and past are going to offer a satisfying resolution of the puz-
zle from §1.2, we must be told something general about when a causal model is correct. And
we must be given reason to think that the models miracle and past are correct. This is the
task I will take up in §§3 and 4 below. In §3, I will sketch a theory of causal influence—
a theory of when a causal model is correct. In §4, I will explain how this theory tells us
that, in the relevant decisions, miracle and past correctly describe the causal influence
your choices have over whether there’s a miracle and whether the initial conditions are 𝑐,
respectively.
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14 GALLOW

3 A THEORY OF CAUSAL INFLUENCE

Standard semantics for counterfactuals utilise a selection function on a space of possible worlds.
In this framework, each proposition is taken to be a set of possible worlds, a proposition is true at
a world iff the world is contained within the proposition, and one proposition,𝐴, entails another,
𝐵, iff𝐴 ⊆ 𝐵. A selection function, 𝑠, is a function from a proposition,𝐴, and a possible world,𝑤, to
a proposition, 𝑠(𝐴,𝑤). The standard semantics then say that𝐴 > 𝐶 is true at a world𝑤 iff 𝑠(𝐴,𝑤)
entails 𝐶.24

(>𝑠) 𝑤 ∈ 𝐴 > 𝐶 ⟺ 𝑠(𝐴,𝑤) ⊆ 𝐶

For causal counterfactuals, I reject (>𝑠). In its place, I accept (>). But I will nonetheless utilise the
framework of the standard semantics to say when a causal model correctly represents a system
of causal influence. That is: I will appeal to a space of possible worlds and a selection function to
explain what it takes for a causal model to be correct.
For illustration, consider two variables,𝑋 and𝑌, with two possible values, 1 and 0. Then, propo-

sitions like 𝑋 = 0 and 𝑌 = 1will correspond to sets of possible worlds—the set of possible worlds
in which those variables take on those values.25 Now, consider the structural equation 𝑌 ∶= 𝑋. I
will say that, if this structural equation is correct at 𝑤, then

𝑠(𝑋 = 0,𝑤) ⊆ 𝑌 = 0 and 𝑠(𝑋 = 1,𝑤) ⊆ 𝑌 = 1

Think of 𝑠(𝐴,𝑤) as a set of𝐴-worlds which are not too different from𝑤. Then, I will say that, at𝑤,
𝑋 causally influences 𝑌 in the way described by the equation 𝑌 ∶= 𝑋 only if (a) the set of 𝑋 = 0
worlds which are not too different from 𝑤 are all worlds at which 𝑌 = 0; and (b) the set of 𝑋 = 1
worlds which are not too different from 𝑤 are all worlds at which 𝑌 = 1. (When I say that the
worlds are “not too different”, I mean to appeal to your intuitive standards of similarity, applied
to the time of the antecedent. Of course, minor differences at one time can balloon into large
differences at a later time. This famously led to trouble for Lewis’s interpretation of 𝑠(𝐴,𝑤) as the
set of 𝐴-worlds not too different from 𝑤 tout court.26 Lewis attempted to deal with the problem
by introducing stipulative standards of similarity, but his attempts were not successful.27 From
my perspective, it is better to rely on our intuitive standards of similarity, but restrict the kinds of
similarities which matter. Differences at the time of the antecedent are relevant, but even large
differences at other times are not. There is more to be said here, but fortunately, not much will
hang upon the particulars of how we understand the selection function. Whenever the details
become relevant, I’ll explicitly discuss them.)
Below, Iwill say something slightlymore general about the relationship between a causalmodel

and a selection function. In §4, I will use this general theory of causal influence to explain why
the causal modelsmiracle andpast from §2 are correct. Because these models contain only a

24 See Stalnaker (1968) and Lewis (1973). My presentation here rejects Stalnaker’s uniqueness assumption, but accepts his
limit assumption.
25 I assume that, necessarily, a variable takes on a value in at most one spacetime region. Thus, for instance, 𝑋 = 0 ∩ 𝑋 =
1 = ∅.
26 See Lewis (1973), Bennett (1974), Fine (1975), Lewis (1979), and Bennett (2003, §75).
27 See, for instance, Elga (2001) and Wasserman (2006).

 19331592, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/phpr.12925 by A

ustralian C
atholic U

niversity L
ibrary - E

lectronic R
esources, W

iley O
nline L

ibrary on [22/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



GALLOW 15

single structural equation, I’ll focus on this special case here. A more general treatment can be
found in Gallow (2016).
Take a causal model containing the system of equations  = {𝑉 ∶= 𝜙(𝐏𝐀(𝑉))}. (By the way,

𝐏𝐀(𝑉) are 𝑉’s causal parents—the variables which appear on the right-hand-side of 𝑉’s struc-
tural equation—and ‘𝜙(𝐏𝐀(𝑉))’ is some function of all and only the variables in 𝐏𝐀(𝑉).) In order
for this causalmodel to be correct, all of the variables appearing in𝐏𝐀(𝑉) ∪ {𝑉}must bemereolog-
ically distinct; theymust not overlap. This distinctness requirement is an important component of
most theories of causation. For instance, take a counterfactual theory of causation, and consider
the events your playing cards and your playing poker. If you hadn’t played cards, you wouldn’t
have played poker. We should not conclude that your playing cards caused you to play poker.
The connection between these events is constitutive, not causal. For this reason, careful coun-
terfactual theories of causation stipulate that counterfactual dependence reveals causation only
when the two events are mereologically distinct.28 And for similar reasons, we should not allow a
causal model to include variables which overlap. The mereology of variables is another topic for
another occasion. But let me offer the following necessary (but insufficient) condition on all of
the variables in 𝐏𝐀(𝑉) ∪ {𝑉} being distinct: every assignment of values to these variables must be
metaphysically possible. That is: for every assignment of values to the variables in 𝐏𝐀(𝑉) ∪ {𝑉}, it
must be possible that those variables take on those values. This is the condition whichWoodward
(2015) calls independent fixability.29 (I’ll have a bit more to say about this requirement, and why
it’s important, below.)
In addition, if the systemof equations {𝑉 ∶= 𝜙(𝐏𝐀(𝑉))} is going to be correct, then the variables

in 𝐏𝐀(𝑉) should causally influence 𝑉 in the manner described by 𝜙. And I will say that this is so
iff, in all of the not too different possibilities inwhichwewiggle the values of the ‘parent’ variables,
𝐏𝐀(𝑉), the equality 𝑉 = 𝜙(𝐏𝐀(𝑉)) continues to hold. That is: if the system {𝑉 ∶= 𝜙(𝐏𝐀(𝑉))} is
correct at 𝑤, then the following must be true, for every assignment of values, 𝐩𝐚, to the variables
in 𝐏𝐀(𝑉):

𝑠(𝐏𝐀(𝑉) = 𝐩𝐚,𝑤) ⊆ 𝑉 = 𝜙(𝐏𝐀(𝑉))

That is: to check whether 𝑉 ∶= 𝜙(𝐏𝐀(𝑉)) is correct at 𝑤, you have to take every assignment of
values to 𝐏𝐀(𝑉) and consider every world not too different from 𝑤 in which that assignment is
realised. For each such world, youmust check that the value of𝑉 at that world equals the value to
which 𝜙maps the values of 𝐏𝐀(𝑉) at that world. This imposes a kind of stability requirement on
the systemof equations {𝑉 ∶= 𝜙(𝐏𝐀(𝑉))}. The equation𝑉 ∶= 𝜙(𝐏𝐀(𝑉))must not only be actually
true; itmust also be that it remains true, nomatter howwewiggle the values of the parent variables
in 𝐏𝐀(𝑉).
As I emphasised in §2 above, the system of equations {𝑉 ∶= 𝜙(𝐏𝐀(𝑉))} doesn’t just say that

each 𝑃 ∈ 𝐏𝐀(𝑉) causally influences 𝑉. It also says that none of the 𝑃 ∈ 𝐏𝐀(𝑉) are causally influ-
enced by any other variables in the model. Suppose that, for some ‘parent’ variable 𝑃 ∈ 𝐏𝐀(𝑉),
there is a set of variables, 𝐐, which includes at least one other variable from the model— i.e.,
𝐐 ∩ 𝐏𝐀(𝑉) ≠ ∅—such that the variables in𝐐 causally influence 𝑃. If that’s so, then the system of
equations {𝑉 ∶= 𝜙(𝐏𝐀(𝑉))} is not correct. For, if that’s so, then there is causal influence between
some of the variables in themodel, but themodel does not tellus about that causal influence. Some
collection of variables𝐐 causally influences 𝑃 if there’s some function 𝜓 such that, in all of the not

28 See the discussion in Lewis (1986a, 1986b).
29 For further discussion of the mereology of variables, see Hoffmann-Kolss (2021).
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16 GALLOW

too different possibilities in which we wiggle the values of 𝐐, the equation 𝑃 = 𝜓(𝐐) continues
to hold. So, if the system of equations {𝑉 ∶= 𝜙(𝐏𝐀(𝑉))} is going to be correct, then there cannot
be a set of variables 𝐐 and a function 𝜓 like that. (Of course, not just any function 𝜓 is enough to
reveal genuine causal influence. If 𝜓 is a constant function of 𝐐, this doesn’t reveal any influence
that𝐐 has on 𝑃. In general, I think we should require that 𝜓 be both a non-constant function and
a function of every variable 𝑄 ∈ 𝐐. For instance, the function 𝜓(𝑋) = 1 does not count, since it
is constant, and 𝜓(𝑋, 𝑌) = 𝑋 + (𝑌 − 𝑌) does not count, since it is not a function of 𝑌. Of course,
all the same remarks apply to the function 𝜙 in the system of equations {𝑉 ∶= 𝜙(𝐏𝐀(𝑉))}. It too
must be a non-constant function of all of the ‘parent’ variables in 𝐏𝐀(𝑉).)
Putting these three requirements together, we get:

Causal Influence The system of equations  = {𝑉 ∶= 𝜙(𝐏𝐀(𝑉))} is correct at a world 𝑤 iff
(E1) all of the variables in 𝐏𝐀(𝑉) ∪ {𝑉} are distinct;
(E2) for every assignment of values to 𝐏𝐀(𝑉), 𝐩𝐚,

𝑠(𝐏𝐀(𝑉) = 𝐩𝐚,𝑤) ⊆ 𝑉 = 𝜙(𝐏𝐀(𝑉))

and
(E3) for every 𝑃 ∈ 𝐏𝐀(𝑉), there is no set𝐐 containing variables from 𝐏𝐀(𝑉)

such that (a) all of the variables in 𝐐 ∪ {𝑃} are distinct, and (b) there’s
a non-constant function 𝜓 of the variables in 𝐐 such that, for every
assignment of values to 𝐐, 𝐪,

𝑠(𝐐 = 𝐪,𝑤) ⊆ 𝑃 = 𝜓(𝐐)

Condition (E1) tells us that there are no (metaphysically) necessary connections between the
variables’ values. Condition (E2) tells us that the variables in𝐏𝐀(𝑉) all causally influence𝑉 in the
way described by the function 𝜙. And condition (E3) tells us that none of the variables in 𝐏𝐀(𝑉)
causally influence each other.
We can illustrate Causal Influence by showing how it can be used to vindicate the causal

modelcoin in the decision described in §2 above.

Causal Influence tells us that, in order forcoin to be correct, the variables𝐵,𝐻, and𝑊must not
overlap—in particular, they must be independently fixable. Wemust be careful here. In particular,
wemust understand the variable𝑊 in such away that youwinning $1 (𝑊 = 1) does not entail that
you took the bet. That is: we must understand the variable𝑊 in such a way that you could win $1
without winning $1 off of this very bet. In that case, every assignment of values to the variables will
be metaphysically possible. And, moreover, the variables in {𝐵,𝐻,𝑊} will all be mereologically
distinct. So condition (E1) is satisfied.
Condition (E2) says that, in every not too different possibility in which one of the assignments

of values to {𝐵,𝐻} is realised, the value of𝑊 must be equal to 𝐵 ⋅ 𝐻. Because there are 8 possible
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GALLOW 17

assignments of values to {𝐵,𝐻}, this imposes 8 different constraints. Assuming that, for any 𝐴,
𝑠(𝐴,𝑤) ⊆ 𝐴, condition (E2) requires each of the following:

𝑠(𝐵 = 0,𝑤) ⊆ 𝑊 = 0 𝑠(𝐵 = 1,𝑤) ⊆ 𝑊 = 𝐻

𝑠(𝐻 = −1,𝑤) ⊆ 𝑊 = −𝐵 𝑠(𝐻 = 1,𝑤) ⊆ 𝑊 = 𝐵

𝑠(𝐵 = 0 ∧ 𝐻 = −1,𝑤) ⊆ 𝑊 = 0 𝑠(𝐵 = 0 ∧ 𝐻 = 1,𝑤) ⊆ 𝑊 = 0

𝑠(𝐵 = 1 ∧ 𝐻 = −1,𝑤) ⊆ 𝑊 = −1 𝑠(𝐵 = 1 ∧ 𝐻 = 1,𝑤) ⊆ 𝑊 = 1

(Here, 𝑤 is the world we are modelling; it is the world in which you refuse the bet and the coin
lands heads.) Assuming that the betting arrangement remains intact at anyworld not too different
from 𝑤 at which 𝐵 and𝐻 are assigned these values, each of these constraints should be satisfied.
For illustration, take the first two constraints. The first says: any possibility not too different from
𝑤 at which you refuse the bet must be one at which you neither win nor lose any money. This
constraint will be satisfied; for, if you refuse the bet, then it won’t matter how the coin lands,
you’ll neither gain or lose any money. The second says: any possibility not too different from 𝑤
at which you take the bet must be one at which the value of 𝑊 is equal to the value of 𝐻. This
constraint, too, will be satisfied. Either the coin will land tails, 𝐻 = −1, and you will lose $1, or
else the coin will land heads, 𝐻 = 1, and you will win $1. Either way, the value of𝑊 will equal
the value of𝐻.
Finally, condition (E3) requires that neither 𝐵 nor𝐻 causally influence the other. If we suppose

that 𝑠(𝐵 = 1,𝑤) contains both possibilities atwhich the coin lands heads and possibilities atwhich
the coin lands tails, then 𝐵 will not on its own causally influence 𝐻. For 𝑠(𝐵 = 1,𝑤) does entail
that 𝐻 is any function of 𝐵—the value of 𝐻 varies while the value of 𝐵 is held fixed. So 𝐻 is not
causally influenced by 𝐵. It is also natural to suppose that both 𝑠(𝐻 = 1,𝑤) and 𝑠(𝐻 = −1,𝑤)
contain only worlds at which you (still) refuse the bet. Making the coin land heads or tails does
not require us to change anything about your preceding decision. If so, then 𝐵 will not be causally
influenced by 𝐻. This doesn’t establish that 𝐵 doesn’t causally influence 𝐻 in concert with some
other variables, but no candidates spring to mind. There are of course variables which causally
influence whether the coin lands heads (the coin’s precise initial upward and angular velocities,
e.g.) but these variables causally influence whether the coin lands heads on their own—we do not
need the extra information of whether you took the bet or not. So I will take it for granted that
condition (E3) is satisfied, though I do not pretend to have conclusively demonstrated this.
So Causal Influence tells us that, in this decision,coin is correct. Then, (>) tells us that the

causal counterfactual “had you taken the bet, you would have won” (𝐵 = 1 > 𝑊 = 1) is true. This
is noteworthy for three reasons. Firstly, the counterfactual appears true. Secondly, counterfactuals
like these have important theoretical roles to play elsewhere. Suppose, for instance, that I talked
you out of taking the bet. Then, it seems that I prevented you from winning $1. If we accept a
counterfactual theory of causation, thenwe’ll want the causal counterfactual “had I not talked you
out of taking the bet, you would have won $1” to be true.30 Thirdly, holding fixed our assumptions
about the selection function, the semantics (>𝑠) will tell us that 𝐵 = 1 > 𝑊 = 1 is false. For we

30 The truth of a counterfactual like this isn’t in general needed for the corresponding claim about prevention to be true.
It could be, for instance, that, had I not talked you out of the bet, someone else would have. But if there’s no funny
business like that going on, then we should expect the truth of the prevention claim to go along with the truth of the
causal counterfactual claim.
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18 GALLOW

assumed that 𝑠(𝐵 = 1,𝑤) contains both worlds where the coin lands heads (and, therefore, you
win) and worlds where the coin lands tails (and, therefore, you lose). Then, 𝑠(𝐵 = 1,𝑤) ⊈ 𝑊 = 1,
so according to (>𝑠), 𝐵 = 1 ≯ 𝑊 = 1.31 Of course, we could always reject one of our assumptions
about the selection function. Standard ways of doing this require us to characterise the selection
function in terms of causal influence.32 If we were to then characterise causal influence in terms
of the selection function, our theory would be circular—not viciously circular, in my view, but
circular nonetheless.
A non-circular theory of causal counterfactuals would be preferable, other things being equal.

For a non-circular theory allows us to explain things which a circular theory does not. For
instance, it allows us to explain why the outcome of the coin flip is not causally influenced by
whether you take the bet. So I take it to be a benefit of the theory I’ve sketched here that—without
any assumptions about causal influence—it predicts that the causal counterfactual “had you taken
the bet, you would have won” is true. This prediction gives us some reason to accept the theory,
quite independent of the fact that it vindicates both (B1) and (B2).
With this theory of causal influence in place, let me return to the requirement of mereologi-

cal distinctness, (E1). It’s worth considering what would happen if we dropped this requirement.
Suppose you will win money iff a rolled die lands on 5, the die is rolled, it lands on 5, and you win.
Without (E1), we could model this situation with three variables: 𝐻, for whether the die lands
high, 𝑂, for whether the die lands odd, and𝑊, for whether you win. And we could use the struc-
tural equation𝑊 ∶= 𝐻 ∧ 𝑂. The variables 𝐻 and 𝑂 are not mereologically distinct, so condition
(E1) tells us that this system of equations is not correct.33 But the system of equations satisfies con-
dition (E2). Even if there’s some larger system of equations in which𝑊 ∶= 𝐻 ∧ 𝑂 is embedded, so
that either𝐻 is causally downstream of 𝑂 or 𝑂 is causally downstream of𝐻, so long as the model
is acyclic, wewill have to accept either ‘had the die not landed high, it still would have landed odd’
or ‘had the die not landed odd, it still would have landed high’. But both of these counterfactuals
appear false.
There are interesting questions about how—or whether—a semantics like (>) should be

extended to handle counterfactuals involving overlapping variables. Fortunately, we won’t have
to open that can of worms in order to show that the modelsmiracle andpast are correct in the
relevant decisions, since those models don’t involve overlapping variables. However, the ques-
tion of how to handle causal counterfactuals involving overlapping variables will be relevant to a
decision I’ll discuss in §5.

4 CAUSAL COUNTERFACTUALSWITHOUTMIRACLES OR
BACKTRACKING

In this section, I will explain how the theory adumbrated in §3 above can be used to show that
miracle andpast are correct in the relevant decisions. This will show that, in those decisions,
the causal counterfactuals ‘had you not chosen 𝑎, there wouldn’t have been a miracle’ (B1) and
‘had you not chosen 𝑎, the initial conditions would have been 𝑐’ (B2) are both true.

31 Sidney Morgenbesser raised this as an objection to (>𝑠). See Slote (1978).
32 See, for instance, the proposals in Bennett (2003, ch. 15), Edgington (2004), Schaffer (2004), and Kment (2006).
33 Incidentally, this example—taken from Hoffmann-Kolss (2021)—shows us why independent fixability is not sufficient
for mereological distinctness. But Lewis (1986a)’s theory of event mereology, naturally generalised to apply to variables,
will tell us that𝐻 and 𝑂 overlap.
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GALLOW 19

In order to get the result thatmiracle andpast are correct, I will have to make an additional
stipulation about the selection function I’m using in my theory of causal influence. I’ll explain
this additional stipulation in §4.1. Then, in §4.2, I will explain why themodelsmiracle andpast
are correct.

4.1 Strong centring

I’m going to take for granted that the selection function we’re using in the theory of causal influ-
ence from §3 satisfies some standard structural constraints like: 1) for all𝐴, 𝑠(𝐴,𝑤) ⊆ 𝐴; and 2) for
all 𝐴, 𝐵, if 𝐴 ⊆ 𝐵 then 𝑠(𝐵, 𝑤) ∩ 𝐴 ⊆ 𝑠(𝐴,𝑤). Importantly, however, I won’t impose the following
structural constraint, known as strong centring.

Strong Centring If 𝑤 ∈ 𝐴, then 𝑠(𝐴,𝑤) = {𝑤}.

Strong centring says that, if 𝐴 is already true at 𝑤, then 𝑤 itself is the only world not too different
from 𝑤 at which 𝐴 is true. In other words: if it’s possible for 𝐴 to be true without things being
any different than they are at 𝑤, then any difference from 𝑤 whatsoever is too different from 𝑤.
Given the standard semantics, strong centring corresponds to the principle of conjunction con-
ditionalisation (CC), which allows you to infer 𝐴 > 𝐶 from 𝐴 ∧ 𝐶.34 However, if we reject the
standard semantics, there needn’t be any relationship between strong centring and CC. Indeed,
CC follows from the causal-modelling semantics (>) which I provided in the previous section.35
So, if we accept (>), there need not be any connection between strong centring and CC.
To appreciate why I do not want to impose strong centring, consider the variables 𝐽 and 𝐷,

which representwhether Jesus of Nazareth is born andwhether the Defenestration of Prague occurs,
respectively. 𝐽 = 1 if Jesus is born, and 𝐽 = 0 if he is not born.𝐷 = 1 if theDefenestration of Prague
happens and 𝐷 = 0 if it does not. And consider the structural equation 𝐷 ∶= 𝐽. According to this
equation,

(F1) Jesus not being born causally determines the Defenestration to not happen,

𝑠(𝐽 = 0,𝑤) ⊆ 𝐷 = 0

and
(F2) Jesus being born causally determines the Defenestration to happen,

𝑠(𝐽 = 1,𝑤) ⊆ 𝐷 = 1

(I’m using ‘𝑤’ for the actual world.) It appears that (F1) is true. After all, had Jesus never existed,
neither would the Catholic Church have existed; and without the Catholic Church, there would
be no Protestant Reformation, nor the Bohemian religious disputes which precipitated the Defen-
estration of Prague. Any not too different possible world in which Jesus is not born is a world too
different for the Defenestration of Prague to occur. Now, if I were to impose strong centring, then
(F2), 𝑠(𝐽 = 1,𝑤) ⊆ 𝐷 = 1, would be automatic. For𝑤 itself is aworld atwhich Jesus is born. Strong

34 See Walters & Williams (2013) for an argument for conjunction conditionalisation.
35 Here, it is important that I defined[𝐴 → 𝑎] to be itself, if 𝐴 already takes on the value 𝑎 in. See Briggs (2012).
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20 GALLOW

centring would then tell us that 𝑠(𝐽 = 1,𝑤) = {𝑤}. And since𝑤 is also a world at which the Defen-
estration occurs, {𝑤} ⊆ 𝐷 = 1. But the structural equation 𝐷 ∶= 𝐽 appears false. Even if there is a
convoluted chain of causal influence connecting these two variables, the value of 𝐽 is not directly
causally sufficient for the value of 𝐷, in the way that structural equation 𝐷 ∶= 𝐽 requires.
While I want my selection function to validate (F1), I want it to falsify (F2). Then, since both

(F1) and (F2) are needed for the structural equation 𝐷 ∶= 𝐽 to be correct, my theory will say that
the equation is not correct. The way I will falsify (F2) is by using a selection function which is
not strongly centred. Jesus could easily have been born in a variety of different ways. I’ll want to
include each of these easy ways for Jesus to be born in the set 𝑠(𝐽 = 1,𝑤). So, while I’ll want 𝑤
to be a member of 𝑠(𝐽 = 1,𝑤), I won’t want it to be the only member. The world is chaotic, and
minor variations in the manner of Jesus’s birth make for larger differences in the course of his life
and the lives of those around him, which lead to even larger differences in the course of human
history hundreds of years down the line. Had Jesus been born with a birthmark or a cleft palate,
his childhood and psychological development could easily have been vastly different; he could
easily fail to become a religious leader, and even if he had become a religious leader, the recep-
tion of his teachings could easily have been vastly different. Minor differences snowball quickly
enough that many, many of these easy possibilities are ones in which the Christian religion is
never founded, or never adopted as a state religion by Constantine. Due to the extreme sensitivity
of genetics on initial conditions—minor variations in the time andmanner of copulationmake for
differences in which sperm fertilises which egg—a great many of them are possibilities in which
none of the people who actually lived in the sixteenth century ever even existed. Without either
a Catholic Church or a Martin Luther, these are possibilities in which the Bohemian religious
disputes which precipitated the Defenestration of Prague never happened. So, as I want to under-
stand the selection function, we won’t have 𝑠(𝐽 = 1,𝑤) ⊈ 𝐷 = 1, and (F2) will be false. So I’ll say
that the structural equation 𝐷 ∶= 𝐽 is not correct.
To be clear: this is a stipulation, not a substantive assumption about the semantics of English-

language counterfactuals. The selection function I’m using is just a function from worlds and
propositions to propositions. It is a theoretical gadget, introduced to play a certain role in my
theory of causal influence. We can specify how to understand a gadget like this by saying things
like ‘consider the possibilitieswhich are not-too-different from𝑤 at the time of the antecedent, and
at which𝐴 is true’, or ‘consider all the ways of locally wiggling the variable𝑉 so that it takes on the
value 𝑣 at the relevant time, as far as possible leaving everything else at that time unchanged, and
then time-evolving everything into the future/past according to the laws of nature—holding fixed
the universe’s low-entropy initial conditions’.36 And these specifications don’t rely upon English-
language counterfactuals. If we use this gadget to explain what it takes for a causal model to be
correct in the way I proposed in §3, then we have good reason to not impose strong centring.
For we should not want to say that all past historical events causally determine all events in the
far enough future. So we should distinguish 𝑋’s value causally determining 𝑌’s from 𝑌’s value
sensitively depending upon 𝑋’s. And drawing this distinction requires us to attend to more than a
single possibility in which 𝑋 takes on its actual value.
So I won’t impose strong centring. However, I still will impose weak centring, which says that,

if 𝑤 is a world at which 𝐴 is true, then 𝑤 is among the 𝐴-worlds which are not too different
from 𝑤. That is: if 𝑤 ∈ 𝐴, then 𝑤 ∈ 𝑠(𝐴,𝑤). Weak centring will play an important role in my
discussion below.

36 Cf. Kutach (2002), Albert (2003), Loewer (2007), Hall (2007), Maudlin (2007), and Paul & Hall (2013), among others.
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GALLOW 21

4.2 Betting on a miracle

Consider again the decision Betting on a miracle from §1.3. Recall: in this decision, you must
choose between two bets: 𝑎 and 𝑏. Bet 𝑎 pays out $10 if there’s not a miracle and nothing if there
is; bet 𝑏 pays out $11 if there’s a miracle and $1 if there’s not. At the actual world, 𝑤, you choose 𝑎
and there’s no miracle. In §2.2, I modelled this decision with the following system of equations.

According to Causal Influence, this system of equations is correct iff (E1) all of its variables are
distinct, (E2) in all of the not too different possibilities in which we wiggle the values of 𝐴 and
𝑀, the equation 𝑊 = 10 ⋅ 𝐴 ⋅ 𝑀 + 11 ⋅ 𝐴 ⋅ 𝑀 + 𝐴 ⋅ 𝑀 continues to hold, and (E3) neither 𝐴 nor
𝑀 causally influences each other.
(E1) is satisfied. To appreciate this, notice that every assignment of values to the variables in

{𝐴,𝑀,𝑊} is possible, so the variables are independently fixable.37 As with the model coin, we
must exercise some caution here. In particular, we must understand the variable𝑊 in such a way
that you could win $1, $10, or $11 without winning it off of this very bet. (Otherwise,𝑊 = 11 will
metaphysically necessitate that 𝐴 = 0.) However, if we understand𝑊 in this way, then condition
(E1) will be satisfied.
Condition (E2) will be satisfied so long as, in every not too different possibility in which one

of the assignments of values to {𝐴,𝑀} is realised, the value of 𝑊 continues to be 10 ⋅ 𝐴 ⋅ 𝑀 +
11 ⋅ 𝐴 ⋅ 𝑀 + 𝐴 ⋅ 𝑀. Because there are 8 assignments of values to {𝐴,𝑀}, this imposes 8 different
constraints:

𝑠(𝐴 = 0,𝑤) ⊆ 𝑊 = 11 ⋅ 𝑀 +𝑀 𝑠(𝐴 = 1,𝑤) ⊆ 𝑊 = 10 ⋅ 𝑀

𝑠(𝑀 = 0,𝑤) ⊆ 𝑊 = 10 ⋅ 𝐴 + 𝐴 𝑠(𝑀 = 1,𝑤) ⊆ 𝑊 = 11 ⋅ 𝐴

𝑠(𝐴 = 0 ∧𝑀 = 0,𝑤) ⊆ 𝑊 = 1 𝑠(𝐴 = 0 ∧𝑀 = 1,𝑤) ⊆ 𝑊 = 11

𝑠(𝐴 = 1 ∧𝑀 = 0,𝑤) ⊆ 𝑊 = 10 𝑠(𝐴 = 1 ∧𝑀 = 1,𝑤) ⊆ 𝑊 = 0

(Here, ‘𝑤’ is the world at which you choose 𝑎 and there’s no miracle.)
There are many choices to be made about the worlds returned by the selection function. For

instance, we could take the Lewisian route of saying that 𝑠(𝐴,𝑤) contains worlds with the same
past as 𝑤, in which a miracle occurs just before the time of the antecedent. Or we could instead
side with authors like Dorr and say that 𝑠(𝐴,𝑤) contains worlds in which there is no miracle,
and so the past is ever-so-slightly different at a microphysical level. Call the first understanding of
the selection function ‘miraculous’, and call the second a ‘backtracking’ understanding. For our
purposes, it won’t matter whether we adopt a backtracking or a miraculous understanding of the
selection function.

37 Independent fixability is not sufficient for the variables to be distinct, but these variables also satisfy any stronger criteria
we might reasonably want to impose.
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22 GALLOW

So long as our betting arrangement remains intact at the not too different worlds at which the
variables 𝐴 and 𝑀 are assigned these values, each of the eight constraints imposed by (E2) will
be satisfied. For illustration, just take the first constraint. Amongst the not too different worlds
where I take bet 𝑏, how much I win varies as a function of whether there’s a miracle. If we have
a miraculous understanding of the selection function, then all of the worlds in 𝑠(𝐴 = 0,𝑤) will
contain a miracle. If we have a backtracking understanding, then none of them will. But, either
way, the equality𝑊 = 11 ⋅ 𝑀 +𝑀 will hold. For, in the miraculous worlds, I’ll win $11; and in the
non-miraculous worlds, I’ll win $1.
When we consider the other 7 constraints, we should guard against a potential confusion.

On a miraculous understanding of the selection function, 𝑠(𝐴,𝑤) generally takes us to worlds
in which there’s been a miracle to bring about 𝐴. However, if our antecedent explicitly stipu-
lates that there is no miracle,𝑀 = 0, then the set of not too different worlds in which there’s no
miracle, 𝑠(𝑀 = 0,𝑤), must not include any miraculous worlds. If 𝑠(𝑀 = 0,𝑤) contains worlds
other than 𝑤 itself—as I argued it should in §4.1—then some of these worlds will be backtrack-
ing worlds at which the past is ever-so-slightly different. For, given that the laws are actually
deterministic, every non-actual world is either a miraculous world or a backtracking world. And
antecedents which explicitly stipulate that there is no miracle will forbid us from considering
the miraculous worlds. So, if we must consider some non-actual worlds, we must consider some
backtracking ones. This is consistent with the selection function generally delivering miraculous
worlds. Likewise, on a backtracking understanding of the selection function, it generally takes us
to non-miraculous worlds. However, if our antecedent explicitly stipulates that there is a miracle,
𝑀 = 1, then the set of not too different worlds in which there’s a miracle must consist of mirac-
ulous worlds. This is consistent with the selection function generally delivering non-miraculous
worlds.
Condition (E3) requires that neither 𝐴 nor 𝑀 causally influence the other. However, for our

purposes here, the only relevant requirement is that 𝐴 not causally influence 𝑀. The reason is
that, even if 𝑀 causally influences 𝐴, the causal counterfactual 𝐴 = 0 > 𝑀 = 0 (‘had you not
taken 𝑎, there wouldn’t have been a miracle’) will still be true. That is, suppose that, in fact, a
causal model like this one is correct:

If we begin with this model, then the minimally altered model in which 𝐴 takes on the value 0 is
shown below.

And this is precisely the same as the minimally altered model we get if we begin with a model in
which𝑀 does not causally influence 𝐴. Since𝑀 = 0 in this minimally altered model, the causal
counterfactual 𝐴 = 0 > 𝑀 = 0 will be true, whether or not𝑀 causally influences 𝐴.
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GALLOW 23

Of course, if 𝐴 causally influences𝑀, this counterfactual needn’t be true. So let us show that
it does not. Again, it won’t matter whether we have a miraculous understanding of the selec-
tion function or a backtracking understanding. Start with the miraculous understanding and
suppose—for reductio—that there’s some set of variables,𝐐, which includes𝐴 and which is such
that, for some non-constant function, 𝜓, of the variables in𝐐, the equality𝑀 = 𝜓(𝐐) is true in all
of the not too different worlds in which we wiggle the values of some of the variables in𝐐. That is:
suppose that, for every assignment of values 𝐪 to𝐐, 𝑠(𝐐 = 𝐪,𝑤) ⊆ 𝑀 = 𝜓(𝐐). Consider the actual
assignment of values, 𝐪𝑤. By weak centring, 𝑠(𝐐 = 𝐪𝑤,𝑤) contains 𝑤. And by stipulation, at 𝑤,
there is nomiracle,𝑀 = 0. So we have that 𝜓(𝐪𝑤) = 0. But since 𝑠(𝐐 = 𝐪𝑤,𝑤)must contain some
non-actual worlds (as I argued in §4.1), it must also contain some worlds at which there is a mir-
acle (given the miraculous understanding of the selection function). So we have that 𝜓(𝐪𝑤) = 1.
Contradiction. So if we adopt a miraculous understanding of the selection function, then there is
no variable set containing 𝐴 which causally influences𝑀.
Next, take a backtracking understanding of the selection function. Suppose—for reductio—

that there’s a set of variables, 𝐐 which contains 𝐴 and is such that 𝐐 ∪ {𝑀} are all distinct. Also
suppose that there’s a function 𝜓 such that𝑀 = 𝜓(𝐐) is true in all of the not too different possi-
bilities in which the values of𝐐 are wiggled. Since the selection function backtracks, 𝑠(𝐐 = 𝐪,𝑤)
will only contain miracles if the assignment 𝐐 = 𝐪 requires them. But if the assignment 𝐐 = 𝐪
metaphysically necessitates that𝑀 = 1, then 𝐐 and𝑀 will not be independently fixable, and the
variables in 𝐐 ∪ {𝑀} will not be distinct. Since, by hypothesis, the variables are distinct, none of
the worlds in 𝑠(𝐐 = 𝐪,𝑤) will contain miracles—for any assignment 𝐪. So 𝑠(𝐐 = 𝐪,𝑤) ⊆ 𝑀 = 0
for every assignment 𝐪. But then, 𝜓(𝐪) = 0 for every assignment 𝐪. So 𝜓 is a constant function.
Contradiction. So if we adopt a backtracking understanding of the selection function, then there
is no variable set containing 𝐴 which causally influences𝑀.
Either way, then,𝐴 does not causally influence𝑀. Assuming that𝑀 doesn’t causally influence

𝐴—though, to reiterate, it doesn’t ultimatelymatter whether this is so—condition (E3) is satisfied.
So themodelmiracle is correct. And so, given the semantics (>), the causal counterfactual ‘if you
hadn’t chosen 𝑎, there wouldn’t have been a miracle’ (B1) is true.

4.3 Betting on the past

Recall the decision Betting on the past from §1.3. You must choose between bet 𝑎 and bet 𝑏. Bet
𝑎 pays out $10 if the initial conditions are 𝑐 and nothing if they’re not. And bet 𝑏 pays out $1 if the
initial conditions are 𝑐 and $11 if they’re not. In fact, the initial conditions are 𝑐 and you choose 𝑎.
In §2.2, I modelled this decision with the following system of equations

Causal Influence tells us that this system of equations is correct iff (E1) all of its variables are
distinct, (E2) in all of the not too different worlds where the values of 𝐴 and 𝐶 are wiggled, the
equation𝑊 = 10 ⋅ 𝐴 ⋅ 𝐶 + 11 ⋅ 𝐴 ⋅ 𝐶 + 𝐴 ⋅ 𝐶 is true, and (E3) neither 𝐴 nor 𝐶 causally influences
the other.
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24 GALLOW

Bearing inmind the caveat about the interpretation of the variable𝑊 from§4.2 above, condition
(E1) will be satisfied. Condition (E2) imposes the following 8 constraints:

𝑠(𝐴 = 0,𝑤) ⊆ 𝑊 = 11 ⋅ 𝐶 + 𝐶 𝑠(𝐴 = 1,𝑤) ⊆ 𝑊 = 10 ⋅ 𝐶

𝑠(𝐶 = 0,𝑤) ⊆ 𝑊 = 11 ⋅ 𝐴 𝑠(𝐶 = 1,𝑤) ⊆ 𝑊 = 10 ⋅ 𝐴 + 𝐴

𝑠(𝐴 = 0 ∧ 𝐶 = 0,𝑤) ⊆ 𝑊 = 11 𝑠(𝐴 = 0 ∧ 𝐶 = 1,𝑤) ⊆ 𝑊 = 1

𝑠(𝐴 = 1 ∧ 𝐶 = 0,𝑤) ⊆ 𝑊 = 0 𝑠(𝐴 = 1 ∧ 𝐶 = 1,𝑤) ⊆ 𝑊 = 10

(Here, ‘𝑤’ is the actualworld, at which you choose 𝑎 and the initial conditions are 𝑐.) So long as our
betting arrangement remains intact at the not too different worlds at which the variables𝐴 and 𝐶
are assigned these values, these 8 constraints should be satisfied, whether we have amiraculous or
a backtracking understanding of the selection function. While it won’t matter whether we think
about the ‘not too different’ possibilities in terms of tiny miracles or in terms of minor changes
to the past, it will matter very much which changes to the initial conditions we regard as not too
different. Some ways of changing the initial conditions lead to large-scale macroscopic differences
in the world at the time when you are offered the bet in the actual world. Others lead to minor,
microscopic differences which only manifest in macroscopic differences after you are offered the
bet. In the former kinds of possibilities, you may not be offered the bet at all, and the variable
𝐴 may not take on a value. In the latter kinds of possibilities, the terms of the bet will remain
the same, and the variables 𝐴 and𝑊 will both take on values. I will take it for granted here that
𝑠(𝐶 = 0,𝑤) only contains the latter kinds of possibilities. And I’ll assume likewise for 𝑠(𝐶 = 1,𝑤),
𝑠(𝐴 = 𝐶 = 0,𝑤), and so on.
Condition (E3) requires that neither 𝐴 nor 𝐶 causally influence the other. However, just as in

Betting on a miracle, it won’t ultimately matter if 𝐶 causally influences 𝐴. Even if a system of
equations like this is correct,

the causal counterfactual𝐴 = 0 > 𝐶 = 1 (‘had you not chosen 𝑎, the initial conditionswould have
been 𝑐’) will still be true. So what matters is establishing that 𝐴 doesn’t causally influence 𝐶. For
this purpose, it won’t matter whether the selection function is miraculous or backtracking. Begin
with the miraculous understanding. Suppose—for reductio—that there’s some set of variables,
𝐐, including 𝐴, which is such that 𝐐 ∪ {𝐶} are distinct. Additionally suppose that there’s a non-
constant function𝜓 such that𝐶 = 𝜓(𝐐) is true in all of the not too differentworlds inwhich𝐐 = 𝐪,
for every assignment of values 𝐪. Because 𝐐 ∪ {𝐶} are distinct, the variables in 𝐐 do not concern
the state of the world at the initial conditions. Since the initial conditions are initial, the variables
in 𝐐 must concern the state of the world at times after the initial conditions. Therefore, on the
miraculous understanding, for every assignment 𝐪, 𝑠(𝐐 = 𝐪,𝑤) contains worlds with the same
initial conditions as𝑤. So it contains worlds at which 𝐶 = 1. So, for every assignment 𝐪, 𝜓(𝐪) = 1.
But then 𝜓 is a constant function. Contradiction. So if we adopt a miraculous understanding of
the selection function, there is no variable set containing 𝐴 which causally influences 𝐶.

 19331592, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/phpr.12925 by A

ustralian C
atholic U

niversity L
ibrary - E

lectronic R
esources, W

iley O
nline L

ibrary on [22/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



GALLOW 25

Next, consider the backtracking understanding. Suppose—for reductio—that there’s a set of
variables, 𝐐, containing 𝐴, and a function 𝜓 such that 𝐶 = 𝜓(𝐐) is true throughout the worlds
in 𝑠(𝐐 = 𝐪,𝑤), for every assignment 𝐪. Consider the actual assignment 𝐪𝑤. By weak centring,
𝑠(𝐐 = 𝐪𝑤,𝑤) contains 𝑤. And by stipulation, at 𝑤 the initial conditions are 𝑐. So 𝜓(𝐪𝑤) = 1. But
since 𝑠(𝐐 = 𝐪𝑤,𝑤)must contain some non-actual worlds (as I argued in §4.1), it must also contain
some worlds at which the initial conditions are not 𝑐 (given the backtracking understanding of
the selection function). So we have that 𝜓(𝐪𝑤) = 0. Contradiction. So if we adopt a backtracking
understanding of the selection function, then there is no variable set containing𝐴which causally
influences 𝐶.
Either way, then, 𝐴 does not causally influence 𝐶. Assuming that 𝐶 doesn’t causally influence

𝐴—though, again, this doesn’t ultimately matter—condition (E3) is satisfied. So the modelpast
is correct. And so, given the semantics (>), the causal counterfactual ‘if you hadn’t chosen 𝑎, the
initial conditions would have been 𝑐’ (B2) is true.

5 FURTHER DISCUSSION

I’ve shown that the causal model semantics (>) described in §2, together with the theory of
Causal Influence from §3, satisfies (B1) and (B2). Since it clearly satisfies (B3), it must violate
the schematic principle (B4)

(B4) If 𝑃 > 𝑄, 𝑃 > 𝑅, and 𝑄 ∧ 𝑅 metaphysically necessitates 𝑆, then 𝑃 > 𝑆.

However, the foregoing does not make it clear why the semantics violates this principle.
In this section, I will explain that condition (E1) from Causal Influence leads to (B4) being

violated. This discussion will put us in a position to appreciate that the theory from §§2–3 will not
tell us whether causal counterfactuals like (G1) and (G2) are true or false.

(G1) If you hadn’t chosen 𝑎, it would have been the case that either the initial conditions were
different or there was a miracle.

(G2) If you hadn’t chosen 𝑎, it would have been the case that the initial conditions were the same
and there was no miracle.

5.1 Principle (B4) and mereological distinctness

It’s tempting to think that the the principle (B4) fails on this semantics because causal influence
need not be preserved through metaphysical necessitation. Consider this case: whether the doc-
tor gives morphine causally influences whether the patient dies painlessly. So we get the causal
counterfactual ‘had the doctor given the patient morphine, they would have died painlessly’. If
the patient dies painlessly, this metaphysically necessitates that the patient dies. But whether the
doctor givesmorphine does not causally influencewhether the patient dies. So—youmay think—
we don’t get the causal counterfactual ‘had the doctor given the patient morphine, they would
have died.’
This thought is tempting but wrong. The reason it is wrong is that the semantics (>) does not

require there to be causal influence between the antecedent and the consequent. Indeed, the coun-
terfactuals (B1) and (B2) are true precisely because there is not any causal influence between
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26 GALLOW

whether you choose 𝑎 and whether there’s a miracle, nor between whether you choose 𝐴 and
whether the initial conditions are 𝑐. Suppose that, if the doctor fails to give morphine to a dying
patient, or gives morphine to a patient who isn’t dying, then they will be disciplined. Then, we
will have a causal model according to which whether the doctor gives morphine and whether the
patient dies both causally influence whether the doctor is disciplined, and whether the doctor
gives morphine does not causally influence whether the patient dies. And this causal model will
tell us that ‘had the doctor given morphine, the patient would still have died’ is true. (Or, more
trivially, just take a causal model in which bothwhether the doctor gives morphine andwhether the
patient dies are exogenous variables, and there are no endogenous variables or structural equa-
tions. This model will tell us that, had the doctor not given morphine, the patient would still have
died. And all it will take for this model to be correct is for the exogenous variables to be distinct,
which they are, and for them to not causally influence each other, which they do not.)
Instead, the reason that (B4) fails is the requirement of mereological distinctness, (E1). Though

there is no causal influence leading from𝐴 to𝑀, and no causal influence leading from𝐴 to 𝐶, we
cannot have a causal model which includes all three variables, 𝐴,𝑀, and 𝐶. That is, no system of
structural equations like this is correct:

Any systemof structural equationswhich includes all three variables𝐴,𝑀, and𝐶will be incorrect.
For the value of 𝐴 is not fixable independently of the values of𝑀 and 𝐶. If𝑀 = 0 and 𝐶 = 1, this
metaphysically necessitates that𝐴 = 1, and it will be impossible for us to set𝐴 = 0while𝑀 is set
to 0 and 𝐶 is set to 1. That is: if the initial conditions are 𝑐 and there’s no violation of the actual
laws of nature, then it will be impossible for you to not choose 𝑎. So the variables in {𝐴,𝑀, 𝐶}
are not mereologically distinct, and condition (E1) tells us that no causal model containing these
variables can be correct.
Recall, we included the requirement that variables be mereologically distinct to avoid saying

that, e.g., had the die not landed high, it would still have landed odd. But ruling out overlapping
variables also means that (>) will not say whether the counterfactuals (G1) and (G2) are true or
false.

(G1) If you hadn’t chosen 𝑎, it would have been the case that either the initial conditions were
different or there was a miracle.

(G2) If you hadn’t chosen 𝑎, it would have been the case that the initial conditions were the same
and there was no miracle.

According to (>), truth requires a validating model, and falsehood requires a model which vali-
dates the negation. When it comes to counterfactuals like (G1) and (G2), there is no causal model
which contains variables for both the antecedents and the consequents. So, when it comes to
counterfactuals like these, the semantics (>) simply falls silent. It does not say that they are true,
nor does it say that they are false. Evaluating counterfactuals like these would require extend-
ing the causal modelling semantics (>). It’s not clear to me how—or whether—this should be
done.
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GALLOW 27

5.2 Betting on the past and a miracle

Turning to causal decision theory, the discussion from §5.1 above is relevant to decisions like the
following.

Betting on the past and a miracle You are certain that the laws are deterministic, that there
are not and never will be any miracles, and that the ini-
tial conditions were 𝑐. You are offered a choice between
two bets, 𝑎 and 𝑏. Both bet 𝑎 and bet 𝑏 are bets on the fol-
lowing proposition: there are no miracles, and the initial
conditions are 𝑐. If you take bet 𝑎 and this proposition is
true, then you’ll win $10; whereas if you take bet 𝑎 and the
proposition is false, you’ll get nothing. If you take bet 𝑏 and
this proposition is true, then you’ll gain $1; whereas, if you
take bet 𝑏 and the proposition is false, then you’ll gain $11.

There are no miracles and Either there are miracles or
the initial conditions are 𝒄 the initial conditions are not 𝒄

Bet 𝑎 $10 $0
Bet 𝑏 $1 $11

Insofar as we think that (G1) is true, we should understand CDT as advising you to take bet
𝑏. Insofar as we think (G2) is true, we should understand CDT as advising you to take bet 𝑎.
Insofar as we think it’s indeterminate which is true, we should understand CDT as implying that
it’s indeterminate what you should do. Formulating a theory of causal counterfactuals which can
tell us whether (G1) and (G2) are true or false would be a complicated task, requiring us to revise
some of the formal tools I’ve been taking for granted here.38 I won’t have much to say about this
question, except to register my views that, firstly, it’s not pre-theoretically clear what you should
do in Betting on the past and a miracle; and, secondly, decisions like these aren’t potential
counterexamples to CDT.
If it is outside of your control whether there are no miracles and the initial conditions are 𝑐,

then it seems clear to me that you should take bet 𝑎, and that taking bet 𝑏 is irrational, given your
beliefs. However, it is not clear to me that this is outside of your control. I am inclined to accept a
causal counterfactual analysis of what is outside of your control, saying that whether 𝑃 is outside
of your control iff 𝑃’s truth-value does not (causally) counterfactually depend upon how you act.
That is: whether𝑃 is under your control iff there’s a choice you could havemade such that𝑃would
have been true, had you made that choice, and there’s another choice you could have made such
that 𝑃 would have been false, had youmade that choice. And whether 𝑃 is outside of your control
iff whether 𝑃 is not under your control. While it seems that it is outside of your control whether
the initial conditions are 𝑐 or not, and while it seems that it is outside of your control whether the
laws are violated or not, it is unclear to me whether the conjunction ‘the initial conditions are 𝑐
and the deterministic laws are unviolated’ is outside of your control.39

38Woodward (2015) has some helpful suggestions for how this is to be done, but I won’t have the space to engage with
them here.
39When I say that a proposition, 𝑃, is outside of your control, I just mean that whether 𝑃 is outside of your control.
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28 GALLOW

There’s some inclination to think that this follows from the initial conditions being outside of
your control and the laws being outside of your control. That is, there’s some inclination to accept
the following schematic principle:

Agglomeration If whether 𝑃 is outside of your control, andwhether𝑄 is outside of your control,
then whether 𝑃 ∧ 𝑄 is outside of your control.

Agglomeration is a key premise in van Inwagen (1983)’s consequence argument for
incompatibilism—indeed, the same instance of the principle that we are interested in here is the
one used in that argument.40 However, despite its plausibility,Agglomeration is false. Consider
the following counterexample, from McKay & Johnson (1996): there is a coin which you do not
actually flip, but which you could have flipped. Let ‘¬𝐻’ be ‘the coin does not land heads’, and let
‘¬𝑇’ be ‘the coin does not land tails’.Whether the coin lands heads or not is not under your control.
There is no choice you could have made such that ‘¬𝐻’ would have been false, had youmade that
choice. Likewise, whether the coin lands tails or not is not under your control. There is no choice
you could havemade such that ‘¬𝑇’ would have been false, had youmade that choice. But the con-
junction ‘¬𝐻 ∧ ¬𝑇’ is under your control. If you were to not flip the coin, this proposition would
be true; and if you were to flip it, the proposition would be false (since the coin would either land
heads or tails).41 So Agglomeration is false, despite how appealing the principle appears when
considered in the abstract.
Suppose that it is not you, but someone else, who faces this decision. And suppose that you

know all of the relevant facts, the laws are deterministic, there are no miracles, and the initial
conditions are 𝑐. Youwatch this person take bet 𝑎 and gain $10. Ask yourself: did this personmake
the choice which was objectively best? That is: did their choice maximise objective instrumental
value?42 From my perspective, it is unclear. I’m somewhat tempted to say “taking bet 𝑎 instead
of bet 𝑏 gained them $9, since, if they’d taken bet 𝑏, they’d have gotten $1.” At the same time, I
recognise that there is no way for them to take bet 𝑏 while the initial conditions remain 𝑐 and the
laws remain unviolated. So there’s some inclination to say that taking bet 𝑎 instead of bet 𝑏 lost
them $1, since, if they’d taken bet 𝑏, either the initial conditions would have been different, or else
the laws would have been violated, and so they’d have gotten $11. It’s undeniable that this English
counterfactual has a true reading, but I must remindmyself that not every English counterfactual
is a causal counterfactual which reveals genuine control. So I have two conflicting inclinations,
neither of which strikes me as dispositive. At the end of the day, I’m just not sure what to say
about whether this person’s choice has maximised objective instrumental value or not. (Note that
all the same considerations hold if the person chooses bet 𝑏 instead of bet 𝑎. In that case, there’s
some inclination to say that this gained them $1; and some inclination to say that this lost them
$9. The inclinations are conflicting and inconclusive, and I’m left unsure whether this choice was
objectively best.)
According to the causal decision theorist, rational choice is an attempt to maximise objective

instrumental value. (Youmake the attempt bymaximising your subjective expectation of objective

40 This is the principle used in what Huemer (2000) calls ‘the second version’ of the consequence argument. Huemer calls
it ‘𝛽∗’. As Huemer shows, this alternative formulation is equivalent to the original, in the sense that the principles 𝛼∗ and
𝛽∗ used in the second version are equivalent to the principles 𝛼 and 𝛽 used in the original argument.
41 Similar counterexamples are discussed in Widerker (1987) and Huemer (2000).
42 I take it for granted that there is such a thing as objective instrumental value, though some evidentialists will disagree—
see Ahmed & Spencer (2020) and Gallow (ms).
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GALLOW 29

instrumental value.) But in a decision like Betting on the past and a miracle, it is unclear
which act maximises objective instrumental value in each possible state of the world. So, from
the perspective of the causal decision theorist, it is unclear which choice has the highest expected
instrumental value.
Decisions like these are fascinating. But I think they should not be seen as potential counterex-

amples to CDT—for at least three reasons. Firstly, because it is not clear what CDT says about
these decisions. For it is unclear which causal counterfactuals are true in these decisions. Sec-
ondly, it is not clear what a decision theory should say about decisions like these. For it is unclear
which choice maximises objective instrumental value in this decision. Thirdly, it is unclear which
choice is objectively best precisely because it is unclear which causal counterfactuals are true. And
no matter which choice we say is objectively best, CDT will advise you to choose it. Insofar as
we have reason to accept the causal counterfactual (G1), we have reason to think that 𝑎 has less
instrumental value than 𝑏. In that case, CDTwould say that you should take 𝑏, which is the choice
which is objectively best. And insofar as we have reason to accept the causal counterfactual (G2),
we have reason to think that 𝑎 has more instrumental value than 𝑏. In that case, CDT would say
that you should take 𝑎, which is the choice which is objectively best. So we have a puzzle for our
theory of causal counterfactuals; but it is not a challenge to CDT, since, however we resolve the
puzzle, CDT will say that you should do what’s objectively best.
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