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Research has shown that children can offer the right answer but have mathematically 
incorrect reasoning (Clements & Ellerton, 2005). One-to-one task-based interviews enabled 
the researchers to engage in observational listening (Empson & Jacobs, 2008) and uncover 
the mathematical strategies used by Grade 6 students in fraction pair tasks. Some students’ 
answers and initial explanations were similar, but different strategies were revealed by 
further questioning: the correct strategy of benchmarking or the misconception of gap 
thinking. 

Introduction 

Careful listening is essential for good teaching. If we want to know what to teach next, 
we need to know the mathematical thinking of individual students. Teachers cannot 
assume that a correct answer indicates misconception-free thinking. To teach within the 
framework of constructivism, we need  

 specialised content knowledge  
 observational listening skills, and 
 classroom norms that value mathematical explanations 

The analysis of specific strategies for the comparison of the relative size of two 
fractions, 4/5 and 4/7, illustrates the complexity of assessing children’s fraction 
understanding. Two strategies, the gap thinking misconception and the mathematically 
correct strategy of benchmarking both gave the same answer (4/5 is larger) and had 
similar initial explanations. Responsive teachers know that the different strategies exist, 
have the listening skills to determine which is being used, and create classroom norms 
which value explanations from students that enable peers and the teacher to engage with 
their mathematical thinking.  

Review of the literature  

A co-ordinated fraction understanding encompasses several contexts. Kieren’s model 
for understanding rational number knowledge identified four sub-constructs (measure, 

and three underlying concepts (partitioning, equivalence, quotient, operator, and ratio) 

                                                        
1 The authors wish to thank Anne Roche and Doug Clarke for their help in developing tasks and record sheets, and 
double coding the data. 
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and unit-forming) (Kieren, 1988, 1992). These could be engaged with on four levels, 
ethnomathematic, intuitive, technical-symbolic, and axiomatic-deductive. We use the 
term the four-three-four model to distinguish it from Kieren’s five-part model (1980). 
The concepts that concern us in this paper are the measure sub-construct, the concept of 
equivalence, and intuitive understandings.  
 Fraction tasks in the primary school considered part of the measure sub-construct 
include, number lines (Lamon, 1999), area and length diagrams (Kieren, 1992), and 
fraction pair comparisons (Ni, 2000). The relative size of fractions has been called order 
in order and equivalence studies. As many as equivalence, (multiplicative) partitioning, 
is used to generate equivalent fractions. For example, 4/8 is equivalent to 1/2. As much a,s 
equivalence (additive) unit-forming, is used to combine fractions (Kieren, 1992). For 
example, 5/8 equals 1/2 plus 1/8. Intuitive approaches were planned mathematical activity, 
firmly located in a context developed from schooled or taught knowledge (Kieren, 
1988). 
 Strategies for comparing the relative size of fractions include both correct strategies 
and misconceptions. Correct strategies include residual thinking, benchmarking and 
common denominators. Misconceptions, often inappropriate generalisations, include 
gap thinking, higher or larger numbers, and bigger denominator indicates bigger 
fraction thinking. Knowledge of these strategies forms part of a teacher’s specialised 
content knowledge. This knowledge of mathematics and knowledge of students is 
necessary for pedagogical content knowledge (Hill, Ball, & Shilling, 2008). 
 The residual thinking strategy has been observed in the comparisons of fractions, 
such as 5/6 and 7/8 that are both one piece away from the whole (see, for example, Clarke 
& Roche, 2009; Cramer & Wyberg, 2009; Post, Behr, & Lesh, 1986). Students reason 
correctly that an eighth away from the whole is closer than one sixth away from the 
whole and so 7/8 is the larger fraction. 
 Using half as a benchmark was a strategy that children could use when they 
combined the (additive) unit-forming aspect of equivalence, 5/8 is as much as 1/2 and 
another piece, and the (multiplicative) partitioning aspect of equivalence, 4/8 is as many 
as 1/2. Benchmarking had been reported in Australia (Clarke & Roche, 2009), and had 
been called the transitive or reference point strategy in the United States (Behr & Post, 
1986; Post et al. 1986; Post & Cramer, 1987). For example, 5/8 is larger than 3/7 because 
3/7 is less than a half and 5/8 is more than a half.  
 Gap thinking has been observed in Australia (Clarke & Roche, 2009; Gould, 2011; 
Mitchell & Horne, 2010; Pearn & Stephens, 2004) and was one of four whole number 
dominance strategies described by Post & Cramer, (1987) and observed in recent 
studies (Cramer & Wyberg, 2009). Children with this misconception looked at the 
numerical difference between the numerator and denominator and chose the fraction 
with the smallest gap as the largest fraction. For example, in a study of 323 Grade 6 
students, 35.6% of the incorrect answers comparing 3/4 and 7/9 demonstrated gap 
thinking: 3/4 was larger because it had a gap of 1 while 7/9 had a gap of 2 (Clarke & 
Roche, 2009). Nearly 30% of Grade 6 students incorrectly said that 5/6 and 7/8 were 
equivalent because two fractions, both with a “gap” of one, were the same, instead of 
using a correct strategy such as residual thinking (Clarke & Roche, 2009). In a separate 
study, 50% of Grade 6 students used gap thinking on this same pair to conclude that the 
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fractions were the same, and the misconception was shown to emerge at the same time 
as early equivalence understanding (Mitchell & Horne, 2010).  
 In these examples, 3/4 and 7/9, and 5/6 and 7/8, gap thinking gives the wrong answer 
with incorrect reasoning. However, in fraction pairs such as 4/5 and 4/7, gap thinking 
gives the right answer for the wrong answer: 4/5 is larger because the gap of 1 is less 
than the gap of 3 in 4/7. A matrix of answer and explanation types (Clements & Ellerton, 
1995, 2005) has been elaborated as: 

 correct answer, correct mathematical thinking; 
 correct answer, incorrect reasoning; 
 incorrect answer, mathematically correct not fully executed/partially correct 

reasoning; and 
 incorrect answer, incorrect reasoning. 

 

Directive listening by teachers focussed on whether a child’s answer matched an 
expected response (Empson & Jacob, 2008). The term directive listening corresponds to 
the term evaluative listening used by Davis (1997). Teachers who used this type of 
listening in classroom contexts were listening for something, not listening to the 
students (Even, 2005) and this could result in teachers overestimating what students 
knew (Empson & Jacobs, 2008) by assigning understanding to correct answers with 
vague explanations (Even, 2005).  
 Observational listening (Empson & Jacobs, 2008), on the other hand, was a term 
used to describe teachers listening to students and trying to work out what the students 
were actually thinking. Davis had described this as interpretive listening (1997). 
Empson and Jacobs (2008) specified one-to-one task-based interviews as contexts for 
the use (and practise) of observational listening.  
 Responsive listening (Empson & Jacobs, 2008) by teachers encompassed trying to 
understand individual students’ approaches and responding to them individually and 
instantaneously, whilst keeping 25 children engaged and included, in the group dynamic 
of a single lesson. Davis had termed this hermeneutical listening (1997).  
 Calculation explanations described the calculation steps of a strategy rather than 
communicated the purpose of the calculations (Cobb, Yackel, & Wood, 1992). For 
example, when adding three 19s, Grade 2 children used calculation explanations in their 
initial peer conversation “Nine and nine is ... 18 ... and nine more...” (p. 104). They 
assumed they were all using the same strategy (adding ones and then tens). However, 
they did not have equivalent strategies (the same), they had parallel (assumed the same 
when not) strategies because one was adding ones and tens, 27 plus 30, whereas the 
other was adding ones before adding three more ones (incorrectly treating tens as ones), 
27 plus 3. The children did not explain what they were doing mathematically; they 
described the calculation steps that they were using to execute their mathematical 
thinking. In some classrooms, calculation explanations counted as an acceptable 
mathematical argument despite the fact that calculation explanations made it difficult 
for students to recognise whether they had equivalent strategies or parallel strategies 
(Cobb, 2011).  

Methodology 

One-to-one task-based interviews were conducted with 88 Grade 6 students, offering 65 
tasks that assessed their understanding of length and area measurement, dynamic 
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imagery, multiplication, and fraction understanding. Each student was interviewed for 
up to three hours over several sessions. Observational listening and non-directive 
prompts were used to elaborate further explanations. The students’ responses were 
noted on record sheets during the interview, and as two thirds of the interviews were 
video-taped (and all audio-taped) transcripts enabled the classification of their answers 
and explanations. Pseudonyms have been used when quoting the students’ explanations. 
 One question will be examined in detail in this paper. The Fraction Pair task assessed 
students’ understanding of the relative size of fractions. The eight fraction pairs were 
the same as used by Clarke and Roche (2009): 3/8 and 7/8, 

2/4 and 4/8, 
1/2 and 5/8, 

2/4 and 
4/2, 

4/5 and 4/7, 
3/7 and 5/8, 

5/6 and 7/8, 
3/4 and 7/9. The children were shown a card with the 

two fractions (symbolic inscriptions) and were asked, please point to the larger fraction 
or tell me if they’re the same. After they stated or pointed to their answer they were 
asked, and how did you work that out? Two of the fraction pairs are discussed in this 
paper, 4/5 and 4/7, and 5/6 and 7/8. 

Results 

In the present study, Sarah provided an example of residual reasoning when comparing 
the fraction pair 5/6 and 7/8. She chose 7/8 as larger, “because if I imagine a pie cut into 
sixths and you do five of them. And I imagine a pie cut into eight and there’s seven of 
them; that’s a little more.” When prompted, “How do you know?” she elaborated 
correctly, “Because eighths are smaller, and like seven of them would be closer to a 
whole than five sixths.” In contrast, Meg used gap thinking to conclude incorrectly that 
“They’re the same because five sixths has got one more to become a whole. And seven 
eighths it also has one more to become a whole.” In the present study, gap thinking was 
used by 50% of the students for this fraction pair.  
  

Table 1. Answers, initial and further explanations for the comparison of the fraction pair 4/5 and 4/7. 

Strategy   

Gap thinking Lara:  This one [points to 4/5] 
I:  And how did you decide? 
Lara:  ‘Cause it’s only one away from being a whole.  
I:  Mmm? 
Lara:  And this is three away from being a whole 

Benchmarking  
 

Chris:  [points to 4/5] 
I:  How did you decide? 
Chris:  Well, five, ff; four fifths is almost a whole 
I:  Mmm? 
Chris:  And four sevenths is um, a bit higher than half 

Benchmarking  
 

Adam: This one. [points to 4/5] 
I:  And how did you decide? 
Adam: Um four is closer to five. 
I:  Can you tell me a bit more about that? 
Adam: Um. Four. The four and the seven, there’s more less, like, um close to a half, but 

this one’s like almost a whole. 

The fraction pair 4/5 and 4/7 lent itself to the correct strategy of benchmarking because 4/5 
was close to one and 4/7 was just over a half. However, it was difficult to hear the 
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difference between benchmarking (a correct strategy) and gap thinking (a 
misconception) in the students’ explanations (see Table 1). 

Discussion 

In the terms of Kieren’s four-three-four model (1988), Sarah’s explanation using 
residual thinking “Because if I imagine a pie cut into sixths and you do five of them”, 
illustrated her engagement at an intuitive level. The difference between residual 
thinking (a correct strategy) and gap thinking (a misconception) was easiest to hear in 
the explanations of the comparison of the fraction pair 5/6 and 7/8 because residual 
thinking gave the correct answer with correct thinking and gap thinking gave an 
ncorrect answer with mathematically incorrect reasoning. This was because the gap 
nswer was distinctive: “They’re the same”.   

i
a
  In contrast, the correct answer, 4/5 was given by Sarah, Chris, and Adam when 
comparing the fraction pair 4/5 and 4/7 and their initial explanations sounded similar: 

 “ ’cause it’s only one away from being a whole.” 
 “Four fifths is almost a whole.” 
 “Four is closer to five.” 

However, in response to the non-directive prompting, “Mmm?”, Lara elaborated, “And 
this is three away from being a whole” (see Table 1). Lara was using the gap thinking 
misconception, calculating the complement to one for each fraction, by working out the 
numerical difference between numerator and denominator, and choosing the fraction 
with the smaller gap. Lara had the right answer for the wrong reason. 
 In contrast, when prompted, “Mmm?” Chris added, “And four sevenths is um, a bit 
higher than a half.” In Adam’s case, after being prompted “Can you tell me a bit more 
about that?”, he explained that, “The four and the seven, there’s more less, like um close 
to a half, but this one’s like almost a whole.” These further explanations revealed that 
both Chris and Adam had been benchmarking and so had the correct answer with 
correct mathematical reasoning.  

Implications 

The similarity of the initial explanations with the correct answer for the responses by 
students who were benchmarking or were using gap thinking has implications for how 
teachers talk to students and how students explain their thinking to each other.  
 It has been observed that teachers using directive listening interpreted vague 
explanations as correct mathematical reasoning if the answer was also correct (Even, 
2005). Prompting for further elaboration of the students explanations was needed to 
determine whether the students were correct (correct answer and mathematically correct 
strategy) or incorrect (correct answer and mathematically incorrect strategy). The 
relationship of observational listening had to be maintained, without cueing the student 
into a directive listening exchange. Teachers with high specialized content knowledge 
should be alert to this possible confusion and prompt for further elaboration of the 
strategy to specifically establish which strategy is being used by the student.  
 If a teacher were explaining the benchmarking strategy for the fraction pair 4/5 and 4/7 
and said, “Four fifths is nearly a whole”, Adam might hear his benchmarking strategy 
confirmed (four is closer to five) but Lara would also hear her gap thinking strategy 
confirmed (it’s only one away from being a whole). Lara might not experience 
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cognitive conflict between the teacher’s strategy and her own. The difference between 
the two strategies (benchmarking and gap thinking) could not be distinguished by the 
researchers using the students’ answers and initial explanations, so it would also be 
difficult for Lara to hear the distinction between the mathematically correct reasoning of 
the teacher and her own mathematically incorrect reasoning if only an initial 
explanation was offered.  
 It is possible that students participating in peer conversations could react in the same 
way: if the answer was the same as their own and the explanations were similar, they 
would assume their strategy was the same as the other student. For example, let us 
imagine that Lara, Adam, and Chris were working together to solve the fraction 
comparison task 4/5 and 4/7. The terminology of peer conversation would enable us to 
describe their initial explanations as calculational: “‘Cause it’s only one away from 
being a whole”, “four fifths is almost a whole” and “four is closer to five.” All three 
children describe a difference calculation and none explain why they are doing this. At 
this point they might imagine that they are all agreeing on the strategy (that they have 
equivalent strategies). Even if Lara added “And this is three away from being a whole”, 
Adam might not realise that she was not benchmarking like he was, unless he knew to 
listen for gap thinking. Parallel interpretations have the same answer and the same 
initial calculational explanation, but are actually different strategies. Lara and Adam 
have parallel strategies. Adam and Chris who are both benchmarking have equivalent 
strategies.  
 Cobb, Yackel, and Wood’s (1992) examples of calculational, parallel, and equivalent 
explanations were of addition by Grade 2 children. Excellent teaching by the classroom 
teacher in their study enabled students to increase their knowledge of addition 
strategies. Grade 6 teachers have access to a repertoire of descriptions of strategies and 
misconceptions to draw on when responding to student explanations. However, for 
students to recognise parallel explanations, they may need to acquire a similar 
sophisticated repertoire of possible strategies in order to make sense of other students’ 
explanations.  

Conclusion 

A highly detailed knowledge of gap thinking is needed in teachers’ pedagogical content 
knowledge. Observational listening by teachers may require interpretations not only of 
answers and initial explanations but also prompting for further explanations.  
 The students’ responses when comparing the fraction pair 4/5 and 4/7 demonstrated 
that these initial answers were considered acceptable mathematical answers by the 
students in the interview context. If students are to learn through peer conversation then 
teachers must establish the classroom norm that calculational answers are only partly 
acceptable mathematical answers. Acceptable mathematical answers include  

 an answer,  
 an explanation describing the strategy, and  
 a description of the calculational steps used to execute that strategy.  

This means that students will also have to develop their own knowledge of strategies, 
such as gap thinking and benchmarking so that they recognise when they have 
equivalent explanations or parallel explanations. 
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