
 MODELLING THE SPREAD OF ATROPHY IN HUNTINGTON’S DISEASE 

USING NETWORK DIFFUSION MODEL (NDM) 

 

 

MADAN K C 

 

~ 

A thesis submitted in fulfilment of the requirements for the degree of: 

Master of Philosophy 

 

Mary MacKillop Institute for Health Research, 

Faculty of Health Sciences  

Australian Catholic University 

 

Graduate Research Office 

250 Victoria Parade 

Fitzroy, Victoria, 3065 

 

1st September 2021 

 



I 

Statement of Authorship and Sources 

I certify that except where due acknowledgement has been made, the work is that of the author 

alone; the work has not been submitted previously, in whole or in part, to qualify for any other 

academic award; the content of the thesis is the result of work which has been carried out 

since the official commencement date of the approved research program and any editorial 

work, paid or unpaid, carried out by a third party is acknowledged, and ethics procedures and 

guidelines have been followed. Unless otherwise stated, all work comprising this thesis has 

been undertaken by the candidate. This candidature commenced at the Australian Catholic 

University (ACU) in June 2019. 

Madan K C 

[signature redacted]



 II 

 

Supervisory Panel 

It is acknowledged that the work comprising this thesis was supervised by the following 

ACU staff members: 

 

Principal Supervisor: Dr. Govinda Poudel (ACU, Melbourne, VIC) 

Co-Supervisor: Prof. Ester Cerin (ACU, Melbourne, VIC) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 III 

Acknowledgements  

This work was carried out in the Mary MacKillop Institute for Health Research Lab, 

Faculty of Health Sciences, Australian Catholic University, during the years 2019-2021. First and 

foremost, I would like to thank my supervisor Dr. Govinda Poudel and co-supervisor Prof. 

Ester Cerin for taking me as their research student. Before I joined the research degree course I 

had very limited knowledge in computational neuroscience as I majored in Biomedical 

Engineering. I am forever indebted to my supervisors for what I have achieved while under their 

supervision. I greatly appreciate the effort with which Dr. Govinda Poudel helped me learn how 

to plan and perform the research activities described here. I express my sincere thanks to Prof. 

Ester Cerin for agreeing to act as my co-supervisor. Her guidance, support, and training for 

statistical approach and other essential suggestions was unforgettable. Dr Govinda Poudel and 

Prof Ester Cerin not only helped me to perform the study but also to discuss and present the 

data. Without their continual support and advice throughout my studies I would not have been 

able to finish my project. Dr Govinda Poudel’s broad experience, expertise, wisdom, and 

kindness never ceased to impress and educate me. Despite his never-ending hectic schedule, his 

door was always open to me. Thank you, I could not have asked for a better mentor.  

I would also like to give special thanks to all staff member of Mary MacKillop Institute 

for Health Research Lab, Faculty of Health Sciences, Australian Catholic University for their 

continuous support and guidance wherever needed. Their continuous support made my project 

so much easier.  

A special thanks to the panel members present at my all-candidature review presentations and to 

their guidelines and suggestions. 

 



 IV 

Finally, I would like to thank my parents, wife, brother, my wife’s family, who have 

supported us coming abroad to further my education.  

 

 

 

 

 

 

 

 

  



 V 

Abstract 

 

Huntington's disease (HD) is a progressive neurodegeneration which has symptoms such 

as movement dysfunction, cognitive abnormalities, and psychiatric disturbances. 

Neurodegeneration in HD is characterised by pathology that spreads throughout the cortico-

striatal network. There is growing recognition that the transfer of mutant huntingtin (mHTT) 

protein is cellular and shaped by structural organisation of the brain, provides a general 

framework underlying progressive spread of degeneration in HD. However, relatively little is 

known regarding how such progression occurs over time. This knowledge is critical to inform 

future drug discovery efforts where neuroimaging methodology can be used to develop the 

potential therapeutic compounds in targeting vulnerable neural circuits in HD.  

This research aimed to develop and apply a novel graph theoretical network diffusion 

model to predict how and where in the brain neurodegenerative process is seeded in HD. We 

used longitudinal MRI scans (N=106 Premanifest HD (pre-HD) and N=89 Healthy Controls), 

collected 12 and 24 months from the Track-On HD study. We implemented Network diffusion 

model (NDM), which was previously applied to symptomatic individuals with HD, in the 

Premanifest HD population.  

To evaluate the spatial patterns in change in brain volume of HD brain regions 

compared to controls, we segmented the T1-weighted structural MRI scans into 82 brain regions 

using FreeSurfer based tools. A linear mixed-effects model is statistically used to evaluate the 

brain volume differences (across 82 brain regions) in different time visits. The outcome of this 

statistical approach revealed that degeneration over time in pre-HD compared to controls shows 

extensively higher (p<0.05).  The putamen and caudate showed the highest atrophy sub-

cortically. Cortically, the highest atrophy is observed in the visual cortex (lateral occipital) and 

temporal cortex (superior and middle temporal).  
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Next, we implemented NDM to simulate the longitudinal pattern of degeneration across 

the 82 brain regions. The NDM assumes that the linear diffusion of pathological proteins 

facilitates pathology spread in the HD brain via the brain's structural connectome.  Therefore, 

we used a canonical connectome from the healthy brain (82 x 82 IIT connectome) to simulate 

the brain's spread process. We found that initiating the diffusion process from pallidum, 

thalamus, and putamen predicts a pattern of degenerations (predicted atrophy) which is 

significantly correlated (p<0.05, corrected) with longitudinal degeneration measured using MRI 

scans. However, the predictive ability of NDM was moderate at best (maximum Pearson 

correlation between predicted and measured atrophy = 0.48, p <0.0001). These findings suggest 

that NDM can only moderately predict the pattern of degeneration in the HD brain.  

Overall, this thesis explores how NDM can better understand the progression of 

degeneration in HD. Our comparative study between healthy and patient’s groups statistically 

showed a progressive pattern of atrophy in the cerebrum. Furthermore, the results from NDM 

suggests that NDM could be helpful to model the progression of atrophy in subcortical and 

cortical regions in HD. Thus, NDM may build bio-physically informed machine learning 

algorithms for predicting future degeneration from baseline MRI scans. 
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Overview of Thesis 

 

The human brain is a dynamic network of ~100 billion neurons, comprising ~100 trillion 

connections. Signals travel between neuronal cell bodies, which manifest as grey matter, via 

bundles of axons that form white matter pathways. This complex structure can be damaged in 

many ways, out of which, one common factor being neurodegenerative disorder. Progressive 

neurodegeneration, an emerging health threat, mainly due to the rising ageing population and 

population-level exposure to multiple risk factors.  Neurodegenerative diseases kill neural tissues 

through a progressive neuronal degeneration aggregated over a time frame. The most common 

neurodegenerative conditions includes Alzheimer's disease (AD), Parkinson's disease (PD), 

Huntington's disease (HD), transmissible spongiform encephalopathies (TSEs or prion sickness), 

and multiple sclerosis (MS) (Santa-Cecilia, Leite, Del-Bel, & Raisman-Vozari, 2019). In addition, 

cognitive and neuropsychiatric dysfunction and a loss of physical functions are common 

symptoms of neurodegenerative diseases. 

Currently, we are lacking behind with the complete cure treatment option for any effects 

of neurodegenerative diseases (Santa-Cecilia et al., 2019). Notably, the ability to track the atrophy 

progression is relied upon extensive research and development of noble therapeutic agents, in 

particular, when therapeutic interventions are necessary during stages of non-symptomatic 

conditions of the disease (Jedynak et al., 2012). Recent advancements of statistical modelling, 

computational technology and artificial intelligence provide a new avenue in developing noble 

biomarkers of neurodegenerative conditions (Neil P. Oxtoby  & Daniel C. Alexander, 2017). In 

this study, we have tried to represent a critical assessment of the role of an advanced 

computational application, network diffusion model (NDM), in identifying and predicting 

disease progression in premanifest stage of Huntington's Disease (Pre-HD). 
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This thesis is compiled with six chapters. Chapter one gives the general overview 

including background, rationale and aims of the thesis. Chapter two provides a brief introduction 

to neurodegenerative disease by explaining the fundamental biological process involved in a few 

common types of these disorders (e.g., AD, PD & HD). Finally, we provide a critical review of 

neuroimaging techniques focusing on magnetic resonance imaging (MRI), including various 

advanced MRI systems involved in predicting neurodegeneration. 

Chapter 3 is focused on addressing the first aim of this research project. This chapter 

describes the neuroimaging data, analysis, and results from researching longitudinal changes in 

brain regions volume in premanifest HD. The MRI scans from a longitudinal study (Track-On 

HD) were statistically analysed utilising linear mixed effect (LME) approach to derive the 

longitudinal degeneration and spatial distribution of atrophy in premanifest HD individuals. The 

next chapter uses these spatial maps to compare against the NDM derived maps of atrophy in 

HD. 

In chapter 4, we implement NDM and use it to predict the pattern of neurodegeneration 

spread in premanifest HD (Pre-HD). This chapter is focused on the mathematical 

implementation and application of NDM for predicting longitudinal degeneration in pre-HD 

compared to healthy controls. We used the empirical data obtained from the previous chapter 

(Chapter 3) to test the predictive ability of NDM in pre-HD. Furthermore, Chapter 5 includes 

the general discussion of the study, and Chapter 6 describes the future research avenues in this 

field. 
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Figure 1: Summary of the Chapters Included in the Thesis 
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Chapter 1: Introduction 

 

 Neurodegenerative diseases caused 16.8% of all deaths globally in 2015 (Feigin et al., 

(2017). In the same year, in Australia alone, there were 13,496 deaths due to dementia, 1,783 

deaths due to Parkinson's disease, 698 deaths due to motor neuron disease, 190 deaths due to 

multiple sclerosis, and 986 deaths due to other neurological conditions (AIHW, 2018). Globally, 

more than 50 million people are affected from dementia which is projected to triple by 2050 

(AIHW, 2018) . Furthermore, the financial cost of dementia for 2018 was estimated to be 1 

trillion US dollars (AIHW, 2018). Despite this threat, we lack robust biomarkers and treatment 

approaches to address this global health crisis (Santa-Cecilia et al., 2019). 

 Huntington's disease (HD) is a progressive neurodegeneration which has symptoms such 

as movement dysfunction, cognitive abnormalities, and psychiatric disturbances. The leading 

cause of HD is excessive repetition of CAG (cytosine-adenine-guanine) in the huntingtin (HTT) 

gene, which causes polyglutamine increment in the mutant huntingtin (mHTT) protein (G. R. 

Poudel, Harding, Egan, & Georgiou-Karistianis, 2019). Chorea which is involuntary motor 

symptoms due to HD can be diagnosis clinically; although, lack of mental and cognitive 

dysfunctions takes precedence over motor prodrome. 

 The prevalence of HD is estimated to be between 5.96 to 13.7 cases per 100,000 

members of the population in Australia, northwestern Europe, and North America (Baig, 

Strong, & Quarrell, 2016). This progressive disorder can begin being symptomatic between 30 to 

50 years of age and can last up to 15-20 years after the first clinical diagnosis (Solberg, Filkuková, 

Frich, & Feragen, 2018). Genetic testing is capable to estimate the number of CAG repeats in 

total, which can help inform about disease burden and estimated onset time. However, genetic 

testing alone is not sufficient to track disease progression and the changes occurring in the brain. 

Recent advancements in neuroimaging technology (e.g., using high-resolution MRI) have 

made it possible to visualise structural imbalances and functional changes in regions of the whole 
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brain, much prior to onset period even in pre symptomatic (pre-HD) stage (Douaud et al., 2006; 

Georgiou-Karistianis, Scahill, Tabrizi, Squitieri, & Aylward, 2013; N. Z. Hobbs et al., 2010; 

Müller & Kassubek, 2013; Govinda R. Poudel, Julie C. Stout, et al., 2014). This research has 

uncovered that sub-cortical region of human brain has highest degeneration making it possible 

biomarker of atrophy progression. Despite this, our current understanding of how HD 

pathology spreads in the brain over time remains limited. Furthermore, HD also provides a good 

model of degeneration that is independent of ageing process. 

  

1.1 Trans-neuronal spread hypothesis 

Emerging evidence highlights that neuro-synaptic exchange of mutant huntingtin (mHTT) 

protein may better clarify the spatial dispersion of pathology in HD brain (G. R. Poudel, 

Harding, Egan, & Georgiou‐Karistianis, 2019). This pathology (mHTT) while examining in 

mouse model shows trans-synaptic progression (Pecho-Vrieseling et al., 2014). Daniel and Barry 

(2015) suggested that the trans-neuronal mHTT distribution takes place through the vesicle 

fusion mechanism across axonal pathways, which leads to the accumulation of mHTT in distant 

neurons connected by axons. Furthermore, the distribution of pathology in animal models and 

humans suggests a typical pattern of cortico-striatal spatial progression of degeneration in HD, 

with the selective early loss of medium spiny projection neurons in the striatal cells (Mitchell, 

Cooper, & Griffiths, 1999). 

Extensive neuronal cell death appears in the other parts of the striatum over time, which 

further leads to increment of physical structures in the lateral ventricles (Mangiarini et al., 1996). 

Striatal degeneration is progressive along the dorsomedial to ventrolateral direction (Roos, Pruyt, 

de Vries, & Bots, 1985; Vonsattel, 2008). Cortical degeneration emerges in close-to-onset 

premanifest stages of disease, particularly in the regions that are functionally and structurally 

linked to the striatum (Douaud et al., 2006; Georgiou-Karistianis et al., 2013; Hobbs et al., 2009; 

Müller & Kassubek, 2013; Govinda R. Poudel, Julie C. Stout, et al., 2014). These disclosures 
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suggest that normally apparent axonal connections in the frontal cortex may expect an essential 

part in working with the spread of HD.  

 

Figure 2: Visualisation of prion-like transfer of mHTT protein as a release and uptake 
mechanism by donor and acceptor cells respectively in HD  

Note: A) shows freely distributed untagged mHTT protein with acceptor cell. B demonstrates 
the transfer mechanism of both tagged proteins with different fluorophores resulting in co-
localisation of both proteins. C: When mixed with two different halves of the fluorophore, 
transfer mechanism and aggregation of protein result in the complementation of halves of 
fluorophores. D: an alternative way of visualising sequestration by FRET or FLIM imaging when 
both proteins are tagged with different fluorophores. E: In vitro quantitative FACS analysis of 
mHTT transfer in HEK cells (Jansen, Batenburg, Pecho-Vrieseling, & Reits, 2017). 
 
 

Figure 2 demonstrates the process of prion-like transfer of aggregated proteins between 

cells HD (Jansen et al., 2017). Overall, various mechanisms have been illustrated to cover the 

trans-neuronal spread. However, the robust mechanisms of trans-neuronal progression of 

atrophy and protein aggregation in the HD brain remain to be elucidated. 

 

1.2 Neuroimaging studies of pattern of degeneration in HD 

A few large-scale neuroimaging studies in HD have identified patterns of spread of 

degeneration in an HD brain. Structural MRI studies have illustrated the degeneration progress 

in the striatum specifically in putamen and caudate is the crucial neuro-pathological feature of 

HD (Govinda R. Poudel, Julie C. Stout, et al., 2014; Sturrock et al., 2015; S. J. Tabrizi et al., 2009; 

Sarah J. Tabrizi et al., 2011; Vemuri & Jack, 2010), with other areas outside the striatum 

demonstrating significant deterioration with disease progression. 



 12 

 

Figure 3:  MRI scans show brain degeneration of Pre-Symptomatic and Symptomatic HD with 
respect to healthy controls (G. R. Poudel, Harding, Egan, & Georgiou-Karistianis, 2019). The 
red-yellow colours represent degeneration. Degeneration of the striatum is the earliest and most 
distinctive marker.  

 

MRI is useful for detecting changes in the brain early. These changes have been 

demonstrated in other neurodegenerative cohorts. For example, brain degeneration can be 

detected even during mild cognitive impairment (MCI) patients by using advanced machine 

learning algorithms and combining data with standard neuropsychological test results (Moradi et 

al., 2015). In addition, data-driven techniques developed for the diagnosis of neurodegenerative 

diseases (Koikkalainen et al., 2016), including the Bayesian model to "automatically identify 

distinct latent factors of overlapping atrophy patterns from voxel-wise structural MRIs" (Zhang 

et al., 2016).  Multimodal neuroimaging can also provide better biomarkers for 

neurodegenerative diseases (Wang et al., 2017); particularly when data-driven models of disease 

progression is applied (Oxtoby et al., 2017). 

Pre-symptomatic HD research have shown intriguing appearance of striatal degeneration 

as early as twenty years prior to the onset of first visible symptom (motor) (Tabrizi et al., 2009). 
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Specifically, putamen, caudate as well as globus pallidus regions in sub-cortical brain, reduced 

volumes have been reported by 25.7%, 30.9% and 29.3% respectively (S. J. Tabrizi et al., 2009). 

In addition, recent longitudinal data from TRACK-HD and IMAGE-HD have also found that 

other cortical regions, including the occipital, motor, and prefrontal cortices, also lose volume 

over time in pre-HD near to onset (Tabrizi et al., 2011, Poudel et al., 2014).  

 

Figure 4: Neuroimaging illustrating structural variations in human brain regions in pre-

symptomatic HD and symptomatic HD compared to control. 

 

These neurodegenerative changes are spatially progressive and correlate with clinical 

measures, such as age at clinical onset, disease duration, and the CAG repeat length. However, 

these studies can only quantify and visualise the pathology involved. Therefore, we implement 

NDM in our study to elucidate the progression of atrophy in HD. 

 

1.3 Network Diffusion Model of Trans-Neuronal Spread  

Development of network spread models have helped in mapping the epicentres and 

trajectory of disease spread in neurodegenerative conditions. The network spread model's 

primary assumption is that the spatial pattern of atrophy in neurodegeneration is structured and 

driven by a mechanistic process. One mechanistic process that has been well-studied is the 
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prion-like spread of disease via misfolded protein structures. Neurodegenerative disorders, such 

as PD, AD, and HD, are believed to be caused by the accumulation of misfolded protein 

structures, disrupting the function of cells, tissues and other parts of the brain. Payne and 

Krakauer (1998) first endeavoured to display the procedure of prion accumulation and neuronal 

degeneration inside the cerebrum using traditional diffusion processes. However, classical 

diffusion was not preferable due to heterogeneous brain characteristics as it was correctly 

mapped for modelling the freely moving particles in an analogous medium (Payne & Krakauer, 

1998). 

First successful model came from Stumpf and Krakauer (2000), who incorporated brain 

connectivity features into the prion diseases model. However, since it was evident that prion 

proteins and misfolded proteins spread throughout the nerves and affect neighbouring regions, 

homogeneous diffusion processes became unrealistic for bigger spaces, such as the whole brain. 

Keeping this in mind, Matthäus (2006) first introduced the network approach, mathematically 

representing the network with a set of nodes as neuronal cells, with edges to describe the 

connections between neuronal cells. This approach was instrumental in identifying the misfolded 

protein spread and handling the various spatial scales. Further Matthaus (2009) himself suggested 

a system of reaction-diffusion equations, where the network nodes could represent a distant 

region to cover larger spaces to overcome the limitation of his previous work.  

These initial findings ultimately led to the development of NDM in 2012 (Raj et al., 

2012), which modelled the degenerative process as the first order of linear diffusion on the 

brain's structural connectome (Ashish Raj & Iturria-Medina, 2019). Furthermore, NDM allows 

for the macroscopic prediction of atrophy patterns by using bigger scale network connectivity 

for the whole brain (Carbonell, Iturria-Medina, & Evans, 2018). The model proposed by Ashish 

Raj, Kuceyeski, and Weiner (2012) uses a macroscopic NDM in which disease concentration 

factor, and the strength of the physical connection between the cells, decides the nature of the 

misfolded protein spread.  
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Various neurodegenerative conditions such as, AD, PD, and HD has successfully 

incorporated NDM to demonstrate the trans-axonal spread of atrophy through the structural 

connectome of the brain (Sneha Pandya, Mezias, & Raj, 2017; S. Pandya et al., 2019; Govinda R. 

Poudel et al., 2020; Ashish Raj et al., 2012; A. Raj et al., 2015). The model assumes a linear 

diffusion of disease factors (e.g., mHTT protein) through the axonal connection.  Studies have 

likewise demonstrated that mHTT attacks areas of the brain that have high network connection, 

with lower bunching in neighbouring areas (Faria et al., 2016; McColgan et al., 2015). Hence, the  

NDM application (Ashish Raj et al., 2012) to track the progression of atrophy in HD is a 

promising tool.  

 

1.4 Aims and Hypotheses 

This research aims to develop and apply NDM to predict the spatial pattern of degeneration 

over time in pre-HD.  We used the data from a multi-site international study of HD (Track-On 

Study) to investigate whether NDM can predict the pattern of degeneration. These data for this 

study were permitted to use by the CHDI (Cure Huntington's Disease Initiative) foundation as a 

part of the data use agreement. The anonymised data contains clinical and demographic patient 

data; cognitive, neuropsychiatric, oculomotor and quantitative motor data; brain imaging (MRI); 

and blood, tissue, and genetic markers.  

Specific aims: 

1. Compared to healthy controls, to characterise the longitudinal changes in the cortical and 

subcortical brain volume in premanifest HD (pre-HD).  

2. To implement an NDM for predicting the longitudinal variations in brain volume in pre-

HD. 
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Hypotheses: 

1. Premanifest HD will show widespread degeneration in the whole hemispheric brain regions 

over time, compared to healthy controls. 

2. Network diffusion can better predict he longitudinal change in brain volumes in pre-HD, 

compared to controls.  

 

1.5 Justification 

1.5.1 Longitudinal Degeneration in premanifest Huntington’s Disease 

In the last few years, neuroimaging studies have provided critical new information 

regarding robust and reproducible structural brain changes in pre-HD, including the IMAGE-HD 

study, TRACK-HD and PREDICT-HD study. In particular, the TRACK-On HD has reported 

robust 12- 24 months structural changes in caudate and putamen before (~15 years) symptom 

onset (Tabrizi et al., 2013; Aylward et al., 2011; Noululous et al., 2010). In addition, whole-brain 

volumetric changes (and changes in cortical and sub-cortical volumes, separately) have also been 

reliably documented, including widespread cortical thinning. These early striatal changes, and 

evolving cortical changes, are now accepted as the hallmark of the disease and hence support the 

rationale for further investigation of models for the propagation of degeneration in HD.  

1.5.2  Considerations of Statistical Analysis Tool  

Using appropriate and robust statistical analysis methods is always vital in any research. 

For example, we have encountered the use of t-test or paired t-test for quantifying degeneration 

in HD. However, more advanced statistical methods are necessary to model repeated 

assessments in longitudinal studies.  To overcome this challenge, linear mixed effect model 

(LME) statistical approach was fitted to investigate changes in pre-HD compared to controls.  
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1.6 Ethical Approval 

Ethical approval has been granted by the Australian Catholic University Human Research Ethics 

Committee (reference number 2019-380N).  
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Chapter 2: Background  

 

2.1 Huntington’s Disease  

Huntington's disorder (HD) progressively spread throughout the brain ultimately causing 

decay of nerve cells mostly in sub-cortical region (basal ganglia). Functional abilities such as 

movement, cognitive, mental, and psychiatric conditions are deteriorated in span of time as the 

disease spreads. This inherited disorder can show signs of motor symptoms as early as thirties 

and forties, though, disease onset may be much prior or later in life. In some cases, HD onset 

can occur before early twenties called as juvenile HD.   

2.2 Symptoms of HD 

Movement, cognitive and psychiatric disabilities are most common symptoms in HD. 

Symptoms appearance can be random depending among HD patients. Some effects of 

symptoms appear dominating during the progression of disease or on the other hand, 

significantly affecting functional ability. The following list provides a range of symptoms relevant 

to HD (adapted from https://www.mayoclinic.org/diseases-conditions/huntingtons-

disease/symptoms-causes/syc-20356117). 

Muscular: abnormal walking, increased muscle activity, involuntary movements, problems with 
coordination, loss of muscle, or muscle spasms 

Cognitive: amnesia, delusion, lack of concentration, mental confusion, slowness in activity, or 
difficulty thinking and understanding 

Behavioural: compulsive behaviour, fidgeting, irritability, or lack of restraint 

Psychological: delirium, depression, hallucination, or paranoia 

Mood: anxiety, apathy, or mood swings 

Other: difficulty speaking, memory loss, tremor, or weight loss 

https://www.mayoclinic.org/diseases-conditions/huntingtons-disease/symptoms-causes/syc-20356117
https://www.mayoclinic.org/diseases-conditions/huntingtons-disease/symptoms-causes/syc-20356117


 19 

 

2.3 Pathology of HD 

The primary pathology in HD is found to be decay of specific neurons cells in striatum 

and cerebral cortex (Mitchell et al., 1999). MRI scans of premanifest HD patients more than 20 

years before onset show localised atrophy in the striatum and cerebral cortex (Georgiou-

Karistianis et al., 2013; Govinda R. Poudel, Gary F. Egan, et al., 2014). However, atrophy is 

largely progressed in the manifest stage of the disease, covering the occipital, motor, and frontal 

areas of the brain, as revealed by the studies of post-mortem brains and MRI scans of manifest 

HD (G. R. Poudel, Harding, Egan, & Georgiou‐Karistianis, 2019). Cognitive, motor, and 

neuropsychiatric symptoms also increase over time. While early premanifest HD may show 

subtle changes in motor and cognitive function in laboratory settings, a complex combination of 

motor, cognitive, and behavioural deficits emerge in manifest HD (G. R. Poudel et al., 2015). 

Figure 5 shows the general ageing process with abnormal protein accumulation leading to 

neurodegeneration resulting in various symptoms.

 

Figure 5: Process of ageing and neurodegeneration and regeneration (Wyss-Coray, 2016). 

This review explores the findings from the cellular, animal models and human 

neuroimaging to better understand HD's neurodegeneration's neurobiological mechanisms and 
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spatial-temporal modes. We will also review the various findings on protein aggregation, spread 

mechanism, and patterns of degeneration in HD and broadly describe the NDM implemented 

for predictions of trans-neuronal spread.  

 

2.3.1 Genetic markers of HD 

The HD gene was first mapped using DNA polymorphisms in 1983 (Gusella et al., 

1983). After decades of research the HD gene ultimately was recognised in 1993 (Reiner, 

Dragatsis, & Dietrich, 2011). This study was collaborative research of the Huntington’s Disease 

Collaborative Research Group (HDCRG). Other than in human beings, the HD gene has been 

identified in several other species such as pig (Matsuyama et al., 2000), mouse (Ambrose et al., 

1994; Heinsen et al., 1994), pufferfish (Baxendale et al., 1995), zebrafish (Karlovich, John, 

Ramirez, Stainier, & Myers, 1998), and Drosophila (Li, Karlovich, Fish, Scott, & Myers, 1999). 

The examination of CAG rehashes led to the understanding that the CAG tract in the IT15 is 

polymorphic (Read, 1993), which shows the normal range of CAG repeat numbering 9-11 at the 

lower end and 34-37 at the higher end. Individuals with a CAG repeat of more than 39 are highly 

susceptible to developing HD within their lifetime (McNeil et al., 1997). However, there are 

some exceptions in the late onset of the disease (Andrich et al., 2008; Kenney, Powell, & 

Jankovic, 2007).  

While adult-onset refers to 40-50 repetitions of mutant HD, juvenile-onset HD, defined 

as onset before 20 years of age, is closely related with CAG repeats of 60 and above (Reiner et 

al., 2011). In addition, various abnormalities such as chorea, cognitive rigidity, seizures, and 

psychiatric and behavioural abnormities associated with different CAG repeat scores, which 

characterise the age of onset groups of HD (Reiner et al., 2011). Furthermore, the CAG repeat 

expansion increases if transmitted paternally and decreases if transmitted maternally (G. P. Bates, 

Mangiarini, Mahal, & Davies, 1997; Duyao et al., 1993). Hence, it is evident that understanding 

the characteristics of CAG expansion is crucial in predicting the progression of atrophy in HD.  
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2.3.2 Progression of neurodegeneration in HD 

Clinical and imaging studies can provide sufficient evidence of brain abnormalities in HD 

before symptoms appear. Neurodegenerative changes appear to accumulate over cortical and 

sub-cortical structures, resulting in almost 25% of brain weight loss in the lifetime of an HD 

patient (Halliday et al., 1998; Reiner et al., 2011). Disease spread leads to extensive neuronal cell 

death in the striatal part of the basal ganglia, which further increases the size of the lateral 

ventricles. Striatal degeneration is progressive along the dorsomedial to ventrolateral direction 

(Roos et al., 1985; Vonsattel, 2008).  

MRI studies also show that caudate atrophy is related to CAG repeats and UHDRS 

motor scores (Nicola Z Hobbs et al., 2010; Jech et al., 2007). In addition, other cortical and 

subcortical brain regions also degenerate in course of time in HD (Reiner et al., 2011). For 

instance, loss of volume in the brain regions (20% in the cortex, 30% in cerebral white matter, 

60% in the striatum, 55% in the globus pallidus, and 30% in the thalamus) are well evident 

(Reiner et al., 2011).  

 

Figure 6: Progression in rates of atrophy in early HD comparing with far onset (predicted) pre-
HD cohort (N. Z. Hobbs et al., 2010). 

Note: Above statistically mapped brain image shows A. regions of increased grey matter atrophy 
rates, B. increased white matter atrophy rates, C. progression in ventricular atrophy in early HD 
compared with pre-HD over the period of two years. Colour bar represents t-score. 
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Neuroimaging has been used extensively better to characterise the progression of brain 

pathology in HD. Out of several available neuroimaging techniques, MRI is widely accepted due 

to being non-invasive (Govinda R. Poudel, Julie C. Stout, et al., 2014; Sturrock et al., 2015; S. J. 

Tabrizi et al., 2009; Sarah J. Tabrizi et al., 2011; Vemuri & Jack, 2010). Two of the most widely 

used MRI techniques for visualising changes in the brain's grey and white matter are Diffusion-

weighted MRI (DWI) and T1-weighted MRI. The former can visualise general changes (Govinda 

R. Poudel, Julie C. Stout, et al., 2014); the latter to image microstructural changes (Govinda R. 

Poudel, Julie C. Stout, et al., 2014). MRI can also be used to detect specific atrophy in the brain's 

white and grey matter, which is invaluable for clinical research in neurodegeneration (G. R. 

Poudel et al., 2015). Using MRI, it is also possible to map the functional and structural networks 

in neurodegenerative conditions (Govinda R. Poudel, Gary F. Egan, et al., 2014). Advanced 

approaches can be applied to MRI data for generating brain volumes (Agosta, Galantucci, & 

Filippi, 2017). The National Institute on Aging-Alzheimer's Association has described MRI as a 

potential biomarker due to its capability to detect pathological changes in the brain without an 

autopsy (Shimizu et al., 2018). MRI is still playing an essential part to detect and predict several 

neurodegenerative diseases, including AD, HD, Lewy body dementia (LBD), PD, and 

frontotemporal dementia (FTD) (Vemuri & Jack, 2010).  

 

2.4 Magnetic Resonance Imaging (Neuroimaging) 

Various neuroimaging tools are available at this point to research neurodegenerative 

conditions. MRI plays a vital role in conducting feasibility studies on several neurodegenerative 

diseases and detecting specific features that support clinical research. The current availability of 

advanced MRI technology has made it possible to map neurodegenerative conditions' functional 

and structural areas. The most commonly used neuroimaging techniques include MRI and 

radionucleotide imaging (SPECT and PET) (Risacher & Saykin, 2013). The use of MRI and 
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radionucleotide imaging research in the pathology and progression of neurodegenerative diseases 

is possible. However, in the context of in vivo neuroimaging techniques, MRI is broadly used for 

research in anatomical changes and neurodegeneration (Risacher & Saykin, 2013). The utility of 

MRI in different neurodegenerative conditions is briefly reviewed below.  

 

2.4.1 Alzheimer’s Disease (AD) 

 Structural MRI (SMRI) can be used to investigate structural changes in brain anatomy in 

neurodegenerative diseases. In one study, regional volumes and regional tissue morphometry 

extracted from sMRI techniques were able to detect brain atrophy in AD patients (Risacher & 

Saykin, 2013). The decline of neurons, synapses, and dendritic de-arborisation that occurs on a 

microscopic level in AD, closely related to grey matter atrophy, can be captured by sMRI 

(Vemuri & Jack, 2010). Several studies demonstrated mild cognitive impairment (MCI) acts as 

intermediate atrophy between healthy aging and AD. Increased reduction in density of volume 

and grey matter is seen in MCI individuals compared to an AD patient, specifically in temporal, 

parietal, and frontal lobes in focal cortical atrophy. Understanding the progression from MCI to 

AD through measurement of volume, morphometry, and rate of brain atrophy is possible using 

sMRI techniques (Risacher & Saykin, 2013). Mid-temporal lobe (MTL) volume loss is recognised 

as the supporting criteria for a diagnosis of probable AD and MCI due to AD (Agosta et al., 

2017). With 65-80% accuracy in predicting the risk of further development of AD in a patient 

with MCI, using sMRI with advanced machine learning algorithms has become highly acceptable 

for research (Agosta et al., 2017). Several in vivo biomarkers developed using MRI study are 

available, including the latest neuroimaging markers of abnormal brain amyloid deposition and 

neuronal degeneration used for diagnosis of probable AD (McKiernan & O’brien, 2017). 
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2.4.2 Lewy Bodies Dementia (LBD) 

 LBD represents 10-15% of all onset dementia cases and is the second most common 

neuro-disorder. The accumulated α-synuclein within Lewy bodies and Lewy neurites determines 

the pathological trademark of LBD. However, it is sometimes detected alongside the presence of 

AD pathology at autopsy in the form of neuritic plaques (Agosta et al., 2017). Specific 

symptoms, such as fluctuation in executive function, attention, and higher-order visual function, 

are common in LBD. In addition, researchers have identified widespread structural degeneration  

in cortical and subcortical regions in the brain. 

Furthermore, individuals with LBD show faster rates of cerebral pathology in the medial 

and lateral temporal lobes areas, including the occipitotemporal areas (Risacher & Saykin, 2013). 

Observation of α-synuclein protein, referred to as Lewy neurites and Lewy bodies, makes it 

distinct in pathological terms (Blamire, 2018). However, studies have shown substantial 

similarities between LBD and AD concerning atrophy in these regions (Agosta et al., 2017).  

 

2.4.3 Parkinson’s Disease (PD) 

 MRI research in PD is mainly focused on the substantia nigra. Due to the lack of a clear 

outline of the substantia nigra in volumetric studies, the combined use of advanced MRI 

techniques is prevalent in this research field. Other studies using T2- weighted sequences show 

an increment of iron content. The nature of the structural combination of the substantia nigra 

with the thalamus and a volume change determines PD from the control group with a high level 

of accuracy. Furthermore, sMRI studies have determined the subtle cortical thinning in 

cognitively intact PD in frontal, temporal, parietal and occipital lobes (Agosta et al., 2017). 

In some cases, patients with PD in the absence of dementia showed atrophic and functional 

brain changes. Additionally, grey matter atrophy in the left anterior cingulate, left gyrus rectus, 

left parahippocampal gyrus, and the right frontal lobe is shown in PD patients. Overall, various 
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studies on PD have determined significant atrophic, functional, and molecular brain changes 

(Risacher & Saykin, 2013).  

 

2.4.4 Huntington’s Disease (HD) 

 HD causes motor and cognitive abnormalities (G. R. Poudel, Harding, Egan, & 

Georgiou‐Karistianis, 2019). The progressive decrement in striatal volume is determined in all 

stages of HD (pre-HD and symptomatic ("manifest") HD) patients (G. R. Poudel, Harding, 

Egan, & Georgiou‐Karistianis, 2019). Atrophy is seen in the putamen and caudate in the early 

stages, which later expanded to the nucleus accumbens and globus pallidus parts of the brain (G. 

R. Poudel et al., 2015). Further, progression of atrophy is identifiable also in grey and white 

matter in brain of individuals with HD (Govinda R. Poudel, Julie C. Stout, et al., 2014; Risacher 

& Saykin, 2013). Structural MRI investigations showed the morphological results of the cortico-

striatal movement of atrophy in HD (G. R. Poudel, Harding, Egan, & Georgiou-Karistianis, 

2019). Reduction of volume in the striatum has been confirmed in MRI neuroimaging, especially 

from TRACK-HD, PREDICT-HD and IMAGE-HD. Cross-sectional data reported putamen 

volume reduction is greater than caudate volume in pre-HD and early-stage Symp-HD (S. J. 

Tabrizi et al., 2009). Overall, structural MRI studies have determined the various microstructural 

changes in white matter (Govinda R. Poudel, Julie C. Stout, et al., 2014), thalamus, hippocampus 

and other brain regions in HD patients (Georgiou-Karistianis et al., 2013).  

 

2.5 Diffusion Weighted Imaging (DWI) 

DWI has made it possible to characterise the white matter microstructure. The minute 

changes related to normal brain development, ageing, and various neurological diseases can be 

determined with the help of DWI (Jelescu & Budde, 2017). In AD, it is reported that white 

matter alterations take place in the temporal and frontal lobes. In the last few years, DWI has 

shown early and more accurate diagnosis of AD. Further, DTI studies have shown the capability 
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to differentiate AD patients from healthy individuals using microstructural measures (Agosta et 

al., 2017). The intensity of scanned image depends upon strength and direction of the magnetic 

diffusion gradient (Müller & Kassubek, 2013). A recent longitudinal study suggests that changes 

in the white matter among LBD and AD patients can be detected over one year, as shown in 

Figure 6.  

One of the most valuable benefits of DWI is its absorbance capability of changes in 

microscopic level, which are not visible in traditional structural MRI sequences. For example, 

study of white matter structural connectivity disconnection using DWI,  elaborated on existing 

knowledge about the progression of neurodegenerative pathology (Weston, Simpson, Ryan, 

Ourselin, & Fox, 2015). In addition, diffusivity changes in the thalamus, which further extended 

towards putamen and caudate nucleus, correlates with global functional impairment, CAG repeat 

length, and bicaudate ratio (Seppi et al., 2006).  

 

 
 

Figure 7: Diffusion-weighted imaging-based microstructural measures show significant 
variations in tracts of white matter in HD (adapted from Poudel et. al., 2014).  
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Furthermore, DWI studies showed significant variation in white matter and grey matter 

degeneration in pre-HD patients (G. R. Poudel, Harding, Egan, & Georgiou-Karistianis, 2019).  

However, clinical practice is yet to recognise these techniques, and they remain to be subjected 

to thorough validation (Frisoni, Fox, Jack, Scheltens, & Thompson, 2010).  

 

2.6 Models of Network Spread  

The protein misfolding process is a common pathology in various neurodegenerative 

diseases, including HD.  The accumulation in misfolded protein disrupts the function of cells, 

tissues, and other parts of the brain, ultimately causing cell death. Various studies have attempted 

to develop a biophysical model for this process so that degenerative processes can be predicted 

(Ashish Raj & Iturria-Medina, 2019). 

2.6.1 One Dimensional Model 

 Eigen suggested using the mathematical model on prion dynamics to explain the 

conversion process of a prion protein into a misfolded protein by using ordinary differential 

equations. This model was called a template-assisted model, or the heterodimer model. However, 

the model was unable to replicate the long incubation period typically found in prion diseases. 

Currently, the nucleated polymerisation model (NPM) yields a mathematical formalisation of the 

prion replication mechanism. However, various modifications and additions to the NPM have 

been suggested. Later Greer, Pujo-Menjouet, and Webb (2006) suggested a transport partial 

differential equation (PDE), which showed three-dimensional, epidemiological-like models. PDE 

was later updated by Pruss (Carbonell et al., 2018).  

 

2.6.2 Spatial Spreading 

 Payne and Krakauer (1998) attempted to model the process of prion aggregation and 

neuronal transport inside the brain by incorporating the classical diffusion process. The classical 

diffusion process in the heterogeneous brain was not preferable due to its suitability for 
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modelling the freely moving particles in a analogous medium. Among decades of research, it is 

believed that Stumpf and Krakauer's model was the first successful model to attempt 

incorporating brain connectivity features into a prion diseases model described by 

epidemiological-like equations (Carbonell et al., 2018).  

Figure 8: Disease-specific MPs and characteristic anatomical progression patterns  

 

Note: (A) Aβ plaques in the cortex of an Alzheimer’s disease (AD) patient. (B) Tau 
neurofibrillary tangle in a neuron of an AD patient. (C) α-synuclein inclusion in a neuron from a 
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Parkinson’s disease (PD) patient. (D) TDP-43 inclusion in a motoneuron of the spinal cord 
from a patient with ALS (Carbonell et al., 2018). 
 

Table 1: Mathematical Modelling research on Neuro-disorder (Protein Aggregation and 
Network Spread) as suggested review (Ashish Raj & Powell, 2018) 

 

 

2.6.3 The Network Approach  

Matthaus (2009) developed a system of reaction-diffusion equations to overcome the 

limitation of his previous work. Since earlier research was more concentrated on a microscopic 

level (neuronal level), macroscopic studies, which include more considerable scale network 

connectivity of the whole brain, have been introduced (Carbonell et al., 2018). Ashish Raj et al. 
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(2012) proposed the macroscopic NDM, in which disease concentration factor and strength of 

the physical connection between the cells decides the nature of the spread of misfolded protein. 

NDM has been further extended to identify the brain atrophy regions and sources comparing 

brain connectivity networks (Carbonell et al., 2018).  

 

2.6.4 Network Diffusion Model (NDM) 

 NDM models the spread of neurodegenerative disorder in the cerebrum. Given the 

hypothesis that misfolded protein in this disease spreads via neuronal connections instead of 

nearness, NDM provides a tool to model this behaviour. The current model for the spread of 

neurodegeneration through network diffusion was developed by utilising the model of random 

dispersion for misfolded protein in the cerebrum from higher to lower degrees of concentration 

(Ashish Raj, 2015). This model has been proven to identify the spread of degeneration and has 

been suggested to predict the future long-term atrophy pattern. Furthermore Abdelnour, Voss, 

and Raj (2014) suggest that the predictability of correlation structures of NDM is far better than 

others when applied in the structural brain networks.  

 A recent study in HD suggests that the NDM can be used to determine the pattern of 

grey matter degeneration and white matter disconnection (G. R. Poudel, Harding, Egan, & 

Georgiou-Karistianis, 2019). Cross-sectional studies of imaging data of AD patients found that 

NDM successfully identifies the pattern of brain atrophy and metabolism (Ashish Raj et al., 

2012). Furthermore, it was suggested that NDM has greater predictability on longitudinal 

progression when observing a patient's baseline pattern (Ashish Raj et al., 2012; A. Raj et al., 

2015). Apart from prediction and pattern recognition, NDM was used successfully to identify 

from which various seed regions the tau pathology of AD patients was originating (Torok, Maia, 

Powell, Pandya, & Raj, 2018). The same study showed that many AD seeds are situated in the 

hippocampus, entorhinal cortices, and neighbouring brain areas. Subsequently, NDM was used 

in PD to establish the probable pathology seed regions and patterns of disease spread (Freeze, 



 31 

Pandya, Zeighami, & Raj, 2019a). In other studies, NDM was used to predict progressive 

supranuclear palsy (PSP) atrophy (Sneha Pandya et al., 2017). Figure 8 below shows the images  

of time resolved NMD seeded at the hypothalamus, showing progressive atrophy of subcortical 

and temporal areas. 

Figure 9 Demonstration of an NDM in predicting progressive supranuclear palsy (PSP) atrophy.  

Note: Spheres are colour-coded by lobe (Green = subcortical, blue = temporal, brown = frontal, 
red = parietal, yellow = occipital). Spheres are sized according to regional atrophy (Sneha Pandya 
et al., 2017). 
 
 
 

2.7 Network Spread of Degeneration in HD 

 

Distinct anatomical patterns of degeneration can be observed in different stages of disease 

in HD.  These anatomical patterns suggest that disease follows a specific cortico-striatal pattern, 

potentially spreading between neighbouring cells or along axonal pathways (Brundin, Melki, & 

Kopito, 2010). Research in protein aggregates in HD suggests prion-like transmission, moving 

from vulnerable to less vulnerable areas (Brundin et al., 2010). In vitro studies of the cell models 

found intracellular coagulation led by the aggregation of PolyQ in the form of wild-type 

huntingtin when collectively induced in the cells. Studies conducted in vivo in Drosophila have 

shown extensive inter-neuronal spread, and with evidence of spread also found in glia cells (Ren 

et al., 2009; Trevino et al., 2012).  
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When studied in animal models such as mice, research indicated that aggregation of 

huntingtin leads to progressive diseases that can spread quickly (Daniel & Barry, 2015; Pearce, 

Spartz, Hong, Luo, & Kopito, 2015). Furthermore, a study of three patients suggested that 

mutant forms of huntingtin, introduced as allografts in an intracerebral part of striatal tissue, 

were also found on extracellular covering (matrix) of the transplanted tissue and even in the host 

brain. These aggregates were seen on neutrophils, ECM (Extracellular matrix), neurons, blood 

vessels, and so on (Cicchetti et al., 2014; Jeon et al., 2016). Therefore, it was concluded that the 

transfer of aggregates of mutant huntingtin could take place among the host cells and allografts, 

and in-depth research is necessary to test aggregates of huntingtin so that its characteristics can 

be better validated (Brundin et al., 2010). 

There are plenty of evidence to suggest that atrophy has prion-like properties and can seed 

pathology in neighbouring cells, including distantly associated healthy neuronal cells (Masnata & 

Cicchetti, 2017). Trans-neuronal spreading in HD is further validated by the study conducted by 

Pecho-Vrieseling et al. (2014), which investigated the transsynaptic propagation theory.  
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Table 2  In vitro evidence of m HTT spreading capacities (Masnata & Cicchetti, 2017). 
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Chapter 3: Longitudinal Data Analysis in Neurodegenerative Diseases 

 

This chapter addresses the advanced factual way to deal with the longitudinal data 

analysis in neurodegenerative sicknesses. Understanding movement of atrophy in 

neurodegenerative disorder is vital for restorative intercessions just as creating critical clinical 

preliminaries for medicines. Longitudinal information concentrates on giving the admittance to 

atrophy movement by contrasting results more than once over the long run and regard to change 

in variables. Thusly, this chapter will dissect as of now accessible current available modern 

statistical modelling in relation to disease progression in HD and clarify the purpose for 

implementing linear mixed effect modelling in this study. This chapter is the linking chapter to 

Chapter 4. 

  

3.1 Challenges 

Although longitudinal data give access to the temporal disease trajectories, statistical 

analysis is far more complex due to complicated correlation, irregular visits dates, missing data, 

and a mix of time-varying and static covariates (Garcia & Marder, 2017). These factors make 

longitudinal data analysis more complicated, primarily related to neuroimaging data, leading to 

inaccurate data analysis. Longitudinal data have more statistical power with less variability than 

cross-sectional data (Zeger & Liang, 1992). In the longitudinal study, research conducted several 

observations of the same subjects over a period of time. A fixed example of population elements 

is measured repeatedly on the same variable. Correlated data, irregular visits (time) data, missing 

data are challenges in analysing longitudinal data. Hence, it is vital to select a more inclusive 

statistical approach that can overcome all challenges with the longitudinal data.  

           The mixed-effect model is considered to be a more flexible and accommodative statistical 

method and is suggested by Food and Drug Administration (FDA) for observational and clinical 

studies (Garcia & Marder, 2017).  
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Applications of the mixed effect model have become an attractive tool to evaluate disease 

progression in neurodegenerative disorders. The mixed-effect model explains the regression 

relationship between covariates and repeated measures. It contains both fixed and random 

effects. Random effects can capture the correlation of repeated measures, which can be used to 

estimate the group-specific effects and elaborate group-specific or within-group trends over 

time. Mixed effect models are utilised mainly in HD, e.g., Tabrizi and colleagues (Sarah J Tabrizi 

et al., 2013) used linear mixed effect model to explain longitudinal variations of several outcomes 

over 36 months period. In addition, Long et al. (2014) also used a linear mixed effect model to 

estimate motor impairments timing in the progression of HD. 

  

3.2 General Approaches for Longitudinal Data 

 Several statistical approaches are implemented to analyse the longitudinal data depending 

upon different criteria, such as several time points and repeated measures (multivariate). The 

change score analysis method is implemented when there are only two-time points. This 

statistical approach is a direct method to analyse the difference between the measured entity at 

each time point. For example, Sturrock et al. (2015) used this approach to evaluate longitudinal 

in vivo brain metabolite profiles in HD over 24 months. Govinda R. Poudel et al. (2015) used 

this method to analyse the longitudinal changes in white matter microstructure in HD over 18 

months.  

 

3.2.1 Repeated Measures using ANOVA 

 One way analysis of variance (ANOVA) approach helps to remove correlation problem 

(Garcia & Marder, 2017) and is suitable for both change score analysis and repeated measures 

(Gibbons, Hedeker, & DuToit, 2010). This method includes time and disease criteria and an 

interaction term (time x disease criteria) to assess group differences over time. The statistically 

significant interaction term (time x disease criteria) represents the effect of time varies between 
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disease criteria. However, the ANOVA approach implemented with missing data generates 

biased parameter estimation (Shaw & Mitchell-Olds, 1993).  

 

3.2.2 Multivariate Analysis of Variance (MANOVA) 

The multivariate ANOVA (MANOVA) approach makes more flexible variance-

covariance estimation (Zeger & Liang, 1992); however, these two methods have many 

similarities. For example, both ANOVA and MANOVA hypotheses that time intervals are 

equally distributed over space, normally distributed data, and each statistical approach requires 

complete data, i.e., missing data is not accepted for any subjects in any period of observation.  

 

3.2.3 Limitation of Repeated Measures ANOVA and MANOVA 

 These limitations in approaches yield modern methods for modelling disease progression 

in neuroimaging longitudinal data. Namely, generalized estimating equations model (Liang & 

Zeger, 1986) and mixed-effects regression (Laird & Ware, 1982) are suggested and used in 

several study (Maroof, Gross, & Brandt, 2011; Sarah J Tabrizi et al., 2013). These methods allow 

both time-varying predictors (e.g., age, brain volume) and time-invariant predictors (e.g., gender, 

genotype) and solve the problem of missing data and irregular timed information.  

           In this study, we exclude the generalized estimation equation model apart from having 

various advantages, as it is not designed or modelled to analyse the correlation structure of 

repeated measures (Fitzmaurice, Davidian, Verbeke, & Molenberghs, 2008). Hence, the mixed-

effect regression model is the best statistical approach for my study. In HD, the mixed-effect 

regression model is widely used for the statistical modelling of correlated longitudinal data. It has 

already proved its statistical computing power in analysis of prospective, observational, multi-

center longitudinal studies such as COHORT (Dorsey & Investigators, 2012), PHAROS (Biglan 

et al., 2016), PREDICT (Jane S Paulsen et al., 2014) and TRACK-HD (Sarah J Tabrizi et al., 

2013). Mixed effect regression models are widely implemented yet come with the primary 
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limitation of complex computational modelling involving time-consuming numerical integration 

over random effects, especially for non-linear modelling. However, in this study, we hypothesis 

disease progression in HD as a linear function of time; this drawback can be avoidable. Hence, 

we implemented a Linear mixed-effect model (LMER) to estimate and predict disease 

progression in HD for 24 months on TRACK-ON HD cohort (Kloppel et al., 2015). This 

approach would be the first to analyse TRACK-ON HD longitudinal data set to predict atrophy 

progression in HD, along with NDM. Repeated measures ANOVA and MANOVA, as 

discussed has some limitations which are pointed below (Vock et al., 2012): 

1. Observation time for each subject should be at the same time points. However, it is 

unrealistic to achieve practically due to various reason. For example, in our dataset, some 

participants had participated for three years while some other had only participated two 

years.  

2. ANOVA assumes that “the correlation among all measured data on the given subject is 

same regardless of how data were measured in real time”. This completely ignore the 

random variation between subjects and within subjects’ correlation variation. 

3. Both ANOVA and MANOVA assumes covariance matrix of measured data within each 

subject is similar to all subjects. In this study, people were randomly assigned to two 

different groups, patients’ group, and healthy controls. Hence, it is inappropriate to 

assume same covariance matrix. 

4. There are other prominent issues with regards to covariates which fails to categories 

between time-varying and time-invariant covariates.   

These limitation in approaches yields to modern methods for modelling disease 

progression in neuroimaging longitudinal data. Namely, generalized estimating equations model 

(Liang & Zeger, 1986) and mixed effects regression (Laird & Ware, 1982) are suggested and used 

in several study (Maroof et al., 2011; Sarah J Tabrizi et al., 2013). These methods allows both 
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time-varying predictors (e.g., age, brain volume) and time- invariant predictors (e.g., gender, 

genotype) as well as solving the problem of missing data and irregular timed information.  

 This study exclude generalized estimation equation model apart from having various 

advantages, as it is not designed or modelled to analyze the correlation structure of repeated 

measures (Fitzmaurice et al., 2008). Hence, mixed effect regression model is the best statistical 

approach for my study. In HD, mixed effect regression model is widely used for statistical 

modelling of correlated longitudinal data. It has already proved its statistical computing power in 

analysis of prospective, observational, multi-center longitudinal studies such as COHORT 

(Dorsey & Investigators, 2012), PHAROS (Biglan et al., 2016), PREDICT (Jane S Paulsen et al., 

2014) and TRACK-HD (Sarah J Tabrizi et al., 2013). Mixed effect regression models are widely 

implemented yet come with the primary limitation of complex computational modelling 

involving time-consuming numerical integration over random effects, especially for non-linear 

modelling. However, in this study we hypothesize disease progression in HD as linear function 

of time, this drawback can be avoidable. Hence, we implemented Linear mixed- effect model 

(LMER) to estimate and predict disease progression in HD over a period of 24 month on 

TRACK-ON HD cohort (Kloppel et al., 2015). As far as we believe, this approach would be the 

first to analyse TRACK-ON HD longitudinal data set to predict atrophy progression in HD, 

along with NDM. 

 

3.3 Linear Mixed-Effects Model (LME)  

LME model is the advanced statistical approach to analyse longitudinal data. It is capable 

to model the longitudinal data with between subject and within subject correlations with 

inclusivity of covariables. we used an LME model to analyse the volume data from 82 brain 

regions across participants. One of the main reasons for using an LME model for our 

longitudinal study cohort is that it can be used to represent complex features of longitudinal data 

(Davis, 2002). LME models allow quantification of the variability in outcomes between and 
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within-subjects. The allow adjusting for covariates, both time-dependent and time-invariant. 

They can also account for missing data if the data are MAR (missing at random). The 

representation of the model into fixed-effects and random-effects is referred to by the term 

"mixed effects". These models can be specified so that some regression parameters are fixed or 

assumed to be the same for all subjects (e.g., the slope of a predictor), and others are random or 

distinct to every subject (e.g., intercepts) (Verbeke, 1997). An LME model (Davis, 2002; Laird & 

Ware, 1982; Verbeke, 1997) that includes both random and fixed effect parameters 

mathematically expressed as follows: 

 

𝑌𝑖 = 𝑋𝑖𝛽 + 𝑍𝑖𝑏𝑖 +  𝜖,    𝑖 = 1, … . , 𝑁                            Equation 1 

In the above equation, 

i represents each subject, whereby we have a total N number of subjects.  

Yi is the response vector for subject i which has the dimension of n i.  

Xi and Zi are known values (e.g., explanatory variables), and which have dimensional matrices of 

(ni x p) and (ni x q) respectively.  

 denotes the fixed- effects of p-dimensional vector 

bi represents the random-effects of q-dimensional vector  

i is a error component of ni dimensions. 

Furthermore, this model has following assumptions: 

1. The random effect bi.  and within-subject error I are independent for different subjects 
and independent of each other for same subject. i.e., 

Cov (bi, bj) = 0 if i ≠= j,                                

Cov (εi, εj) = 0 if i ≠= j and, 

Cov (bi, εi) = 0  

2. bi ∼ MV Nq (0, D), where D is a general (q x q) covariance matric with (i, j) element 
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 σij = σji.  

3. εi ∼MVNni
 (0, Σi), where Σi is an ni×ni covariance matrix.  

The LME model assumes that the error terms and random effects are normally distributed, 

with mean zero, general covariance matrix D, and covariance of σ2I, where I represent the 

identity matrix. We have introduced interaction effect between group and time in our model.  

 

3.3 LME Assumption 

3.3.1 Random effect assumption 

In statistical practice, histograms plotted from Bayesian estimates are generally used to 

check the normality assumption for the random effects (Pinheiro & Bates, 2002). We are fitting 

lme4 package in R (D. Bates, Mächler, Bolker, & Walker, 2014) platform to mathematically 

compute the model. In lme4 package qqnorm can be used to get normal plot of estimated random 

effects for checking marginal normality and identifying outliers. 

3.3.2 Residual terms assumption 

We come across two different residuals in the mixed model, marginal and conditional 

residual (Pinheiro & Bates, 2002). Marginal residuals are the predictors of marginal error i.e., 

deviation of a subject from group mean, and the conditional residuals are the predictors of 

conditional error i.e., deviation from each measurement within a subject from the mean of same 

subject in a period of time. 

 

3.4 Fitting LME Model in R 

Out of various packages available, we use lme4 package version 1.1-27.1(D. Bates et al., 

2014) in this study in R platform. Some codes used in the thesis are listed in appendix. It is 

described more in detail in Chapter 4. 
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Chapter 4: Linear Mixed Effects Modelling of Longitudinal Degeneration in 

Premanifest HD 

 

 The main focus of this chapter is to address the first aim of this research project.  This 

project uses the structural MRI scans from a longitudinal study in pre-HD - the Track-On HD.  

The MRI data were statistically analysed using linear mixed-effects (LME) models to derive the 

spatial distribution of degeneration in pre-HD patients comparing with healthy controls. The 

spatial maps are used as measured atrophy to inform the development of NDM in the next 

chapter. 

 

4.1 Introduction 

The CAG trinucleotide unnatural repetition in the HTT causes the HD, which results in 

formation of the mutant huntingtin protein (mHTT) and progressive neurodegeneration 

(MacDonald et al., 1993). Because of the monogenic nature of the disease, HD provides an 

excellent model of progressive neurodegeneration that is independent of the ageing process. In 

particular, individuals can be studied even before the appearance of clinical symptoms (pre-

manifest; pre-HD). Clinical diagnosis of the onset of HD depends on the assessment of motor 

symptoms. However, progressive decline in motor function, cognitive abilities, and mood 

observed are before clinical diagnosis. The average onset of HD is around 40 years of age, with a 

formal clinical assurance requiring motor signs in a person with a positive family history. Genetic 

testing is also often conducted in individuals with a family history of HD, which provides 100% 

specificity to the clinical diagnosis.  

An important marker of HD progression is the widespread degeneration of the brain 

that is independent of the ageing process. Various studies have researched the degeneration in 

HD by utilising neuroimaging procedures like MRI. These studies map brain volumes in pre-HD 
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individuals compared to a healthy control cohort (Garcia & Marder, 2017; G. R. Poudel, 

Harding, Egan, & Georgiou-Karistianis, 2019; Rodrigues et al., 2020; S. J. Tabrizi et al., 2009; 

Sarah J. Tabrizi et al., 2011; Van Raamsdonk, Pearson, Murphy, Hayden, & Leavitt, 2006). These 

studies have revealed structural and microstructural changes in the grey and white matter regions, 

such as the caudate, putamen, occipital regions, and the cortico-striatal tracts in pre-HD several 

years before disease onset. Other studies have mapped the subtle alterations in functional and 

structural brain networks within the cortico-striatal loops in pre-HD (Domínguez et al., 2017; G. 

R. Poudel, Harding, Egan, & Georgiou-Karistianis, 2019; Govinda R. Poudel, Julie C. Stout, et 

al., 2014). 

Furthermore, selective microstructural loss of white matter tracts extending from the 

striatum to the prefrontal and motor cortices have also been observed in pre-HD far from and 

close to onset (Govinda R. Poudel, Julie C. Stout, et al., 2014). Although these studies provide 

sufficient evidence to suggest early degeneration in individuals with the HD gene, there is 

emerging evidence that degeneration proliferates through brain networks, spreading from the 

striatum and affecting the cortical surface (G. R. Poudel, Harding, Egan, & Georgiou-Karistianis, 

2019). Several longitudinal studies are starting to map the potential spread of degeneration 

throughout the brain in HD.  

The PREDICT-HD is considered to be one of the first and biggest multi-site, 

longitudinal cohort studies of HD to investigate degeneration in both pre-HD and symptomatic 

HD (symp-HD)(Van Raamsdonk et al., 2006). Using MRI scans, PREDICT-HD tracked brain 

volumes, cognitive, motor, and psychiatric symptoms in pre-HD and manifest HD patients over 

ten years (2001 to 2011). The analysis of MRI scans from many individuals (N=1314) suggested 

the largest and most significant changes observed in regional brain volumes, including the 

putamen and caudate. In another multi-site MRI research in HD (TRACK and Track-On 

HD)(Sarah J. Tabrizi et al., 2011), neuroimaging changes reflecting the underlying 

neurodegenerative processes observed for twelve months in both pre-manifest and symptomatic 
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HD groups. The findings suggested that the pre-HD individuals closer to onset showed 

significantly greater whole-brain degeneration and ventricular size increase than healthy controls. 

The degeneration of the whole brain and increase in ventricular size was also observed in within-

group comparison in pre-HD far from the onset, but this was not statistically significant 

compared to controls. Importantly, consistent with the previous PREDICT-HD study, the 

degeneration in the putamen and caudate was faster in pre-HD both far from and close to onset 

(Sarah J. Tabrizi et al., 2011). Importantly, TRACK-HD was the first study to show the 

possibility of observation of brain markers before any measurable clinical decline. Corroborated 

by smaller-scale longitudinal studies such as IMAGE-HD (Domínguez et al., 2013; G. R. Poudel, 

Harding, Egan, & Georgiou-Karistianis, 2019) shows the evidence of striatal degeneration in pre-

HD. The IMAGE-HD study has likewise uncovered that caudate decay is the primary marker of 

degeneration in both premanifest and indicative phases of HD. The IMAGE-HD study also 

revealed that caudate atrophy is the most significant marker of degeneration in both premanifest 

and symptomatic stages of HD (Domínguez et al., 2013; G. R. Poudel, Harding, Egan, & 

Georgiou-Karistianis, 2019).  

Despite the progress in mapping whole-brain and subcortical degeneration in 

premanifest HD, robust spatial mapping of the degeneration in the HD brain across different 

brain regions during the premanifest stage of the disease is lacking. In a recent review, Tan et al. 

(Estevez-Fraga, Scahill, Rees, Tabrizi, & Gregory, 2021) found that there is a dire need to map 

the progressions on cortical surfaces in HD and its further research. The accessibility of large 

neuroimaging datasets from new studies such as Track-On HD has made it possible to conduct 

new cortical and sub-cortical examinations in HD (Qi & Arfanakis, 2021). Furthermore, the use 

of advanced image processing on MRI scans, followed by robust statistical modelling, should 

reveal subtle changes which might have been otherwise missed. For example, a recent study used 

longitudinal data from all three longitudinal studies (PREDICT-HD, TRACK-HD, and 
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IMAGE-HD) and used LME models to reveal imaging biomarkers that might be relevant for 

future clinical trials (Rodrigues et al., 2020).  

 

4.2 Specific aims 

We aimed to characterise the longitudinal changes in the cortical and subcortical brain 

volumes in premanifest HD (pre-HD) compared to healthy controls. We hypothesised that 

premanifest HD shows widespread degeneration in the cortical (motor) and sub-cortical 

(striatum) brain regions over 24-months, compared to healthy controls. 

 

4.3 Methods 

4.3.1 Participants 

The data used in this study are from the participants who were recruited as a part of 

Track-On HD. Track-On HD is the follow-up study of TRACK-HD (S. J. Tabrizi et al., 2009). 

In the TRACK-ON study, participants were followed up every 12 months, up to 24 months (i.e., 

three visits). A sample of N=239 participants was enrolled from the Track-On HD study, out of 

whom 106 were premanifest HD (pre-HD), 22 were early HD, and 111 individuals were age- 

and sex-matched healthy controls without HD. Four international multi-site scanners were used 

for collecting the data. In this study, we only used the data from pre-HD and healthy controls. 

Furthermore, we excluded 22 early HD. The participants were genetically tested and required to 

have a CAG repeat length greater than or equal to 40 and a disease burden score greater than 

250 (Klöppel et al., 2015). These data were made available by CHDI (Cure Huntington's Disease 

Initiative) Foundation.  

The information obtained contains clinical and demographic patient data; cognitive, 

neuropsychiatric, oculomotor and quantitative motor data, brain imaging (MRI), blood, tissue 

and hereditary markers. The participants were selected from four international cities - London, 
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Paris, Leiden, and Vancouver. The information was gathered from the study participants yearly 

between 2012 and 2014.  

Enrolment methods, consideration standards, and MRI convention have been published 

elsewhere (Klöppel et al., 2015; S. J. Tabrizi et al., 2009; Sarah J. Tabrizi et al., 2011). See Table 3 

for the demographic data.  

 

Table 3  Demographic data of Pre-HD and control participants  

 Healthy participants        Pre-HD (n=106) 

Age 23 to 65.7 18.6 to 64.1 

Male/Female 34/55 49/57 

Disease burden score ---------- 293.2 

CAG repeat length ----------- 39 to 52 

*Data are in range/average numbers 

Note. *CAG: (number of repeats >40) *Disease burden score = Age X (CAG length – 35.5) CAG: 

cytosine-adenine-guanine 

 

 

4.4 Neuroimaging Data Acquisition (MRI) 

MRI images were collected using Philips Achieva and Siemens TIM Trio 3T MRI 

scanners. The scans performed at four internationals sites were London, Paris, Leiden and 

Vancouver. Structural MRIs were acquired using T1-weighted imaging with the following 

parameters: TE 30 ms, FOV 212 mm, flip angle 80 degrees, forty-eight slices in ascending order 

with slice thickness: 2.8 mm, gap: 1.5 mm, in-plane resolution of 3.3 x 3 mm and bandwidth of 

1960 Hz per Px. Previously published research (Klöppel et al., 2015) describes the detailed MRI 

data acquisition process. 
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The process of data collection and storage was previously explained in the report of the 

TRACK-HD study (Tabrizi et al., 2009). To ensure high data quality during the acquisition of 3T 

MRI data, standardised acquisition protocols were developed to follow at all four sites (Tabrizi et 

al., 2009, Kloppel et al., 2015). These protocols included both T1-weighted volumetric and T2-

weighted sequences. To ensure good quality data, pre-imaging preparation phases were 

conducted which lasted six months. Four phases of QA were conducted, including discussion 

with the advisory group and the receipt of a full range of sequences, performing qualitative and 

quantitative review on the MRI image data, determining the stability of the sequences received 

and conducting final optimization and testing of the shortlisted MRI image data sequences. 

Furthermore, image quality was compared during quality control and different scores were given 

to determine whether T1 images were of similar quality or T1 weighted images were of higher 

quality. Additionally, the FreeSurfer neuroimaging tool was used for each image quality check. 

 

4.5 Structural MRI Data Processing 

The T1-weighted MRI scans were processed using the image processing pipeline 

presented in figure 4. Each subject's high-resolution MRI data image was utilised to segment and 

measure grey matter volumes according to the Desikan-Killiany Atlas. In addition, the 

FreeSurfer was utilised for parcellation of the T1-weighted imaging (MRI) information into 82 

subcortical and cortical cerebrum regions, as indicated by the Desikan-Killiany atlas. FreeSurfer 

analysis was conducted on the MASSIVE HPC website using the longitudinal stream "recon-all" 

function (http://www.massive.org.au).  

FreeSurfer is open-source software for assessing and analysing basic and viable 

neuroimaging data from cross-sectional or longitudinal examinations. FreeSurfer version 5.3.0 

estimates regional neurodegeneration concerning total grey matter volume for 82 cortical and 

sub-cortical brain regions. Each of these brain regions is specifically known as a region of 

interest (ROI). All ROIs associated with the cerebellum were excluded from this analysis. An 
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automated longitudinal stream method to extract brain regional volumes estimates in FreeSurfer 

(Reuter, Schmansky, Rosas, & Fischl, 2012).  

The longitudinal stream includes various processing steps as follows: a) skull stripping, b) 

Volumetric Labelling, c) Intensity normalisation, d) white matter segmentation, e) surface Atlas 

registration, f) Surface extraction, and e) Gyral labelling (Reuter et al., 2012). In addition, all MRI 

images went through standardised quality control methodologies. As a result, all participants 

included in this study had good image quality with a complete segmentation success rate.  

 

Figure 10:  The graphical representation for neuroimaging pre-processing in the study. 

Note. Free-surfer version 5.3.0 software was used to run the analysis (Reuter et al., 2012). 

 

4.4.1 Workflow Summary 

 Below, we provide the steps used in longitudinal processing of MRI data.  

 Step 1. First, all data at different time points are cross-sectionally processed with default 

workflow using recon-all, e.g.:  

recon-all -all -s <tpNid> -i path_to_t1_dcm; here t1 is one of the time points. 

2
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 Step 2. Data is processed again with recone-all creating an unbiased template from all 

the time points for each subject, e.g.: 

 recon-all -base <templateid> -tp <tp1id> -tp <tp2id> ... -all 

 Step 3. “-long” is used for processing all timepoints longitudinally, e.g.: 

 recon-all -long <tp1id> <templateid> -all 

The detailed, step-by-step method used in our study is described in FreeSurfer. 

 

 

 

4.6 Data Preparation for Longitudinal Analysis 

The volumetric data obtained from the longitudinal stream processing in FreeSurfer was 

initially in mm3, where values were in the order of 106 in magnitude for all the ROI brain 

regions. We then normalised all the ROI volumes within each subject by dividing ROI volume 

from each brain region by estimated total intracranial volume (eTIV) for all time points. After 

normalisation, every volume measurement in the analysis cohort was taken forward for 

longitudinal statistical modelling using a linear mixed model in R. 

 

4.7 Statistical Analysis 

We first inspected our longitudinal data through graphical displays. Next, we checked if our 

data are normally distributed across time. To check for normality, we visualised the raw data 

using distribution plots and Q-Q plots. The Q-Q plot was generated by graphing the two 

quantiles of data against one another. For most brain regions, the two sets of quantiles appeared 

to be from the same Gaussian distribution, as there was a straight line for all the Q-Q plots. The 

Q-Q plots and distribution plots of the raw data are shown in figure 10. From this plot, we can 

assess the overall trend of the raw data (increment, decrement or constant). 
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Figure 11  Distribution (histogram) and QQ-plot for raw volume data of some of the example 
brain regions in healthy controls (green) and patients (red). 
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4.9 LME implementation in R 

We started the longitudinal modelling by defining the random and fixed effects in our 

LME model. In the LME model, "fixed-effects" are the explanatory (aka, predictor) variables of 

interest – namely, time of assessment and group (pre-HD vs. healthy controls). To estimate the 

differences in change of brain region volume trajectories across the two groups (pre-HD and 

healthy controls), we included a Group by Time interaction term in the MLE model (denoted as 

"group x timepoints"). This term was modelled as a fixed effect for each of the 82 brain regions 

of the subjects. Subjects represented the random effect in the model, expressed as (1| 

subject.ID) in the MLE equation. This indicates different intercepts for each subject, i.e., that 

subjects were assumed to have different baseline response values (specific brain region volumes).  

 We used R to implement the LME model. Although we started with a more complex 

model incorporating linear and quadratic components, the quadratic component was removed as 

it did not appear to offer any improvements (based on Akaike Information Criterion values). 

Statistically significant (p<.05) interaction terms were probed by estimating the effect of time on 

the response variable for each of the groups separately (pre-HD and healthy controls).  

The pseudocode for the implementation of the LME model is provided below.  

 

 

 

 

 

 In the above model, dataHDL[,i] represents each subject's 82 brain regions (ROI). As 

stated above, the group by time interaction effect for each of the 82 brain regions was estimated. 

Gender and age were included as covariates because they may explain residual variance in the 

response variables. The restricted maximum likelihood (REML) estimation method was used to 

for (i in 7:88){ 

NDMmodL<-lmer(dataHD[,i] ~ fgroup*timepoints +fgender + age + (1|Subject.ID), 

data=dataHDL, REML=FALSE) 

TimeInteractionL<- confint(glht(NDMmodL, linfct = c("fgroup1:timepoints = 0"))) 

summary(TimeInteractionL) 
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derive estimates of the variance components instead of the maximum likelihood because the 

latter has been shown to produce biased variance estimates. The model estimated the group by 

time interaction effect, one by one, for all 82 brain regions, keeping subjects' ID as a random 

effect.  

 We modelled a linear mixed model (estimation using REML) to predict dataHD[,i] (brain 

regions) with fgroup, timepoints, fgender and age (formula: ~ dataHD[,i] ~ fgroup*timepoints + 

fgender + age). The model included subject.ID as random effect (formula: ~1| Subject.ID). This 

model measures whether the interaction effect of timepoints on fgroup [1] was statistically 

significant. Any interaction effect at p<0.05 is considered significant.  

 

4.10 Results 

4.10.1  Longitudinal brain degeneration in pre-HD compared to controls 

Table 4, 5 and 6 provide a summary of statistical outputs from linear mixed models of 

the brain volume data in the left and right hemisphere of the cortex and sub-cortical regions. In 

the left side of the brain, most of the cortical brain regions showed negligible effects in terms of 

longitudinal volume change. Significant degeneration (p<0.05) was observed in the left 

lateralorbitofrontal, parsorbitalis, and superiortemporal brain regions as compared to controls. In 

the right hemisphere, there were no brain regions showing significant atrophy over time.  

Within the sub-cortical regions, several structures showed significant atrophy over time 

in pre-HD. The most significant sub-cortical areas were in the left and right putamen and left 

and right caudate, with the left amygdala showing the largest longitudinal volume loss (As shown 

in Table 7). 
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Table 4  Comparison of volumes in Pre-HD and controls in Left Hemisphere of cortical regions of brain.  

Difference in volume changes between Controls and pre-HD subjects 

Brain regions (Left Hemisphere) Beta(estimate) CI (95%) t value z value p value 

      lower    Upper    

bankssts -6.95 -26.53 12.64 -0.70 -1.92 0.49 

caudalanteriorcingulate 2.28 -15.23 19.79 0.26 0.49 0.80 

caudalmiddlefrontal -10.90 -69.31 47.51 -0.37 -1.54 0.72 

cuneus 12.19 -21.62 46.00 0.71 -3.49 0.48 

entorhinal 15.45 -18.78 49.69 0.89 -0.15 0.38 

fusiform -42.93 -114.58 28.73 -1.18 -3.95 0.24 

inferiorparietal -10.02 -127.35 107.30 -0.17 -2.99 0.87 

inferiortemporal -29.07 -128.15 70.02 -0.58 -3.76 0.57 

isthmuscingulate 14.70 -3.89 33.29 1.55 -0.62 0.12 

lateraloccipital 0.52 -114.45 115.49 0.01 -5.29 0.99 

lateralorbitofrontal -63.15 -124.66 -1.64 -2.02 -2.93 0.05 
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Difference in volume changes between Controls and pre-HD subjects 

Brain regions (Left Hemisphere) Beta(estimate) CI (95%) t value z value p value 

      lower    Upper    

lingual -15.08 -68.90 38.74 -0.55 -3.86 0.58 

medialorbitofrontal -14.25 -81.76 53.27 -0.41 -0.32 0.68 

middletemporal -55.41 -143.40 32.58 -1.24 -4.20 0.22 

parahippocampal 0.96 -14.77 16.69 0.12 -2.00 0.90 

paracentral -4.41 -48.16 39.35 -0.20 -1.31 0.84 

parsopercularis -16.81 -55.54 21.91 -0.85 -2.73 0.40 

parsorbitalis -47.04 -77.31 -16.78 -3.05 -2.66 0.00 

parstriangularis -17.29 -55.70 21.11 -0.88 -2.99 0.38 

pericalcarine 23.10 -11.38 57.59 1.32 -1.17 0.19 

postcentral -47.47 -144.57 49.62 -0.96 -2.44 0.34 

posteriorcingulate 13.79 -12.33 39.92 1.04 0.53 0.30 

precentral -53.32 -191.45 84.80 -0.76 -2.39 0.45 
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Difference in volume changes between Controls and pre-HD subjects 

Brain regions (Left Hemisphere) Beta(estimate) CI (95%) t value z value p value 

      lower    Upper    

precuneus 12.13 -85.98 110.25 0.24 -1.18 0.81 

rostralanteriorcingulate 4.18 -23.78 32.13 0.29 0.82 0.77 

rostralmiddlefrontal -56.90 -205.98 92.18 -0.75 -1.32 0.46 

superiorfrontal -43.39 -254.39 167.61 -0.40 -0.85 0.69 

superiorparietal -14.59 -166.48 137.30 -0.19 -2.58 0.85 

superiortemporal -97.50 -188.02 -6.98 -2.12 -4.25 0.04 

supramarginal -14.54 -114.46 85.38 -0.29 -1.99 0.78 

frontalpole 0.18 -17.74 18.11 0.02 -0.17 0.98 

temporalpole 5.04 -31.69 41.78 0.27 -2.25 0.79 

transversetemporal 0.90 -12.52 14.32 0.13 -2.60 0.90 

insula -5.12 -47.29 37.04 -0.24 -0.09 0.81 

 

Note. Brain regions showing significant differences in volume changes between the two groups of subjects are highlighted in green. 
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Table 5  Comparison of volumes in Pre-HD and controls in Right Hemisphere of cortical regions of brain.  

 Difference in volume changes between Controls and pre-HD subjects 

Brain regions (Right Hemisphere) Beta(estimate) CI (95%) t value z value p value 

  lower upper    

bankssts 1.71 -17.05 20.47 0.18 0.55 0.86 

caudalanteriorcingulate 8.46 -11.59 28.50 0.83 -0.48 0.41 

caudalmiddlefrontal 16.80 -43.60 77.21 0.55 -0.03 0.59 

cuneus -2.53 -41.48 36.43 -0.13 -2.31 0.90 

entorhinal -1.09 -34.08 31.89 -0.07 1.52 0.95 

fusiform -22.54 -84.62 39.54 -0.71 -2.25 0.48 

inferiorparietal -39.03 -169.59 91.53 -0.59 -0.87 0.56 

inferiortemporal -56.71 -139.82 26.41 -1.34 -1.16 0.18 

isthmuscingulate 1.66 -15.74 19.06 0.19 -1.57 0.85 

lateraloccipital -87.97 -208.30 32.36 -1.44 -3.87 0.15 

lateralorbitofrontal -44.73 -113.48 24.02 -1.28 -2.69 0.20 

lingual 0.78 -61.31 62.86 0.02 -1.55 0.98 



 56 

 Difference in volume changes between Controls and pre-HD subjects 

Brain regions (Right Hemisphere) Beta(estimate) CI (95%) t value z value p value 

  lower upper    

medialorbitofrontal 12.75 -58.48 83.98 0.35 -0.27 0.73 

middletemporal -53.13 -132.02 25.75 -1.32 -1.75 0.19 

parahippocampal 4.44 -11.94 20.82 0.53 0.29 0.60 

paracentral -12.27 -57.26 32.72 -0.54 -0.96 0.59 

parsopercularis -13.03 -46.43 20.37 -0.77 -0.17 0.45 

parsorbitalis -7.06 -38.85 24.72 -0.44 -1.81 0.66 

parstriangularis -15.50 -57.37 26.38 -0.73 -0.92 0.47 

pericalcarine 14.73 -27.17 56.63 0.69 -0.33 0.49 

postcentral -12.59 -110.80 85.61 -0.25 -1.28 0.80 

posteriorcingulate 4.26 -20.70 29.22 0.34 -0.99 0.74 

precentral -42.23 -186.51 102.06 -0.58 -0.87 0.57 

precuneus -25.81 -117.51 65.90 -0.55 -0.92 0.58 

rostralanteriorcingulate -9.69 -35.57 16.19 -0.74 0.81 0.46 
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 Difference in volume changes between Controls and pre-HD subjects 

Brain regions (Right Hemisphere) Beta(estimate) CI (95%) t value z value p value 

  lower upper    

rostralmiddlefrontal -32.93 -202.59 136.74 -0.38 -0.15 0.70 

superiorfrontal 20.58 -181.81 222.97 0.20 -0.11 0.84 

superiorparietal -54.23 -206.48 98.03 -0.70 -1.62 0.49 

superiortemporal -38.29 -127.24 50.66 -0.85 -1.08 0.40 

supramarginal -8.08 -93.44 77.28 -0.19 -1.34 0.85 

frontalpole 5.30 -14.68 25.28 0.52 -0.07 0.60 

temporalpole -6.33 -41.98 29.32 -0.35 -2.32 0.73 

transversetemporal -7.50 -19.78 4.79 -1.20 -4.84 0.23 

insula -3.01 -45.52 39.50 -0.14 -0.30 0.89 

 

Note. Brain regions showing significant differences in volume changes between the two groups of subjects are highlighted in green. 

 

 

 



 58 

Table 6  Comparison of volumes in Pre-HD and controls in Sub-Cortical brain regions.  

Difference in volume changes between Controls and pre-HD subjects 

Brain regions Beta(estimate) CI (95%) t value z value p value 

 

 lower upper    

Left-Thalamus -40.58 -81.42 0.26 -1.95 -3.28 0.05 

Left-Caudate -44.64 -69.98 -19.29 -3.46 -10.52 0.00 

Left-Putamen -40.31 -70.78 -9.83 -2.60 -7.43 0.01 

Left-Pallidum -4.48 -19.66 10.70 -0.58 -0.67 0.56 

Left-Hippocampus -12.77 -36.78 11.25 -1.04 -1.23 0.30 

Left-Amygdala -21.44 -40.52 -2.36 -2.21 -2.50 0.03 

Left-Accumbens-area -6.64 -21.30 8.01 -0.89 -0.78 0.38 

Right-Thalamus -38.61 -80.86 3.65 -1.80 -1.94 0.07 

Right Caudate -33.58 -61.82 -5.35 -2.34 -8.52 0.02 

Right-Putamen -44.00 -72.20 -15.80 -3.07 -6.72 0.00 

Right-Pallidum -2.25 -17.75 13.25 -0.29 -1.54 0.78 
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Difference in volume changes between Controls and pre-HD subjects 

Brain regions Beta(estimate) CI (95%) t value z value p value 

 

 lower upper    

Right-Hippocampus 2.35 -20.21 24.90 0.20 -2.07 0.84 

Right-Amygdala -4.27 -22.07 13.52 -0.47 -2.45 0.64 

Right-Accumbens-area -8.40 -18.30 1.49 -1.67 -3.45 0.10 

 

 

Note. Brain regions showing significant differences in volume changes between the two groups of subjects are highlighted in green.



 60 

4.10.2   Spatial distribution of degeneration in the pre-HD brain  

Figure 11 shows the spatial distribution of degeneration across the 82 sub-cortico regions 

regarding the Desikan-Killiany atlas. Compared to healthy controls, the colour coding shows z-

scores for group-by-time interaction effects from the longitudinal volume loss of pre-HD. The 

spatial map reveals that the sub-cortical network is most susceptible to longitudinal degeneration 

of atrophy in HD comparing healthy participant’s brain. Table 7 list out all cortical and sub-

cortical regions showing highest rate of volume loss comparing HD and healthy controls. 

Caudate, putamen and amygdala showed the maximum rate of sub-cortical volume loss while 

largest rate of longitudinal degeneration are noticed in ateralorbitofrontal, parsorbitalis and 

superiortemporal regions of cortical brain. 

Table 7 Comparison of regional volumes in HD and healthy controls. Only regions showing 
loss of volumes at p<0.05 are shown in the table 

Brain regions 
    
Beta(estimate)             CI (95%) z_value p_value 

  lower upper   

Left-Caudate -44.64 -69.98 -19.29 -10.52 0.00 

Left-Putamen -40.31 -70.78 -9.83 -7.43 0.01 

Left-Amygdala -21.44 -40.52 -2.36 -2.50 0.03 

Right Caudate -33.58 -61.82 -5.35 -8.52 0.02 

Right-Putamen -44.00 -72.20 -15.80 -6.72 0.00 

lateralorbitofrontal -63.15 -124.66 -1.64 -2.93 0.05 

parsorbitalis -47.04 -77.31 -16.78 -2.66 0.00 

superiortemporal -97.50 -188.02 -6.98 -4.25 0.04 

 

Furthermore, the degeneration of the cortex appears to be left-lateralised, with the 

strongest atrophy observed only in the left side of the brain. It can be noted that the left part of 

the caudate and putamen have a slightly higher effect of atrophy distribution compared to the 

right part.  

 

 

 



 61 

 

 

 

Figure 12  Visualisation of the spatial degeneration in Pre-HD compared to controls.  

Note. The distribution is provided for 82 ROIs with reference to the IIT atlas (Desikan-Killiany 
atlas). The colour code indicates the z-values (of group-by-time interaction effect) such that red, 
yellow denotes maximum observed atrophy over time.  

 

Figure 12 further depicts the decrease in volume in pre-HD over time compared to 

controls. For illustration, we take two example regions from the cortical and subcortical parts of 

the brain. The visualisation of the baseline adjusted volume of the caudate and left lateral 

occipital cortex shows apparent group-by-time interaction effects. On average, the volume loss 

in the caudate over 24 months is approximately 6%, whereas, in the left lateral occipital cortex, 

the volume loss over the same period is approximately 2.5%. Overall, this plot indicates the 

spatial distribution of atrophy in the cortical and sub-cortical regions across time in pre-HD 
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compared to controls. The rate of atrophy in the caudate is higher and looks consistent from the 

baseline time point, with gradual decrement as time passes. However, the left lateral occipital 

cortex shows a slow rate of change from the baseline to the time point (i.e., 12 months) and a 

sudden decrement after that.  

 

Figure 13 Plots of average baseline adjusted volumes of the Caudate and Lateral Occipital 
Cortex in Pre-HD and Control. 

Note. The baseline adjusted volumes reveal change over time in volume in pre-HD and 
Controls.  
 

 

 

 4.11 Discussion 

 

This study investigated cortical and subcortical degeneration in pre-HD compared to 

controls within a two-year timeframe. We used an LME model to compare the rate of atrophy in 

pre-HD against a group of age-matched healthy controls. The findings suggest that brain 

degeneration can be observed in both the subcortical and cortical regions in pre-HD. However, 

the rate of atrophy is much higher in subcortical regions such as the caudate and putamen. The 

Lateral occipital cortex 
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caudate shows, on average, 6% atrophy over 24 months in pre-HD. Cortically, the highest 

atrophy is observed in the visual cortex (lateral occipital) and temporal cortices (superior and 

middle temporal). These findings highlight the need for mapping degeneration across the whole 

brain in pre-HD so that the epicentres and pathways of degeneration in HD can be traced 

accurately.  

We have overcome the challenges encountered in the statistical analysis of longitudinal 

neuroimaging data by implementing an LME model in this research. Longitudinal data are 

correlated, have different baseline timing, and usually have missing measurements. After 

thorough research and review of the literature, we found that the LME model overcomes the 

factors mentioned above, compared to other models such as repeated measure ANOVA and t-

tests (Garcia & Marder, 2017). The statistical power of the LME model to handle irregular 

timing and missing data from longitudinal neuroimaging data has increased its popularity among 

researchers in longitudinal studies of neurodegenerative diseases. LME models have been 

previously used in various studies, such as COHORT (Dorsey & Investigators, 2012), PHAROS 

(Biglan et al., 2016), PREDICT (J. S. Paulsen et al., 2008) and TRACK-HD (Sarah J Tabrizi et 

al., 2013). The LME model has helped to study behavioural function, cognitive analysis, and 

movement disorder, utilising the data from COHORT, which includes three assessments across 

time (Dorsey & Investigators, 2012). Most of the above studies faced similar challenges related 

to missing data and irregular scan timing. We had the same issue initially as we were analysing 

our longitudinal data using paired t-tests to quantify and test the statistical significance of the 

change in atrophy. However, to implement this statistical method, we had to eliminate many 

subjects in both pre-HD and healthy controls due to irregularity in consecutive scanning. Very 

few subjects had three consecutive scans over three years. The use of the LME model has 

eliminated these obstacles and has allowed us to include almost all the quality matched data. 
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Our findings in sub-cortical degeneration are consistent with the findings reported in 

previous studies in pre-HD (Wijeratne et al., 2020) (Aylward et al., 2000) (Govinda R. Poudel et 

al., 2020). We observed that the highest sub-cortical atrophy is observed in the caudate, 

putamen, and thalamus. The caudate showed on average up to 6% volume loss over two years. 

These findings suggest that the caudate may serve as an imaging biomarker for HD. In a recent 

cross-sectional study of subcortical volumes in HD, the caudate volume has been highlighted as 

one of the most significant regions (Wijeratne et al., 2020). The most significant volume loss in 

the striatum in pre-HD compared to controls, after controlling for the effects of age and gender, 

further supports the notion of selective vulnerability of medium spiny neurons in HD (Ehrlich, 

2012). The medium spiny neurons in the caudate have predominantly afferent glutamatergic 

input from the cortex, and predominantly dopaminergic input from the substantia nigra. Hence, 

the aggregate effects of total dopaminergic and glutamatergic input may result in the selective 

vulnerability of medium spiny neurons to the neurotoxic effects of mutant huntingtin protein 

(Ehrlich, 2012).  

In the cortex, we discovered localised cortical degeneration in the occipital and temporal 

lobes, consistent with previous cross-sectional cortical thickness studies (Rosas et al., 2008). We 

observed the highest progression of atrophy in the visual cortex (lateral occipital) and temporal 

cortex (superior and middle temporal), consistent with previous studies which suggested 

occipital-lobe abnormalities in HD (Klöppel et al., 2008; Rosas et al., 2006). We found the 

cerebellar cortical region to be relatively unaffected, especially at early baseline stages, which was 

also found in neuropathological studies (Vonsattel & DiFiglia, 1998), although in contrast, other 

studies showed a wide progression in the cortical region in later stages of manifest HD (Heinsen 

et al., 1994; Selemon, Rajkowska, & Goldman-Rakic, 2004; Wagster, Hedreen, Peyser, Folstein, 

& Ross, 1994). Our initial results indicate the rate of volume change in the left lateral occipital 

cortex over two years to be about 2.5% loss, with no significant volume loss in the right cortical 

regions. The rate of longitudinal volume change was seen to be faster in later stages than at 
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baseline. Typical, age-related volume loss was identified in the control group, smaller than the 

degeneration associated with HD, which shows that cortical degeneration in HD can start years 

before it can be clinically detected.  

Several limitations were needed to be considered. First, we do not analyse the association 

between imaging changes and behavioural or cognitive issues in the current study. Secondly, 

previous research has found significant associations between brain imaging markers and 

neurobehavioral outcomes (Gregory et al., 2018; Govinda R. Poudel, Julie C. Stout, et al., 2014; 

S. J. Tabrizi et al., 2009). However, as the current study was focused on determining the spatial 

maps of degeneration, correlation with behavioural measures was out of scope. Furthermore, the 

study is limited to the investigation of pre-manifest individuals. 

In summary, this study performed a comprehensive analysis of volume changes in the 82 

brain regions of premanifest HD individuals compared to healthy controls. The model used 

revealed that the most significant degeneration over two years occurs in the caudate and 

putamen (controlling for the effect of age and gender). Contrary to expectations, cortical brain 

regions did not show widespread degeneration in pre-HD. Based on these findings, we suggest 

that volumetric markers, such as caudate and putamen volumes could be considered a primary 

endpoint in future clinical trials. Furthermore, the findings suggest that cortical degeneration may 

occur later in the disease process than subcortical degeneration. Thus, monitoring both cortical 

and sub-cortical volumetric changes, alongside primary and secondary clinical endpoints, may 

provide more comprehensive tracking of neurodegeneration in HD.  
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Chapter 5: Predicting Neurodegeneration in pre-HD Using NDM 

 

 The previous chapter demonstrated that neuropathological changes in HD typically 

develop in the brain by following a specific anatomical pattern, which most likely initiates in the 

striatum and then spreads to the cortical motor, frontal, and occipital regions. This chapter 

addresses the second aim of this project and focuses on describing the implementation and 

application of the NDM for predicting longitudinal degeneration in pre-HD compared to 

healthy controls. Finally, we will use the empirical data obtained from the previous chapter 

(Chapter 3) to test the predictive ability of NDM in HD.  

 

5.1 Introduction 

 The pathogenesis of HD is largely explained by the accumulation of intracellular or 

extracellular protein aggregates known as mutant Huntingtin (mHTT). Transgenic mice models 

suggest that mHTT aggregates can cross cellular membranes, which potentially contribute to its 

spread (Pecho-Vrieseling et al., 2014). It is likely that once initiated; neuropathological changes 

might spread in a 'prion-like’ (cell-to-cell transmission) manner via axonal pathways. Therefore, 

progression may be facilitated by the brain's structural pathways (structural connectome) in 

humans. With network-sensitive brain imaging techniques and model-driven analysis of the 

human connectome, recent developments have allowed macroscopic mapping of susceptible 

pathways and the establishment of biophysically driven models of degeneration spread in the 

human brain.  

NDM represents a bio-physical model that has been used to show the spread of mutant 

protein in various neurodegenerative diseases (Sneha Pandya et al., 2017; S. Pandya et al., 2019; 
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Govinda R. Poudel et al., 2020; Ashish Raj et al., 2012; A. Raj et al., 2015). The NDM models 

the spread of atrophy through brain networks to capture the spatial patterns of pathology, which 

has been applied in AD (A. Raj et al., 2015), frontotemporal dementia (Ashish Raj et al., 2012), 

PD (Freeze, Acosta, Pandya, Zhao, & Raj, 2018; Freeze, Pandya, Zeighami, & Raj, 2019b; S. 

Pandya et al., 2019), corticobasal syndrome and progressive supranuclear palsy (Sneha Pandya et 

al., 2017).  

Ashish Raj and Powell (2021) recently experimented with NDM in both directional and 

non-directional cases to recapitulate the atrophy in HD. This research used a large dataset of 635 

subjects from the TRACK-HD study to propose multiple hypotheses, including an anterograde 

network transmission model. Using NDM as a computational tool, the study suggested strong 

evidence of network spread in HD. Furthermore, it suggested that significant striatal 

degeneration is seen in the earliest pre-HD subjects. Finally, it also described the relation 

between healthy control gene expression and the patterns of regional degeneration. In sum, this 

most recent study has shown the robust effectiveness of NDM and its flexibility in 

understanding the progressive nature of HD and its spread mechanism. 

G. R. Poudel, Harding, Egan, and Georgiou‐Karistianis (2019) encapsulated the trans-

neuronal spread of atrophy in the whole brain regions by modelling it as a diffusion process. 

Their study located the seeds of degeneration in the accumbens and thalamus regions of the 

subcortical brain. As part of the study, 26 symptomatic HD, T1-weighted and diffusion-weighted 

(DWI) data were collected at baseline. After implementing an NDM, the outcome indicated that 

the regions most affected were in the subcortical parts of the brain regions. In addition, the 

caudate, pallidum, putamen, and accumbens were part of regions with more significant volume 

loss. Overall, the study suggested that NDM can help understand the atrophy distribution and 

neuronal disconnection in HD.  
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Figure 14  Use of NDM to determine white matter disconnection in HD compared to controls 
(G. R. Poudel, Harding, Egan, & Georgiou-Karistianis, 2019) 

 

Figure 13 shows the results of Poudel et al. (2019)'s NDM. Strong disconnection was 

measured in the pallidum, putamen, and accumbens parts of the subcortical region of the brain. 

Similarly, other research studies have successfully implemented NDM to elucidate the 

relationship between structural and functional brain connections in network expansion 

(Abdelnour et al., 2014). 

Whilst the two studies described above have previously implemented NDM in HD, they 

have been limited by their ability to monitor atrophy in the premanifest stage and longitudinal 

multimodal neuroimaging datasets of HD.   In this project, we use the spatial maps of atrophy 

generated from pre-HD individuals to determine whether NDM can predict the atrophy pattern 

during HD's premanifest stage. Furthermore, we hypothesize that network diffusion can predict 

changes in brain volumes in pre-HD.  
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5.2 Materials and Methods 

5.2.1 Participants  

This study uses the results from the LME modelling conducted in Chapter 3 as input 

data. The LME analysed T1-weighted MRI data from 195 participants (N=89 age-matched 

healthy controls and 106 as pre-HD participants), as outlined in Chapter 3. These MRI data were 

made available from the Track-On HD study cohort.  

5.2.2 Data descriptors 

 The output from the LME model run in Chapter 3 was organized such that there was a 

single standardized effect size (Z-value) for each brain region forming an 82 x 1 vector 

representing the amount of degeneration in 82 brain regions in pre-HD compared to controls. In 

addition, these data were organized such that a more significant value reflected greater atrophy. 

Finally, these data were imported into MATLAB for analysis using MATLAB R2020b.  

 

Figure 15: The graphical representation for neuroimaging pre-processing and NDM analysis in 
the study. 
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5.2.3 Healthy Brain Connectome 

We used the Illinois Institute of Technology's (IIT) Human Brain Atlas (version V.5.0) 

for structural mapping connectivity. The structural connectome used in this research is available 

at the NITRC website (http://www.nitrc.org/projects/iit). High goal dispersion-weighted MRI 

information from 72 youthful sound subjects was utilized to gauge the availability between the 

nodes by developing the connectome recently proposed by Iturria-Medina et al. (2007). 

Anatomical connection density was calculated by dividing the initial connection strength value by 

the summation of paired region surface areas used to quantify the connectivity strength in our 

study, thus normalizing the variable cortical and sub-cortical regions' sizes. The IIT Human 

Brain Atlas is used in the current study to build a white matter connectome. The DWI data were 

collected using Turboprop diffusion MRI, which is relatively clean and does not suffer from 

image distortions and artefacts commonly observed in conventional echo-planar imaging (EPI).  

 

Figure 16 Visualisation of structural connectivity obtained from IIT Human Brain Atlas. 

Note: The colour bar represents the number of streamlines connecting two regions. Circular 
layout of the connectivity matrix is also provided. This figure has been adapted from (Qi & 
Arfanakis, 2021).  
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5.3 Mathematical Modelling of NDM 

We implemented NDM on the healthy brain connectome described above and used it to 

predict the degeneration pattern measured using LME. The basic concepts of network diffusive 

mechanism were taken from the network heat equation, which can be expressed as the 

progression of any pathology (in this case, mHTT molecules) from a high concentration to a 

lower concentration until the equilibrium state is accomplished (G. R. Poudel, Harding, Egan, & 

Georgiou‐Karistianis, 2019). Finally, we adapted the same model proposed by Ashish Raj et al. 

(2012) in our longitudinal data to determine the pre-HD progression pattern. 

We modelled pre-HD longitudinal progression as hypothesised brain network G = (V, 

ε), where V represents the nodes (gray matter structures) and ε represents the connection 

strength between the nodes (white matter pathways connections between the nodes). From 

Ashish Raj et al. (2012), the progression of atrophy from region R1 to region R2 is given by, 

𝒅𝒙𝟏

𝒅𝒕
= 𝜷𝒄𝟏, 𝟐(𝒙𝟐 − 𝒙𝟏)                                                                                         Equation 2 

where x2 and x1 are atrophy concentrations of the respective regions R2 and R1.  

𝛽 is a diffusion coefficient.  

Now, we can represent all regions of the brain i into vectors as x(t) = [xi(t)]; the equation 4-1 can 

be represented as, 

𝒅𝒙𝟏

𝒅𝒕
= −𝜷𝑳𝒙(𝒕)                                                                                                      Equation 3 

where L is the normalised graph Laplacian matrix which is symmetric, and its eigenvectors are 

orthogonal. From matrix algebra, equation 3 is satisfied by,  

𝒙(𝒕) =  𝒆−𝜶𝑯𝒙(𝟎)                                                                                                  Equation 4 

where x(t) is the response variable at any given time t, starting from an initial distribution of 

pathology given by x (0) at time baseline.  

x(t) can be estimated as diffusion process 
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𝒙(𝒕) = ∑ 〖(𝒆−𝜶𝒕𝒖𝒊
𝒕〗𝒇(𝟎))𝒖𝒊

𝑵
𝒊=𝟏                                      Equation 5 

where U = [u1, u2, u3, ...un] represent eigenvectors of the Laplacian matrix.  

4.3.1  Eigenmode Analysis 

According to Raj et. al., the eigendecomposition of the graph Laplacian term (H) in 

equation 5 provides eigenvectors, which help elucidate the dynamics of network diffusion on a 

graph. The first eigenvector of healthy connection denotes ageing-related changes in the brain 

volume, whereas the second and third eigenmodes are linked to dementia and Alzheimer's 

disease. Poudel et. al (G. R. Poudel, Harding, Egan, & Georgiou-Karistianis, 2019) suggested 

that the fourth and fifth eigenmode may reflect network spread in movement disorders. Thus, 

eigenmode decomposition of the graph Laplacian was performed using MATLAB. The fourth 

and fifth eigenvectors were then correlated against the measured atrophy obtained from Chapter 

3. Correlation values with p<0.05 were considered statistically significant.  

5.3.2  Repetitive diffusion in network to observe longitudinal progression of atrophy  

 A repeated network diffusion is performed to recognize the likely focal points of 

disorders in the brain from where the spread start. In the repeated seeding simulation, NDM is 

run by repeatedly setting each of the 82 brain regions as a seed region. Running NDM from each 

brain region helps identify the trajectory of diffusion across the network given a seed. This 

trajectory is represented as xt in equation 4-3. Thus, we ran an NDM model with x0= ei for each 

node i, where ei represents the unit vector whose value is 1 at ith region and else zero at the time 

ranging from 1 to 40. Network diffusion was simulated bilaterally using 41 different initial seed 

brain regions, generating 82 element vectors at each time point. For each region, the 

corresponding Pearson's correlation value R was calculated at time t, producing the R(t) value, 

resulting in 41 x 40 correlation-time matrices. For each seeding region, we noted the highest R-

value to measure the most probable region of source for longitudinal degeneration of the 

pathology. These R(t) values were plotted as an R-t curve, as shown in Figure 16. 
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5.4 Results 

 

5.4.1 Spatial progression of atrophy in the pre-HD brain. 

The spatial progression of longitudinal atrophy in the pre-HD brain has been reported in 

Chapter 3. The most significant longitudinal volume loss was seen in the subcortical region of 

the brain with the caudate, putamen, and amygdala. Similarly, the lateral occipital, pars orbitalis, 

and superior temporal cortices showed cortically the largest longitudinal volume loss. These 

changes expressed as z-values associated with each of the 82 brain regions are used to measure 

atrophy in the NDM analysis.  

 

5.4.2  Association between eigenmode and atrophy in pre-HD 

 Figure 15 shows the distribution of eigenvalues of the healthy connectome of graph 

Laplacian and its association with measured atrophy. The graph of the eigenvalues elucidates that 

most of the dynamics of diffusion in a healthy connectome can be explained by the first few 

(<10) eigenvectors. Figure 4-3 shows that the relationship between the fourth eigenmode and 

measured atrophy in pre-HD is significant (r=0.37, p=0.0006). 

 

5.4.3. Repeated diffusion  

Figure 16 shows the correlation-time curves between predicted degeneration and 

measured atrophy obtained from NDM simulation. Repeated diffusion processes were 

performed in 82 brain regions to identify the potential initial point of atrophy degeneration in 

the brain connectome. The curves show that only a few regions (the pallidum, thalamus, and 

putamen) show maximum longitudinal degeneration in the sub-cortical region. In contrast, the 

temporal pole and inferior temporal show a moderate longitudinal pattern of atrophy in pre-HD 

in the cortical region of the brain.  
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Figure 17  Association between eigenmode and atrophy at fourth eigenmode decomposition. 

Note. A shows the scatter plot between measured atrophy obtained from empirical longitudinal 
data analysed in the LME model implying group by time interaction in fourth eigenmode 
decomposition. B is the representation of eigenvalue distribution across the brain regions.  
 

Figure 17 shows the spatial distribution of the brain regions showing the most significant 

association between measured and predicted atrophy. The highest association was noticed when 

diffusion was initiated from the Pallidum (r = 0.488, p <0.0001) and thalamus (r = 0.40, 

p<0.0001).  

 

A B 
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Figure 18 Temporal profile of correlation between measured atrophy and NDM predicted 
atrophy over time. 

 

Note. Each curve represents 41 bilateral brain regions (82 cortical and sub-cortical regions of the 
brain). The correlation-time curve represented the diffusion process when diffusion was initiated 
from the brain regions within the Desikan-Kelliany atlas. The X-axis represents time in years, 
and Y-axis shows the correlation (Pearson's) values.  
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Figure 19 The spatial distribution of potential seeds of degeneration in pre-HD individuals.   

Note. The spherical nodes represent the location of brain regions. The colour bar and the size of 
the nodes represent maximum observed correlation values. The pallidum, putamen, and 
thalamus show the largest correlations. The correlated value (R-value) is colour coded by lobe. 
Thus, we can observe the longitudinal pattern of degeneration initiated from the sub-cortical 
region of the brain, with the putamen and thalamus showing the strongest correlation between 
measured and predicted atrophy. We also can note the longitudinal pattern of moderate 
associations in the cortical region of the brain. 
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5.5 Discussion 

This study demonstrated that longitudinal progression of neurodegeneration in 

premanifest HD could be modelled as a diffusion process across the brain connectome. Using 

NDM, we recapitulated the pattern of longitudinal regional volume loss in the cortical and 

subcortical regions of the brain in pre-HD. This research project is the first study to use NDM 

to model 24-month changes in cortical and subcortical regional volumes compared to healthy 

controls in pre-HD. The application of NDM helps identify the longitudinal pattern of 

degeneration across the brain regions. Initiating the diffusion process from the pallidum, 

thalamus, and putamen of the subcortical region of the brain shows the strongest association 

with longitudinal degeneration in pre-HD. These findings demonstrate that, while NDM can 

predict some of the degeneration over time, it could not characterize the full degeneration in 

HD.  

This study has incorporated graph theory principles, representing the brain as a network 

of nodes and edges, and implemented NDM to elucidate the longitudinal progression of atrophy 

in pre-HD. The eigendecomposition of graph Laplacian was able to capture the dynamics of 

diffusion on the healthy brain connectome and capture an underlying process of diffusion on the 

network (Ashish Raj & Powell, 2021). Interestingly, the fourth eigenmode of the healthy 

connectome was significantly associated with the atrophy over two years in pre-HD. This finding 

is consistent with studies that have suggested that progressive neurodegeneration may be 

captured in the eigenmodes (Ashish Raj et al., 2012; A. Raj et al., 2015). The fourth eigenmode, 

in particular, reflects a diffusion process accumulating in the cortico-striatal networks, which are 

the most vulnerable networks in HD. A similar outcome was achieved by G. R. Poudel, Harding, 

Egan, and Georgiou‐Karistianis (2019) in their cross-sectional study of symptomatic HD 

implementing the network diffusion principle. Although they further elucidated that the cortical 

and subcortical regions may reflect a distinct course of degeneration, we did not see divergent 

associations in the cortical or subcortical regions. While the exact process of atrophy progression 
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is still the subject of research, the study of mouse models of HD suggests that neuro-synaptic 

propagation could be a cause of disease progression (Pecho-Vrieseling et al., 2014). This 

mechanism of disease spread through the diffusion of synaptic processes in the brain network 

can provide a neuro-biomarker basis for atrophy progression in HD (G. R. Poudel, Harding, 

Egan, & Georgiou‐Karistianis, 2019).  

By simulating NDM for each brain region, we further demonstrated which brain regions 

are most likely to act as seeds of pathology spread in HD. Maximum correlation between 

measured and predicted longitudinal atrophy was observed when the putamen, pallidum, and 

thalamus were used as seed regions in the NDM analysis. Specifically, the pallidum and putamen 

showed a much more robust and stable spatial pattern of degeneration. This finding is consistent 

with previous studies where the striatum, putamen, accumbens, and caudate show the initial 

structural changes and volume loss in HD (van den Bogaard et al., 2011). The indication of 

longitudinal loss of volumes in the subcortical region of the brain in pre-HD also reflects the 

associated motor and cognitive abnormalities observed before onset. Several studies in HD have 

also suggested strong evidence of maximum degeneration in the sensorimotor regions, which are 

strongly connected with the striatum (Bohanna, Georgiou-Karistianis, & Egan, 2011; Rosas et 

al., 2008). However, these motor regions did not appear to be the epicentres. 

Furthermore, a strong correlation between measured and predicted longitudinal atrophy 

was identified in the thalamus. These findings were somewhat surprising as the thalamus is not 

considered to be vulnerable in pre-HD (G. R. Poudel, Harding, Egan, & Georgiou‐Karistianis, 

2019). However, the thalamus, being a hub region connecting various cortical and subcortical 

structures, may act as an epicentre of disease spread in HD (van den Bogaard et al., 2011). As a 

result of this hubness, which drives interhemispheric connectivity between the cortical and 

subcortical structures and its proximity to the striatum, the thalamus may serve as a region 

essential for spatial degeneration atrophy in pre-HD. More research is needed to establish the 
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biophysical mechanisms underpinning the role of the thalamus in spreading disease in the HD 

brain.  

Several factors must be considered in relation to the results. The NDM works on the 

linear passive diffusion process principle. Hence, it models the longitudinal progression of 

atrophy as the linear passive diffusion process; however, many other studies have suggested 

neurobiological progress as an active process incorporating synaptic vesicles as trans-synaptic 

progression (Govinda R. Poudel et al., 2020). Hence, non-linear active modelling should be the 

next step in analysing available data to understand the spread mechanism of atrophy better. Also, 

using a dedicated and specific connectome (micro-connectome) in a current model can improve 

the efficacy of the result. We have utilized longitudinal data up to 24 months in time from the 

baseline. More extended periods of data collection would be essential in providing a robust 

identification of the spread mechanism in the network.  

In conclusion, we showed that some of the longitudinal atrophy in pre-HD might be 

explained by network diffusion. Thus, NDM may be a tool to explore further where and how the 

pathology spreads in the brain of neurodegenerative disorders during the premanifest stage. 

However, future work needs to improve on the predictive ability of NDM by incorporating 

active transport mechanisms, genetic factors, and functional connectivity into the model.  
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Chapter 6: General Discussion and Conclusion 

The purpose of this thesis was to investigate whether the pattern of degeneration in the 

premanifest stage of Huntington's disease can be modelled as a network diffusion process. We 

used the graph theory algorithm (NDM) proposed by Raj et al. (Ashish Raj, 2015) to understand 

the spatial patterns of degeneration. First, a brief review and analysis of previous studies were 

conducted. Next, a statistical tool was selected to study and compare the volume change rate 

between a group of healthy controls and patients. In this case, we used a linear mixed effect 

model (LME) to characterize the longitudinal changes in the hemisphere of the brain in 

premanifest HDs compared to healthy controls. Finally, we implemented an NDM for 

predicting the longitudinal changes in brain volume in premanifest HD.  

 

6.1 Summary by chapter 

 In Chapter provides a brief introduction of the clinical characteristics of HD and its 

current prevalence worldwide. Then, we explained how the trans-neuronal spread of pathology 

distribution takes place in HD. Trans-synaptic exchange of atrophy has been previously studied 

and examined in mouse models (Pecho-Vrieseling et al., 2014). Other studies also suggested that 

the distribution mechanism follows a typical pattern of cortico-striatal spatial progression in HD 

(Jansen et al., 2017; Mitchell et al., 1999). This chapter helped to understand the pathological 

characteristics from a clinical perspective, i.e., identified affected brain regions through in-vitro 

study, providing a framework for our comprehensive study.  

With advanced computational and imaging techniques such as MRI, we can now 

visualize the actual degeneration. We have introduced neuroimaging studies conducted to 

identify the pattern of degeneration in HD. A few large-scale neuroimaging studies in HD have 

identified the pattern of the spread of degeneration in the HD brain. Structural MRI studies have 

established that degeneration in the striatum (caudate and putamen) is the crucial 

neuropathological feature of HD (Govinda R. Poudel, Julie C. Stout, et al., 2014; Sturrock et al., 



 81 

2015; S. J. Tabrizi et al., 2009; Sarah J. Tabrizi et al., 2011; Vemuri & Jack, 2010), with other 

areas outside the striatum showing significant deterioration with disease progression.  

However, we can only quantify the atrophy in brain regions through neuroimaging. 

Therefore, identifying or predicting the pattern of degeneration in the brain is not possible only 

by neuroimaging.  We have addressed this issue by briefly explaining network spread models, 

whereby the brain is viewed as a complex network of nodes and edges. In this study, we 

proposed an NDM model previously used to spread Alzheimer's disease pathology and other 

neurodegenerative disorders. Finally, we stated my aims to conclude the first chapter. 

In Chapter 2, we reviewed the findings from cellular, animal models, and human 

neuroimaging to understand the spatial distribution, protein aggregation mechanism, and atrophy 

patterns in HD. Findings suggested that HD shows distinct patterns during progressive 

degeneration from higher atrophied regions to neighbouring regions. The extensive inter-

neuronal spread in brain regions was evident from several in-vivo studies (Ren et al., 2009; 

Trevino et al., 2012). Further review revealed evidence that the HD brain network structures 

were altered as compared to healthy controls. Change in structure, specifically in the cortical 

regions, was seen through imaging modalities such as MRI. Structural MRI studies have 

determined the various microstructural changes in white matter (Govinda R. Poudel, Julie C. 

Stout, et al., 2014), thalamus, hippocampus and other regions of the brain in HD patients 

(Georgiou-Karistianis et al., 2013). These microstructural changes were more evident in studies 

like TRACK-HD, PREDICT-HD, and IMAGE-HD.  Other cross-sectional studies found that 

the most affected brain regions in HD patients were sub-cortical regions such as the putamen, 

caudate and thalamus (S. J. Tabrizi et al., 2009).  The evidence of microstructural changes in 

brain regions from several studies listed above made it possible to map the epicentres and 

trajectory of degeneration progression by network spread models.  

We also provided a review of studies that suggested that spread models can predict 

disease progression, which is structured and driven by a mechanistic process. Whilst the brain 
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has been recognized as a complex network since the early days of neuroscience, mathematical 

models of how the disease may spread through this network have been made possible by 

developing network diffusion models (NDM). Since their first introduction by Raj and 

colleagues (Raj et. al., 2012), NDM has been successfully implemented in various disorders, such 

as Alzheimer's disease, Parkinson's and Huntington's disease, to understand and predict the 

spatial distribution and characteristics of pathology. Interestingly, this model effectively identifies 

the spread of pathology and has been suggested to help predict future atrophy patterns. For 

example, this powerful computational tool has helped determine the pattern of grey matter decay 

and white matter detachment in HD (G. R. Poudel, Harding, Egan, & Georgiou-Karistianis, 

2019). Furthermore, NDM proves to be more accurate in predicting correlation structures when 

implemented to the structural networks. 

Chapter 3 and 4 described Study I, which used linear mixed effect models to estimate 

degeneration in 82 brain regions in pre-HD compared to controls. This chapter mainly focuses 

on the longitudinal study findings on the progression of HD in the brain. While investigating the 

findings of past researchers and scholars, this section was able to point out the advantages of 

adopting a longitudinal rather than cross-sectional design to investigate the progression of the 

disease. An investigation of past research studies showed that longitudinal and cross-sectional 

designs had been used in equal measure. A longitudinal design was implemented in the present 

study, and its advantages over the cross-sectional design must be highlighted.  

In study 1, we used a linear mixed-effects model (LME) to statistically analyze the change 

in volume of 82 brain regions in pre-HD compared to controls. We were able to characterize the 

changes in volume over 24 months using data from three assessments (baseline, 12 months and 

24 months). We found that volume change was most significant in the sub-cortical brain regions, 

including the caudate and putamen, which suffered ~ 6% volume loss over 24-months. 

Cortically, the highest atrophy was observed in the visual cortex (lateral occipital) and temporal 

cortices (superior and middle temporal). We concluded that the findings highlighted the need to 
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map degeneration across the whole brain in pre-HD so that HD's epicentres and pathways of 

degeneration can be traced accurately.  

Chapter 4 described the implementation of NDM to elucidate whether network spread 

can be used to model the spread of pathology via the structural connectome created from both 

healthy controls and patients (pre-symptomatic HD). Diffusion is the process of the flow of 

particles (e.g., misfolded proteins, prions) to the lower concentration region from the higher 

concentration region. This process of diffusion is continued until equilibrium is achieved. As 

discussed earlier, this diffusion process is mathematically modelled and used across various 

structures by a set of elements and their interconnections. This model is actively used in social 

networks and human brain connectome (G. R. Poudel, Harding, Egan, & Georgiou‐Karistianis, 

2019).  

We used empirical data obtained from Study 1 (Chapter 3) to test the predictive ability of 

the network diffusion model. To determine the advantage of the network diffusion model 

(NDM), which is proposed in the study, we apply it to predict atrophy patterns in the brain 

regions and compare it to the measured output from the LME.  We found that NDM was only 

able to predict the atrophy pattern moderately.   

 

6.2 Discussion 

6.2.1 Cortico-striatal degeneration before clinical manifestation in HD 

There is growing international awareness that a clear understanding of the natural course 

of disease and its manifestation is necessary to be able to develop therapeutic interventions. 

Furthermore, the intervention and management need to occur at the earliest stage possible. 

However, the lack of clear biomarkers associated with earliest degeneration in HD has made it 

difficult to manage HD as early as possible.  In the current study, we demonstrate that 

degeneration of striatum is likely to be an earliest biomarker in HD pathogenesis.  
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  The main strength of the current study was to be able to delineate the change in brain 

volume over time within 12 to 24 months during the premanifest stage.  Findings provide 

evidence that the changes in brain volume, as measured by imaging, is linear in pre-HD.  

Furthermore, there is distinct decline in the striatum volume within 24-months, which is not 

observed in healthy controls. The changes in cortical brain regions were not very strong, 

suggesting that cortical degeneration may become more apparent when HD is closer to 

diagnosis.  

In the cortical region, there were differences in the longitudinal changes in brain volume 

within occipital cortex and temporal cortices in pre-HD compared to controls. Previous studies 

have suggested that occipital lobe shows the earliest and the fastest rates of atrophy on pre-HD 

(Johnson et. al., 2021).  The parietal brain regions can also degenerate in the premanifest HD, 

only in the individuals which are closer to onset (Johnson et. al., 2021). It is important note that 

most of the neurocognitive, neuropsychiatric symptoms in pre-HD manifest only when atrophy 

spreads to cortical regions.  We provide a framework for regional brain degeneration which may 

be linked to behavioural and clinical changes in HD closer to onset. 

 

Figure 20 A framework showing the trajectory of degeneration in HD over time, based on the 
findings from the current study.   
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6.2.2 Relationship with network degeneration hypothesis 

The pattern of degeneration observed in pre-HD can be explained by network spread 

model. The healthy connectome comprises the best state of the neuronal cell wiring of a brain, 

which sits between the significantly assembled/deficiently joined regular spread network and the 

insufficiently clustered and highly organized random graph (Fulcher & Fornito, 2016). The 

network spread was determined based on eigen-modes of graph Laplacian of healthy brain 

network and diffusivity of mutant HTT proteins through axonal network.  Trans-neuronal 

patterns and their consistency are dominant across these eigenmodes throughout the network. 

Similarities across these networks may show pathways of disease spreads, or groupings of 

eigenmodes may be associated with HD stage or subject-specific similarities and differentiations.  

Recent network studies show brain networks are altered in neurodegeneration 

(Domínguez et al., 2013; He, Chen, & Evans, 2008; Lo et al., 2010). Distinctive spatial trans-

neuronal patterns are suggested in HD and AD (Govinda R. Poudel, Julie C. Stout, et al., 2014; 

Ashish Raj et al., 2012; Zhou et al., 2010).  Seeley, Crawford, Zhou, Miller, and Greicius (2009) 

suggested that spatial patterns belong to the default mode and conspicuous networks, 

respectively. While the relationship between neurodegeneration and connectivity networks 

shows convincing results, the underlying cause of neural activity remains unexplained (Seeley et 

al., 2009). The neural activity of different functional networks can is determined by selective 

vulnerability of structural, metabolic and physiological aspects of neural network (Saxena & 

Caroni, 2011). In HD, selective vulnerability is suggested to be involved in the connectivity 

properties of striatal spiny neurons (Cepeda, Wu, André, Cummings, & Levine, 2007). 

Interestingly, the network diffusion model implemented in this study can explain the 

findings mentioned above, excluding the requirement of selective vulnerability, regional 

specificity, or shared functional load. The eigenmode and connectivity networks are merely 

homologous, which are the outcome of the eigendecomposition of brain networks. The NDM 

model implies that many eigenvalues diffuse very quickly, and a small number of eigenvalues 
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diffuse slower over time, dominating the diffusion process. However, this does not suggest that 

the selective vulnerability hypothesis is incorrect (Ashish Raj et al., 2012). NDM model 

accommodates a concept of disease progression that is entirely consistent with known findings 

but excluding selective vulnerability.  

 

6.2.3 Relationship to Prion-like spread in HD 

The NDM model likely represents macroscopic consequence of the prion-like (protein 

misfolding) during disease progression in HD.  In HD, the mutation results in mutant Htt 

(mHtt) misfolding and aggregation (Shacham, Sharma, & Lederkremer, 2019). Furthermore, 

there is overwhelming neuropathological evidence that apart from HD, other neurodegenerative 

disease proteins such as tau, alpha-synuclein, beta-amyloid and TDP-43, exhibits the capacity to 

misfold and spread through neural networks via trans-synaptic nature (Hobbs et al., 2009; Palop 

& Mucke, 2010; Govinda R. Poudel et al., 2020; A. Raj et al., 2015). These results demonstrate 

the dependency of brain regions to identify neurodegenerative diseases, including HD. Hence, 

the NDM model contributes to the qualitative understanding of trans-synaptic propagation of 

misfolded protein into a quantitative model. 

 

Figure 21 Likely pathways of spread of degeneration in HD. 

Motor 

Striatum Occipital 
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In contrast to previous research in HD and other neurodegenerative diseases, this study 

specifically used NDM to emulate the longitudinal atrophy in HD. The NDM relies on 

mathematical modelling of diffusion process on structural connectome. Therefore, the model 

itself has an intrinsic temporal component, which has not been studied in previous work.  

Fig 22 shows the likely pattern of network-based degenerations in HD compared to 

healthy control. HD, when compared with the standard control, shows longitudinal spread 

throughout the region of inter-hemisphere covering the areas such as frontal, motor, parietal 

cortices, and correct-striatal regions. These findings align with previous network studies in HD 

(G. R. Poudel, Harding, Egan, & Georgiou‐Karistianis, 2019; Govinda R. Poudel et al., 2015; 

Ashish Raj & Powell, 2021).  

Furthermore, when NDM was stimulated for each brain region, the highest number of 

correlations among the atrophy, i.e., measured and predicted ones, has been seen for the striatum 

region. Putamen had shown a stable pattern of network diffusion in the case of HD. Several 

studies have suggested that neuronal loss, along with the structural changes found in the brain's 

sub-cortical areas, has been taken as the early-stage progression of HD (van den Bogaard et al., 

2011). Cognitive and motor disbalances in HD has been recorded as an immediate effect of 

these changes occurring in subcortical regions ( Bäckman, Robins-Wahlin, Lundin, Ginovart, & 

Farde, 1997). Some studies suggest that longitudinal disease progression from the striatum 

region, overall covering significant areas of the cortex, is much more similar to the atrophy of 

cortical regions. In contrast, the sensorimotor regions have been included as the most affected 

regions showing longitudinal degenerations, which have a similar connectivity case with striatum 

G. R. Poudel, Harding, Egan, & Georgiou‐Karistianis, 2019).  

To sum up, longitudinal atrophy in HD throughout the brain structure can be reflected 

by NDM as a diffusion process in the brain as a network connectome. Implementation of NDM 

in disorders such as PD, ALS and AD has demonstrated the same pattern of longitudinal 

progression (Bhattarai et al., 2021; S. Pandya et al., 2019; Govinda R. Poudel et al., 2020; Ashish 
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Raj & Powell, 2021). Furthermore, when diffusion is ingested through the brain regions such as 

the pallidum and the thalamus, it follows the same pattern of longitudinal degeneration in the 

cortical brain of HD. Thus, predictions of the longitudinal atrophy in the HD brain have been 

effectively mapped throughout the brain connectome using NDM, providing the trans-synaptic 

framework to test HD's longitudinal disease progression hypothesis. 

 
6.2.4 Relationship to white matter degeneration in HD.  

 In the current study, we used normative brain connectome and NDM to predict 

degeneration of grey matter in HD brain. Previous studies have demonstrated that NDM may 

also explain white matter disconnection in HD (Poudel et. al., 2019).   Furthermore, pre-HD 

shows degeneration of white matter network connecting hub regions of the brain (McColgan, 

Seunarine, Razi, Cole, Gregory, Durr, Roos, Stout, Landwehrmeyer, & Scahill, 2015). It has also 

been suggested that the topological length of white matter connections with longer length are 

affected earlier (McColgan et al., 2017). Primarily corticostriatal connections first reveal the 

decrease in network connectivity followed by inter-hemispheric and intra-hemispheric 

connectivity, which are in line with previous studies (Govinda R Poudel et al., 2014). Our 

findings of potential trans-axonal distribution of atrophy requires asks for further investigation 

regarding this process may impact the white matter itself.  

 

6.3 Overall implication of the findings 

The primary implication of the findings from the current thesis is to demonstrate that 

the progression of neurodegeneration in HD during premanifest stage can be shaped by the 

organisation of the structural connectome in the brain. Our findings suggest that 

neurodegenerative changes in HD may begin in the vulnerable brain hubs and then spreads to 

specific neural circuits via trans-neuronal propagation constrained by the structural and 

functional organization of the brain. We have built upon our computational imaging strengths 
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and develop models that best predict the pattern of atrophy spread over time. Advanced graph 

theoretical methods, as well as mathematical propagation models, were used to investigate 

whether structural reorganization in the brain predicts longitudinal progression of atrophy in 

HD.  

This is the first study to show that network diffusion can, indeed, be used as model to 

predict how and where the pathology may spread in HD brain. Although previous studies have 

shown cell-to-cell propagation of abnormal protein in animal model, relatively little was known 

regarding how structural organization may shape the progression of atrophy in the human brain. 

This knowledge is critical to inform future drug discovery efforts where neuroimaging methods 

maybe used to assess efficacy of potential therapeutic compounds in targeting vulnerable neural 

circuits in HD.  

The most unique aspects of the current study, which advance on the previous work are 

1) the application of NDM on longitudinal data 2) and the use of NDM during the premanifest 

stage of the disease. While previous work has employed this technique on a cross-sectional 

symptomatic-HD cohort (Poudel et. al., 2019), longitudinal data is necessary to make sense of 

disease progression and model the change over time. Previous longitudinal studies have only 

focused on statistical modelling of the volumetric changes over time (Dorsey & Investigators, 

2012, Biglan et al., 2016), PREDICT (Aulsen et al., 2008, Tabrizi et al., 2013), which limits the 

ability to make predictions about nature spatial spread in the brain. The NDM model is a unique 

mathematical model which allowed us to make inferences about how the disease might be 

spreading in the HD brain. 

The use of relatively large neuroimaging dataset in this rare disease population allowed us 

to specifically investigate whether neurodegeneration in HD propagates via structural networks. 

The use of the data from pre-manifest stage of the disease, who are several years away from the 

onset of the disease, allowed us to demonstrate that macroscopic consequences of cell-to-cell 

transfer may alter the brain early. 
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6.4 Limitations and Future Directions 

The outcomes from our study can be summarized into two main findings. First, 

volumetric analysis of longitudinal MRI data from premanifest HD patients from the TRACK-

ON HD study uncovers progressive pathological degeneration in brain regions of both 

hemispheres. Second, a network diffusion model implemented to the structural brain 

connectome demonstrated the longitudinal pattern of spatial degeneration in premanifest HD. 

However, this study has several limitations. The study's sample size was relatively small. The 

small sample size may have influenced the precision of estimates and the power of the study of 

conclusion drawn. Furthermore, the period of longitudinal monitoring was relatively short (only 

24 months). The short time-frame may have reduced the sensitivity of detecting longitudinal 

changes in brain volume in pre-manifest individuals. Previous studies have suggested the 

volumetric changes in the striatum are evident within a year (Gregory et al., 2018; Poudel, Stout, 

et al., 2014; Tabrizi et al., 2009). However, cortical degeneration is a relatively slow process in 

HD, which may not have been captured fully in the current study. As the focus of the study was 

on computational modelling, we also excluded the correlation study between imaging changes 

and behavioral or cognitive issues. Previous studies have found extensive correlation between 

brain imaging markers and neurobehavioral outcomes (Gregory et al., 2018; Poudel, Stout, et al., 

2014; Tabrizi et al., 2009). Period of monitoring was only twenty-four months, which may 

influence cause and effect of the outcome.  

The predictive power of the diffusion model approach and mathematical analysis 

presented here has not yet been fully evaluated. The validity of the network diffusion model is 

related to the accuracy of the processing pipelines considered. We considered only the 

volumetric measurements (structural change) of the brain. Hence, inclusion of further details 

such as functional change in the brain may capture more vivid outcomes and validate the 

research aims. Our research results are based on a normative brain model of the human 
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connectome which may influence our findings. Specifically, these findings may not be necessarily 

useful in the context of other neurodegenerative diseases. Furthermore, we also analysed the data 

using group level-modelling and this approach cannot be used to make inferences on a 

personalised level. Another important question that arises is how these subnets are related to the 

patient's phenotype and other patient-specific characteristics. Subject characteristics other than 

brain imaging data (e.g. sex, age, education, genotype, depressive symptoms, cardiovascular 

disease, etc.) were not considered. Additionally, the implications of subnet identification for HD 

can be extended to other neurodegenerative diseases. When these important factors can be 

combined to form a comprehensive model, the ultimate end goal is to create a disease state and 

progression classifier, given all patient scans and connectivity data.  

Despite the above limitations, we provide an advance computational model for 

characterizing and tracking the progression of brain changes in HD. This new knowledge 

regarding how the disease spreads within the brain network in the premanifest stage of HD will 

be critical in the field of monogenic neurodegenerative disorders. It will also help characterize 

various phenotypes within HD. The applications of such a framework in patient intervention 

and management are numerous, with the potential to provide non-invasive diagnostic, 

prognostic information, and sensitive measures of treatment efficacy.  

The methodological innovations outlined in this application can build hybrid data-driven 

models by incorporating machine learning tools with bio-physical models such as NDM. This 

can help the development of personalized techniques for predicting future degeneration from 

baseline MRI scans. These personalized, predictive technologies will be suitable for a range of 

neurodegenerative diseases such as Huntington's and Alzheimer's disease and can potentially be 

applied to clinical work. Ultimately, the successful integration of these contributions represents a 

significant development in neurodegeneration research and will significantly improve the 

prognostic and predictive outcomes for patients.  
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6.4 Concluding Remarks 

The overall aim of this thesis was to test the hypothesis that network diffusion model 

could be used to predict neurodegenerative changes in HD during the pre-manifest stage of the 

disease. Based on the findings from our empirical work, we showed that NDM can only 

moderately predict macroscopic consequences of disease in HD. However, the predictive 

arability of NDM used in this study is yet to be fully evaluated.  
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Appendix B. MATLAB script for Graph Theoretical Analysis  

 

%%% MATLAB Code for Network Diffusion Model  %%% 
  
  
  
ztestdata=readtable('../MATLAB/zstatL.xlsx'); 
all_label=ztestdata.Brain_regions(1:82); 
atropy=-1*ztestdata.z_value(1:82)'; 
atropy(atropy<0)=0; 
%Running NDM  
beta=1; 
time=1:40; 
  
IITconnect=load('../MATLAB/IIT_connectivity_matrix.txt'); 
indx=[1:34,36:83]; 
conmat=IITconnect(indx,indx); 
  
lh_seed=[1:41]; %This are roi locations corresponding to left and right hand side of the brain 
rh_seed=[49:82,42:48]; 
c_indx=[1:34 49:82]; %Node index for cortical parcels 
s_indx=[35:48]; % Node index for subcortical parcels 
  
  
[eig_val,V]=generateLaplacian(conmat); % Generate lapacian vectors  
  
[r_val_Patients,xt_Patients_all, atr_all]=runSeedingNDM_ss(eig_val,V,time,beta,atropy,lh_seed,rh_seed); % Run 
seeding analysis for all bilateeral seeds 
[vm_Patients, im_Patients]=sort(max(r_val_Patients),'descend'); % sort according to the correlation analysis 
%fig_h1=generateRTCurves(r_val_Patients,time,[im_Patients(1:4)  
 
  
xlabel('Time (a.u)', 'Fontsize', 24); 
ylabel('Correlation (r-value)','Fontsize', 24); 
%plot(time, r_val_Patients) 
%title('GROUP BY TIME Correlation') 
%xlabel('time') 
%ylabel('correlation') 
  
%Regions showing maxium correlation 
all_label(im_Patients(1:5)) 
  
%indx=[1:34,36:83]; 
generateFSVolumes("aparc+aseg_mrtrix",indx,atropy,'brainresult_zscore.nii') 
  
%  
     
%end 

 
  
 
%Generate Laplacian Matrix% 
   
function [eig_val V]=generateLaplacian(mat) 
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%Generate degree normalised laplacian matrix from connectivity matrix 
Deg=diag(sum(mat,2)); 
L=Deg-mat; 
  
norm_vol=generateDegreeMatrix(diag(Deg)); 
L=L./norm_vol; 
  
[V,Di]=eig(L); 
eig_val=diag(Di); 
 
 
% Generate Degree Matrix% 
   
function [VolMat]=generateDegreeMatrix(Vol) 
%Generate a degree matrix based on the input degree vector  
sz=length(Vol); 
VolMat=zeros(sz,sz); 
for i=1:sz 
   cn1=Vol(i); 
    for j=1:sz 
        cn2=Vol(j); 
        VolMat(i,j)=sqrt(cn1*cn2); 
    end 
end 
  
%Generate FS Volumes  %% 
  
 function generateFSVolumes(atlasbrain,indx,atrophy,outbrain) 
  
% A function that can read an atlas and change the values as per  
    V=niftiread(atlasbrain); 
    infos=niftiinfo(atlasbrain); 
     
    all_indx=unique(V); 
     
    Vs=V; 
    n_indx=setdiff(all_indx,indx); 
     
     
    for i=1:length(n_indx) 
         
        Vs(find(Vs==n_indx(i)))=0; 
         
    end 
     
    for i=1:length(indx) 
         
        Vs(find(Vs==indx(i)))=atrophy(i); 
         
    end 
     
    niftiwrite(Vs,outbrain,infos); 
 
% Seeding Process in NDM %% 
  
function [r_val xt_all atr_all]=runSeedingNDM(eig_val,V,time,beta,atropy,lh_seed,rh_seed) 
% A function to run seeding analysis for bilateeral seeds specified in 
% lh_seed and rh-seed 
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r_val=[]; 
xt_all=[]; 
atr_all=[]; 
atr_all=[]; 
ns=1:length(atropy); 
for i=1:length(atropy)/2; 
    xt=[]; 
    C0=zeros(1,length(eig_val))'; 
    C0(lh_seed(i))=1; 
    C0(rh_seed(i))=1; 
    u_ns=setdiff(ns,[lh_seed(i),rh_seed(i)]); 
    [xt]=RunNDM(V,eig_val,C0,time,beta); 
    r_val(:,i)=corr(xt(u_ns,:),atropy(u_ns)','type','Pearson'); 
    xt_all(:,:,i)=xt(u_ns,:); 
    atr_all(:,i)=atropy(u_ns)'; 
     
    %xt_all(:,:,i)=xt(u_ns,:); 
    %atr_all(:,:,i)=atropy(u_ns)'; 
     
End 
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Appendix C. R script for Statistical Analysis Using LMER 
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