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A B S T R A C T

A comprehensive tract-based characterisation of white matter should include the ability to quantify myelin
and axonal attributes irrespective of the complexity of fibre organisation within the voxel. Recently, a new
experimental framework that combines inversion recovery and diffusion MRI, called inversion recovery dif-
fusion tensor imaging (IR-DTI), was introduced and applied in an animal study. IR-DTI provides the ability
to assign to each unique fibre population within a voxel a specific value of the longitudinal relaxation time,
T1, which is a proxy for myelin content. Here, we apply the IR-DTI approach to the human brain in vivo
on 7 healthy subjects for the first time. We demonstrate that the approach is able to measure differen-
tial tract properties in crossing fibre areas, reflecting the different myelination of tracts. We also show that
tract-specific T1 has less inter-subject variability compared to conventional T1 in areas of crossing fibres,
suggesting increased specificity to distinct fibre populations. Finally we show in simulations that changes in
myelination selectively affecting one fibre bundle in crossing fibre areas can potentially be detected earlier
using IR-DTI.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Introduction

White matter (WM) is organised in bundles of axons, myelinated
to a varying degree, connecting specific areas of the brain. Axons tend
to group into fascicles and appear to prefer to fasciculate with axons
of their own type (Zipser et al., 1989); as a result, tracts consisting
primarily of a homogeneous population of axons are generated (Bray
et al., 1980; Kapfhammer et al., 1986; Kröger and Walter, 1991).

MRI techniques have proven to be an invaluable tool to charac-
terise brain WM non-invasively in recent years. Rather than search-
ing for the single MRI technique that best describes the structure of
WM, there is increasing interest in multi-modal approaches, which
combine different MRI techniques sensitive to distinct aspects of
WM. An example is Tractometry (Bells et al., 2011), where the authors
proposed a strategy to achieve a comprehensive multi-modal quan-
titative assessment of WM along specific tracts. Diffusion tensor MRI
(DT-MRI) (Basser et al., 1994) allows estimation of biomarkers that
reflect largely axonal properties, but are also modulated by myelin
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content (Beaulieu, 2002). The CHARMED approach (Assaf and Basser,
2005; Assaf et al., 2004) models water diffusion inside the axon sep-
arately from that outside the axon, providing a proxy measure of
axonal density, which has been shown to correlate well with the total
myelin content (De Santis et al., 2014). Q-space diffusion MRI param-
eters (Callaghan et al., 1990) have also been linked to the degree of
myelination in recent work (Anaby et al., 2013). Myelin is believed to
be an important source of contrast in T∗

2-weighted images from WM
at high field (Lee et al., 2012; Sati et al., 2013). In addition, the longi-
tudinal relaxation time T1 is believed to be mostly sensitive to myelin
content in both WM (De Santis et al., 2014; Mottershead et al., 2003;
Thiessen et al., 2013) and gray matter (Lutti et al., 2013; Stüber et al.,
2014), although other factors (e.g., oedema, gliosis and axon den-
sity) affect this contrast too. MRI-based methods specific for myelin
quantification have also been developed, including multi-component
relaxometry (Deoni et al., 2008; MacKay et al., 1994) and quantita-
tive magnetisation transfer imaging (Ramani et al., 2002; Sled and
Pike, 2000).

With the development of more sophisticated diffusion-based
approaches to reconstruct WM fibre architecture (e.g., Tournier et al.
(2004), Tuch (2004), Wedeen et al. (2008)), the practice of char-
acterising WM structure for each tract, rather than for each voxel,
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has become more commonplace. Since between 60 and 90% of the
WM voxels contain complex fibre architecture that can no longer be
described by a single WM fibre population (Jeurissen et al., 2012), it
is necessary to apply techniques that are capable of resolving cross-
ing fibres within the voxel, to provide tract-specific measures. If
the aforementioned hypothesis that axonal bundles are structurally
homogeneous holds, this is expected to increase biological speci-
ficity and to facilitate the detection of tract-specific properties, and
their changes under learning, development and disease in condi-
tions affecting only one population out of many crossing in the same
voxel. While several methods have been proposed to assign distinct
diffusion properties to distinct fibre populations, e.g. fibre-specific
axonal density (Assaf and Basser, 2005; Assaf et al., 2004), orien-
tational anisotropy (Dell’acqua et al., 2012), apparent fibre density
(Raffelt et al., 2012) and axonal diameter (Zhang et al., 2011), meth-
ods developed to quantify myelin to date provide only a single (i.e.,
average) myelin content of the voxel, irrespective of the architectural
paradigm.

Recently, a new MRI technique combining inversion recovery and
diffusion, called IR-DTI, was introduced to provide fibre-specific esti-
mates of the relaxation time T1 and of the diffusion tensor (Barazany
and Assaf, 2012; De Santis et al., 2015). This technique was applied
to fixed tissue of an animal model, showing the ability to provide
tract-specific values of T1 in crossing areas, reflecting differential
myelination properties. Here, we apply this technique in vivo to the
human brain for the first time. Specifically, our aims are: 1) to prove
feasibility of IR-DTI for human applications; 2) to characterise tract
profiles using tract-specific values for T1; 3) to compare IR-DTI to
conventional T1 measures in their ability to discriminate multiple
T1s in a voxel; and 4) to compare the sensitivity to tract specific T1

changes of IR-DTI to that of conventional single T1 maps in areas of
crossing fibres.

Methods

Model

Conventional inversion recovery (IR) fits a single relaxation time
T1 for each voxel, according to:

S/S0 = 1 − 2 • exp
(
−T I/T IR

1

)
(1)

If the voxel is composed of more than one T1 component, it is in prin-
ciple possible to perform a multi-exponential fit on the same IR data,
e.g., according to:

S/S0 =
∑

i
fi •

[
1 − 2 • exp

(
−TI/Ti

1

)]
(2)

where i is the number of T1 components. However, separating two
or more exponential decays with similar rates may be very difficult,
because of well recognised difficulties (Touboul et al., 2005).

IR-DTI instead provides the possibility of recovering multiple
relaxation times within a voxel by exploiting the orientational
dependence of the diffusion signal. The IR-DTI protocol comprises
several inversion recovery-prepared diffusion MRI series acquired
for different inversion times (TI). The combined contrast is described
by the following equation (De Santis et al., 2015):

S/S0 =
∑

i

fi •
[
1 − 2 • exp

(
−TI/Ti

1

)]
• exp

(
−bgT Dig

)
(3)

The IR-DTI signal is modelled as a summation over i populations,
each characterised by a volume fraction, fi, a specific diffusion tensor

Di and a specific Ti
1. In the original implementation, two popula-

tions were fitted in each voxel of the rat brain. To account for more
complex fibre arrangements found in human WM, and to avoid
overfitting in areas of coherent orientation, here a model selection
strategy is applied to decide how many compartments should be
fitted voxel-to-voxel, based on Jeurissen et al. (2012).

Simulations

Simulations were used to test the capability of IR-DTI to disen-
tangle multiple components in a crossing fibre voxel and to compare
it with conventional IR. Eq. (3) was simulated using two different
geometries: two crossing fibres, oriented along x- and y-axis, asso-
ciated with T1s of 800 and 1000 ms respectively, and three crossing
fibres, oriented along x-, y- and z-axis, associated with T1s of 800,
1000 and 1200 ms respectively. The fibres had identical diffusion
properties (diffusion parallel to the fibre D = 1.3 ∗ 10−3mm2/s),
but had different volume fraction (0.4 and 0.6 in case of two fibres,
0.26, 0.33 and 0.41 in case of three fibres respectively). In addition,
the angle between the first two fibres was changed in the range
30◦–90◦. The scheme used had the following parameters: TI =
175, 250, 300, 350, 400, 450, 500, 585, 675, 750, 850, 1100, 1500 ms,
15 non-collinear gradient orientations plus 2 unweighted scans
for each TI for a total of 221 measurements, b = 1000 s/mm2.
100,000 noisy repetitions were generated adding noise to gener-
ate Rician-distributed data at signal-to-noise ratio (SNR) = 20 in
the unweighted scan, which is a conservative estimate of the SNR
achievable in vivo (see Section Data processing). Eq. (1) for two
fibres, associated with T1s of 800 and 1000 ms, respectively, was
simulated using the same total number of measurements (221), the
same TI range (175–1500ms, 221 equally-spaced datapoints), the
same number of repetitions (i.e. 221 measurements) and the same
SNR, but without diffusion weighting. IR-DTI data were fitted to Eq.
(3); the orientational information was assumed to be equal to the
true value in the fit, to mirror what is done in vivo (see Section Data
processing). IR data were fitted to Eq. (1). To test the minimum effect
size needed by IR-DTI and IR to detect a statistically significant T1

change, the same simulations were repeated for different values of
the two T1s, simulating an increase of up to 10% in the smallest and
in the largest T1, respectively. Data were then fitted to both Eqs. (3)
and (1), and the difference with the original value was evaluated.
The difference was compared with the variability measured in vivo
for the different tracts, reported in Table 2 (see Subsection Statistical
analysis).

Data acquisition

7 healthy subjects with no history of neurological diseases par-
ticipated in the study. Mean age (standard deviation) was 29 ± 6
years; 4 of the participants were males and 3 were females. The
experimental procedures were approved by the ethics committee of
the Faculty for Psychology and Neuroscience at Maastricht Univer-
sity, and were performed in accordance with the approved guidelines
and the Declaration of Helsinki. Informed consent was obtained from
each participant before conducting the experiments. To minimise

Table 1
Repetition time, IR-DTI scan duration and total acquisition time (TA) for all subjects.

Subject TR (s) IR-DTI duration (min) Total TA (min)

subj 1 13.5 47 62
subj 2 10.5 37 52
subj 3 14 49 64
subj 4 14 49 64
subj 5 12.5 44 59
subj 6 10 35 50
subj 7 10.5 37 52
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Table 2
Percentile standard deviation calculated within each tract, averaged over all the
subjects, for IR-DTI and conventional IR.

Tract SD IR-DTI (%) SD IR (%)

Thalamic radiation 8.6 12.5
Cingulum 6.6 7.6
Corpus callosum 4.8 19.7
Arcuate 4.2 12.8
SLF 3.2 5.0

the effects of B1 inhomogeneity, dielectric pads (Snaar et al., 2011;
Teeuwisse et al., 2012) were placed between the subject’s head and
the coil, positioned in correspondence with temporal and occipital
lobes, i.e., the brain areas most affected by such inhomogeneity due
to low transmit efficiency in a volume transmit coil. The protocol
comprised an IR-DTI protocol at 7T with an IR-prepared pulsed gra-
dient spin echo (PGSE) echo planar imaging (EPI) sequence using the
following parameters: TI = 200, 300, 400, 500, 700, 1000, 1500 ms,
b-value 1000 s/mm2, 30 directions for each TI, TE = 50.8 ms, TR >
10 s, GRAPPA factor = 2. A separate HARDI scan, which is needed
to recover the fibre orientations and reconstruct fibre tracts, was
acquired using 60 gradient orientations, b-value 2000 s/mm2 and 6
b0, TE = 57.6 ms, TR = 5 s, GRAPPA factor = 3. The resolution of all
diffusion scans was 2 mm isotropic and the matrix size was 96 × 96.
21 slices were acquired for IR-DTI, 45–50 (depending on the head
size) for the HARDI scan in order to get full brain coverage. The
slice package was centred in the corpus callosum. A high-resolution
quantitative T1 scan was also acquired for each participant using an
MP2RAGE sequence (Marques and Gruetter, 2013; Marques et al.,
2010), at two different inversion times (TI= 900 and 2750 ms) at the
resolution of 0.7 mm isotropic. The scan time for the HARDI scan was
5.5 min, while the MP2RAGE acquisition took 9.5 min; the scan time
for the IR-DTI scan varied depending on the subject (due to a vari-
able TR adjusted to the specific absorption rate constraints of each
subject) and is reported in Table 1, along with the total acquisition
time.

Data processing

The SNR of the b0 image associated to the longest TI was
calculated using the difference method (Murphy et al., 1993) and

returned values between 25 and 30 across white matter. Data were
corrected for motion and distortion and analysed using ExploreDTI
(Leemans et al., 2009) and an in-house program written in Mat-
lab (R2012B, The Mathworks). First, HARDI data were processed to
obtain the fibre orientation density (FOD) using constrained spheri-
cal deconvolution (CSD) (Tournier et al., 2004). Then, up to three FOD
maxima, corresponding to the main underlying fibre orientations,
were extracted using a numerical optimization procedure described
by Jeurissen et al. (2012). The orientational information and the vol-
ume fractions were then fed into the IR-DTI routine and kept fixed
during the following steps. The routine fits a T1 value for each fibre
population present in the voxel, according to Eq. (3). Hence, the
fitted parameters are: (up to) three Ti

1, (up to) three Di and a John-
son noise term (Assaf et al., 2004). The fit is performed using the
lsqnonlin function in Matlab. The routine fits a specific longitudinal
diffusion coefficient for each fibre, while the orthogonal diffusivities
are derived from the longitudinal diffusion using a tortuosity model
(Szafer et al., 1995). We have shown recently (De Santis et al., 2016)
that the use of this tortuosity model may bias estimates of axonal
density in models with both hindered and restricted diffusion com-
partments. However, this bias does not apply to the IR-DTI model
as the images are acquired with the same diffusion time and the
model does not estimate fibre density. Quantitative T1 maps, which
are estimated from the two inversion times (Marques et al., 2010),
were obtained directly from the scanner as output of the MP2RAGE
pipeline (MP2RAGE T1); in addition, T1 maps were also computed
taking the unweighted diffusion data at varying TI (IR T1) accord-
ing to Eq. (1). A bi-exponential fit was also performed, according to
Eq. (2).

Statistical analysis

Due to the limited spatial resolution of the scan, the cingulum
bundle (CING) and the genu of the corpus callosum (CC) effec-
tively cross within a voxel, providing a good test-bed to demon-
strate that the analysis can measure fibre specific T1 values in
areas of crossing fibres. The CC and the CING were reconstructed
by manually selecting waypoints for all subjects. Fibre-specific his-
tograms of T1 were computed by assigning the Ti

1 values specific
to IR-DTI orientations in each voxel to a specific fibre bundle:
left-right were assigned to the CC, while anterior-posterior were

Fig. 1. Histograms of fitted T1s in simulated data. Eq. (3) was used for double (panel a) and triple (panel b) crossing configurations at varying crossing angle between the first and
the second component, as depicted in the schematic figures at the left. Dotted lines are measured mean values.
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Fig. 2. Histograms of fitted T1s in simulated data using Eq. (3) for double (a) and triple (c) crossing configurations for 90◦ crossing, and using Eq. (2) for two (b) and three (d) T1

components, with SNR = 20. The same is also shown for SNR = 2 ∗104 in plots e, f, g, h.

assigned to the CING. To investigate a crossing of three fibres,
the CC, corticospinal tract (CST) and superior longitudinal fasci-
culus (SLF) were manually reconstructed using waypoints for one
selected subject. Only the lateral portion of the CC intersecting the
other two tracts was considered in the analysis. Fibre-specific his-
tograms of T1 were computed by assigning the Ti

1 values in each
voxel to a specific fibre bundle by selecting voxel-wise the T1 asso-
ciated with the orientation subtending the smallest angle to the
fibre trajectory. To perform statistical analysis over all subjects and
over different tracts, an automated tract segmentation approach
(Yeatman et al., 2012) was chosen to reconstruct the corpus cal-
losum, the cingulum, the thalamic radiation, the arcuate and the
superior longitudinal fasciculus for each subject. The same routine
was also used to extract tract profiles. The IR-DTI approach yields up
to 3 T1 values at each point along every tract, and each T1 is asso-
ciated with a particular orientation. To generate a tract-specific T1

profile, the algorithm selects the T1 associated with the orientation
subtending the smallest angle to the fibre trajectory. Also conven-
tional IR T1 and MP2RAGE T1 profiles were calculated by projecting
the values of T1 onto the tract profile. For each tract, the standard
deviation within the tract was calculated and averaged over subjects,
to have an estimate of the variability of T1 in each tract. The results
are reported in Table 2.

All T1 profiles were calculated for each subject and combined to
find the mean profile and the associated standard deviation over all
subjects.

Results

Simulations

Fig. 1 shows histograms of fitted T1s to the simulated crossing
fibre data using Eq. (3) for double and triple crossing, respectively,
and for varying crossing angles. IR-DTI successfully recovers the dis-
tinct peaks corresponding to the different T1s even for small crossing
angles.

Fig. 2 shows the histograms of T1 for two and three fibres crossing
calculated with IR-DTI and with Eq. (2), respectively, for typical SNR
and for an unrealistically high SNR. The IR-DTI data are multi-variate
(i.e. in the space of gradient orientations and in the space of differ-
ent TI), while the IR data are univariate (in the space of TI only), but
the two simulated acquisitions have the same number of datapoints.
Fig. 2 shows that for typical SNR, IR-DTI can resolve fibre crossing,
while a biexponential fit fails. This is likely due to the fact that when
the two characteristic exponentials are close to each other, the com-
posite becomes much harder to fit with a bi-exponential model for
univariate data, and one has to go to unrealistically high SNR to
resolve the different exponents.

Fig. 3 shows the minimum effect size needed to detect a change in
T1 in a two fibre crossing configuration, if the change only affects one
of the two fibres. The simulations are repeated for the case in which
the smallest T1 is increasing (upper panels) and for the case in which
the smallest T1 is increasing (lower panels). The observed change is
compared with the maximum and minimum variability found in vivo
(shaded areas) and reported in Table 2. IR-DTI can detect changes for
effect sizes as small as 3% in tracts with low T1 variability, and needs
a change of 6–9% in tracts characterised by high variability. IR, which
measures the weighted average of the values between the two fibres,
needs much larger effect sizes (>10%). A bi-exponential fit, according
to Eq. (1), systematically fails in detecting two different values of T1

(data not shown).

In-vivo results

Fig. 4 replicates in humans the results already obtained in rodent
(De Santis et al., 2015). Fig. 4a shows the tractography of the CC and
the CING in a single subject, and Fig. 4b is a scatterplot of the angle to
the L-R axis versus T1 in the area of crossing of the two tracts. The two
crosses represent the calculated cluster centroids. The two bundles
show a clear separation on both axes, with the CING having larger T1

values than the CC. This is also shown in the histogram of Fig. 4c. In
Fig. 4d, mean and standard deviation across all subjects are reported,
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Fig. 3. Estimated relaxation times T1 versus per cent change of true T1, reported for the two components extracted using IR-DTI (panel a and c) and for the single component
extracted using IR (panel b and d) in simulated data. The results are repeated increasing the smaller T1 (panel a and b) and increasing the larger T1 (panel c and d). Error bars are
standard deviations across noisy repetitions. The shaded areas represent the minimum (darker) and the maximum (lighter) variability found in vivo inside tracts. A single asterisk
means that the observed change is larger than the variability measured in the tract with the smallest variability (SLF for both IR-DTI T1 and IR T1), while double asterisk means
that the observed change is larger than the variability measured in the tract with the largest variability (thalamic radiation for IR-DTI T1 and CC for IR T1). Dashed lines represent
initial (i.e., unchanged) values of T1.

proving that the difference in the T1 relaxation properties of the two
tracts is consistent across subjects.

Fig. 5 shows an area of triple crossing between the CC, CST and
SLF. In areas likely belonging to the same fibre tract, the fitted tract-
specific T1 maps are also relatively homogeneous, with adjacent
tracts showing clearly distinct values of T1 (see Fig. 5e–f). This is
quantified in the bar plot in the lower right panel (Fig. 5g), which
shows different average T1 values for the different tracts and mod-
est standard deviation of T1 values within the ROIs depicted in panel
c and d. A two-sample t-test confirms that the distribution of T1 is
different in the three ROIs (p < 0.05). To check consistency of the
differences in T1 measured in the crossing area, in panel h the his-
tograms of the tract-specific T1s are reported for the whole tracts CC,
CST and SLF, reconstructed using tractography. CC is characterised by
the smallest T1, while CST shows the largest T1. The values recovered
in the crossing areas with IR-DTI are consistent with those calculated
along the whole tract.

Fig. 6 shows the results of the profile analysis for analysed tracts.
For each tract, the mean profile (normalised to the T1 value in
the middle of the tract) and the standard deviation across subjects
along the tract is reported for IR-DTI T1 (red) and for conventional
MP2RAGE T1 (green). The IR-DTI approach always results in lower
standard deviations. In cases of known presence of multiple crossing
tracts, the differences are particularly pronounced. For instance, the

inter-subject variability in the centre of the CC is small for MP2RAGE
T1, but increases to several times the variability of IR-DTI T1 in the
more lateral parts of the CC where it crosses the CST and the SLF.

Fig. 7 shows the average standard deviation along the five tracts
reported in Fig. 6 for IR-DTI, conventional IR and MP2RAGE T1 trac-
tometry. MP2RAGE T1 shows the largest variability in all tracts,
followed by IR T1, while IR-DTI T1 shows the smallest variability.

Discussion

The IR-DTI approach recently succeeded in measuring fibre-
specific relaxation time T1 inside a voxel in an animal model (De
Santis et al., 2015), opening a new scenario for WM investigation: the
characterisation of T1 in each tract, rather than in each voxel. This
approach is best suited to describe an organised structure, whose
sub-units (the fibre bundles) are highly homogeneous in their com-
position. Here, we demonstrate the feasibility of the approach both in
simulations and in-vivo in the human brain. In addition, we demon-
strate the advantages of using IR-DTI over conventional, voxel-wise
approach, where most of the voxels are expected to contain contri-
butions from different bundles (Jeurissen et al., 2012).

Fig. 2 shows that IR-DTI is better than IR at separating two distinct
T1s of 800 and 1000 ms in the same voxel, with the same number of
measurements and the same SNR. This is likely to be due to the fact
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Fig. 4. Tractography of corpus callosum (CC) and cingulum (CING) (a), scatterplot of the angle to the L-R direction versus T1 in the area of crossing of the two tracts (b) and
corresponding colour-coded histogram (c). For the same two tracts, mean and standard deviation of tract-specific T1 across all subjects are reported in panel d.

that IR-DTI is a bi-dimensional technique, because data are acquired
both in the space of TI and in the space of gradient orientations
(directionality). In the case where the two T1s are very close and
the measures are only acquired in the TI space it is very difficult to
tease apart two exponentials, unless the SNR is unrealistically high
(Fig. 2, right panels). Conversely, a bi-dimensional technique that
exploits the directionality of the diffusion signal to get relaxome-
try information along the tract successfully differentiates the two
components.

IR-DTI has higher sensitivity to T1 changes than conventional IR
T1, as shown in Fig. 3. Depending on which fibre is changing its relax-
ation properties, IR-DTI needs an effect size of only 3–6% to detect a
significant change, while conventional IR needs much higher effect
size (>10%). This result opens exciting scenarios for early detection
of pathologies selectively affecting one fibre bundle in crossing fibre
areas, like Wallerian degeneration (Pierpaoli et al., 2001), Hunting-
ton’s disease (Douaud et al., 2009) and Alzheimer’s disease (Douaud
et al., 2011). It should be noted that IR-DTI outperforms IR especially
when the fibre with the smaller volume fraction is the one affected
by the T1 increase, as expected intuitively. This suggests that IR-DTI
is especially advantageous in detecting the change in fibre-specific
T1 for small tracts.

We were able to reproduce in the human brain the findings
obtained in the animal model (De Santis et al., 2015). The difference
found in the animal model between the T1 of the cingulum and that
of the corpus callosum (see Fig. 9 in De Santis et al. (2015)) was also
replicated in the human brain, as shown in Fig. 4. This result is con-
sistent with the fact that the corpus callosum is more myelinated
than the cingulum (see Dean et al. (2014) for developing humans and

Bowley et al. (2010) for the rhesus monkey) and myelin content is
inversely correlated with T1 (Lutti et al., 2013). Given the increased
fibre complexity of the human brain compared to rodent, here we
extended the model to include up to three fibre populations. We
demonstrated using both simulations (Fig. 1) and real data (Fig. 5)
that IR-DTI can successfully disentangle three compartments in each
voxel. In areas likely belonging to the same fibre tract, the tract-
specific T1 maps are also homogeneous, with adjacent tracts showing
clearly distinct values of T1, as shown in Fig. 5. Importantly, the
values recovered in the crossing area are consistent with those calcu-
lated along the tract, demonstrating the reliability of the method and
also suggesting for the first time (to the best of our knowledge) that
different tracts are characterised by different T1s, likely reflecting
their different myelination properties.

IR-DTI measurements have less inter-subject variability along the
tract, when tract-specific T1s are used, as compared to conventional
IR. Notably, larger inter-subject standard deviations are observed
only for the conventional IR in areas with high fibre dispersion,
as seen in Fig. 6. For example, in the centre of the corpus callo-
sum, MP2RAGE and IR-DTI provide small standard deviation. Moving
away from the centre of the tract, where higher fibre dispersion and
crossing with other tracts is found, MP2RAGE T1 provides increased
standard deviation, while the IR-DTI T1 profile does not show any
change in the standard deviation. We speculate that this is as a result
of increased specificity, gained by removing the confound of fibre
crossing. Fig. 7 confirms that methods based on a single T1 compo-
nent result in higher variability along the tracts. In addition to the
fibre crossing effect, the overall higher variability of MP2RAGE T1

may be partly explained by the fact that its much higher resolution
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Fig. 5. An area of crossing between the corpus callosum (CC), corticospinal tract (CST) and superior longitudinal fasciculus (SLF) for one selected subject. In panels a and b, the
tractography reconstruction of the three tracts is shown. Maps of the voxelwise fibre orientations (panel c and d), along with the corresponding T1s (panel e and f) for each of
the two first identified IR-DTI components, are reported for a slice comprising the three tracts. Fibre orientation is displayed using the following colour convention: red colour
represents fibres passing in mediolateral orientation; green: anterior-posterior; blue: inferior-superior. In panel g, the mean and standard deviation of the relaxation time T1 is
shown, calculated in the ROIs highlighted in panel c and d, corresponding to the area of crossing between the three tracts. In panel h, the histograms of T1 values across the entire
tract and the corresponding average value (dotted lines) are reported for CC, CST and SLF.

comes with a lower SNR, especially when considered that IR-DTI is
fitted over many volumes of data. Finally, it seems unlikely that going
from 2 mm isotropic to 0.7 mm isotropic allows separating fibres, as
in most cases the voxel will contain crossing fibres interdigitating at
the level of about a hundred micron (Jbabdi et al., 2015).

With a double suppression of signal, both by the IR T1 weight-
ing and by the diffusion weighting, SNR is of concern for IR-DTI even
at high field. Here, we choose a moderate resolution (compared to
resolutions achievable at high-end 3T and 7T systems) to ensure ade-
quate SNR, obtaining SNR values between 25 and 30 across WM.
However, in our simulations we have employed a conservative value

of 20 for the SNR, and demonstrated that the method is able to
resolve accurately up to three fibres crossing, which suggests that
there is room to improve resolution.

Possible limitations for translation to the clinic are the long
acquisition times that result from the elevated SAR caused by
both inversion and refocusing pulses, especially at 7T. 7T helps
with increased signal in the doubly attenuated IR-DTI contrast and
increases the differences in T1 (Koenig et al., 1990; Rooney et al.,
2007; Wright et al., 2008), and thus facilitates detection of mul-
tiple T1s, but also increases the experimental time, when TR’s are
increased to accommodate SAR constraints. This can be alleviated
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Fig. 6. Reconstructed fibre tract of a representative subject (left) and corresponding mean tract profile. To facilitate comparison, the T1 scale is normalised to the value of T1 in the
middle of the tract. Shaded areas represent the standard deviation across all the subjects (right). Profiles are reported for IR-DTI T1 (red) and for MP2RAGE T1 (green). The results
are shown for five fibre tracts: the thalamic radiation (a), the cingulum (b), the corpus callosum (c), the superior longitudinal fasciculus (d) and the arcuate fasciculus (e).

in the future, for example, by implementing state-of-the-art SAR-
efficient inversion pulses (Ivanov et al., 2014).

IR-DTI can recover up to three distinct T1s inside a voxel, with
minor loss in precision when the crossing angle goes from 90 to 30◦,
as shown in Fig. 1. It has to be noted, however, that IR-DTI relies
on fibre estimates calculated using a separate HARDI acquisition,
hence it will be affected by the limitations of the algorithm chosen to
recover voxel-wise the fibre orientations (in this case, CSD), like the
well known bias for small crossing angles (Tournier et al., 2008).

B1 inhomogeneity is challenge for 7T imaging. Using standard cir-
cularly polarized or ‘birdcage’ transmit coils yields flip angles which
are up to 42% lower in the periphery of the brain compared to cen-
trally, due to dielectric effects (Vaughan et al., 2001). To mitigate
this effect, we have used dielectric pads to improve B1 homogene-
ity (Snaar et al., 2011; Teeuwisse et al., 2012). Improved RF pulse
design, such as the use of adiabatic pulses (Tannús and Garwood,
1997), might help mitigate the problem and will be investigated in
the future.
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Fig. 7. Mean and standard deviation of over-subject deviations along the five tracts
reported in Fig. 6 for IR-DTI (blue), conventional IR (red) and MP2RAGE T1 tractometry
(green).

In conclusion, we demonstrate the feasibility of in-vivo IR-DTI
analysis on the human brain identifying fibre-specific T1 values. IR-
DTI has great potential for application in the clinic, for instance in
detecting very early tract specific alterations of myelination in cross-
ing fibre areas that might not be detected using other MRI-based
approaches.
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