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Matermnal Litestyle Interventions: Targeting

Preconception Health

Trine Moholdt ®,"%* and John A. Hawley ®,3

About one-third of women of reproductive age are obese, predisposing both
mother and baby to unfavourable pregnancy outcomes and initiating an inter-
generational cycle of chronic metabolic disorders. Here we summarise recent
research on the influence of maternal metabolic health on offspring susceptibility
to future cardiometabolic diseases. Current primary lifestyle approaches (i.e.,
diet and exercise interventions) to halt the succession of inherited and
epigenetic metabolic abnormalities have met with limited success due to late
implementation, poor adherence, and/or generic guidelines. In our opinion,
such interventions must commence prior to conception to improve both mater-
nal and child health outcomes, with new approaches urgently needed to increase
adherence to primary lifestyle changes among reproductive-age women.

The Size of the Problem

Obesity and type 2 diabetes mellitus (T2D) are the biggest epidemics in human history [1] and the
major challenge to health-care systems worldwide in the 21st century. Compared with 20 years
ago, twice as many people are diagnosed with T2D, and the rapid increase in obesity and T2D
among children, adolescents, and young adults predisposes future generations to increased
risk for numerous chronic diseases [2]. Obesity is the result of complex interactions between
genetic, environmental, and socioeconomic influences. While family history is a strong determi-
nant for both obesity and T2D, genome-wide estimates suggest that only ~20% of obesity and
T2D risk is attributable to fixed genomic variation [3,4], leaving a large part of heritability
unexplained. Behavioural and environmental factors influence patterns of gene expression via
gene—environment interactions and epigenetic modifications (see Glossary) and provide a
molecular basis for the ‘missing’ heritability associated with the elevated risk for obesity and
T2D [5]. In support of this premise, robust associations exist between susceptibility to life-long
obesity, impaired glucose tolerance (IGT), and T2D in offspring and epigenetic modifications,
confirming that metabolic dysfunction is transmitted across generations [6].

The importance of early human embryonic and foetal life for later increased risk of metabolic
disturbances is captured in the Developmental Origins of Health and Disease (DOHaD)
hypothesis [7]. Maternal lifestyle prior to and during pregnancy is, therefore, of paramount
importance for the epigenetic mapping of the offspring [5] and underpins the intergenerational
cycle of obesity, insulin resistance, and associated disorders (Figure 1).

Maternal Metabolism and Offspring Health: When Things Go Wrong

Maternal overweight and obesity are associated with a substantially higher risk of gestational
diabetes mellitus (GDM) [8]. Both environmental factors and genetics contribute to the
development of GDM, with up to 14% of live births negatively impacted by this condition [9].
Both maternal obesity and GDM are independently associated with adverse pregnancy out-
comes and their combination has a greater impact than either one alone [10]. Maternal glucose
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intolerance in GDM results from peripheral insulin resistance and the failure of 3-cell compensa-
tion and maternal insulin production to cope with the prevailing hyperglycaemia. Maternal glucose
crosses the maternoembryonic interface, but insulin does not, leading to foetal hyperglycaemia,
hyperinsulinaemia, and a vicious cycle of low-grade inflammation. Offspring exposed to untreated
GDMin utero are insulin resistant with limited 3-cell compensation compared with offspring of
mothers with normal glycaemia during pregnancy [11]. GDM is independently associated with
childhood IGT [11] and exposure to hyperglycaemia in utero is strongly related to childhood
adiposity, including overweight/obesity, increased skinfold thickness and body fat, and greater
waist circumference [12]. Even glucose concentrations lower than those diagnostic of GDM are
associated with increased birth weight and elevated levels of cord-bloodC-peptide (reflective of
the insulin-secretory activity of pancreatic 3-cells, which modulates foetal growth), greater child-
hood adiposity, and elevated blood pressure, independent of maternal body mass index (BMI)
[12-14].

Maternal Metabolism and Offspring Health: Why Things Go Wrong

Foetal exposure to maternal GDM programmes future risk of obesity, IGT, T2D, and cardiovascu-
lar disease [11-16]. Thus, epigenetic modifications in foetal tissue play a mechanistic role in met-
abolic disease programming through the interaction of the pregnancy environment with gene
function. Such epigenetic modifications can occur via DNA methylation, histone modifica-
tion, and/or alterations to noncoding RNAs.

Evidence supporting a role for hyperglycaemia-induced changes in the pattern of DNA methylation
comes from studies of maternal and offspring cord blood. Kang et al. [17] collected maternal
andcord blood samples from 16 pregnant women and their newborns, including eight exposed
to GDM. They identified 200 loci and their corresponding genes in the maternal and cord blood
that were differently methylated in women with GDM compared with women who were
normoglycaemic. Bouchard et al. [18] found significant correlations between 2-h glucose concen-
trations after an oral glucose tolerance test and the degree of DNA methylation of the leptin gene in
placenta on both the foetal and maternal side in women with GDM: higher glucose values corre-
lated with a lower magnitude of methylation on the foetal side, but with a higher degree of methyl-
ation (and repression of gene transcription) on the maternal side. No such maternal-foetal pattern
of methylation was found in healthy pregnant women.Others have identified multiple genome-wide
differences in DNA methylation in foetal tissues from mothers with GDM versus healthy controls
[19]. However, we currently have limited knowledge about the clinical relevance of these findings
as most studies have been limited by small sample sizes and adjusted for few covariates.

The process of histone acetylation regulates many cellular functions, with dysregulation of histone
modification being an important factor in the pathophysiology of metabolic diseases and foetal
programming. Studies of the impact of maternal obesity and GDM on histone modification are
few, however, and this is a fertile area for future research. By contrast, there are extensive reports
of the impact of GDM on noncoding miRNAs and their gene targets [19]. Zhu et al. [20] profiled
the expression of plasma miBRNAs in mothers with GDM and healthy controls and found
32miRNAs that were differentially expressed, with the targets of these miRNAs associated with
insulin resistance and poor pregnancy outcomes (i.e., preeclampsia, emergency Caesarean sec-
tion, and neonatal hypoglycaemia). A study on placentas from women with either dietary con-
trolled GDM or GDM controlled by medication and from matched controls found differential
expression of MiRNAs whose targets involved mitochondrial function and glucose metabolism
[21]. In that study, lower protein levels of the transcriptional coactivator peroxisome
proliferator-activated receptor gamma coactivator1 alpha (PGC1-a) were observed in
both GDM groups compared with BMI-matched controls.
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Glossary

Developmental Origins of Health
and Disease (DOHaD) hypothesis:
proposes that environmental exposures
early in embryonic and foetal life exert an
important influence on future disease
susceptibility.

DNA methylation: the process by
which methyl groups are added to the
DNA molecule. Such methylation can
change the activity of the DNA segment
without changing the DNA sequence.
DNA typically acts to repress gene
transcription when located in a gene
promoter.

Epigenetic modifications: changes in
gene expression that can be inherited
but are not caused by changes in gene
sequence.

Gestational diabetes mellitus
(GDM): any glucose intolerance with the
onset or first recognition during
pregnancy. GDM can occur at any stage
during pregnancy but is more common
in the second or third timester. The
hyperglycaemia typically normalises after
the birth.

Histone modifications: a post-
translational modification to histone
proteins that can impact gene
expression by altering chromatin
structure or recruiting histone modifiers.
Noncoding RNAs: functional RNA
molecules transcribed from DNA that are
not translated into proteins. The number
of noncoding RNAs in the human
genome is unknown but recent
transcriptomic and bioinformatic studies
suggest that there are thousands of
them.

Peroxisome proliferator-activated
receptor gamma coactivator 1
alpha (PGC1-a): a member of a family
of transcription coactivators that plays a
central role in the regulation of cellular
energy metabolism. PGC1-a stimulates
mitochondrial biogenesis and promotes
the remodelling of skeletal muscle.f
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Figure 1. The Intergenerational Cycle of Chronic Cardiometabolic Disorders. Poor preconception and gestational maternal lifestyle predispose both mother and
baby to unfavourable pregnancy outcomes, creating an intergenerational cycle of obesity, insulin resistance, and associated disorders.

Epigenetic modifications have their origin in poor preconception and maternal lifestyle choices
with such cues exacerbating any pre-existing abnormalities in metabolism: unfavourable dietary
practices combined with insufficient physical activity increase the risk of GDM-related complica-
tions. In this context, we define ‘preconception’ as the weeks or months from a conscious inten-
tion to conceive until conception, but acknowledge that preconception risk factors such as poor
dietary quality, lack of regular physical activity, and obesity should be addressed over the preced-
ing months and years. Diet (quality and energy content) affects multiple facets of human health
and is inextricably linked to many chronic metabolic conditions. Maternal diet contributes to a
foetal ‘epigenetic signature’ that impacts individual susceptibility to disease risk in the offspring
later in life [22,23]. Diet causes profound changes in gut microbiota in pregnancy and affects
the gut microbiota in newborns [24]. The initial development and maturation of the neonatal
microbiota is largely determined by maternal-offspring exchanges of microbiota. An altered gut
microbiota also directly influences immune cells in the gut and indirectly affects immune cells
via microbial products (e.g.,lipopolysaccharides, short-chain fatty acids), impacting adipogenesis
and/or insulin resistance [25]. Crusell et al. [26] assessed the gut microbiota composition of
women with GDM in the third trimester of pregnancy and found a disrupted gut microbiota com-
position compared with normoglycaemic pregnant women. Differences in ‘microbiota signatures’
were still evident 8 months postpartum. They concluded that the composition of the gut
microbiota from women with GDM, both during and after pregnancy, resembled the aberrant
microbiota composition reported in non-pregnant individuals with T2D [26]. Since a growing
body of evidence suggests that the period from conception through the first 2 years of life is
pivotal for the formation of the gut microbiota, maternal preconception and early pregnancy
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present a unique opportunity to modify the composition of the gut bacteria of both mother and
offspring [24].

Too Little, Too Late: Why Current Lifestyle Interventions Are Not Working

The 2018 Lancet series on preconception maternal health focused scientific and media attention
on the health and wellbeing of women at the time of conception, highlighting this critical period
forshaping pregnancy outcomes and future maternal and child health [27-29]. The government
in the UK reacted swiftly to this message, producing resources to raise public awareness on
preconception care [30]. Such initiatives are to be applauded. However, there were grounds
for concern. First was the limited scope of preconception strategies, with emphasis placed
almost exclusively on ‘improving the food environment’ and little or no mention of physical
activity/exercise training as a major lifestyle intervention to enhance whole-body metabolic health.
Second, the scale of the initiatives was wideranging, lacking specific prescriptive recommenda-
tions that many pregnant women seek. There is limited evidence that current dietary approaches
have any clinically meaningful effect on pregnancy outcomes for either the mother or the infant
among women who are overweight/obese or who have already developed GDM [31,32]. Results
from the majority of clinical trials show that dietary interventions are ineffective in preventing GDM
[31]. There is insufficient evidence to support any single dietary intervention to offset the deleteri-
ous effects of GDM in women who already have developed this condition [32]. By contrast, pre-
conception adherence to healthy dietary habits is associated with a lower risk of GDM [33],
supporting the premise that lifestyle modification should commence before pregnancy. It is
clear that merely providing women with information about dietary guidelines before or during
pregnancy is totally inadequate to reduce the clinical risks associated with poor maternal meta-
bolic health [31,32].

Regarding physical activity, European and American guidelines advocate that women should
accumulate =150 min/week of moderate-intensity exercise (e.g.,30min of brisk walking on at
least 5 days of the week) during pregnancy to help control healthy gestational weight gain and
prevent GDM [34,35]. However, 85% of pregnant women fail to meet this recommendation
[36]. Randomised controlled trials with a focus on exercise training in overweight/obese
women during pregnancy consistently report disappointing outcomes, with little effect of exercise
on maternal glycaemic control, gestational weight gain, and/or infant outcomes [37-40]. Reasons
for the ftrivial effects in these trials are a combination of pre-existinglGT, low pre-
pregnancycardiovascular fitness, and poor adherence to exercise. The exercise prescription in
most studies encompasses 2-3 h of weekly moderate-intensity training, but <560% of women ad-
here to such protocols [41,42]. Barriers to physical activity during pregnancy include ‘a lack of
time’,'having other children’, a ‘lack of knowledge’, and, importantly, being unclear on what
type of exercise is safe to undertake [43]. Of note, patterns of pre-pregnancy physical activity is
an important determinant of exercise habits during pregnancy [44]. Therefore, exercise habits
need to be established early, with alternative, practical strategies to current guidelines urgently
needed to increase adherence.

Pregnancy is regarded as a ‘teachable moment’ to instil lifestyle changes, with previously inactive
women being strongly encouraged to be physically active throughout pregnancy[45]. Still, we
argue that it is too little and too late to initiate major lifestyle reforms during gestation. Perhaps
more to the point, commencing primary lifestyle interventions much earlier will have a greater
impact on maternal and offspring health outcomes [46]. In this regard, enhancing preconception
health is a challenging proposition with vast potential for improvement [30]. Notwithstanding this
challenge, the main goal of any intervention should be to induce rapid enhancements in maternal
insulin sensitivity. Weight loss should not be the primary goal, since most women planning a
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pregnancy will aim to get pregnant in a time-frame too short for substantial weight reduction.
Specific diet-exercise strategies to improve insulin sensitivity are needed for women who are
planning a pregnancy and these should be implemented alongside continued efforts to reverse
the obesity epidemic at a population level. Below we outline two complementary primary lifestyle
interventions to be initiated prior to and continued throughout pregnancy. We believe these
strategies are feasible and practical and will help to break the intergenerational cycle of chronic
metabolic disease states (Figure 2).

A Time to Eat and Time for Exercise

Time-Restricted Eating: A New Paradigm to Help Alleviate Disordered Metabolism
Epidemiological data demonstrate that the quality and quantity of food consumed are directly
linked to human health, with current population nutrition guidelines as well as those for pregnant
women emphasising food-based recommendations (i.e., the combinations and quantities of
foods and nutrients consumed) as important determinants of metabolic health [47]. However,
contemporary position stands make no mention of the timing of food intake during the day,
which is critical for the wellbeing of an organism [48]. Objective data of the eating behaviours of
women before or during pregnancy are limited [49], but recent technological advances have
made it possible to capture real-time information on free-living eating patterns in humans.

Gill and Panda [50] monitored 156 adults with overweight/obesity for 3 weeks and reported that
the time from the first energy intake of the day to the final eating occasion was ~15 h. There was a
bias toward eating late, which was associated with reduced dietary quality, and increased intake
of discretionary/comfort foods in the evening, the time at which glucose tolerance is at its nadir.
Reducing the duration of food intake from >14 h/day to 10-12 h/day (time-restricted eating) for
16 weeks resulted in a 3.3-kg weight loss. There were no measures of glycaemic control in
that study [50], but recent investigations of time-restricted eating report that reducing eating
duration to <10 h/day improves insulin sensitivity and (3-cell responsiveness [51] in men with
overweight/obesity and prediabetes and lowers 24-h glucose concentrations [52] in men and
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Figure 2. A Time to Eat and Time for Exercise. Novel and practical preconception and maternal lifestyle interventions
could reduce the impact of maternal obesity and insulin resistance on future maternal and offspring health, thereby halting
inherited and epigenetic abnormalities of metabolism.
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women with overweight/obesity. These improvements in metabolic health were independent
ofweight loss and/or changes to food composition. In light of this, we propose that focusing on
the timing of food may be a realistic option to improve glycaemic control for women with
obesity/overweight or IGT who are planning a pregnancy. Individuals with IGT who follow time-
restricted eating report a lower desire to eat in the evening [51], while compared with an extended
feeding pattern (14 h/day), short-termtime-restricted eating (8 h/day) improved nocturnal
glycaemic control and was perceived as a practical dietary strategy in men with overweight/
obesity [53]. Thus, time-restricted eating may offer a feasible and acceptable lifestyle interven-
tion to modify eating behaviour before and potentially during pregnancy (Box 1).

High-Intensity Training (HIT): A Time-Efficient Intervention to Help Alleviate Disordered
Metabolism

Exercise training is a clinically proven, cost-effective primary intervention that delays, and in many
cases prevents, the burdens associated with many lifestyle-induced chronic metabolic disorders.
However, the precise type and dose of exercise to accrue health benefits is contentious, with no
clear consensus for the prevention of inactivityrelated chronic diseases. Until recently, guidelines
by major international authorities, including the American Diabetes Association [54], recom-
mended that adults undertake physical activity as continuous bouts lasting a minimum of
10min to maximise cardiometabolic protection. However, by ignoring bouts <10 min, such guide-
lines assigned no health value to briefer, high-intensity activities. For the first time, the 2018 US
physical activity guidelines explicitly removed this 10-min ‘minimum bout’ requirement [55], ac-
knowledging growing scientific evidence and widespread public interest in the potential for
high-intensity intermittent exercise (HIT) to induce physiological adaptations that are similar or
even superior to traditional endurance exercise training in healthy individuals and those with life-
style-induced cardiometabolic disorders.

HIT is infinitely variable, but typically defined as short (€4 min) repeated (four to ten bouts) of
intense activity interspersed with 1-3min of low-to-moderate-intensity exercise (Box 1). Various
HIT protocols improve cardiorespiratory fithess in a range of clinical populations including those
with cardiovascular diseases and metabolic syndrome [56,57]. In many cases, the increase in
cardiometabolic fitness after HIT was superior to more time-intensive, endurance-based training.
Given that a lack of time is one of the most commonly cited barriers to regular physical participa-
tion at both the population level and for pregnant women [43], these findings are important. HIT
has been proven to be feasible, time effective, and enjoyable among young women with obesity
[68] and women during pregnancy [59], suggesting it has the potential to increase exercise
adherence in these populations. When prescribed a 10-week programme comprising three

Box 1. Practical Diet-Exercise Strategies to Improve Maternal Glycaemic Control
To be commenced preconception® and continued throughout pregnancy, as able.

e Time-restricted eating: a daily eating ‘window’ of <10 h.

e The timing of the eating window (i.e.,the time of the first to the last eating occasion) is flexible according to personal
preferences and practicalities.

* Preconception, two or three weekly sessions of high-intensity interval training (e.g.,four to ten exercise bouts lasting a
minimum of 30 s and a maximum of 4-5 min separated by 1-3 min of low-to-moderate-intensity exercise) can be an
alternative exercise protocol to current, prolonged exercise prescription.

e During pregnancy, two or three weekly sessions of high-intensity interval training (e.g.,six to ten exercise bouts lasting
less than 60 s interspersed with 2—3min low-intensity exercise).

¢ Atotal exercise time of <60 min/week can still confer metabolic health benefits, providing exercise is of sufficient inten-
sity (i.e.,the maximal intensity that can be sustained for the duration and number of the prescribed workbouts).

2We define ‘preconception’ as the weeks or months from a conscious intention to conceive until conception.
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weekly sessions of HIT,reproductive-age women with overweight/obesity had 85-90% adher-
ence and a 20% improvement in insulin sensitivity [60,61]. Whether HIT can show similar adher-
ence rates and induce similar improvements in glycaemic control in ‘real-life’ settings remains to
be established. Reductions in body fat are also greater after HIT compared with continuous,
prolonged endurance training protocols in individuals with obesity [62]. Even brief (€15 min) HIT
protocols can improve glycaemic control and cardiorespiratory fitness [63]. HIT is therefore a
highly potent intervention that elicits important changes in a range of clinically relevant health
outcomes in reproductive-age females.

At present, there are limited data on the effect of HIT on glycaemic control in women during
pregnancy. Few studies have assessed the effect of vigorous exercise on maternal and foetal
wellbeing. The impact of maternal exercise on blood flow to the uterus, the placenta, and the
foetus needs further investigation, but current evidence suggests that uterine and umbilical
blood flow are not compromised during or following exercise [64]. Safety issues when undertak-
ing HIT are likely to be of concern only in previously highly trained women who continue to be able
to push themselves to exercise beyond a threshold intensity at which foetal wellbeing may be
compromised [65,66]. By keeping exercise bouts to <1 min, maternal heart rate does not exceed
90% of maximum heart rate, and therefore such HIT protocols are within the safety zone for foetal
wellbeing [66].

To date, HIT has been investigated in only a handful of clinical trials in pregnant women
[69,67,68], but results from these studies indicate clinically relevant improvements in glycaemia
after training. In women with GDM,6 weeks of HIT (15-60-s workbouts separated by low-to-
moderate-intensity cycling, undertaken three times per week) in combination with two self-
chosenhome-based exercise sessions, improved daily postprandial glucose concentrations, in
the absence of changes in glucose and insulin concentrations in response to an oral glucose
tolerance test [67]. Supervised HIT (30-60-s workbouts repeated six to eight times as part of a
30-45-min moderate-intensity training session, three times per week) commenced in the first tri-
mester of pregnancy reduced the incidence of GDM twofold among overweight or obese women
[68]. These findings on HIT undertaken in pregnancy, combined with the substantial body of ev-
idence from diseased, non-pregnant populations, suggest that HIT is a feasible, safe, and effec-
tive exercise strategy that will benefit both the mother and her offspring.

Concluding Remarks and Future Perspectives

Observational studies report epigenetic modifications in offspring of women who are obese and/
or have GDM, which could, in part, explain the intergenerational cycle of obesity and insulin
resistance. However, the current literature regarding the causality of these findings is scarce
(see Outstanding Questions). Current lifestyle interventions aimed at breaking the intergenera-
tional cycle of cardiometabolic disorders have met with limited success. Therefore, in a targeted
effort to attenuate the transmission of poor metabolic health, we propose a paradigm shift in
maternal care, with a new generation of large-scale clinical intervention studies focusing on
primary prevention strategies to shape pregnancy outcomes and future child health. In our
opinion, such interventions ought to include novel diet-exercise approaches to increase adher-
ence to lifestyle changes in reproductive-age women. To improve glycaemic control before/
duringpregnancy, we propose individualised time-restricted eating protocols for women in the
preconception period and also throughout pregnancy. In terms of sustainability, time-restricted
eating offers a practical advantage over stricter energy-restricted diet interventions, given that
there are no specific limitations around energy restriction or discretionary food choices. To
encourage higher rates of adherence to exercise and induce the greatest beneficial clinical effects
on glycaemia, we advocate high-intensityexercise training as an enjoyable and time-efficient
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Outstanding Questions

Evidence from observational studies
suggests that epigenetic modifications
can be an underlying mechanism for
the intergenerational cycle of obesity
and insulin resistance. Most of the
studies in this field have small sample
sizes and adjusted for few covariates,
and interventional studies should
determine whether these associations
are causal. It is clear from both healthy
and diseased populations that time-
restricted eating and high-intensity inter-
val training confer multiple health
benefits; however, several unanswered
questions remain before we can imple-
ment these interventions in pregnant
women. Important topics that merit
further investigation are listed below.

The feasibility of time-restricted eating
and its efficacy in improving glycaemic
control in pregnancy is currently un-
known. This is an area that needs to
be investigated in clinical trials.

There is insufficient evidence to
recommend whether early or late
time-restricted eating (i.e.,early break-
fast and earlier evening meal versus
later breakfast and later evening meal)
confers the most beneficial effect on
markers of health.

Further studies are required to assess
the safety, feasibility, and efficacy of
vigorous exercise on maternal and
foetal wellbeing. Although small-scale,
highly controlled laboratory studies re-
port high adherence and marked effects
on glycaemia after HIT, whether these
effects transfer to pragmatic ‘real-life’
settings needs to be established.

An important next step for both time-
restricted eating and HIT interventions
would be to move beyond efficacy and
into large-scale studies of their imple-
mentation and effectiveness, including
measures of long-term adherence.

Whether the combination of time-
restricted eating and exercise training
confer additive or synergistic effects on
glycaemic control above and beyond
those induced by either intervention
separately remains to be determined.
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intervention to be commenced prior to and continued during pregnancy. Whether time-restricted
eating is feasible in pregnancy and whether it confers additive benefits on disordered metabolism
above and beyond those induced by exercise training remains to be determined experimentally
(see Outstanding Questions). Multidisciplinary treatment options that target both lifestyle modifi-
cations (nutrition and physical exercise interventions) constitute the most effective approaches to

break the intergenerational cycle of inherited and epigenetic abnormalities of metabolism.
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