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ABSTRACT

OBJECTIVES This study sought to evaluate whether a panel of biomarkers improved prognostication in patients with
heart failure (HF) and reduced ejection fraction of ischemic origin using a systematized approach according to suggested
requirements for validation of new biomarkers.

BACKGROUND Modeling combinations of multiple circulating markers could potentially identify patients with HF at
particularly high risk and aid in the selection of individualized therapy.

METHODS From a panel of 20 inflammatory and extracellular matrix biomarkers, 2 different biomarker panels were
created and added to the Seattle HF score and the prognostic model from the CORONA (Controlled Rosuvastatin
Multinational Trial in Heart Failure) study (n = 1,497), which included conventional clinical characteristics and
C-reactive protein and N-terminal pro-B-type natriuretic peptide. Interactions with statin treatment were also
assessed.

RESULTS The two models—model 1 (endostatin, interleukin 8, soluble ST2, troponin T, galectin 3, and chemokine
[C-C motif] ligand 21) and model 2 (troponin T, soluble ST2, galectin 3, pentraxin 3, and soluble tumor necrosis factor
receptor 2)—significantly improved the CORONA and Seattle HF models but added only modestly to their Harrell's C
statistic and net reclassification index. In addition, rosuvastatin had no effect on the levels of a wide range of inflam-
matory and extracellular matrix markers, but there was a tendency for patients with a lower level of biomarkers in the
2 panels to have a positive effect from statin treatment.

CONCLUSIONS In the specific HF patient population studied, a multimarker approach using the particular
panel of biomarkers measured was of limited clinical value for identifying future risk of adverse outcomes.
(J Am Coll Cardiol HF 2017;5:256-64) © 2017 by the American College of Cardiology Foundation.
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he prognosis in patient with heart failure (HF)

remains poor despite improvements in dis-

ease management. Persistent inflammation
and extracellular matrix (ECM) remodeling are consid-
ered central pathogenic elements in HF progression
(1). As a result of their role in the pathogenesis of HF,
circulating inflammatory and ECM markers may also
be convenient, noninvasive tools for risk stratification
and prognostication in these patients (2).

We previously evaluated a range of biomarkers in
CORONA (Controlled Rosuvastatin Multinational
Trial in Heart Failure) study, comprising elderly pa-
tients with moderate-to-severe ischemic HF (3-16).
Classifying these markers according to categories
proposed by Braunwald (2) revealed good coverage of
the different pathological pathways activated in HF
(Figure 1), with a focus on inflammation and matrix
remodeling. When assessed separately, several of
these markers provided independent prognostic in-
formation or identified subgroups of patients who
seemed to benefit from rosuvastatin therapy. How-
ever, the improvement in prognostic discrimination
as evaluated by net reclassification index (NRI) and
Harrell’s C statistic (C), beyond established clinical
risk factors and in particular N-terminal pro-B-type
natriuretic peptide (NT-proBNP), was relatively
modest and their clinical usefulness unclear.

SEE PAGE 265

Although measurements of individual markers of
inflammation and the EMC so far have not improved
risk stratification of patients with HF in a clinically
meaningful way, combinations of multiple markers
might help identify subjects with a clinically signifi-
cantly increased risk. The combination of multiple
markers might also help select patients for individu-
alized therapy. The idea of a multimarker approach
has been around for several years, but few studies
have tested the power of such models, and most of
these trials included few biomarkers or examined
small populations. Moreover, the lack of optimal
adjustment for existing tests and the lack of
internal or external validation may have biased
results (17-19).

In the present study, we used a systematized
approach to assess the prognostic value of a combi-
nation of biomarkers from the CORONA trial (20).

METHODS

For a full description of the methods, see the Online
Appendix. A flow chart of the statistical approach is
shown in Figure 2. Briefly, the CORONA population
was divided into 3 subgroups. Subgroup 1 had no
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biomarker data and was used for fitting a
Cox model including routine clinical and
biochemical variables as previously reported
(history of diabetes, left ventricular ejection
fraction, body mass index, New York Heart
Association functional class, apolipoprotein
B/apolipoprotein A-1 ratio, history of inter- HF =
mittent claudication, gender, age, heart
rate, estimated glomerular filtration rate,
C-reactive protein (CRP) and NT-proBNP) (21).
The Cox model was then used to calculate a
prognostic score (PS) by multiplication of
estimated coefficients with corresponding
variables for each individual subject in the
biomarker population. The Seattle heart fail-
ure score (SHFS) was calculated based on the
available data (22). Because sodium levels,
lymphocyte count, and hemoglobin and uric
acid acids were not available in the CORONA
dataset, they were excluded from our SHFS.

score

RESULTS

MODEL BUILDING. Demographics of the CORONA
inflammatory substudy and the training and valida-
tion set are given in Online Table 1. No significant
differences between the training and validation sets
were observed. All previously measured biomarkers
in the CORONA database were entered as potential
variables for the multimarker approach, that is,
biglycan, mimecan, endostatin, YKL40, galectin-3,
interleukin (IL)-8, monocyte chemotactic protein
(MCP)-1, Chemokine (C-X-C motif) ligand 16
(CXCL16), chemokine (C-C motif) ligand-21, soluble
ST2 (sST2), troponin T (TnT), secreted frizzled-related
protein-3 (SFRP3), osteoprotegerin (OPG), neutrophil
gelatinase-associated lipocalin (NGAL), pentraxin-3
(PTX3), soluble tumor necrosis factor receptor
(sTNFR)-1, sSTNFR2, IL-6, soluble glycoprotein-130,
and tumor necrosis factor. The 3 different approaches
to building a model from available biomarkers yiel-
ded 3slightly different results. By keeping all variables
as proposed by at least 2 methods, 6 variables
remained in model 1: endostatin, IL-8, sST2, TnT,
galectin-3, and chemokine (C-C motif) ligand 21
(Table 1). Testing the variable selection by boot-
strapped model selection showed that all biomarkers
chosen by an approach were selected in at least 50%
of the repetitions, and no other biomarkers were
selected by multiple approaches in more than 50% of
the repetitions (see Online Table 2). For model 2, we
included more established HF risk markers from the
literature: TnT, sST2, galectin-3, PTX3, and sTNFR2
(Table 1) (7,23-27).

ABBREVIATIONS
AND ACRONYMS

CRP = C-reactive protein
CV = cardiovascular

ECM = extracellular matrix

heart failure

IL = interleukin

PS = prognostic score

PTX3 = pentraxin 3

STNFR = soluble tumor
necrosis factor receptor

sST2 = soluble ST2

TNT = troponin T
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NRI = net reclassification index

NT-proBNP = N-terminal pro-
B-type natriuretic peptide

SHFS = Seattle heart failure
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FIGURE 1 Categories of Biomarkers in Heart Failure

Multimarker
approach

-Cl1S

JUl

Biomarkers available in the CORONA (Controlled Rosuvastatin Multinational Trial in Heart Failure) cohort sorted by categories suggested by
Braunwald et al. (2). Because the functions of some markers are multiple, single biomarkers may appear in several categories. CCL21 =
chemokine (C-C motif) ligand 21; CRP = C-reactive protein; CXCL16 = chemokine (C-X-C Motif) ligand 16; gp = glycoprotein; IGFBP7 = insulin-
like growth factor-binding protein-7; IL = interleukin; MCP1 = monocyte chemotactic protein-1; NGAL = neutrophil gelatinase-associated
lipocalin; NT-proBNP = N-terminal pro-B-type natriuretic peptide; OPG = osteoprotegerin; PTX3 = pentraxin 3; SFRP3 = secreted frizzel
related protein-3; STNFR = soluble tumor necrosis factor receptor; TNT = troponin T.

PERFORMANCE OF THE MULTIMARKER MODELS. The PS
values based on only the variables included in model 1
and model 2, respectively, were significantly associ-
ated with outcome in the validation set. However, the
scores from each model performed worse than the
original CORONA PS (Table 1). When the combined
biomarker scores from each of the 2 models were added
to the CORONA PS, the models showed reasonable
calibration by a Groennesby and Borgan test score
(Figure 3, Online Table 3), as well as on visual inspec-
tion of Arjas-like plots in tertiles of PS. However, there
was a tendency in model 1 to overestimate events in
the low-risk group, but both were well calibrated in the
other tertiles (Figure 4). Model coefficients for both
models are given in Online Table 4.

The addition of each biomarker model to the
CORONA PS provided better results than the CORONA

PS alone as judged by a likelihood ratio test, but there
was no significant improvement in Harrell’s C
statistics or Gonen and Heller’s K statistics for
any endpoint (Figure 3, Online Table 3). However, the
addition of each biomarker model led to a small
but significant improvement in NRI for all endpoints,
except for cardiovascular (CV) mortality in model
1 (Figure 3). This was mainly due to patients without
an event getting a lower risk score (Online Table 3).

COMPARISON WITH SHFS. When we used the SHFS
as the base model instead of the original CORONA PS,
the addition of either biomarker model markedly
improved discrimination for all endpoints (Online
Table 5). When adding NT-proBNP to the SHFS as a
base model, this was no longer the case. However,
NRI remained significant for all outcomes, and there
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was a significant change in C statistics for the primary
endpoint in CORONA for both models (Figure 3,
Online Table 6).

EFFECT OF STATIN TREATMENT ON MARKERS OF
INFLAMMATION. In the CORONA trial, patients were
randomly assigned to treatment with rosuvastatin or
placebo. Therefore, we were able to investigate
whether 3 months of statin treatment influenced
biomarker levels in patients with HF. As shown in
Online Table 7, the relative change in biomarker
levels differed between the treatment arms only for
biglycan, YKL40, CXCL16, and PTX3. Biglycan and
PTX3 increased more in the rosuvastatin group,
whereas CXCL16 and YKL40 increased more in the
placebo group. Because patients with low levels of
biomarkers may have a limited potential for benefit-
ting from the anti-inflammatory effect of statins, we
also assessed treatment effects in the top 2 tertiles for
each marker. In these patients, the result remained
similar for PTX3, YKL40, and CXCL16, with a signifi-
cant relative change in the same direction as previ-
ously observed (Online Table 8).

EFFECT OF STATIN TREATMENT IN DIFFERENT RISK
GROUPS. Finally, we evaluated the interaction be-
tween the PS of models 1 and 2, and the effect of
rosuvastatin treatment on outcome. For all-cause
mortality, there was a borderline significant interac-
tion between rosuvastatin treatment and model 1 PS.
Patients in the lowest tertile PS had a significant ef-
fect of statin treatment, which was not the case for
any of the other patients. We obtained similar results
when testing interaction for model 2 PS, suggesting
that patients with little inflammatory activity at the
baseline of study had some effect from rosuvastatin
treatment, compared with those with more inflam-
mation (Figure 5). Similar patterns were found for CV
mortality and the primary endpoint, but only model 2
had a significant interaction with treatment for the
primary endpoint.

DISCUSSION

Previous studies have suggested that panels of
multiple biomarkers may add prognostic information
to established predictive metrics in chronic HF
(18,28-30). In this study, we were only partly able to
confirm this hypothesis. Although 2 slightly different
panels of biomarkers added information to the SHFS
and improved NRI, even when NT-proBNP was added
to the model, the clinical relevance of these markers is
uncertain. Furthermore, when comparing the 2 models
to the previously published CORONA model, there was
only a small but significant NRI. Thus, although these
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FIGURE 2 Model Development
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(1) The CORONA cohort (n = 5,011) is divided into a biomarker population (n = 1,497) and
no marker population (n = 3,514). (2) The biomarker population is randomly divided into
a validation cohort (n = 744) and a training set (n = 753). (3) From the no marker
population, a CORONA PS is calculated from existing variables based on an established
prediction model from this cohort (see Methods). A SHFS PS is also calculated. (4) In
the training set, 2 models are established to identify multimarker. Model 1 is selected by
statistical methods in this population. Model 2 PS is composed of variables selected from
the literature. (5) Model 1 PS and model 2 PS are calculated based on model 1 and model
2 in addition to the CORONA PS. Model 1 PS and model 2 PS scores are also calculated
using the SHFS PS as a base. (6) Model 1 PS and model 2 PS are evaluated in the
validation set by calibration and discrimination of the models. AIC = stepwise minimizing
Akaike information criterion; CORONA = Controlled Rosuvastatin Multinational Trial

in Heart Failure; PS = prognostic score; PVS = purposeful variable selection;

SHFS = Seattle heart failure score; SW = stepwise.

data suggest that NT-proBNP is a useful prognostic
biomarker in elderly patients with HF of ischemic
origin, the added value of inflammatory and
ECM-related biomarkers seems to be limited. Finally,
our study does not support a direct anti-inflammatory
effect of statin therapy in elderly patients with
ischemic HF, but it does suggest that patients with a
lower inflammatory burden may benefit from statin
therapy.

We used 2 models to test the prognostic potential of
a multimarker approach in our patients. Our selection
of biomarkers from the literature (i.e., model 2) was
based on the authors’ judgment of biomarkers that
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TABLE 1 Variable Selection and Model Building

Variable SW PVS SWAIC CORONA Model1 Model2
Endostatin X X X X
IL-8 X X X
sST2 X X X X
nT X X X X X
Galectin-3 X X X X X
CCL21 X X X
sGP130 X
STNFR2 X
PTX3 X
Wald score 183 136 132
LR 189 138 134
Harrell's C 0.747 0.714 0.707
K 0.725 0.695 0.695
p Difference 0.087 0.092

Variables selected by each automatic bivariable selection approach, as well as
variables finally included in models 1 and 2. Performance of each model alone
compared with CORONA prognostic score.

CCL21 = chemokine (C-C motif) ligand 21; CORONA = Controlled Rosuvastatin
Multinational Trial in Heart Failure; IL = interleukin; K = Gonen and Heller's K;
LR = likelihood ratio; PTX3 = pentraxin 3; PVS = purposeful variable selection;
sGP130 = soluble glycoprotein 130; sST2 = soluble ST2; sTNFR2 = soluble tumor
necrosis factor receptor 2; SW = stepwise; SW AIC = stepwise minimizing Akaike
information criterion; TnT = troponin T.

haverepeatedly been suggested or have been shown to
be associated with outcome in several previous studies
and were available in this study (7,23-27). However,
few publications advocating these biomarkers
fulfill suggested requirements for validation of new
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biomarkers (17). Most studies reporting prognostic
abilities of new biomarkers, including our studies in
CORONA, include the marker in regression analysis
adjusted for known prognostic variables and scores.
However, this approach is known to give overly opti-
mistic estimates of the model’s performance (31).
Although internal validation is done in a few studies,
external validation of suggested biomarkers in
new populations is lacking, making it difficult to
choose biomarkers likely to perform well in a new
population. Our selection of biomarkers in model 2,
however, performed better than a model created by
automatic variable selection (model 1), suggesting
that the aggregation of published data may give
useful information for selection of candidate
biomarkers.

Measures such as NRI and C statistics may be used
for quantification of the wusefulness of a new
biomarker, but what may be considered clinically
significant changes of these measurements is still an
open question (32). Furthermore, the lack of statisti-
cal significance of these measures, and in particular
the C statistics, could be due to limited power of the
study. However, as suggested by the narrow confi-
dence intervals of the change in C statistics, our study
had enough power to detect very slight changes on
the order of 0.02, and we believe that smaller changes
would give little clinical meaning. In addition, NRI
and C statistics are overly optimistic when applied to

PS or SHFS With NT-proBNP, Respectively (Limited Models)

FIGURE 3 Prognostic Power of Model 1 or 2 With the CORONA PS or SHFS With NT-proBNP (Full Models) Compared With Only CORONA
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All-cause - H—O— 1.13 0.97-1.29 <0.001 0.23 0.014 0.007 0.303
8 —e— 122 1.05-1.39 <0.001 0.27 0.004 0.008 0.163
= p—— —0— 116 099-1.34 <0001 016 0159 0005 0513
8 ’ —e— 125 1.06-1.43 <0.001 0.26 0.012 0.005 0.437
(e}
o Primary _| 0o 1.04 0.89-1.20 <0.001 0.23 0.023 0.008 0.303
F—e— 1.14 0.97-1.31 <0.001 0.34 <0.001 0.010 0.073
% All-cause | H-O0— 111 0.95-1.26 <0.001 0.35 <0.001 0.018 0.066
ﬁg —e— 119 1.02-1.35 <0.001 0.34 <0.001 0.015 0.066
@
,_CTL CV.death - —0— 1.15 0.98-1.32 <0.001 0.30 0.006 0.013 0.217
= : —e— 122 1.04-1.40 <0.001 0.32 0.001 0.010 0.256
=
@ primary —o— 1.01 0.85-1.16 <0.001 034 0001 0022 0.031
C:'/:J Heo— 1.09 0.93-1.26 <0.001 0.42 <0.001 0.023  0.009

—A—T T T T
0.0 08 10 12 1.4 1.6 Coef.

other abbreviations as in Figures 1 and 2.

Discrimination tests of difference between full and limited models, coefficients of regression model in validation sample. C = Harrell's C
statistic; Cl = 95% confidence interval; Coef = coefficient; CV = cardiovascular; M1 = model 1; M2 = model 2; NRI = net reclassification index;




JACC: HEART FAILURE VOL. 5, NO. 4, 2017
APRIL 2017:256-64

Nymo et al.

Multiple Biomarkers in Chronic Heart Failure

FIGURE 4 Observed Versus Expected Number of Events by Tertile of Prognostic Score of Models 1 and 2
Model 1
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80 150 -
2 4
60 —
7, 100 A
- 7,
40 y,
50
20+
0+ 0+
T T T T T T T T T
0 20 40 60 80 0 50 100 150
l = Expected counts — — — - Observed counts
Model 2
Tertile 1 Tertile 2 Tertile 3
30 A 150
20 100 -
2
10 - 7] 50 -
0 0
T T T T T T T T
0 10 20 30 100 150
Number of observed events versus estimated number of events by time for each tertile of the prognostic risk scores of models 1 and 2 for
all-cause mortality.

the same population as the model is developed in. We
compensated for this by internally validating our
models. However, even with this, performance may
still be worse when applied to a different population
with different characteristics.

The choice of implementing a new biomarker in
clinical use depends on many factors, among which is
cost. If available biomarkers such as CRP and
NT-proBNP give the same prognostic information as
new biomarkers, this substantially reduces their
usefulness. Thus, candidate biomarkers should pro-
vide added information not only on top of established
risk scores such as SHFS but also to available and
widely measured prognostic markers such as NT-
proBNP and CRP (33). In our study, although both
biomarker panels added significant information to
SHFS, the added information was significantly
attenuated when NT-proBNP was included in the
model. Ky et al. (28) implemented a jackknife
approach for creation of a risk score with multiple
biomarkers in a multicenter cohort of 1,513 patients
with chronic HF and evaluated its ability to classify

risk compared to SHFS, following in principle an in-
ternal validation approach. The biomarker score
increased the predictive power of their model and
significantly improve discrimination.
because their biomarker model included BNP and
CRP, it is difficult to establish the impact of other
biomarkers on model performance. In addition,
although they internally validated their model, they
performed their variable selection and model esti-

However,

mation on the same population, potentially arriving
at overly optimistic estimates.

Many of the parameters included in current prog-
nostic models of HF reflect the symptoms and results
of disease deterioration, rather than the causes. This
is the case for EF and New York Heart Association
functional class, and, to some extent, may also be the
case for NT-proBNP and troponins. Although inde-
pendence from these variables is important when
considering the potential usefulness of a new clinical
prognostic biomarker, this is not as evident when
using biomarker studies as an approach to further
understand the development of the disease. Thus, a
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FIGURE 5 Forest Plot of Treatment Effect for Rosuvastatin by Tertile (T1-T3) of
Prognostic Score of Each Model for Each Endpoint
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Interaction p values for model 1 (M1) and model 2 (M2) given in italics on the right side of
the table. HR = hazard ratio; other abbreviations as in Figure 3.

multimarker approach to study patients with HF
could be useful even if it does not improve on current
prognostic models. It could still lead to new ways to
categorize patients with HF and potentially aid in
therapy selection. Although the present study was
not designed to show this, subgroups of patients with
a particular inflammatory and fibrotic phenotype
could potentially benefit from a particular targeted
therapy (i.e., personalized therapy). After all, choice
of therapy is not only a question of how likely a pa-
tient is to die but also about how that patient is likely
to respond to treatment. In other words, markers
identifying a therapeutic target may not necessarily
be markers independently predicting prognosis (e.g.,
if a marker identified a cause of symptoms as opposed
to disease progression).

Anti-inflammatory and antifibrotic effects are
frequently referred to as some of the beneficial
pleiotropic influences statins may exert on progres-
sion of CV disease, including HF. Although both the
CORONA and GISSI-HF (Gruppo Italiano per lo Studio
della Sopravvivenza nell’Infarto Miocardico-Heart
Failure) trials revealed a 20% to 30% reduction in
CRP with rosuvastatin (9), we found very modest
anti-inflammatory effects when evaluating a range of
more specific markers of inflammation and ECM
remodeling, including upstream inducers of CRP
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(e.g., IL-6) (5). However, many of the beneficial ef-
fects of statins on inflammatory markers reported in
the literature are derived from populations with
atherosclerotic disease, and the inflammatory mech-
anisms that promote plaque progression and pro-
gression of myocardial failure may be somewhat
different. A meta-analysis of 10 randomized
controlled trials (including CORONA and GISSI-HF)
with varying etiologies support the effect of statins
on more “atherogenic markers” such as CRP and
vascular cell adhesion molecule 1, whereas no effect
was found on IL-6 and tumor necrosis factor (34). Our
findings suggest that the anti-inflammatory effect of
statins may play a limited role in systolic ischemic
HF. Furthermore, in contrast to CRP, for which a
beneficial statin effect was observed in patients with
high levels, statin therapy improved certain outcomes
in patients with low levels of several of these
markers, including mediators involved in fibrosis and
ECM remodeling such as galectin 3 and biglycan as
well as markers reflecting vascular inflammation such
as OPG and PTX3. A similar treatment pattern has
been observed for NT-proBNP (35). Thus, the benefit
of rosuvastatin in the lower tertiles of our models’ PS
may suggest that a low inflammatory burden reflects
patients with lesser degrees of maladaptive remod-
eling and fibrosis with a modifiable disease course
and greater gain of statins for their underlying
ischemic heart disease. Conversely, a higher score
may reflect patients with irreversible tissue
remodeling.

STUDY LIMITATIONS. First, our findings may not
apply to populations with different demographics, in
particular patients with HF of other etiologies or HF
with preserved ejection fraction. In fact, our group of
patients reflects a rather homogeneous and selected
group of patients with HF, and it is possible that a
multimarker approach that includes inflammatory
and ECM markers could be more relevant in a het-
erogeneous real-life HF population. Second, we
attempted to avoid “overoptimism” in our estimates.
However, our findings are not externally validated,
and investigations in similar populations may give
other results. In general, external validation help
avoid too optimistic evaluation of models by assuring
that the model is not dependent on the specific
composition of the study’s population in order to
perform well (36). This is especially the case with a
rather homogeneous population as in this study.
However, because our main findings are negative,
further decreasing the power of our models would not
have changed our main conclusions. Third, we used 2
approaches to model building in this study, and both
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have some important drawbacks. For model 1, all the
methods applied have limitations, and the final
model might not be the “perfect” model. For model 2,
variables selected are only based on the experience of
the authors, and other biomarkers could have been
chosen as well. We attempted to make a model
reflecting current knowledge on biomarkers in HF,
including what we thought was the most promising
biomarkers. However, other biomarkers not
measured in CORONA could increase the predictive
powers of the models, as our studies have focused on
inflammatory and ECM-related proteins. In partic-
ular, markers such as Growth Differentiation Factor 15
(GDF-15) and copeptin have shown promising results
and could have improved our model further (37,38).
Fourth, not all variables used for SHFS were available
in our dataset. Several of these markers (e.g., hemo-
globin, lymphocyte count, and uric acid) have an
inflammatory component (lymphocyte counts and
uric acid), or they may be modified by inflammation
(hemoglobin) and may partly interact with our in-
flammatory biomarkers (39-41). Sodium could partly
be reflected by natriuretic peptides (42). However,
uric acid may also reflect mechanisms important in
HF progression that are lacking in our panels, such as
oxidative stress (43). Still, the improvement in the
model’s performance when NT-proBNP and bio-
markers are added to the SHFS could partially be
explained by the lack of these variables, and the full
SHFS probably would do better compared to the
CORONA score than suggested by our findings.

CONCLUSIONS

In this study, we investigated whether 2 panels of
biomarkers improved the prognostic abilities of a risk
score built on the CORONA population and the SHFS.
We found that although there was some improvement
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in discriminatory power of the models, the gains were
modest and clinical relevance doubtful. Our findings
do not support the notion that adding biomarkers
representing different aspects of HF pathology im-
proves the prognostic abilities of existing risk scores.
However, we cannot exclude that other panels of
biomarkers or similar panels of biomarkers in other
more heterogeneous HF populations would give
different results. We also found no correlation be-
tween changes in inflammatory and ECM-related
biomarkers and treatment with rosuvastatin, sug-
gesting that statin treatment in this population has
limited anti-inflammatory effects. There was, how-
ever, a tendency for patients with lower biomarker
scores at baseline to have beneficial effects of rosu-
vastatin treatment.

ADDRESS FOR CORRESPONDENCE: Dr. Stale H.
Nymo, Research Institute for Internal Medicine, Oslo
University Hospital, Rikshospitalet, P.B. 4950 Nydalen,
0424 Oslo, Norway. E-mail: snymo@rr-research.no.

PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: Previous studies
have suggested that panels of multiple biomarkers may add
prognostic information to established predictive metrics in CHF.
However, we were not able to accomplish this using several
biomarkers previously suggested in literature, reflecting
different aspects of inflammation and remodeling in HF.

TRANSLATIONAL OUTLOOK: Our finding suggests that other
than NT-proBNP, few biomarkers are able to add significantly to
already existing risk models, even when they are put together
into biomarker panels.
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