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It is the position of Sports Dietitians Australia (SDA) that exercise in hot and/or humid environments, or with significant clothing
and/or equipment that prevents body heat loss (i.e., exertional heat stress), provides significant challenges to an athlete’s nutritional
status, health, and performance. Exertional heat stress, especially when prolonged, can perturb thermoregulatory, cardiovascular,
and gastrointestinal systems. Heat acclimation or acclimatization provides beneficial adaptations and should be undertaken where
possible. Athletes should aim to begin exercise euhydrated. Furthermore, preexercise hyperhydration may be desirable in some
scenarios and can be achieved through acute sodium or glycerol loading protocols. The assessment of fluid balance during exercise,
together with gastrointestinal tolerance to fluid intake, and the appropriateness of thirst responses provide valuable information
to inform fluid replacement strategies that should be integrated with event fuel requirements. Such strategies should also consider
fluid availability and opportunities to drink, to prevent significant under- or overconsumption during exercise. Postexercise beverage
choices can be influenced by the required timeframe for return to euhydration and co-ingestion of meals and snacks. Ingested
beverage temperature can influence core temperature, with cold/icy beverages of potential use before and during exertional heat
stress, while use of menthol can alter thermal sensation. Practical challenges in supporting athletes in teams and traveling for
competition require careful planning. Finally, specific athletic population groups have unique nutritional needs in the context of
exertional heat stress (i.e., youth, endurance/ultra-endurance athletes, and para-sport athletes), and specific adjustments to nutrition
strategies should be made for these population groups.
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Exercise in hot and/or humid environments, or with signifi-
cant clothing and/or equipment that prevents loss of body heat,
can lead to exertional heat stress. Numerous sporting competi-
tions are regularly held in outdoor environments in such condi-
tions including high-intensity endurance events (e.g., 10-km road
races and half-marathons, cycling time trials), ultra-endurance
events (e.g., Badwater Ultramarathon, Ironman World Cham-
pionships, and Marathon des Sables), and team (e.g., cricket and
soccer) and racquet (e.g., tennis) sports played during summer
months. Meanwhile, scenarios involving sports in hot and/or
humid indoor environments include squash and motor racing,
where in the latter case, the driver/rider can be exposed to ambient
temperatures >45 °C while wearing protective clothing and
equipment. Major sporting events in hot and/or humid locations,
such as the 2019 International Association of Athletics Federa-
tions World Championships in Doha, Qatar, and the 2020 Sum-
mer Olympic Games in Tokyo, Japan, merit special consideration
because the conditions pose a significant challenge for a large
number of competitors (Gerrett et al., 2019) and require specific
preparation.

What should be evident from these scenarios is that the
thermal challenges faced by athletes are significant in both
magnitude and variety, with individual factors such as the envi-
ronmental conditions, metabolic heat production, performance
characteristics, and logistics of athlete behavior around the exer-
cise session creating unique concerns, as well as dictating the type
of solutions that might be developed. Indeed, prolonged exer-
tional heat stress can perturb the thermoregulatory, cardiovascu-
lar, and gastrointestinal systems, posing significant concerns for
an athlete’s health and performance. It is the position of Sports
Dietitians Australia that exertional heat stress can significantly
affect an athlete’s nutritional status, but careful planning and
implementation of nutrition strategies can assist him or her to
optimize health and performance outcomes in such conditions.
The following position statement summarizes these issues and
the nutrition and hydration strategies with which they can be
addressed.

Physiological Effects of Exertional
Heat Stress

Thermoregulation

During exercise, high body temperatures arise from excess heat
storage due to sustained imbalance between internal heat produc-
tion and heat dissipation at the skin surface. Heat is generated in
large quantities as a by-product of elevated rates of metabolism,
supporting muscle contractions. Simultaneously, heat can be
gained or lost via convection and radiation, and dissipated through
the evaporation of sweat (Gagge & Gonzalez, 1996). Convective
heat exchange is driven by temperature differences between the
skin and air (in the shade) and modified by wind speed. Radiative
heat exchange is determined by differences between skin tempera-
ture and mean radiant temperature, which on a clear summer day
can be 10–15 ˚C higher than air temperature (Jay & Morris, 2018).
Evaporative heat loss potential is governed by the absolute humid-
ity difference between the skin and air and increases with wind
speed. Clothing and equipment serve as a heat loss barrier depen-
dent on garment insulation and water vapor permeability. A simple
definition of “heat stress” is therefore not possible, as heat strain
across a range of different air temperatures will vary according to
the activity and clothing/equipment worn, as well as the prevailing
sun exposure, humidity, and wind speed (Figure 1).

To minimize heat storage and prevent excessive core temper-
ature increases, humans vasodilate and sweat. Neurons controlling
these responses originate in the preoptic area of the hypothalamus,
a small central region of the brain. Afferent input from thermo-
receptors located in deep body structures and in the layer of the skin
enables the hypothalamus to receive constant information about the
thermal status of the body (Morrison, 2011). Elevations in core
temperature of >0.2 °C can elicit cutaneous vasodilation, directing
a greater volume of blood toward the skin to redistribute heat
content and increase convective and radiative heat loss as skin
temperature rises (Cramer & Jay, 2019). If nonevaporative heat loss
is insufficient to offset elevated rates of heat production, core

Figure 1 — A conceptual schematic illustrating that a given level of heat strain (solid and dotted lines) is dependent on the two personal parameters of
clothing and activity and the four environmental parameters of ambient temperature, humidity, wind speed, and radiant temperature (sun exposure).
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temperature continues to rise and eccrine sweat glands are activated
via acetylcholine release (Gagnon & Crandall, 2018). If the ambi-
ent temperature permits the rate of sweat evaporation to balance the
heat production, then core temperature will reach an elevated, but
usually safe, plateau. However, when heat production exceeds this
capacity, body temperature will continue to rise in a state known as
uncompensable heat stress.

Gastrointestinal Function and Integrity

The impact of exercise in hot environments on the gastrointestinal
tract merits special attention, as it contributes to the pathophysiology
of exertional heat illnesses (EHIs) and/or gastrointestinal complica-
tions that compromise the athlete’s capacity to address their nutri-
tional goals and optimize thermoregulation. Prolonged exercise in
hot ambient conditions, resulting in a core temperature ≥39.0 °C,
exacerbates the perturbations to gastrointestinal integrity, function,
and systemic responses compared with exercise in cooler conditions
(Costa et al., 2019a). Such perturbations, known as exercise-induced
gastrointestinal syndrome, have been linked to performance-

debilitating gastrointestinal symptoms and clinical implications rang-
ing from mild inconvenience to fatality (Costa et al., 2017). These
multifaceted outcomes reflect two primary physiological changes,
which occur at the onset of exercise and are exacerbated by thermal
stress, creating a structural and functional burden to the gastrointesti-
nal system (Figure 2). Redistribution of blood flow away from the
gastrointestinal tract and toward skeletal muscles (i.e., metabolic
kinetics) and peripheral circulation (i.e., thermoregulation) results
in reduced total splanchnic perfusion and subsequent gastrointestinal
ischemia (Grootjans et al., 2016; van Wijck et al., 2011). Concomi-
tantly, an increase in sympathetic activation reduces overall gastroin-
testinal functional capacity, possibly via suppressed myenteric and
submucosal plexus activity (Costa et al., 2017; Horner et al., 2015;
Strid et al., 2011). The initiation of these physiological responses is
dependent on the exercise stress per se (i.e., intensity, duration, and
modality) but is exacerbated with heat exposure (Costa et al., 2017,
2019a). The secondary outcomes of these exercise-associated gastro-
intestinal abnormalities include mucosal erosion, epithelial cell injury
and dysfunction, tight junction damage and dysfunction, luminal
bacterial endotoxin translocation, local epithelium and systemic

Figure 2 — Schematic description of exercise‐induced gastrointestinal syndrome: Physiological changes in circulatory and neuroendocrine pathways
at the onset of exercise resulting in perturbed gastrointestinal integrity and function, and may lead to gastrointestinal symptoms, and/or acute or chronic
health complications. Adapted with permission from “Systematic Review: Exercise-Induced Gastrointestinal Syndrome-Implications for Health and
Disease,” by Costa et al., 2017, Alimentary Pharmacology and Therapeutics, 46, pp. 246–265. aSpecialized antimicrobial protein-secreting (i.e., Paneth
cells) and mucus-producing (goblet cells) cells, aid in preventing intestinal-originating pathogenic microorganisms gaining entry into systemic
circulation. bSplanchnic hypoperfusion and subsequent intestinal ischemia and injury (including mucosal erosion) results in direct (egg, enteric
nervous system, and/or enteroendocrine cell) or indirect (egg and nutrient malabsorption) alterations to gastrointestinal motility. cIncrease in
neuroendocrine activation and suppressed submucosal and myenteric plexus result in epithelial cell loss and subsequent perturbed tight junctions
(Holzer et al., 2017; Barrett, 2012). dGastrointestinal brake mechanisms: Nutritive and nonnutritive residue along the small intestine, and inclusive of
terminal ileum, results in neural and enteroendocrine negative feedback to gastric activity (Miall et al., 2018; Shin et al., 2013; Layer et al., 1990; van
Avesaat et al., 2015; van Citters & Lin, 2006).
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innate/adaptive immune cell and inflammatory responses, suppressed
gastric emptying, and suppressed nutrient digestion and absorption
(Costa et al., 2017). Current and emerging evidence shows that hot
and/or humid ambient conditions play a key role in determining the
magnitude of exercise-induced gastrointestinal syndrome (Costa et al.,
2019a; Pires et al., 2017, 2018).

Effects of Exertional Heat Stress on
Performance and Health

Increases in thermal strain during prolonged exercise (i.e., elevated
skin, muscle, and core body temperatures) progressively impair
aerobic performance (Table 1; Ely et al., 2007). This impairment
is linked to a thermoregulatory-mediated rise in cardiovascular
strain, which contributes to decreased maximal aerobic capacity
(Périard et al., 2011; Périard & Racinais, 2015), and a potential
hyperthermia-induced reduction in voluntary drive (i.e., motivation;
Bruck & Olschewski, 1987). Exertional heat stress also induces
greater reliance on muscle glycogen and anaerobic metabolism
(Febbraio et al., 1994), which may prematurely deplete endogenous
glycogen stores during endurance exercise. In contrast, a rise in
whole-body temperature, particularly muscle temperature, enhances
the performance of explosive short-duration activities such as
sprinting and jumping (Bergh & Ekblom, 1979; Sargeant, 1987),
via temperature-related improvements in metabolic and contractile
function (Allen et al., 2008; Fitts, 1994).While single efforts may be
improved in hot environmental conditions, repeated-sprint activities
may reach a tipping point, where muscle temperature–related ben-
efits are overridden by exacerbated cardiovascular and metabolic
responses (Girard et al., 2015). In team sport athletes (e.g., football),
the effects of environmental heat stress appear to include both an
impairment and improvement in performance compared with cool
conditions (Table 1). More specifically, total and high-intensity
running distances are decreased, whereas peak running speed is
maintained or improved (Aughey et al., 2014; Mohr et al., 2012).

Regardless of performance effects, the risk of EHI, a continuum
of medical conditions that can affect physically active individuals in
hot and cool environments, is increased by the development of
hyperthermia. The severity of EHI can escalate from heat exhaustion,
to heat injury, and on to heat stroke (Leon & Bouchama, 2015). Heat
exhaustion is associated with a body core temperature of 38.5–40 °C,
dehydration, possibly hot dry skin due to the absence of sweating,
and an inability to maintain cardiac output. A heat injury is

characterized by organ (e.g., liver) and tissue (e.g., gut) damage
with a body temperature typically >40 °C. In the most severe EHI,
exertional heat stroke, characterized by a body temperature >40 °C,
profound central nervous system dysfunction (e.g., combativeness,
delirium, seizures, and coma), and organ and tissue damage, can lead
to death. Other common but relatively benign conditions such as
muscle cramping do not form part of the EHI continuum.

Heat Acclimation and Acclimatization

Heat acclimation is the process of exposing an individual to
repeated heat stress in a controlled or artificial environment about
7–14 days, with the aim of increasing whole-body temperature and
inducing profuse sweating. In contrast, heat acclimatization occurs
in a natural environment with changes of season, or travel from
cool to hot locations (Armstrong & Maresh, 1991). These two
terms are often used interchangeably as they both induce physio-
logical adaptations that can benefit athletic performance during
prolonged events (Périard et al., 2015). Initial adaptations, includ-
ing plasma volume (Pv) expansion, enhanced fluid balance,
reduced heart rate, and decreased ratings of perceived exertion,
begin to emerge in 3–5 days of acclimation (Gisolfi & Cohen,
1979; Patterson et al., 2004). Reductions in resting core tempera-
ture, increased sweat rate, and decreased sweat sodium ([Na+]sweat)
and chloride ([Cl−]sweat) concentrations develop over a longer time
frame (e.g., 3–10 days; Gerrett et al., 2019). Interestingly, the
increase in sweat rate is offset by reduced [Na+]sweat to the extent
that overall sweat sodium losses following acclimation are equiv-
alent or lower to those observed prior to heat acclimation
(Chinevere et al., 2008).

Although heat acclimation is the most important intervention
that athletes can undertake in preparation for competing in the heat
(Racinais et al., 2015), the process of becoming acclimated can be
challenging. Notably, athletes may need to adjust absolute training
intensity and volume during heat training sessions compared with
typical sessions undertaken in cooler conditions, or risk over-
reaching (Schmit et al., 2018) and experiencing lethargy and sleep
disturbances (Taylor & Cotter, 2006). However, different ap-
proaches can be adopted based on available time and resources,
as well as when the athletes will be arriving to the competition
venue (Saunders et al., 2019). It should be recognized that the
benefits of heat acclimation may offer different advantages, and
possible disadvantages, according to the event characteristics.
For example, sports in which protective clothing impedes sweat

Table 1 Influence of Environmental Heat Stress on the Development of Whole-Body Hyperthermia and Its Effects
on Exercise Performance Relative to Exercising in Cool Ambient Conditions

Exercise/sport Influence of environmental heat stress

Aerobic/endurance Performance is progressively impaired. A given absolute workload (e.g., speed, power) is more difficult to maintain
as hyperthermia and cardiovascular strain develop.

Single brief maximal
efforts

Performance is acutely improved. Explosive short-duration performance (e.g., speed, power) is enhanced by a rise in
whole-body and skeletal muscle temperature.

Repeated brief maximal
efforts

Performance is acutely improved and then progressively impaired. Initial maximal performance (e.g., speed, power)
may be enhanced in response to muscle temperature–related benefits, but subsequent efforts impaired due to lack of
recovery and exacerbated cardiovascular/metabolic responses.

Team sports Aerobic/endurance component of performance is progressively impaired and single brief maximal efforts maintained
or improved. A given absolute workload is more difficult to sustain as hyperthermia and cardiovascular strain develop,
leading to a decrease in aerobic performance (e.g., total distance covered).
Explosive short-duration performance (e.g., single sprint) is maintained or enhanced due to a rise in whole-body
and skeletal muscle temperature.
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evaporation (e.g., motor racing) will not benefit from earlier and
amplified sweat rates (Taylor & Cotter, 2006); nevertheless, re-
ductions in resting core temperature and thermal perception, along
with expanded Pv, may still be valuable.

Fluid and Electrolyte Balance During
Exertional Heat Stress and Acclimation

The redistribution of blood flow and thermoregulatory sweating in
response to exertional heat stress result in significant changes in body
water and electrolyte balance (Sawka et al., 2007). Unreplaced sweat
losses reduce total body water (TBW) and Pv, resulting in reduced
cutaneous blood flow, increased core temperature, greater cardiovas-
cular strain (i.e., increased heart rate and reduced cardiac output), and
increased risk of exercise-induced gastrointestinal syndrome for the
same exercise task (Costa et al., 2019b; Trangmar & González-
Alonso, 2017). Thermoregulatory sweat also contains several solutes
including Na+ and Cl−, the only two electrolytes whose excretion is
known to be physiologically regulated (Bovell, 2015). Whole-body
[Na+]sweat varies considerably (11–87 mmol/L), which combined
with an equally variable sweat rate (typical range 150–3,500 ml/hr),
produces large interindividual differences in Na+ losses during
exercise (∼50 to 3,500 mg/hr; Barnes et al., 2019). There is also
substantial intraindividual variation in sweat Na+ losses, with exercise
intensity (Holmes et al., 2016), hydration status (Morgan et al., 2004),
airflow (Saunders et al., 2005), habitual Na+ intake (McCubbin et al.,
2019a), and heat acclimation status (Chinevere et al., 2008), influ-
encing the response. Such factors, however, explain less than 20% of
the variation in sweat Na+ losses between athletes (Baker et al., 2016).

Fluid and Na+ replacement during exertional heat stress has
differing effects on TBW, Pv, plasma osmolality (POsm), and plasma
Na+ concentration ([Na+]plasma), depending on both their absolute and
relative quantities compared with sweat losses. Consuming Na+

during exercise can result in greater Pv retention than water alone,
via increased ad libitum fluid intake subsequent to increased osmotic
thirst drive (Hoffman et al., 2019), reduced diuresis, and/or movement
of fluid from the intracellular to extracellular space (Sanders et al.,
2001). However, the influence on [Na+]plasma is minor (Hew-Butler
et al., 2015). Athletes often consume Na+ during exercise in the belief
that it can prevent or treat some scenarios of exercise-associated
muscle cramping (McCubbin et al., 2019b). Although evidence from
observational studies is somewhat equivocal (Bergeron, 2003;
Schwellnus, 2009), recent publications suggest that Na+ intake
may play a role in altering the frequency threshold in an electrically
induced cramping model (Earp et al., 2019; Lau et al., 2019), which
warrants further investigation. Finally, specific commentary on the
practice of Na+ replacement to prevent the development of hypona-
tremia during prolonged events (McCubbin et al., 2019b) recognizes
that although hypovolemic hyponatremia (low [Na+]plasma in concert
with hypohydration) does occur in scenarios of prolonged exercise
in hot conditions, the most common cause of exercise-associated
hyponatremia is excessive fluid intake (Hew-Butler et al., 2015).

Hydration and Electrolyte Status
Assessment

Hydration status can be defined in multiple ways, including absolute
values and changes in TBW, Pv, POsm, and [Na+]plasma. No single
marker is considered definitive, as changes in fluid balance alter
TBW, as well as shifts between intracellular and extracellular fluid

compartments (Armstrong, 2007).Methods to assess hydration status
are summarized in Table 2. Absolute hydration status is difficult to
measure outside laboratory settings and is instead inferred from
urinary markers (e.g., urine color, osmolality, or specific gravity);
daily variation in body mass (BM); thirst; or ideally a combination of
these (Armstrong, 2007). Urinary markers reflect recent homeostatic
processes to maintain euhydration and are not a direct assessment of
hydration status itself. Therefore, urinary markers are likely to reflect
hydration status only when well rested, with waking urine samples
considered most valid for this purpose (Armstrong, 2007). Bioelec-
tric impedance analysis is increasingly used to estimate TBW and
with some models, extracellular fluid. However, this should only be
considered adequate when validated against reference methods and
under the same conditions in which validation took place.

Changes in TBW during exercise, including rates of sweat
losses, are mostly frequently determined via differences in BM.
Calculations of sweat rate should be corrected for food consump-
tion and urinary/fecal losses where relevant (Sawka et al., 2007).
BM changes during ultra-endurance exercise (>4 hr) are likely to
overestimate reductions in TBW, and adjustments for substrate
oxidation, metabolic water production, glycogen depletion, and
respiratory water losses may be necessary (Cheuvront & Kenefick,
2017; Maughan et al., 2007). Electrolyte losses can be determined
from sweat sampling during exercise with the electrolyte of interest
measured using appropriate techniques, including some validated
for use in field settings (Baker et al., 2014). Methodological
considerations for assessing sweat composition are beyond the
scope of this statement; readers are directed to a recent compre-
hensive review on the subject (Baker, 2017). However, it should be
highlighted that sweat collection from local sites does not represent
whole-body fluid or Na+ losses, and corrections should be made to
reflect whole-body responses (Baker et al., 2018).

Strategies for Fluid and Electrolyte Intake
Before, During, and After Exercise

Fluid and electrolyte intake strategies before, during, and after
exercise must be practical and achievable, considering factors such
as the mode, duration and intensity of exercise, event rules, and
availability/accessibility of fluids, as well as athlete preferences and
gastrointestinal tolerance. These factors will also determine
whether athletes should emphasize fluid and electrolyte intake
before or during exercise to optimize health and performance.

Preexercise Fluid and Electrolyte Intake

In general, athletes who are exposed to hot conditions in the days
preceding competition should monitor hydration status and adjust
drinking habits accordingly to ensure they commence exercise in a
euhydrated state (Racinais et al., 2015). Exceptions to this include
athletes in sports unaffected by hypohydration, in which a slightly
lower BM may be useful (e.g., jumpers). The volume and type of
fluids included in immediate (e.g., 1–2 hr pre-event) hydration
strategies should be based on current hydration status, the anticipated
substrate requirements, and fluid balance challenges during exercise.
Ideally, such practices should be well-rehearsed and able to accom-
modate individual needs and gastrointestinal tolerance. When a
significant mismatch between sweat losses and opportunities for fluid
intake during exercise is anticipated, pre-event hyperhydrationmay be
useful in reducing the net fluid deficit and its impact on performance.

The co-ingestion of an osmotically active agent can assist
with the retention of a pre-event fluid bolus. Acute Na+ loading
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(20–40 mg/kg BM, with 10 ml/kg BM fluid) 1–2 hr prior to
exercise can expand Pv and improve thermoregulation during
constant workload exercise in the heat (Hamouti et al., 2014;
Sims et al., 2007a, 2007b) and is equally or more effective than
Na+ loading over an extended period (McCubbin et al., 2019a).
Glycerol, a three-carbon alcohol, is another effective osmolyte
that enhances fluid retention and results in expansion of Pv and
a reduction in urine output. Glycerol was removed from the World
Anti-Doping Agency Prohibited List in January 2018 and can now
be used for hyperhydration and postexercise rehydration strategies.
Studies in endurance athletes support ingestion of 1.2–1.4 g/kg fat-
free mass (FFM) glycerol in the 90- to 180-min pre-event, in
conjunction with ∼25 ml/kg FFM fluid (Goulet et al., 2018; van
Rosendal et al., 2010). The combination of glycerol (1.4 g/kg FFM)
and sodium (3.0 g/L) in ∼25 ml/kg FFM water may be more
effective than either osmolyte alone (Goulet et al., 2018), and such
protocols can achieve an additional fluid retention of ~1,300 ml for
a 70-kg athlete (Goulet et al., 2018), for up to 4-hr postingestion
(Montner et al., 1996; Wingo et al., 2004). The translation into
a performance benefit is unclear (Goulet et al., 2007) and may be
dependent on ambient conditions and the characteristics of the
exercise bout. All protocols should be practiced to determine their
effectiveness and potential side effects including gastrointestinal
discomfort and headaches.

Fluid and Electrolyte Intake During Exercise

Opportunities to drink during exercise are often contingent on
practicality and/or regulations associated with specific sports/
events. The benefits of fluid consumption during exercise continue
to be debated, with contention surrounding the level at which
dehydration begins to impair performance and how fluid replace-
ment should occur. Numerous laboratory-based studies suggest
that fluid deficits ≥2% BM are associated with the initiation of
impaired exercise performance in hot and/or humid ambient con-
ditions (Adams et al., 2018; Cheuvront et al., 2007; James et al.,
2017; Kenefick et al., 2010). However, these studies generally
compare protocols involving complete fluid replacement to those
where no or minimal fluid is provided and therefore cannot
establish a dose–response relationship with regard to optimizing
performance. While both ad libitum drinking and planned fluid
intake (of a volume greater than ad libitum) improve endurance
performance compared with no fluid ingestion (Holland et al.,
2017), a recent meta-analysis of exertional heat stress >1-hr
duration concluded that planned fluid intake did not further im-
prove performance beyond that of ad libitum drinking, even with
BM losses up to 3.1% in the ad libitum condition (compared with
<0.5% with planned drinking), and with exercise intensities up to
90% of maximum heart rate (Goulet & Hoffman, 2019). However,
the divergence in total fluid intake between planned and ad libitum
drinking may increase with exercise duration, particularly under
heat stress, and where opportunities to access and ingest fluid
during real-life sporting events are more limited than those encoun-
tered in laboratory studies. Therefore, individualized fluid replace-
ment plans—informed by prior assessment of fluid balance,
perceived thirst, gastrointestinal tolerance, and performance me-
trics in similar situations, and adjusted according to real-time
assessment—can address both the practicality and value of fluid
intake during a competitive event.

Fluid choices during exercise should consider substrate require-
ments, electrolyte content, palatability, and access. Despite previous
concern about delayed gastric emptying associated with the addition
of solutes to an exercise beverage, carbohydrate-containing drinks

can be formulated to minimize this issue (Jeukendrup & Moseley,
2010); this may address the higher rates of carbohydrate utilization
during exercise in the heat (Stellingwerff & Cox, 2014). Cooler
beverages (<22 °C) tend to increase fluid palatability and voluntary
consumption during exercise (Burdon et al., 2012), while planned
consumption of cold (<10 °C) or iced beverages may convey
additional perceptual or performance benefits when exercise is
undertaken in hot ambient conditions (Burdon et al., 2010a; Lee
et al., 2008). Sodium replacement during prolonged exertional heat
stress has been less rigorously studied, preventing conclusions about
the value of quantifying or replacing sweat Na+ losses to address
issues of cramp prevention or optimal performance (McCubbin &
Costa, 2018). Nevertheless, individualized protocols for electrolyte
replacement may offer some benefit for specific scenarios until
further research can offer a more evidence-based approach. It is
noted again that exercise-associated hyponatremia is mostly associ-
ated with excessive intake of fluid rather than Na+ loss, and its
outcomes, secondary to excess fluid osmotically driven into the
intracellular pool, including the brain, can be fatal (Hew-Butler et al.,
2015). This can be prevented by simply ensuring that fluid intake
during exercise does not exceed losses, and it should be noted that ad
libitum drinking and drinking to thirst does not necessarily guarantee
this (Hew-Butler et al., 2015).

Postexercise Fluid and Electrolyte Intake

When rapid reversal of moderate–severe fluid deficits is desired
postexercise, it may be necessary to drink a volume up to 150%
of the net deficit to account for ongoing fluid losses during the hours
of fluid re-equilibration (Sawka et al., 2007). However, the postex-
ercise environment (i.e., food/beverage access), immediate require-
ments for other recovery purposes (e.g., refueling and adaptation)
and overall body composition goals are important contextual con-
siderations. Drinking large volumes of fluid can be challenging in
the short term, especially if the athlete has experienced significant
thermoregulatory strain or impairment of gastrointestinal integrity/
function during exercise (Russo et al., 2019).

The consumption of nutrients within a rehydration fluid, or in
food consumed at the same time, can assist with fluid retention/
minimization of urine losses. Sweat Na+ losses during exercise are
accompanied by significant renal Na+ conservation in the postex-
ercise period (Lichton, 1957), making complete replacement of
sweat Na+ losses unnecessary. However, the consumption of Na+ in
rehydration strategies supports less disturbance to POsm as Pv is
being restored, maintaining the secretion of vasopressin and mini-
mizing subsequent urine production (Evans et al., 2017). The
presence of carbohydrate and/or protein is also helpful because
the delayed absorption characteristics of such fluids (e.g., milk-
based beverages) also reduce POsm changes; this has been incor-
porated into a beverage hydration index (Maughan et al., 2016).
However, it is important to recognize that consuming any beverage
makes a contribution to total fluid intake and advice to avoid
specific beverages (e.g., caffeinated options) may result in lower
total fluid intake when these drinks are otherwise part of normal
dietary practices (Maughan et al., 2016).

The simultaneous consumption of food is likely to facilitate
postexercise rehydration (Campagnolo et al., 2017). When com-
bined with voluntary food intake, the choice of postexercise
beverage does not appear to influence restoration of hydration
status (Campagnolo et al., 2017; McCartney et al., 2018, 2019), but
in the case of energy-containing fluids (e.g., sports drinks and milk-
based drinks), it may lead to a greater energy consumption than
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when water is consumed. Therefore, fluid and food intake during
recovery should be considered in terms of overall nutrition goals.

Nutritional Pre- and Per-Cooling
Strategies During Exercise

Preparing athletes to safely exercise in uncompensable heat can be
addressed by cooling both before (i.e., pre-cooling) and during
(i.e., per-cooling) the activity. Different strategies can provide acute
relief from the thermal stress posed by training or competing in the
heat (Ross et al., 2013). Ingestion of cold/icy drinks (or internal
cooling strategies) also provides opportunities to simultaneously
address other exercise goals, such as maintaining fluid balance
(Sawka et al., 2007), providing nutrient support (Wendt et al.,
2007), defending the integrity of the gastrointestinal tract (Snipe
et al., 2018), and alleviating thermal discomfort (Stevens et al.,
2017a, 2017b). Internal cooling is highly practical and can be
implemented separately or in addition to externally applied strategies
(e.g., ice baths, ice jackets) to benefit from the potentiating effects of
the combination of cooling techniques (Hasegawa et al., 2006)
immediately before exercise. Further discussion of external and
combined cooling techniques can be found in existing comprehen-
sive reviews (Ross et al., 2013; Stevens et al., 2017b). It is important
to recognize that effective strategies are also required to fit within
the rules and schedules of competition and be practical to implement.

As ice is a more powerful cooling agent due to the thermal
energy required to phase change a solid into liquid (Jay & Morris,
2018; Ross et al., 2013), ice-slurry beverages allow for a greater
heat storage capacity and level of thermal comfort than a similar
volume of ingested fluid (Ihsan et al., 2010; Siegel et al., 2010;
Siegel et al., 2011). Adding glycerol and other solutes (e.g., carbo-
hydrate and/or electrolytes) lowers the freezing point, allowing the
formation of a supercooled crystalline liquid served at subzero
temperatures. While improving consistency so that the frozen
beverage can be readily ingested using a straw, a practical limitation
may involve the discomfort associated with subsequent brain freeze
(i.e., sphenopalatine ganglioneuralgia).

Preexercise ingestion of cold (Burdon et al., 2010b; Lee et al.,
2008) and ice-slurry (Burdon et al., 2013; Dugas, 2011; Siegel et al.,
2012) beverages may be effective in cooling athletes during exercise
in hot, humid, and still environments. However, this may not be the
case in warm, dry, and windy environments, where evaporative
heat loss potential is greater; this is due to a reduction in sweating that
occurs when consuming cold beverages following the stimulation
of abdominal thermoreceptors (Jay & Morris, 2018). Nevertheless,
performance advantages may still be seen in response to a perceptual
benefit. Although the value of creating a larger heat sink by internal
cooling alone may be modest in comparison with the thermal
challenges of the event (i.e., exogenous and endogenous heat stress),
there is strong evidence for oral temperature–sensitive regions of the
brain being activated when cold fluid is placed in the mouth (Guest
et al., 2007), enhancing the perception of thermal comfort.

Other Nutritional Strategies to Enhance
Thermal Comfort

Another nutrition strategy that alters thermal sensation is the use of
L(-) menthol. Menthol is a cyclic terpene alcohol found in mint
leaves, which activates oropharyngeal cold receptors and increases
the threshold temperature for their activation, creating a feeling of
coolness (McKemy et al., 2002; Peier et al., 2002). Menthol can be

applied externally to skin or clothing as a gel or spray, but the most
effective method is oral ingestion in the form of mouth rinse or an
aromatized beverage (Stevens & Best, 2016). The cooling effect of
menthol has the potential to improve performance in hot and/or
humid conditions, with observations of enhanced exercise capacity
following mouth rinsing with a liquid menthol solution during
exercise (Mündel & Jones, 2010). The beneficial effect of menthol
can be further enhanced by administering menthol at cold (∼3 °C)
temperatures (Trong et al., 2015) or in the form of an ice slurry
(Riera et al., 2014; Trong et al., 2015). Indeed, performance was
enhanced by the combination of thermal and sensory cooling
achieved by ingesting a menthol-slushie before and during a
20-km cycling time trial (Riera et al., 2014). It is recommended
that athletes experiment to determine the concentration and amount
of ingested menthol solution that is tolerable and beneficial. The
suggested preparation involves the addition of 0.1–0.5 g of crushed
menthol crystals (dissolved in alcohol) to 1 L of water or the use of
a commercial premixed menthol/alcohol solution (Stevens & Best,
2016). Light green or blue menthol solutions appear to illicit
the most positive response, potentially due to their subjective
qualities and association with coolness (Best et al., 2018). Extreme
caution should be taken if preparing menthol solutions from
basic ingredients for oral ingestion. Given the small quantity of
menthol required and potential for toxicity if not prepared correctly
(e.g., burning, irritation, pain, and potential fatality in large quan-
tities; Kumar et al., 2016), it is suggested that practitioners,
coaches, and athletes utilize commercially available products
wherever possible.

Practical Implementation of Nutrition
Plans for the Heat

The ability of athletes, coaches, and support staff to implement
nutrition and hydration strategies to optimize health and perfor-
mance in hot environments is frequently compromised by specific
physiological, cultural, and practical challenges unique to particu-
lar sports or athlete subgroups. The following section describes
these challenges in a variety of sports settings, with practical
recommendations summarized in Table 3.

Team Sports

Training and competition for team sports are undertaken in varying
seasonal and geographical locations, requiring the development
of population- and environment-specific plans to address these
challenges. Indeed, team sports present unique challenges because
the thermal strain between players (e.g., different positions) can
differ significantly and vary based on match location. Nevertheless,
team sports may offer some useful characteristics for heat manage-
ment in the form of player rotations and routine breaks within the
game. The intermittent nature of many team sports offers some
respite from the heat-generation aspects of exercise, while also
providing good opportunities to implement strategies for thermal
strain management and nutrition goals. Some team sports have
rules that impede access to fluid during lengthy competition periods
(e.g., original Fédération Internationale de Football Association
rules limit fluid intake to the break between 45-min halves). When
team sports are played in hot environmental conditions, local
authorities or match officials should have the opportunity and
understanding to implement specific rules or conditions that are
better suited to the environment (e.g., Fédération Internationale de
Football Association updated the Heat Policy with additional
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cooling/drinking breaks at 30 and 75 min when wet-bulb globe
temperature exceeds 32 °C). Teams should be aware of, and able to
exploit, opportunities to implement better plans for hydration and
heat management.

Endurance and Ultra-Endurance Sports

Endurance (30 min to 4 hr) and ultra-endurance (>4 hr) exercise
encompasses a range of exercise modalities, terrain and environ-
ments. Sustained elevations in thermal strain during endurance
exercise present unique physiological challenges to athletes,
including large accumulated fluid and electrolyte deficits
(Shirreffs & Sawka, 2011), increased risk of gastrointestinal dis-
turbance during exercise (Costa et al., 2019a), and EHI (Leon &
Bouchama, 2015). The unique challenges of endurance sports
include the potential for large variations in ambient conditions
within an event, as well as increased emphasis on during-event
nutrition and hydration strategies due to the continuous nature of
most sports. Practical considerations include the availability of
nutrition supplies, the logistics of ingestion during exercise, and the
interaction with gastrointestinal comfort/function. Endurance ath-
letes can both under- and overconsume fluid during competitive
events based on these factors, as well as erroneous calculations of
likely sweat losses and misguided aspirations of performance
enhancement (Burke et al., 2019). Indeed, the net effect of fluid
intake strategies on performance is a complex trade-off between
manipulations of physiology and homeostasis, perceptions of
comfort and exertion, and the cost of the plan (e.g., time lost in
obtaining and consuming fluids). Such issues are unlikely to be
solved by conventional research techniques. The ability for endur-
ance athletes to ingest food and fluids is frequently limited by
gastrointestinal tolerance, as well as opportunities for consumption.
For example, elite male marathon runners may allow less than 60 s
to consume nutrition during competition (Beis et al., 2012), and
anecdotal reports suggest great difficulty consuming and tolerating
ideal fluid intake due to exercise intensity and the required
ventilation.

Junior and Adolescent Athletes

Young athletes are typically considered to be at a thermoregulatory
disadvantage compared with adults due to lowered sweat rates
and higher surface area to body mass ratios. However, more recent
reports suggest that when euhydrated and heat-acclimatized,
young athletes face similar cardiovascular or thermoregulatory
challenges during exercise as adults matched for fitness, hydration,
and acclimation status (Bergeron, 2015; Bergeron et al., 2015;
Rowland, 2008). Notwithstanding, during the transition from early
childhood to late adolescence, it is important to accommodate
greater sweat losses and potential increases in thermal strain
and EHI risk that accompany physical growth, maturation, and
enhanced fitness and athletic/sport skill. As such, combined strate-
gies to manage heat stress in younger athletes may be more
effective (e.g., fluid replacement to support evaporative losses
and exposure to cool clothing/towels for conduction). Attitudes
to fluid intake among young athletes can be dependent on knowl-
edge, education, access to fluids, and opportunities to rehydrate/
refuel (Meyer et al., 2012). The extent to which biological sex
influences the impact on hydration during exertional heat stress is
still unclear, but men may be at greater risk of dehydration due to
increases in muscle tissue (and subsequent water content) during
adolescence (Meyer et al., 2012; Timmons et al., 2007).

Travel to Compete in Hot and Humid Environments

Travel for competition can add another layer of complexity to the
challenge of exertional heat stress. The trip can contribute a range
of factors that cause fatigue and suboptimal nutritional/hydration
status (Fowler et al., 2016), while the new environment/location
may not provide the athlete (or support staff) with the resources or
opportunities to implement their desired or optimal heat manage-
ment plan. Heat acclimation prior to travel for competition in hot
and/or humid environments is a commonly employed strategy,
particularly among elite and professional athletes. However, there
are many complexities involved in implementing an optimal
acclimation plan, especially when the athlete is traveling from a
cold location to compete in a vastly different environment. Acces-
sing sophisticated resources (e.g., heat chambers) prior to departure
may be not feasible for some athletes, and alternate heat acclima-
tion strategies (e.g., hot bath or sauna posttraining) and subsequent
nutrition protocols may be required (Saunders et al., 2019). How-
ever, even when heat acclimation is achieved, there may be
difficulties in maintaining its benefits due to the logistics and
demands of travel. The rate of decay of physiological benefits
of heat acclimation is reported to be ∼2.5% per day without heat
exposure (Daanen et al., 2018) and is an important consideration in
relation to the travel itinerary (Saunders et al., 2019). The mainte-
nance of heat acclimation adaptations and the adjustment of the
athlete’s nutrition and hydration strategies to suit the environmental
conditions upon arrival is imperative. Real-world competition
settings can present logistical challenges for established pre- and
per-cooling strategies. The practicalities of providing ice slurries,
ice vests, plunge baths, and ice towels at the competition venue
must be considered.

Para-Sports

Para-sport athletes are classified by their impairment type
(i.e., visual, intellectual, or physical) and compete across a wide
range of sports. Several conditions present higher risk of thermal
strain than is experienced by able-bodied athletes (Pritchett et al.,
2019). Spinal cord injury has received most attention in the sports
science literature, as it is associated with complete or partial loss of
neural function below the level of injury and a failure to initiate
normal thermoregulatory mechanisms like sweating and skin blood
flow redistribution. Athletes with spinal cord injuries experience
greater increases in core temperature at a given exercise and/or heat
load than able-bodied athletes, which is more pronounced with
higher spinal cord lesions (Price & Campbell, 1999). Fluid needs
are lower due to reduced sweat rates, which along with practi-
calities around toileting underscores the need for an individualized
hydration plan (Pritchett et al., 2019).

Other impairment types also face challenges. For example,
60–80% of people with multiple sclerosis have worsening physi-
cal and cognitive symptoms with heat stress (Davis et al., 2010).
Athletes with cerebral palsy face increased fatigue and sympto-
mology, likely due to increased metabolic heat production from
movement inefficiency (Pritchett et al., 2019). Amputees have
reduced skin surface area to dissipate heat, and additional heat can
result from skin interfacing with prostheses and/or prosthetic
liners (Andrews et al., 2016). Finally, visually impaired athletes
may have reduced pace and hydration awareness, a potential
challenge in hot conditions (Pritchett et al., 2019). These specific
differences underscore the need for individual assessments of heat
tolerance, fluid needs, and strategies to manage core temperature
in para-sport athletes.
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Conclusion

Exercise in the heat is associated with varying levels of thermal
stress and potential effects on the health and performance of the
athlete. Nutritional strategies before, during, and after exercise can
address different aspects of exertional heat stress. These strategies
need to be implemented using protocols that are individualized and
made practical for the specific needs of the athlete and their event.
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