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Background and aims. Graph theoretic analysis of structural covariance networks (SCN) 

provides an assessment of brain organization that has not yet been applied to alcohol 

dependence (AD). We estimated whether SCN differences are present in adults with AD and 

heavy drinking adolescents at age 19 and age 14, prior to substantial exposure to alcohol. 

Design. Cross-sectional sample of adults and a cohort of adolescents. Correlation matrices for 

cortical thicknesses across 68 regions were summarized with graph theoretic metrics. Setting 

and participants. 745 adults with AD and 979 non-dependent controls from 24 sites curated 

by the ENIGMA-Addiction working group, and 297 hazardous drinking adolescents and 594 

controls at age 14 and 19 from the IMAGEN study, all from Europe. Measurements. Metrics 

of network segregation (modularity, clustering coefficient, and local efficiency) and 

integration (average shortest path length and global efficiency). Findings. The younger AD 

adults had lower network segregation and higher integration relative to non-dependent 

controls. Compared with controls, the hazardous drinkers at age 19 showed lower modularity 

(Area-under-the-curve [AUC] difference = -0.0142, confidence interval [CI] 95% [-0.1333, 

0.0092]; p-value = 0.017), clustering coefficient (AUC difference = -0.0164 CI 95% [-0.1456, 

0.0043], p-value = 0.008), and local efficiency (AUC difference = -0.0141 CI 95% [-0.0097, 

0.0034], p-value = 0.010), as well as lower average shortest path length (AUC difference = -

0.0405 CI 95% [-0.0392, 0.0096]; p-value = 0.021) and higher global efficiency (AUC difference 

= 0.0044 CI 95% [-0.0011, 0.0043]; p-value = 0.023). The same pattern was present at age 14 

with lower clustering coefficient (AUC difference = -0.0131 CI 95% [-0.1304, 0.0033]; p-value 

= 0.024), lower average shortest path length (AUC difference = -0.0362 CI 95% [-0.0334, 

0.0118]; p-value = 0.019), and higher global efficiency (AUC difference = 0.0035 CI 95% [-

0.0011, 0.0038]; p-value = 0.048). Conclusions. Cross-sectional analyses indicate a specific 

structural covariance network profile is an early marker of alcohol dependence in adults. 

Similar effects in a cohort of heavy drinking adolescents, observed both at age 19 and prior 

to substantial alcohol exposure at age 14, suggest that this pattern may be a pre-existing risk 

factor for problematic drinking. 
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1. Introduction 

 

Alcohol Dependence (AD) is characterized by persistent and compulsive alcohol use despite 

negative health consequences (1). Alcohol use entails an enormous burden for society and is 

a leading cause of preventable mortality worldwide (2). AD has been associated with lower 

grey matter volume across widespread regions of the brain and especially within prefrontal 

cortex and brain areas related to reward processing (3–5). The extent to which these effects 

arise from exposure due to consumption or reflect pre-existing differences which contribute 

to the development of AD remains unclear. Alcohol use initiates during adolescence (6), and 

early onset increases the risk for later problematic patterns of consumption including 

dependence (7). There is some evidence that alcohol use may disrupt brain maturation (8,9). 

While some studies have found regional grey matter differences in alcohol-naïve adolescents 

at risk for AD (10,11) others have found changes following exposure (12). The specifics 

regarding interactions between alcohol use and the brain in terms of pre-existing risk factors, 

age, and duration/quantity of use still require substantial clarification. 

 

The study of structural covariance networks (SCN) provides an assessment of brain 

organization. Similar to functional connectivity, SCN is defined by regional covariance of 

distinct brain features. In SCN these features are structural, such as grey matter volume or 

cortical thickness. SCN detects networks that are partially consistent with those identified by 

functional and diffusion-based MRI (13). The presence of correlated brain features suggests 

synchronized maturation due to shared plastic or trophic influences. Evidence from 

neurodegenerative studies hints that network disturbances precede global grey matter 

decline, for example, in frontotemporal dementia (14), Parkinson’s disease (15), and mild 

cognitive impairment (16). Network differences have also been reported in dependence on 

alcohol and other substances (17–19). Remarkably, network alterations were found in 

alcohol-naïve adolescents at greater risk for AD (20), which suggests these effects predate 

exposure and may represent a risk factor. However, such evidence comes from resting state 

fMRI studies and no work has reported such effects using SCN to date. 

To summarize SCN features, we use graph theory which offers powerful and yet simple 

metrics to describe the relations within a network that is represented as a collection of nodes 

(e.g., brain regions) and edges (e.g., correlations). We explored group-level differences in 
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cortical thickness and graph theory metrics derived from SCN in two large samples. A cross-

sectional dataset of adults with AD and non-dependent adult controls curated by the 

ENIGMA-Addiction consortium (https://www.enigmaaddiction.com), and a longitudinal 

adolescent cohort collected at ages 14 and 19 by the IMAGEN project (https://imagen-

europe.com). We first examined whether the relationship between AD and cortical thickness 

in the adult sample was age dependent. Next, we explored the same adult sample for group 

differences in SCN metrics, assessing if these too were related to age. Then, turning to the 

adolescent sample, we tested whether cortical thickness and SCN properties were related to 

hazardous drinking patterns at age 19. Finally, we examined, retrospectively, if similar findings 

were present in the same sample at age 14 before substantial alcohol use. 

 
2. Methods 

2.1. Adult sample  

 

A total of 1,724 participants (745 with AD and 979 non-dependent controls) ranging from 18 

to 56 years old were included from 24 studies contributing to the ENIGMA-Addiction 

consortium. All procedures were in accordance with the Declaration of Helsinki. A variety of 

instruments were used to diagnose AD based on the DSM-IV criteria (see Table SM1 in the 

supplementary material). Participants with a history of neurological disease or 

contraindications for MRI were excluded. Additionally, individuals with AD were excluded for 

any other axis I disorder (i.e., including dependence to other substances) other than mood or 

anxiety.  

 

Structural T1-weighted images were prepared using FreeSurfer (v.5.3) (21,22) through 

CBRAIN (www.computecanada.ca), a network of high-performance computing facilities in 

Canada (23). ENIGMA quality control protocols were followed 

(http://enigma.ini.usc.edu/protocols/imaging-protocols). Additional visual inspection was 

performed at the University of Vermont on random subsamples from each site to confirm 

consistent quality across sites. Details on the scanner vendor and image acquisition protocols 

are presented in the supplementary materials (Table SM1). Average cortical thickness was 

extracted from 68 regions of interest (ROIs) parcellated according to the Desikan-Killiany atlas 

(24). Inter-site scanner effects were removed with ComBat (25). This method allows one to 
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eliminate unwanted non-biological sources of variation from the data (i.e., scanner effects) 

while preserving relevant information such as age, sex, and group within a Bayesian 

framework. For a more detailed explanation please see Fortin et al. (2018).  

 

2.1.1. Age windows 

 

SCN exploits inter-individual variance in thickness to derive estimates of covariance at the 

group-level (see below). Consequently, in order to generate groups of AD and control 

participants for comparisons across different ages, the dataset was analyzed using a sliding 

window approach. The 6-year wide age windows started at age 18 and increased in steps of 

one year (i.e., 18-24, 19-25, 20-26… 50-56). The cut-off was set at age 56 due to limited 

numbers of individuals above this age. A 6-year window was selected as it maximized the 

numbers of individuals per window (100 on average) and ensured similar numbers of 

participants in each window while being reasonably narrow to detect age-related differences. 

We attempted to match AD and non-dependent groups for age and sex (ratio 1:1) at all 

windows using a nearest neighbor algorithm from the MatchIt package (26).  

 

 2.2. Adolescent sample 

 

A sample of 1,068 adolescents was drawn from IMAGEN, a multi-site project which acquired 

longitudinal data at ages 14 (baseline) and 19 (follow-up) at eight European imaging centers. 

Non-siblings with MRI data available at baseline and follow-up were included. Missing age at 

follow-up from 112 participants was imputed with the average difference in years between 

baseline and follow-up (i.e., 4.64 years). The AUDIT was used to assess problematic alcohol 

use. AUDIT total scores equal to or greater than 8 indicate hazardous drinking (27). 

Participants surpassing this threshold at follow-up were classified as hazardous drinkers. 

Those who did not meet this cut-off (i.e., 7 or less) at baseline and follow-up were considered 

controls. Groups were matched for age and sex with a ratio of two controls for each hazardous 

drinker (2:1). The final groups were composed of 594 controls and 297 hazardous drinkers.  

 

Structural T1-weighted scans were collected at each site following ADNI protocols to minimize 

site effects (28) (https://github.com/imagen2/imagen_mri/tree/master/protocols). 
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Preparation of images and site-effect adjustments were the same as described for the adult 

ENIGMA-Addiction sample.  

 

2.3. Network construction 

 

With this approach, a single network is derived from a correlation matrix exploiting inter-

individual variation generated by pooling subjects from a predetermined group. The thickness 

of each ROI represents a node, and the correlation between ROIs describes an edge. The 

strength of an edge illustrates within-group correlations in thickness across pairs of nodes. 

Edges are thresholded and binarized and, finally, graph metrics are derived at the group-level. 

In both the adult and adolescent samples, ROIs were residualized for mean global thickness 

using linear regressions. Age and sex were residualized in the adult sample where balancing 

groups for these features was not possible. Adjacency matrices were generated with 

Pearson’s correlations among the residualized ROIs for each group and age window in the 

adult sample, and for each group and time-point (i.e., follow-up and baseline) in the 

adolescent sample. This step returned group-specific (i.e., 2 groups, 2 matrices) correlation 

matrices of 68 by 68 nodes with a maximum possible density of 2,278 edges. Matrices were 

proportionally thresholded along a wide range of densities to prevent differences arising from 

unequal-sized networks or arbitrary thresholds. Matrices spanned from Dmin to 0.3 in 

increasing steps of 0.01. Here, Dmin equaled the minimum density at which groups displayed 

at least one edge per node: This ensured comparisons were done on fully connected 

networks. Network construction and metric derivation were performed with the brainGraph 

package (29).   

 

2.4. Graph theory metrics 

 

Global SCN properties were summarized with a variety of graph theory metrics assessing 

network segregation and integration across all densities.  

 

Metrics of segregation rely on short-range edges and capture how correlated adjacent nodes 

are in terms of cortical thickness, with higher scores reflecting higher correlations. Three 

metrics of segregation were used: clustering coefficient (Cp), modularity, and local efficiency 
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(Elocal). Cp reflects the extent to which the neighbors of a node are each other’s neighbors 

(30). That is, it represents whether nodes that are correlated in thickness to a certain node 

are also correlated with each other. Modularity exposes the degree to which same-module 

nodes are correlated in thickness with each other but not with other modules (31). Elocal 

expresses the ability of a cluster to remain connected (correlated) after a node is removed 

(32). If low, it may suggest that the relationships in thickness within a cluster is reliant on too 

few nodes.  

 

Metrics of integration reveal between-community correlations and depend on shortcuts, or 

long-distance paths, to bring distant nodes together. We used the average shortest path 

length (Lp) and global efficiency (Eglobal). Lp denotes the average of the shortest number of 

edges passed through to reach other nodes in the network. This shortest path length is first 

calculated for all pairs of nodes sequentially (i.e., the average shortest path from A to B, from 

A to C, …, from X to Z) and then averaged across all nodes. Eglobal is comparable to the inverse 

of Lp (i.e., 1/Lp) with the exception that it incorporates all paths among two nodes (i.e., not 

just the shortest path but the full set of paths between A and B). By capturing these parallel 

or redundant paths, Eglobal is often preferred for networks that contain disconnected nodes 

(30). Note that these edges are in the graph space and reflect correlations in cortical 

thicknesses between brain regions so do not represent anatomical connectivity. Lower Lp and 

higher Eglobal imply a greater presence of shorter paths and better integrated networks (30) 

and indicate that distant nodes are more correlated. See supplementary materials for more 

details on these metrics (see Methods SM3). 

 

2.5. Statistical analyses  

 

None of the analyses conducted in the current work were pre-registered and should be 

therefore considered exploratory. 

 

2.5.1. Cortical thickness comparisons  

 

First, we examined if the difference in cortical thickness between AD and non-dependent 

groups was age dependent. For this purpose, we conducted linear regression models in the 
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full ENIGMA-Addiction adult sample (n = 1,724) to predict global (mean) cortical thickness by 

including group, sex, and age, and their interactions. Next, we adopted the moving age 

window approach to map group age-related differences in both global and regional cortical 

thickness. Age and sex balance was assessed at every window with parametric tests (i.e., t-

test, chi-square test). If groups were different, age and sex were included as covariates. 

Models included global or regional cortical thickness as the dependent variable and group as 

its main predictor. A false-discovery rate (FDR) correction was adopted to minimize type I 

errors in regional cortical thickness analyses (i.e., 68 ROI = 68 tests per age window, 33 age 

windows).  

 

In the adolescent sample, linear regressions for global and regional cortical thickness were 

done separately for follow-up and baseline with group as the main predictor and as well 

corrected for multiple comparisons with FDR (i.e., 68 tests, 2 time-points). All analyses were 

done in R (30). 

 

  2.5.2. Graph theory metrics comparisons 

 

For both the adult and adolescent samples, between-group differences in graph theory 

metrics (i.e., Cp, modularity, Elocal, Lp, Eglobal) were addressed with two-sided permutation 

tests at each density. Non-parametric permutation testing was required since metrics were 

calculated on the group level (i.e., one value per group). Area under the curve (AUC) analyses 

were used to prevent results from depending on a single threshold. Individuals were randomly 

shuffled among groups 1,000 times and two-sided AUC tests performed. The observed AUC 

differences were compared with critical values based on the 95th percentile of the distribution 

of permuted AUC differences. The level of significance was set at p-value < 0.05 uncorrected. 

These analyses were performed at every age window (n = 33) in the adult sample, and for 

follow-up and baseline in the adolescent sample. Supplementary tests involved a subset of 

hazardous drinkers (n = 110) and controls (n = 220) with no alcohol use at baseline (AUDIT = 

0) to investigate if any observed effect could be disentangled from exposure.  
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  2.5.3. Behavioral and cognitive tests 

 

To better characterize the phenotype of each group, we examined group differences on the 

DAWBA externalizing problems scale, the impulsivity scale from the Temperament and 

Character Inventory (TCI), as well as the risk-taking score from the Cambridge Gambling Task 

(CGT).  Groups were compared in a series of cross-sectional linear mixed models adjusting for 

fixed (i.e., age and sex) and random effects (i.e., site). Because of their exploratory nature, 

the significance level for these tests was Bonferroni-adjusted and set at p-value < 0.008 (3 

tests per 2 visits: 0.05/6 = 0.008). 

 

3. Results 

 

A summary of sociodemographic characteristics of the adult ENIGMA-Addiction and 

adolescent IMAGEN samples is available in Table 1. 

 

 3.1. Cortical thickness results 

 

In the adult sample, the AD group exhibited lower global cortical thickness compared to the 

non-dependent group (t1716 = -4.42, p-value < 0.001). Whereas the group x sex interaction was 

not significant (t1716 = -0.52, p-value = 0.606), the group x age interaction was significant (t1716 

= -3.20, p-value = 0.001). The AD group had a steeper age-related slope (r = -0.32) than non-

dependent controls (r = -0.24) (see Figure 1). The main effect of sex (t1716 = -0.60, p-value = 

0.547) and its interaction with age (t1716 = 0.75, p-value = 0.454) were not significant.  

 

Contrasts performed at each age window showed groups differed on global cortical thickness 

at age window 25-31 and in each subsequent age window (see Figure 2). Also, ROI-level 

contrasts revealed that the number of regions with a significant difference in thickness 

increased in the older age windows (e.g., from 4 ROIs at age window 18-24 to 54 ROIs at age 

window 41-47). Further ROI results are provided in the supplementary materials (Figure SM2; 

plots done with the ggseg package (31)). Table 2 presents demographic summaries at each 

age window.  
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A group difference in cortical thickness was not observed in the adolescent sample at either 

baseline or follow-up. 

 

3.3. Structural covariance results 

 

In the adult sample, the AD group exhibited significantly lower modularity, Cp, and Elocal 

relative to the non-dependent group in the younger age windows, consistent with lower 

segregation. Whereas modularity effects were present at the 18-24 age window only, Cp and 

Elocal effects were significant in all windows starting at 18-24 until age window 26-32 (see 

Figure 2). A single effect emerged at age window 41-47 but only for Cp. The AD group had 

significantly higher Eglobal in age window 19-25. This group showed lower Lp and higher Eglobal 

from age windows 21-27 to 24-30, suggesting greater integration. The AD group showed 

higher Eglobal at age window 26-32. At age window 41-47, this group had lower Lp and greater 

Eglobal (note: all analyses were repeated using different age window solutions [e.g., 5-year, 7-

year, 8-year, 9-year, and 10-year wide windows] and results remained significant in the 

younger AD; results not shown). The observed differences and confidence intervals (CI) are 

available in the supplementary materials (see SM4). 

 

In the adolescent sample, significant effects were found at follow-up for all graph theory 

metrics. Similar to the early age windows in the adult AD group, the adolescent hazardous 

drinking group exhibited lower modularity (AUC difference = -0.0142, CI 95% [-0.1333, 

0.0092]; p-value = 0.017), Cp (AUC = -0.0164, CI 95% [-0.1456, 0.0043]; p-value = 0.008), and 

Elocal (AUC difference = -0.0141, CI 95% [-0.0097, 0.0034]; p-value = 0.010) compared to 

controls (see Figure 3). Likewise, adolescent hazardous drinkers also presented lower Lp (AUC 

difference = -0.0405, CI 95% [-0.0392, 0.0096]; p-value = 0.021) and greater Eglobal (AUC 

difference = 0.0044, CI 95% [-0.0011, 0.0043]; p-value = 0.023). A number of effects were 

observed at baseline mimicking those observed at follow-up and at the early age windows in 

the adult sample. At baseline (i.e., age 14), and prior to substantial alcohol exposure, the 

future hazardous drinking group had lower Cp (AUC difference = -0.0131, CI 95% [-0.1304, 

0.0033]; p-value = 0.024), lower Lp (AUC difference = -0.0362, CI 95% [-0.0334, 0.0118]; p-

value = 0.019), and higher Eglobal (AUC difference = 0.0035, CI 95% [-0.0011, 0.0038]; p-value 

= 0.048). A subset of the hazardous drinking adolescents who were alcohol-naïve at baseline 
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(i.e., AUDIT = 0) showed a similar pattern to the larger group at follow-up although the effects 

were not significant (see Figure 3).  

 

 3.4. Behavioral and cognitive results 

 

At age 19, the hazardous drinking group exhibited higher externalizing symptoms (t747.58 = 

3.94, p-value < 0.001), impulsivity (t631.87 = 4.83, p-value < 0.001) and risk-taking scores (t868.93 

= 3.61, p-value < 0.001) compared to the control group. Similarly, at age 14, the (future) 

hazardous drinking group scored higher on externalizing symptoms (t825.09 = 2.87, p-value = 

0.004) and impulsivity (t756 = 2.71, p-value = 0.007). Risk-taking results did not survive 

Bonferroni-adjustments (t605.12 = 2.12, p-value = 0.035). 

 

4. Discussion  

 

In a large adult cross-sectional sample, we found that the difference in global cortical 

thickness between AD and non-dependent groups was influenced by age, being greater in 

older individuals. The sliding age window analysis identified an initial significant group 

difference in global cortical thickness in the 25-31 age window and in all the older age 

windows. With regard to SCN, the AD group consistently presented lower segregation and 

higher integration of SCN compared to non-dependent controls in the younger but not the 

older age windows, an opposite pattern to what was observed with the average cortical 

thickness. We found similar SCN effects in an independent sample of adolescents with no 

cortical thickness differences in hazardous drinkers at age 19. Most notably, SCN differences 

were observed in the same adolescents five years earlier who, at age 14, had little to no 

lifetime alcohol exposure. Taken together, results indicate that SCN effects are related to 

alcohol drinking (i.e., alcohol dependence or hazardous drinking) in the absence of cortical 

thickness differences.  

 

4.1. Alcohol and Brain Volume  

 

Initiation of alcohol use typically occurs during adolescence (6), and early onset increases the 

risk for later problematic patterns of use including dependence (7). Youths initiating alcohol 
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use by age 14 or earlier are five times more likely to be diagnosed as AD later in life than those 

who started at age 21 or later. From age 14 onwards, each year by which onset of drinking is 

delayed is followed by a 14% drop in the risk for lifetime dependence (32). Onset of AD peaks 

in the early 20s (33), with most cases (94.1%) being diagnosed before age 25 (34). With regard 

to the brain, older individuals with AD show more regional differences in cortical volume 

compared to non-dependent controls and to younger individuals with AD (35–37). The effects 

of age and chronic alcohol use on the brain have been confirmed in animal models (38). 

Sustained alcohol exposure reduces brain-derived neurotrophic factor and nerve-growth 

factor release, triggers oxidative stress and glutamate excitotoxicity, and disturbs 

mitochondrial function due to the accumulation of toxic metabolites (12). Some of these 

factors are related to the etiology of neurodegenerative disease (39). Whilst the cross-

sectional nature of the adult sample warrants caution, differences in cortical thickness as a 

function of age quite plausibly reflect the cumulative effect of exposure. However, it is equally 

possible that older brains are more susceptible to the alcohol neurotoxicity or that the AD 

duration is influenced by pre-existing grey matter differences.  

 

4.3. Alcohol Use and Structural Covariance  

Consistent with the present findings, resting-state fMRI studies have reported lower network 

segregation in alcohol-naïve adolescents at risk of AD (18) and AD severity in adults (20). 

Lower segregation has also been found in cocaine and heroin dependence (17,19), and 

internet-gaming disorder (40). In contrast, the literature is less consistent as to differences in 

network integration in both AD and other addictions (17–20,40). In the present findings, 

segregation and integration effects appeared at age windows 18-24 and 21-27 and were not 

observed in age window 26-32 or older. Although we cannot confirm with cross-sectional data 

that SCN differences predict grey matter decay as in neurodegenerative work, we speculate 

that the absence of SCN differences at later windows could be related to the onset of cortical 

thickness effects that obscure SCN effects.  

 

We extended the investigation to an adolescent longitudinal dataset to explore if SCN 

differences could be observed in those who do not have AD but are showing patterns of 

hazardous drinking. The adolescent sample replicated the young adult AD group’s SCN 

findings, including the absence of cortical thickness differences relative to controls. At follow-
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up, the hazardous drinking group had lower segregation (i.e., lower modularity, Cp and Elocal) 

and higher integration (i.e., lower Lp and higher Eglobal) than controls. At baseline, the (future) 

hazardous drinking group showed lower segregation (i.e., lower Cp) and higher integration 

(i.e., lower Lp, higher Eglobal) than controls. Of note, most of the individuals from this group 

had below threshold scores (AUDIT < 8), and 37% had reported no alcohol use (AUDIT = 0) at 

baseline. While supplementary tests on this alcohol-naïve subset (i.e., 37%, n = 110) showed 

similar effects to the larger group at age 19, null results were found at baseline. Nevertheless, 

this analysis drastically reduced the sample size and thus chances of type II error cannot be 

dismissed.  

 

As graph theory metrics derived from SCN describe the degree of synchronized maturation 

across nodes (41–43), lower segregation hints at de-synchronization among adjacent nodes 

in the young AD and the adolescent hazardous drinking groups. By contrast, higher integration 

means greater synchronization with nodes that belong to other communities. In other words, 

brain regions are showing atypical similarity in thicknesses to other regions that are distant in 

the alcohol drinking groups. Poor segregation and higher integration have previously been 

related to other psychiatric and neurological conditions (44), including dependence on alcohol 

and other substances (16–18). Typically, segregation peaks by late adolescence and young 

adulthood likely reflecting functional specialization among cortical regions (44,45). Therefore, 

we speculate that our results suggest a protracted cortical maturation in the alcohol drinking 

groups (13,42,47). Asynchronous cortical growth has previously been related to poor 

decision-making and self-regulation and to elevated reward-seeking behaviors (47,48). 

Delayed cortical growth has been associated with inattention (49) and anxious/depression 

symptoms (50) as well. It has been proposed that disturbed cortical growth renders youth 

vulnerable to risky behaviors such as early alcohol drinking (48,51). In Holla et al. (2017), 

delayed maturation of functional networks in adolescents at greater risk for alcohol 

dependence was associated with more externalizing problems. Externalizing problems 

suggest failures in self-regulation also resulting a risk factor for alcohol use (50). We have 

found that the hazardous drinking group presented higher externalizing symptom severity 

scores, were more impulsive, and took more risky decisions in a gambling task at ages 14 and 

19. Additionally, if the SCN results are an indicator of delayed cortical growth, then the 

absence of SCN effects after the age window 26-32 in AD adults could align with the end of 
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the delayed developmental period. That is, the group differences in SCN may disappear 

because the relevant maturational processes are complete in both the AD and non-

dependent controls. For instance, the Cp trajectories in Figure 1 show that the peak in the AD 

group (age window 28-34) appears delayed as to the peak in the control group (age window 

23-29). An alternative possibility is that SCN differences persist but are obscured by the 

widespread cortical thinning associated with adult AD. 

  

To summarize, the younger AD group exhibited lower segregation and higher integration in 

the absence of global differences in cortical thickness relative to the control group. The very 

same pattern was found at age 19 in adolescents with hazardous drinking behavior. This 

profile was again detected in the same group five years earlier prior to substantial alcohol 

exposure. Overall, we hypothesize that the SCN profile might reflect the delayed growth of 

cortico-cortical networks central to the development of functional specializations and related 

to the successful regulation of reward-related processes. We have also found behavioral signs 

that suggest delays in cortical maturation. Impaired self-regulation during adolescence (i.e., 

higher impulsivity and risk-taking) increases the likelihood of engaging in problematic 

behaviors such as alcohol use (47,48,51). Still, with the current design and approach, we 

cannot confirm whether SCN differences constitute a risk factor for alcohol use or 

dependence nor if these were independent from exposure; similar but not significant effects 

were found in a sample of alcohol-naïve individuals at age 14, which we attribute to loses in 

statistical power. However, our analyses provide evidence of a promising brain marker for AD 

in young adults and for heavy alcohol use at age 19. We offer a retrospective prediction in 

which a known outcome (i.e., heavy drinking at age 19) is predated by SCN changes at age 14 

before any substantial alcohol use. Despite the exploratory nature and methodological 

limitations, the current study brings intriguing new hypotheses about potential brain markers 

for future alcohol use.  

 

The current study was limited by several factors. First, alcohol use duration was not measured 

at many of the ENIGMA-Addiction sites, so it was not possible to disentangle the potential 

effects of duration and age. Many studies have reported that age and alcohol use duration 

are highly collinear especially among heavy drinkers (36). Despite dependence on other 

substances and the presence of other psychiatric disorders being considered reasons for 
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exclusion, we cannot discard other factors such as recreational use of other drugs, anxiety 

and depression symptoms, or lower education and socioeconomic status partially explaining 

the results. Age distribution was skewed in the adult sample which required the analyses to 

go no further than age 56. More notably, the cross-sectional nature of the adult sample 

restricts the conclusions that we can draw regarding SCN effects preceding, or indeed being 

causally related to cortical thickness alterations within an AD individual. Moreover, contrasts 

for both the adult and adolescent samples were performed at the group-level as the SCN 

approach exploited inter-individual variation so did not provide individual-level metrics. Due 

to insufficient numbers of female individuals (32% in the AD group), relevant questions on sex 

differences were left unexplored. Last, and to the best of our knowledge, this is the first study 

using SCN metrics and alcohol and hence the current work has a strong exploratory 

component. 

 

In conclusion, based on two of the largest datasets with neuroimaging data and relevant 

alcohol phenotypes, young adults with alcohol dependence showed a specific pattern of SCN 

differences. This SCN profile was replicated in adolescents identified as hazardous drinkers at 

age 19 and prior to substantial exposure to alcohol at age 14. SCN differences were found in 

the absence of global differences in cortical thickness. Lower segregation and higher 

integration were found in cortical networks which may indicate disruptions in cortico-cortical 

growth. Further work should address whether such effects represent an early marker for 

future alcohol use and dependence. 
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Figure 1 – Global cortical thickness and age interaction between groups. 
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Figure 2 – Global cortical thickness and graph theory metrics plotted as a function of age using 
age windows for the ENIGMA-Addiction dataset.  Shaded areas represent statistically 
significant differences (p < 0.05) between groups. 
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Figure 3 – Average score of graph theory metrics across densities at follow-up (first row) and 
baseline (second row). Right-column barplots represent analyses done in a subset of 
participants that were alcohol-naïve at baseline. Error bars depict the standard error for each 
measure across densities. Lp values were log-scaled to fit the rest of the variables. * p < 0.05, 
n.s., non-significant. 
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Table 1 – Demographics for Adults and Adolescents (mean ± standard deviation, or frequency). 
 
 
  N Age Females AUDIT total 

Adults 
Alcohol dependent 745 33.9 ± 10.3 239 - 

Non-dependent  979 28.9 ± 9.58 406 - 

Follow-up  

adolescents 

Hazardous drinkers 297 19.1 ± 0.74 126 11.6 ± 3.87 

Controls 594 19.1 ± 0.72 255 3.63 ± 2.12 

Baseline 

adolescents 

Hazardous drinkers 297 14.4 ± 0.36 126 1.95 ± 2.58 

Controls 594 14.4 ± 0.41 255 0.84 ± 1.41 
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Table 2 – Demographics for Adults age windows (mean ± standard deviation, or frequency; *p < 0.05). 

 
Age window  Alcohol dependent Non-dependent  Statistic (t/X2) 

18-24 
N 182 182 - 
Age 22.3 ± 1.43 22.3 ± 1.43 0 
Female 75 79 0.10 

19-25 
N 209 209 - 
Age 22.9 ± 1.44 22.9 ± 1.44 0 
Female 84 88 0.09 

20-26 
N 243 243 - 
Age 23.4 ± 1.69 23.4 ± 1.70 -0.13 
Female 94 98 0.08 

21-27 
N 269 269 - 
Age 23.7 ± 1.94 23.7 ± 1.91 0.18 
Female 103 103 0 

22-28 
N 258 258 - 
Age 24.7 ± 1.98 24.7 ± 1.99 0.18 
Female 100 99 0 

23-29 
N 232 232 - 
Age 25.6 ± 1.92 25.6 ± 1.92 -0.16 
Female 90 90 0 

24-30 
N 217 217 - 
Age 26.5 ± 2.01 26.6 ± 2.00 -0.17 
Female 81 81 0 

25-31 
N 188 188 - 
Age 27.6 ± 1.96 27.6 ± 1.95 0 
Female 65 65 0 

26-32 
N 178 178 - 
Age 28.6 ± 2.05 28.5 ± 1.92 0.53 
Female 62 63 0 

27-33 
N 151 151 - 
Age 29.5 ± 1.90 29.5 ± 1.93 -0.03 
Female 52 52 0 

28-34 
N 147 147 - 
Age 30.7 ± 2.08 30.6 ± 2.00 0.31 
Female 50 57 0.53 

29-35 
N 132 132 - 
Age 31.9 ± 2.00 31.5 ± 2.03 1.47 
Female 37 37 0 

30-36 
N 130 130 - 
Age 32.8 ± 2.05 32.7 ± 2.17 0.23 
Female 39 44 0.28 

31-37 
N 121 121 - 
Age 33.9 ± 2.01 33.9 ± 1.99 -0.06 
Female 36 46 1.49 

32-38 
N 122 122 - 
Age 35.0 ± 2.07 35.0 ± 1.94 -0.22 
Female 36 44 0.91 

33-39 
N 113 113 - 
Age 36.1 ± 1.91 36.1 ± 1.91 0.03 
Female 31 34 0.09 

34-40 
N 120 120 - 
Age 36.8 ± 2.05 36.8 ± 1.95 -0.10 
Female 32 42 1.58 

35-41 
N 115 115 - 
Age 38.0 ± 2.02 37.8 ± 1.89 0.98 
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Female 28 39 2.11 

36-42 
N 111 111 - 
Age 38.9 ± 1.96 38.6 ± 1.94 1.24 
Female 32 42 1.64 

37-43 
N 95 95 - 
Age 39.4 ± 1.75  39.6 ± 1.82  -0.65 
Female 30 34 0.21 

38-44 
N 93 93 - 
Age 40.3 ± 1.70  40.5 ± 1.99  -0.59 
Female 26 38 2.88 

39-45 
N 96 96 - 
Age 41.5 ± 1.67  41.9 ± 2.26  -1.96 
Female 22 44 10.18* 

40-46 
N 94 94 - 
Age 43.7 ± 1.71  43.2 ± 2.21  1.66 
Female 27 38 2.35 

41-47 
N 84 84 - 
Age 45.2 ± 1.70  44.3 ± 1.85  3.17* 
Female 32 35 0.10 

42-48 
N 85 85 - 
Age 44.4 ± 1.89  45.0 ± 1.81  -2.36 
Female 36 36 0 

43-49 
N 88 88 - 
Age 46.7 ± 1.52  46.0 ± 1.88  2.43* 
Female 31 35 0.22 

44-50 
N 92 92 - 
Age 47.2 ± 1.57  46.8 ± 2.01  1.52 
Female 27 36 1.54 

45-51 
N 88 88 - 
Age 47.8 ± 1.64  47.5 ± 2.03  1.10 
Female 28 28 0 

46-52 
N 74 74 - 
Age 48.9 ± 2.12  48.5 ± 1.95  1.17 
Female 9 20 4.29* 

47-53 
N 62 62 - 
Age 49.4 ± 2.05 49.6 ± 1.80  -0.51 
Female 0 16 16.15* 

48-54 
N 56 56 - 
Age 50.0 ± 1.73  50.2 ± 1.76  -0.81 
Female 10 14 0.48 

49-55 
N 52 52 - 
Age 51.0 ± 1.43  51.1 ± 1.98  -0.23 
Female 13 13 0 

50-56 
N 39 39 - 
Age 51.5 ± 1.07  52.0 ± 1.87  -1.41 
Female 11 8 0.28 

 
 


