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Genetic risk for schizophrenia and
developmental delay is associated with
shape and microstructure of midline white-
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Abstract
Genomic copy number variants (CNVs) are amongst the most highly penetrant genetic risk factors for neuropsychiatric
disorders. The scarcity of carriers of individual CNVs and their phenotypical heterogeneity limits investigations of the
associated neural mechanisms and endophenotypes. We applied a novel design based on CNV penetrance for
schizophrenia (Sz) and developmental delay (DD) that allows us to identify structural sequelae that are most relevant
to neuropsychiatric disorders. Our focus on brain structural abnormalities was based on the hypothesis that
convergent mechanisms contributing to neurodevelopmental disorders would likely manifest in the macro- and
microstructure of white matter and cortical and subcortical grey matter. Twenty one adult participants carrying
neuropsychiatric risk CNVs (including those located at 22q11.2, 15q11.2, 1q21.1, 16p11.2 and 17q12) and 15 age- and
gender-matched controls underwent T1-weighted structural, diffusion and relaxometry MRI. The macro- and
microstructural properties of the cingulum bundles were associated with penetrance for both developmental delay
and schizophrenia, in particular curvature along the anterior-posterior axis (Sz: pcorr= 0.026; DD: pcorr= 0.035) and
intracellular volume fraction (Sz: pcorr= 0.019; DD: pcorr= 0.064). Further principal component analysis showed
alterations in the interrelationships between the volumes of several midline white-matter structures (Sz: pcorr= 0.055;
DD: pcorr= 0.027). In particular, the ratio of volumes in the splenium and body of the corpus callosum was significantly
associated with both penetrance scores (Sz: p= 0.037; DD; p= 0.006). Our results are consistent with the notion that a
significant alteration in developmental trajectories of midline white-matter structures constitutes a common
neurodevelopmental aberration contributing to risk for schizophrenia and intellectual disability.

Introduction
Genetic variants are associated with neurodevelop-

mental disorders across conventional diagnostic classifi-
cations. This is evidenced both by common variants with
low penetrance and by rarer but highly penetrant copy

number variants (CNVs)1,2. The mechanisms through
which these genetic variants affect brain and behaviour
are poorly understood, but genetic imaging studies in
people selected for polygenic risk3 or CNV carriers4 can
elucidate changes in brain development, structure and
function that are not confounded by secondary disease
effects. Because of their high penetrance, CNVs are par-
ticularly suited to translational studies elucidating disease
mechanisms. However, rarity of CNVs makes it difficult to
investigate their biological effects in humans. For most of
the pathogenic CNVs identified for schizophrenia and
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developmental delay, there is no information about neu-
roimaging correlates beyond small case series. Most
neuroimaging studies of these CNVs have assessed effects
of the 22q11.2 deletion (reviewed in5–8). Neuroimaging
studies in carriers of other CNVs have revealed highly
heterogeneous changes in brain structure across CNVs
(Table 1).
Most findings relate to brain morphology (measured

using regional volumes, cortical thickness, surface area
etc.), with few studies reporting microstructural differ-
ence, usually measured with diffusion tensor metrics such
as fractional anisotropy (FA) and mean diffusivity (MD).
Although some of these findings corroborate those for
non-CNV neuropsychiatric patients (e.g. structural cor-
relates in 15q11.2 deletion carriers are similar to those
found in dyslexia9), in most cases it is difficult to corro-
borate findings in CNV patients with particular clinical
features.
Our survey of the neuroimaging literature in CNV

carriers (Table 1) attests to the difficulty of collecting
substantial quantitative data and drawing consistent
conclusions about morphological and microstructural
brain alterations in carriers from the literature,

particularly of the rarer CNVs. We therefore conducted
an analysis across a cohort of carriers of different CNVs,
looking for features that correlate with the propensity of
these CNVs to contribute to neuropsychiatric illness. We
adopt a novel approach to characterising brain features in
high-risk CNV carriers using penetrance scores previously
calculated from a large cohort of neuropsychiatric CNV
patients10. This approach allows us to take account of the
degree of pathogenicity of a genetic variant, testing the
hypothesis that clinically more penetrant variants will also
be associated with more salient neurodevelopmental
changes as detected on neuroimaging. This method has
the advantage over single-CNV studies that it enables the
detection of convergent pathways common to several
genetic variants, which are putatively most directly related
to the pathophysiology of the associated diseases.
We explore structural brain phenotypes derived from

neuroimaging data. These relate to macroscopic structure
of cortex, including volume, surface area and cortical
thickness, and the size of subcortical regions using T1-
weighted structural MRI. We also quantify indices of
white-matter microstructure and morphology using dif-
fusion MRI. We quantify tract volume and tract shape

Table 1 Summary of neuroimaging findings in targeted CNVs

CNV (hg19) Neuroimaging finding

Morphological Microstructural

15q11.2 BP1–2 deletion
(chr15:22,805,313–23,094,530)

Decreased volume in fusiform gyrus9 None

15q13.3 BP4–5 duplication
(chr15:31,080,645–32,462,776)

Abnormal bilateral hippocampal structure52 None

15q13.3 BP4–5 deletion
(chr15:31,080,645–32,462,776)

Pachygyria and subcortical band heterotopia53 None

16p11.2 distal duplication
(chr16:28,823,196–29,046,783)

cortical atrophy, thinning of corpus callosum, ventricular
enlargement54.

None

16p11.2 deletion chr16:29,650,840–30,200,773 Increased brain size. Increased cortical grey matter55

Medio-dorsal thalamus, insula, ventral striatum, orbito-
frontal cortex and fronto-striatal white matter56,57

Changes in fractional anisotropy and mean diffusivity in
reward and language pathways; striatum, middle and
superior temporal gyrus56. increased axial diffusivity in
many major white-matter tracts, including the anterior
corpus callosum, internal and external capsules. Decreases
in fibre orientation dispersion58

17q12 duplication (chr17:34,815,904–36,217,432) Brainstem atrophy and hippocampal asymmetry59 None

1q21.1 deletion (chr1:146,527,987–147,394,444) No changes found60 None

1q21.1 duplication (chr1:146,527,987–147,394,444) Reduced corpus callosum volume, enlarged ventricles60. None

22q11.2 deletion (chr22:19,037,332–21,466,726) Whole-brain volumetric reductions, particularly in midline
regions61–63. Increased cortical thickness 64–66.
Rostrocaudal gradient of volume reduction7. More
comprehensive reviews are found in5–8.

Differences in fractional anisotropy and diffusivity
parameters, e.g. lower fractional anisotropy in cingulum
bundle and lower mean diffusivity in inferior longitudinal
fasiculus67 increase in fractional anisotropy in left inferior
fronto-occipital fasiculus, and a decrease in RD in right
IFOF; increase in right hemisphere FA and a decrease in
right RD in right cingulum; increase FA decrease RD within
the right thalamo-frontal tract; decrease radial diffusivity in
right inferior longitudinal fasiculus65.

22q11.2 duplication (chr22:19,037,332–21,466,726) Greater overall grey and whit matter volumes and cortical
surface area. Reduced cortical thickness. larger right
hippocampus smaller caudate and corpus callosum
volume (opposite findings compared to 22q11.2del)65

None

3q29 deletion (chr3:195,720,167–197,354,826) None None

NRXN1 deletion (chr2:50145643–51259674) General lack of findings68 except for one case of
hippocampal atrophy69

None

Literature found using search terms “ < CNV > imaging” and “ < CNV > MRI”. Findings based on single case studies or non-quantitative case series are italicised
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using a novel approach that extracts principal modes of
feature variation of streamline shape11. We also quantify
various microstructural parameters within the principal
white-matter pathways using metrics derived from diffu-
sion tensor imaging (DTI), measures of axon density and
dispersion using the neurite orientation dispersion and
density imaging (NODDI)12 method and T1 relaxometry
which provides a putative index of myelination13.
In addition to examining each of these features sepa-

rately, we also use principal component analysis (PCA) to
identify any components across all these neuroanatomical
features that show a strong effect of disease penetrance.
The advantage of this approach is that it can highlight any
prevalent components across correlated features that are
not necessarily apparent when examining individual fea-
tures separately.

Methods
Participants
The study was approved by the South Wales Research

Ethics Committee and the Cardiff University School of
Psychology Ethics Committee. All participants provided
written informed consent.
MRI data were obtained from 21 CNV carriers and 15

controls. CNVs (Table 2) were targeted for their high
association with the development of schizophrenia and
developmental disorder. Patients were recruited from
NHS genetics clinics within the UK and through

information disseminated by relevant support groups to
their members. Summary information on clinical features
and intelligence for this cohort are provided in the Sup-
plementary Information (SI, section 1). Exclusion criteria
included any contraindication to MRI.
Controls were recruited via a local panel of genotyped

volunteers. Control participants were chosen to match the
age and gender of the CNV patients where possible.
Criteria for inclusion were having no history of neurolo-
gical or psychiatric disorders in addition to the general
screening for MRI contraindications and exclusion of any
of the pathogenic CNVs.

Genotyping
To confirm CNV status, all patients and controls were

genotyped using the Illumina HumanCoreExome whole
genome SNP array that contains an additional 27,000 genetic
variants at loci that had been previously implicated in neu-
rological and psychiatric disease, which included CNVs. After
processing the raw intensity data using Illumina Genome
Studio software (version 2011.1), log R ratios and B allele
frequencies were used to call CNVs using PennCNV (version
1.0.3)14. CNV coordinates are according to genome version
hg19. CNVs were called if they spanned at least 10 infor-
mative SNPs and were joined if the distance between them
was less than 50% of their combined length. CNVs were
excluded if they were less than 10 kb in size, overlapped low
copy repeats by more than 50% of their length, or had a

Table 2 Demographic data for CNV and control participants

CNV (hg19) Age (years) Gender N Penetrance

Mean s.d. M F Sz DD

All CNVs 37.4 11.7 14 7 21 5.4 36.7

15q11.2 BP1–2 deletion (chr15:22,805,313–23,094,530) 48.4 2.3 1 1 2 2 11

15q13.3 BP4–5 deletion (chr15:31,080,645–32,462,776) 30.0 4.5 2 0 2 4.7 35

15q13.3 BP4–5 duplication (chr15:31,080,645–32,462,776) 41.7 — 1 0 1 1.8 8

16p11.2 distal duplication (chr16:28,823,196–29,046,783) 40.3 — 0 1 1 0.7 5.3

16p11.2 deletion chr16:29,650,840–30,200,773 43.0 — 1 0 1 0.5 31

17q12 duplication (chr17:34,815,904–36,217,432) 47.1 — 0 1 1 1.7 17

1q21.1 deletion (chr1:146,527,987–147,394,444) 35.0 15.0 4 0 4 5.2 35

1q21.1 duplication (chr1:146,527,987–147,394,444) 39.5 — 0 1 1 2.9 18

22q11.2 deletion (chr22:19,037,332–21,466,726) 31.2 17.0 2 2 4 12 88

22q11.2 duplication (chr22:19,037,332–21,466,726) 44.9 4.8 1 1 2 0 14

3q29 deletion (chr3:195,720,167–197,354,826) 19.9 — 1 0 1 18 53

NRXN1 deletion (chr2:50145643–51259674) 43.6 — 1 0 1 6.4 26

Control 39.6 11.3 6 9 15 0 0
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probe density of less than 1 probe/20 kb. The Log R ratio and
B allele frequency plots at each of the genomic regions of
interest (chr1:146,527,987–147,394,444, chr2:50145643–512
59674, chr3:195,720,167–197,354,826, chr15:22,805,313–23,
094,530, chr15:31,080,645–32,462,776, chr16:28,823,196–29,
046,783, chr16:29,650,840–30,200,773, chr17:29,107,4
91–30,265,075, chr22:19,037,332–21,466,726) were also
manually inspected in order to confirm the presence of the
CNV.

MRI acquisition
The collection and analysis of all MRI measures used in

this study are summarised in Fig. 1. All MRI data were
acquired on a 3 T General Electric HDx MRI system (GE
Medical Systems, Milwaukee, WI) using an eight-channel
receive-only head RF coil.

Structural
T1-weighted structural images were acquired with a 3D

fast spoiled gradient echo (FSPGR) sequence (TR=
7.8 ms, TE= 3.0 ms, voxel size= 1mm³ isomorphic).

Diffusion
A cardiac-gated diffusion-weighted spin-echo echo-planar

imaging sequence was used to acquire high angular reso-
lution diffusion-weighted images (HARDI)15. Sixty gradient
orientations at b= 2000 s/mm2, and 30 directions at b=
1200 s/mm2, and 6 unweighted (b= 0 s/mm2) images were
acquired with the following parameters: TE= 87ms,
60 slices, slice thickness= 2.4mm, FoV= 230 × 230mm,
Acquisition matrix= 96 × 96, resulting in data acquired
with a 2.4 × 2.4 × 2.4mm isotropic resolution. This was
followed by zero-filling to a 128 × 128, in-plane matrix for
the fast Fourier transform. The final image resolution was
therefore 1.8 × 1.8 × 2.4mm.

Relaxometry
A series of spoiled gradient echo (SPGR) images was

acquired with 8 flip angles plus an additional inversion-
recovery (IR) SPGR image. All images had TE= 2.11 ms
and TR= 4.7 ms. SPGR images were acquired with flip
angles of 3°, 4°, 5°, 6°, 7°, 9°, 13° and 18°. For the IR-SPGR
acquisition, Inversion time= 450ms and flip angle= 5°.

Grey-matter morphometry
Cortical reconstruction and volumetric segmentation

were obtained from the T1-weighted structural images
using Freesurfer (http://surfer.nmr.mgh.harvard.edu/)16.
The technical details of these procedures are described in
prior publications17–23. Grey matter was registered and
parcelated to the Desikan–Killiany Atlas24 (40 regions)
and measures of volume, surface area, thickness and
curvature were generated.

Relaxometry pre-processing and analysis
Relaxometry data were pre-processed using FSL v5.025.

All SPGR/IR-SPGR images were coregistered to each
other using a rigid affine transform and skull-stripped26.
Relaxation rate (R1= 1/T1) maps were derived using
Driven Equilibrium Single Pulse Observation of T1 with
High-Speed Incorporation of RF Field Inhomogeneities
(DESPOT1-HIFI)13, which incorporates correction for B1
field inhomogeneities with in-house code. A synthetic T1-
weighted image was computed from the quantitative T1
map with contrast matching that of the FSPGR image.
This was used as a reference for transforming the R1
(maps, which were then warped to the T1-weighted space.

Diffusion MRI pre-processing
HARDI data were pre-processed in ExploreDTI

v4.8.327. Data were corrected for motion, eddy currents
and field inhomogeneities prior to tractography. Motion
artefacts and eddy current distortions were corrected with
B-matrix rotation using the approach of ref. 28. A com-
parison of subject motion between the two groups is
shown in SI, section 2.
Field inhomogeneities were corrected using the

approach of29. DWIs were non-linearly warped to the T1-
weighted image using the fractional anisotropy map from
the DWIs as a reference. Warps were computed using
Elastix30 using normalised mutual information cost func-
tion and constraining deformations to the phase-encoding
direction. The corrected DWIs are therefore in the same
(undistorted) space as the T1-weighted structural images.

Fig. 1 Flowchart of MRI data processing pipeline. Red boxes show
MRI acquisition steps. Green boxes show image registration steps.
Purple boxes show main data processing steps. Blue boxes represent
final derived imaging variables
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DTI analysis
DTI fitting was performed using ExploreDTI v4.8.3. The

corrected HARDI data from the b= 1200 s/mm2 shell
were fitted to the diffusion tensor (DT) and corrected for
CSF-partial volume effects31 was applied to the DTs. The
b= 1200 s/mm2 shell was used as this is the domain in
which the DT representation applies. The fractional ani-
sotropy (FA), mean (MD), axial (AD) and radial (RD)
diffusivities then computed from the DT. Intra-scan head
motion was quantified and assessed for potential impact
on subsequent statistics (see SI, section 2).

NODDI (neurite orientation dispersion and density
imaging) analysis
NODDI12 was performed using both the NODDI tool-

box (https://www.nitrc.org/projects/noddi_toolbox/) the
b= 1200 s/mm2 and b= 2000 s/mm2 diffusion shells
using the NODDI toolbox v0.9. NODDI yields three
parameters that describe the microstructure of the tissue
in each voxel, intracellular volume fraction (ICVF), iso-
tropic fraction (ISOF) and orientation dispersion index
(ODI).

Tractography
Whole-brain tractography was performed using the

damped Richardson–Lucy algorithm using in-house
MATLAB code32. This is a modified spherical deconvo-
lution method which is more robust to spurious peaks in
the fibre orientation distribution (FOD) than standard
spherical deconvolution methods33. RESDORE34 was also
applied to remove corrupted voxels from the FOD cal-
culation. The tractography algorithm used is that of
Basser et al.35, which uses a uniform step size. Seed points
were arranged in a 3 × 3 × 3mm grid in white matter, step
size= 1mm, angle threshold= 45°, length threshold=
20–500 mm, FOD threshold= 0.05, β= 1.77, λ= 0.0019,
η= 0.04, number of iterations= 200 (See ref. 32 for full
details of these parameters).
Additional anatomical constraints were introduced to

ensure minimal contamination from spurious streamline
trajectories through grey matter. A segmentation of the
T1-weighted images was performed using FSL-FAST and
was used to apply a mask to the streamlines, such that
streamlines were forced to terminate when they entered
grey matter. There were no explicit masking of CSF,
however, the termination criteria used for the dRL algo-
rithm, which is based on the amplitude of the FOD peak,
ensures that no streamlines enter isotropic regions such
as CSF.

Tract segmentation and shape analysis
Tract shape analyses was performed to quantify the

shapes of white-matter pathways using in-house

MATLAB code11. Subject whole-brain tractography
results were affinely (registered to a standard MNI tem-
plate (preserving shape but eliminating variance in posi-
tion/orientation). Streamlines were then re-parameterised
to 30 knot-points (spline interpolation), translated to the
origin and reduced to a feature vector through coordinate
concatenation. PCA was then applied to determine prin-
cipal modes of feature vector variation and, by extension,
variation of streamline shape. Following decomposition of
the feature vectors onto the first seven PCA eigenvectors
(representing a set of streamline shape basis functions
encapsulating ~95% of observed shape variation), the
resultant weight vectors were clustered (k-means, k=
800) and, for each subject, histograms of streamline
cluster membership recorded.
Streamlines were segmented into the following 19

tract bundles specific pathways, based on the descriptors
computed from previously generated statistical models:
bilateral arcuate, uncinate, inferior longitudinal, super-
ior longitudinal, fronto-occipital fasciculi, cingulum
(dorsal and parahippocampal parts), fornix (left and
right branches) and corpus callosum (splenium, body
and genu). This yielded a total of 194 shape descriptors.
In addition to shape, volume of each bundle was also
computed by counting voxels traversed by streamlines
in each bundle and normalising to voxel volume. All
nine microstructural measurements (from DTI, relaxo-
metry and NODDI) were registered to streamline points
in each bundle and the median value taken for each
bundle. This yields a total of 190 (19 bundles × 10
variables) microstructural variables.

CNV penetrance scores
To assess the contribution of genetic loading for each

CNV for psychopathology, and to accommodate the small
sample size of each individual CNV within the cohort,
penetrance cores were used for statistical analysis. The
CNV penetrance scores used in the current study corre-
spond to the probability of manifesting a given phenotype
in carriers of that CNV. Estimates of CNV penetrance for
the development of schizophrenia and ID/DD/ASD were
obtained from Kirov et al.10. These authors used CNV
data from large cohorts of patients diagnosed with schi-
zophrenia, ID/DD/ASD and non-psychiatric controls, to
estimate the rate of specific neuropsychiatric CNVs
among these disease and non-disease populations, and
then estimated CNV penetrance as the probability of
carrying a specific CNV given disease status (i.e. rate of
the CNV in schizophrenia or ID/DD/ASD), divided by the
probability of carrying the CNV in the general population
(which includes both case and control populations). Full
details on how CNV penetrance scores were calculated
can be found in ref. 10.
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Statistical analysis
To assess the contribution of genetic loading for each

CNV for psychopathology, and to accommodate the small
sample size of each individual CNV within the cohort,
each participant was assigned a penetrance score for
schizophrenia and developmental delay, as previously
computed in Kirov et al.10.
A general linear model was applied to identify relation-

ships between the penetrance scores and the imaging
variable of interest. Age and gender were included as cov-
ariates. Furthermore, for volumetric measures (including
tract volume), total brain volume was treated as a covariate
and intra-scan head motion was included as a covariate for
all diffusion-derived measures. The correlation between the
two penetrance scores was also computed.
Multiple comparisons were corrected with permutation

testing (5000 iterations) correcting across all observations
within the same imaging variable. Permutation correction
will also control for any distributions that are non-
Gaussian. In the case of microstructural measurements,
this is corrected across the 19 fibre bundles for each
microstructural variable. For the shape descriptors, the
correction is applied across the 194 shape descriptors. For
macrostructural morphometry measures, correction was
applied across the 40 atlas regions for each macro-
structural measurement. To verify effects are due to
penetrance and not simply for the presence of CNVs,
equivalent analysis was performed using only a binary
classification of CNV carriers vs controls. To assess
contributions of individual CNVs which may be driving
any significant associates identified, the statistical analysis
was repeated with individual CNVs omitted and the
change in effect size quantified (see SI, section 3).
To identify multivariate features in the data, a principal

component analysis (PCA) of all imaging variables was
performed. The components were subject to the same
statistical analysis as the variables.

Results
Relation between penetrance scores
There was a significant correlation between the pene-

trance scores PSz and PDD (ρ= 0.77, p= 7.7 × 10–9).

White-matter morphology
Shape analysis revealed significant alteration of one

component of the left cingulum bundle that was sig-
nificantly correlated with both PSz (t= 4.195, p= 2.11 ×
10–4, pcorr= 0.026) and PDD (t= 4.06, p= 3.1 × 10−5,
pcorr= 0.035). This component reflects the curvature of
the dorsal cingulum along the anterior-posterior axis (Fig.
2) with higher penetrance associated with greater curva-
ture of the dorsal cingulum. The same effect was seen in
the corresponding component of the right dorsal

cingulum with PDD (t=−5.60, p= 1.81 × 10−6, pcorr=
8.00 × 10−4). A strong effect was also observed for PSz, but
this did not survive permutation correction (t=−3.601,
p= 0.001, pcorr= 0.11). In the binary comparison of CNV
carriers vs controls, these effects were non-significant (left
cingulum: t= 1.41, p= 0.17; right cingulum: t=−1.94,
p= 0.062). Note that the sign of the descriptor from the
analysis is arbitrary, so although the effect was in
the opposite direction in the right compared to the left,
the modes of variation also are also reversed between left
and right. Therefore both left and right cingulum bundles
are showing the same geometric variation—greater cur-
vature associated with higher penetrance. No other tract
shape descriptors showed any significant effect although
there were marginal effects of PSz on shape in the right
parahippocampal cingulum and cortico-spinal tract (see
SI, section 4 for full results).
Tract volumes show significant effects of PSz on the

right cortico-spinal tract (t=−3.163, p= 0.0035, pcorr=
0.030) and a marginal effect on the right uncinate fasi-
culus (t=−2.881, p= 0.0072, pcorr= 0.057). PDD was
associated with lower volumes of the right cingulum (t=
−3.698, p= 8.4 × 10−4, pcorr= 0.0094) and the right
uncinate fasiculus (t=−3.617, p= 0.0010, pcorr= 0.011).
Right cortico-spinal tract (t=−2.605, p= 0.014) and
right uncinate fasiculus (t=−2.093, p= 0.014) also show
some effects using the binary comparison, indicating
significant group differences.

White-matter microstructure
There were significant correlations with both pene-

trance scores with ICVF in the left cingulum (Sz:
t=−3.258, p= 0.003, pcorr= 0.019; DD: t=−2.644,
p= 0.013, pcorr= 0.064). There was also a significant
association between PSz and FA (Sz: t=−3.290,
p= 0.002, pcorr= 0.017). No significant associated of dif-
fusivity measures were observed, but the general pattern is
that penetrance scores show a negative relationship with
FA and AD and positive relationship with MD and RD.
These findings are summarised in Fig. 3. Other findings
relating to microstructural metrics were a significant
positive relationship between PSz and ODI in left and right
inferior fronto-occipital fasciculi (left: t= 3.757, p= 7.1 ×
10−4, pcorr= 0.0072; right: t= 4.034, p= 3.3 × 10−4, pcorr
= 0.0042). No effects were observed for R1 (see SI section
4 for full results).

Other structural measures
Comparison of whole-brain volume showed no sig-

nificant effects (Sz: t= 0.392, p= 0.697; DD: t= 0.722,
p= 0.475). No other grey-matter morphometric or in
gross brain morphometric measures showed any sig-
nificant association (see SI, section 4 for full results).
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Fig. 2 Effects of penetrance on cingulum moephology. Scatterplots of the left (a) and right (d) homologous shape descriptors in cingulum
bundles against PSz and PDD, with associated regression lines (note the sign of the shape descriptor in the right cingulum was flipped for clarity).
Shape descriptors and examples of segmented tracts for left cingulum (b, c) and right cingulum (e, f). Shape descriptors (b, e) show the mode of
variation within the maximum (left) and minimum (right) range observed. Example tracts (c, f) are shown for a patient (22q11.2 deletion) with high
PDD (left) and a typical control (right)
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Principal component analysis
The first 34 components were tested for effects of

penetrance. Only the 8th largest component (PC8) was
found to be significantly associated with PDD (t=−3.033,
p= 0.005, pcorr= 0.027) and marginally significant for PSz
(t=−2.560, p= 0.016, pcorr= 0.055). This component
shows no significant effect when tested with the binary
CNV model (t=−2.431, p= 0.021, pcorr= 0.324). This
component is heavily weighted by variables relating to
white-matter volume (Fig. 4). The two largest anatomical
regions with the highest weighting on this component are
the body and the splenium of the corpus callosum. These
areas were weighted in opposite directions, which would
be compatible with the altered curvature observed for the
risk scores (see above, Fig. 2).
Further examination of the corpus callosum volumes,

show the body is relatively smaller in high-penetrance
cases (low PC8 weight) compared to low-penetrance cases

(high PC8 weight). A post-hoc test was performed on the
ratio of volumes between the CC body and splenium that
confirms negative correlation with both penetrance scores
(PSz: t=−2.193, p= 0.036; PDD; t=−2.931, p= 0.006)

Discussion
In this study we investigated morphological and

microstructural alterations associated with CNVs with
high penetrance for schizophrenia and developmental
delay. We utilised a novel approach to characterising
morphology of white-matter fibre bundles in combination
with more traditional metrics of brain morphology and
microstructure to identify features and principal compo-
nents of these features that characterise neuropsychiatric
CNVs. We found altered morphology in the left and right
cingulum. We also found a significant reduction in FA
and ICVF in this structure, and our preliminary inter-
pretation of this result is that it reflects a reduction in
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Fig. 3 Effects of penetrance on cingulum microstructure. Scatterplots of various microstructural measures in the left (1st and 2nd row) and right
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effects are found to be significant or close-to-significant
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Fig. 4 Effects of penetrance on principle component PC8. a Scatterplots of PC8 against PSz and PDD. bWeighting of each imaging variable in PC8,
showing the top 25 weightings. Blue bars indicate positive weighting, red bars indicate negative weighting. c Volumetric change associated with
white-matter structures strongly represented in PC8 rendered on the JHU atlas, with positive values corresponding to larger volumes for low
penetrance (or smaller volume for higher penetrance) and negative values corresponding to smaller volumes for low penetrance (or larger volume
for lower penetrance). d Relative volumes of 3 segments of corpus callosum for extreme cases of high and low component weight
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axon density in this pathway rather than myelin because
no effects of relaxometry measures were observed
(although it should be noted this may be due to com-
paratively lower sensitivity of R1 compared to DTI
metrics36). There was also an overall positive trend of
increased diffusivity with increased penetrance, which is
also consistent with a decrease in fibre density in high-
penetrance individuals.
A converging finding comes from the PCA analysis, in

which PC8 shows a strong effect of penetrance. This
component is heavily weighted by midline white-matter
structures, in particular, the three components of the
corpus callosum. Many of these volumes did not show
effects when tested directly, which is likely due to dis-
cordant signs between the weighting of features within the
component. Most prominently, the splenium has opposite
weighting to the body and genu of the corpus callosum.
This suggests that rather than there being absolute volu-
metric effects of penetrance, penetrance affects the volu-
metric interrelationships between these structures. The
corpus callosum is of particular interest, because the
altered interrelationships in the three segments suggest
alteration of the arrangement of fibres along the AP axis.
This is consistent with the increase in curvature of the
cingulum along the AP axis, which wraps dorsally around
the corpus callosum. We obtained these findings in the
absence of any effects of gross brain morphology. There is
no apparent relationship between the overall brain size or
shape and penetrance. Therefore, it appears that these
high-risk CNVs lead to neurodevelopmental alterations
that are associated with penetrance, but manifest more
subtly than in gross brain morphology. Also of note is that
the results of the binary model show weak effects for these
metrics, adding further credence to the view that these
features are related to CNV penetrance for neu-
ropsychiatric illness rather than simply due to the pre-
sence of CNVs.
Altered brain development appears to manifest in the

following way: there is increase in forces37 applied parallel
to the AP axis. The distribution of axons along the length
of the corpus callosum is altered, which causes a change in
the forces applied to the cingulum during development.
Some findings from 22q11.2 deletion patients appear to
corroborate this suggestion, reporting a larger area of the
mid-sagittal section of the corpus callosum, in particular
the posterior part37–39 which corroborates the pattern of
fractional corpus callosum volumes observed in this study.
In terms of the mechanisms underlying the cingulum

shape/microstructural abnormalities, the embryological
literature indicates that the genes affected by the CNVs
we have studied are expressed in the developing brain (e.g.
for those in 22q11.2 deletion see40). It is therefore likely
that alterations in brain morphology will start to occur at
this very early stage of development, through direct effects

on neurodevelopment or as secondary knock-on effects
from abnormal development of the skull or interaction
with environmental factors. Abnormal brain morphology
can impact on mechanical processes during embryonic
brain development, leading to altered structure of the
cingulum and consequently morphological differences in
the arrangement of fibres along the corpus callosum, as
suggested by mechanical models of morphogenesis41. The
early formation of neurons has been shown to guide the
trajectory of axonal process42. Therefore, we can speculate
that early disturbances of head shape can lead to further
disruption of axonal processes, causing a reduction in
axon density. There is evidence for altered neuronal
migration during brain development in both humans and
mouse models of 22q11.2 deletion43. Kates et al. even
speculate that 22q11.2 deletion is a disorder of axonal
guidance as indicated by differential developmental tra-
jectories between 22q11.2 deletion carriers and controls
in microstructural measurements44,45.
The changes in cingulum microstructure that we report

are largely compatible with previous reports in schizo-
phrenia46–48. Similar findings have been observed in 1st

degree relatives of schizophrenia patients49 and (for right
cingulum) for carriers of the common schizophrenia risk
variant at ZNF840A50 and in a sample of adolescents and
young adults with 22q11.2 deletion syndrome51, where
the most robust finding was AD reduction (without cor-
responding increases in RD) in the anterior and dorsal
cingulum. Although not significant, our results point to a
similar trend in cingulum diffusivity measures.
Of note, these cingulum changes are observed in pro-

bands who are not affected by schizophrenia, although
they do have a range of other psychiatric diagnoses (see
Table S1 in SI). This suggests a putative common neu-
rodevelopmental pathway, which is disrupted by a range
of genetic variants through downstream effects on genes
involved in prenatal brain development and has pleio-
tropic clinical effects. These features can be regarded as a
hallmark of genetic vulnerability to schizophrenia, rather
than of schizophrenia per se. We would also suggest that
our sample, with its high rates of psychopathology and
below-average IQ (see table S1 in SI), would show features
of vulnerability rather than resilience. Ultimately a defi-
nitive answer to the question of mechanisms of resilience
would require a much larger sample with a wider spread
of levels of functioning and a larger number of highly
functioning carriers without any psychopathology.
There is little discrimination between the effects of the

two penetrance scores. All significant effects observed
apply to both scores, with a few exceptions (for example,
increased fibre dispersion in bilateral inferior fronto-
occipital cortices associated with higher penetrance for
schizophrenia). This is also evident in the high correlation
between penetrance scores. This suggests that the

Drakesmith et al. Translational Psychiatry           (2019) 9:102 Page 10 of 13   102 



neurodevelopmental indicators observed are not attribu-
table to a particular psychopathology, but rather that
these features reflect penetrance for neuropsychiatric ill-
ness more generally, a notion which has also been pro-
posed for the clinical phenotype65. However, it should be
stressed, due to the comparatively weak effects seen in the
binary model, this effect is not simply due to the presence
of a CNV.
One concern of the present study the small sample size.

This is an unavoidable issue in deep phenotyping research
of rare genetic variations. Thus, generalisability of the
findings of the present study is somewhat limited, and
needs to be confirmed by replication in future studies,
ideally through multi-centre collaborations. We do how-
ever mitigate issues by taking advantage of the large effect
sizes in these patients and by considering variation across
a spread of CNVs rather than focusing on single variants.
We also need to be conscious of drawbacks of this
approach. One is that contributions of individual CNVs
cannot be disentangled easily, and the effects observed
can be mostly driven by the contribution of a small
number of very high-penetrance CNVs (see supplemen-
tary analysis in SI, section 3). It should be noted that the
highly heterogeneous findings in the literature (sum-
marised in Table 1) suggest that this type of grouped
analysis risks overlooking interesting CNV-specific
mechanisms.
As noted previously, no effects of brain volume were

observed, although previous CNV-specific studies have
identified increased55,65 or decreased61–63 brain volume.
The changes in brain volume appear to reflect CNV-
specific features, but ones not necessarily related to risk
for schizophrenia or developmental disorders. In contrast,
our findings relating to medial white-matter structures
implicate a risk mechanism for these disorders that is
common across a range of high-risk genetic variants.
In summary, we reveal significant morphological and

microstructural features associated with penetrance for
neuropsychiatric illness in a cohort of CNV carriers. The
most pronounced of these features is in the medial white-
matter structures: curvature of the cingulum bundle and
volumetric interrelationships between difference seg-
ments of the corpus callosum. These features are con-
sistent with a common neurodevelopmental trajectory,
which does not manifest in gross brain morphological
changes, but in more subtle alterations in the morpho-
logical interrelationships in midline white-matter struc-
tures. This can lead to downstream effects on cognitive
and intellectual impairments that commonly arise as a
result of these genetic variants.
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