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Impaired balance is a major contributor to falls and diminished quality of life in Parkinson’s disease, yet the pathophysiology is

poorly understood. Here, we assessed if patients with Parkinson’s disease and severe clinical balance impairment have deficits in the

intermittent and continuous control systems proposed to maintain upright stance, and furthermore, whether such deficits are

potentially reversible, with the experimental therapy of pedunculopontine nucleus deep brain stimulation. Two subject groups

were assessed: (i) 13 patients with Parkinson’s disease and severe clinical balance impairment, implanted with pedunculopontine

nucleus deep brain stimulators; and (ii) 13 healthy control subjects. Patients were assessed in the OFF medication state and blinded

to two conditions; off and on pedunculopontine nucleus stimulation. Postural sway data (deviations in centre of pressure) were

collected during quiet stance using posturography. Intermittent control of sway was assessed by calculating the frequency of

intermittent switching behaviour (discontinuities), derived using a wavelet-based transformation of the sway time series.

Continuous control of sway was assessed with a proportional–integral–derivative (PID) controller model using ballistic reaction

time as a measure of feedback delay. Clinical balance impairment was assessed using the ‘pull test’ to rate postural reflexes and by

rating attempts to arise from sitting to standing. Patients with Parkinson’s disease demonstrated reduced intermittent switching of

postural sway compared with healthy controls. Patients also had abnormal feedback gains in postural sway according to the PID

model. Pedunculopontine nucleus stimulation improved intermittent switching of postural sway, feedback gains in the PID model

and clinical balance impairment. Clinical balance impairment correlated with intermittent switching of postural sway

(rho = � 0.705, P50.001) and feedback gains in the PID model (rho = 0.619, P = 0.011). These results suggest that dysfunctional

intermittent and continuous control systems may contribute to the pathophysiology of clinical balance impairment in Parkinson’s

disease. Clinical balance impairment and their related control system deficits are potentially reversible, as demonstrated by their

improvement with pedunculopontine nucleus deep brain stimulation.
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Introduction
Impaired balance is a major contributor to diminished

quality of life in Parkinson’s disease (Marras et al.,

2008). Balance impairment in Parkinson’s disease leads to

symptoms such as falls, a sense of unsteadiness when walk-

ing and difficulty transitioning between positions such as

sitting to standing (Schoneburg et al., 2013). Such symp-

toms are common at diagnosis and become more promin-

ent and treatment refractory with disease progression (Kim

et al., 2013). However, the pathophysiology of such bal-

ance impairment in Parkinson’s disease is inadequately

understood. Deficits associated with balance impairment

in Parkinson’s disease have included cholinergic deficiency,

impaired attentional processing, increased body rigidity, ab-

normal patterns of leg muscle recruitment and increased

body sway (Muller et al., 2013; Schoneburg et al., 2013;

Rinalduzzi et al., 2015). However, the precise nature of the

underlying network dysfunction that causes balance impair-

ment is unclear.

Recently, analysis of postural sway has attempted to ex-

plore the underlying control systems proposed to maintain

upright stance (Gawthrop et al., 2014; Morasso et al.,

2014). Postural sway is the constant movement in centre

of mass which occurs even during quiet standing (Winter

et al., 1990). This can be approximated using posturogra-

phy, which involves standing on a pressure sensitive plate

to track variations in centre of pressure (an approximation

of centre of mass) (Rocchi et al., 2006; Visser et al., 2008).

Maintenance of upright stance requires a constant and

active process of leg muscle modulation, as ankle stiffness

alone can be insufficient to counteract torque from gravity

(Schoneburg et al., 2013). This continuous process of main-

taining centre of mass around a specific balancing point is

reflected in postural sway and represents a control theory

challenge, akin to regulating temperature with a thermostat

or speed of a car with cruise control (Morasso et al., 2014;

Glasauer and Straka, 2017). Indeed, many of the models of

biological control systems have developed along with those

used in machines (Gawthrop et al., 2014). It is important to

stress that these control system models are conceptual rep-

resentations that aim to capture brain function rather than

recreate neural circuitry.

A long-held view is that postural sway is regulated by a

continuous feedback controller, such as the proportional–

integral–derivative (PID) model, where the state of the con-

trol variable (position of centre of mass) continuously

updates the output (motor response) (Peterka, 2000,

2002). PID continuous controllers use information from

three time domains regarding error in the control variable

in order to shape the output (Aström and Murray, 2010).

Present (‘proportional’) information reflects the current error

(e.g. distance of centre of mass from the setpoint). Past (‘in-

tegral’) information accounts for accrued errors (e.g. from a

previous lurch backwards) and helps avoid drift from the set

point. Future (‘derivative’) information predicts the error of

the current trajectory (e.g. over/undershoot) and helps

reduce oscillations around the set point. Importantly, these

three time factors are not treated equally, but are weighted

by the system—and this weighting shapes the characteristics

of control (e.g. how quickly deficits are made up and how

much oscillation occurs). A range of indirect phenomena

have suggested that continuous sway control systems may

be affected in Parkinson’s disease, for example the detection

of abnormal resonance in sway including limit cycle oscilla-

tions (Maurer et al., 2004; Chagdes et al., 2016). However,

there is a lack of research directly addressing whether PID

error signal processing in the control of sway is affected by

Parkinson’s disease and its treatment.

In contrast, intermittent control has recently arisen as an

attractive additional or alternative model to maintain sway,

which may better account for the significant and variable

feedback delays from neural processing, which would con-

found continuous control (Bottaro et al., 2005, 2008;

Gawthrop et al., 2011; Loram et al., 2011). Continuous

and intermittent control systems are not mutually exclusive.

For example, a process of continuous monitoring with inter-

mittent responses has been postulated (Gawthrop et al.,

2011). Intermittent control of sway is proposed to involve

the event triggered episodic release of ballistic, pre-

programmed corrective responses (Bottaro et al., 2005;

Gawthrop et al., 2014). Interestingly, the expression of

such motor programmes may be impaired in patients with

Parkinson’s disease and axial deficits—evidenced by our

previous finding that such patients fail to exhibit the

‘Start-React’ phenomenon (Thevathasan et al., 2011b).

‘Start-React’ refers to the accelerated release of ballistic,

pre-programmed movement in response to startling stimuli,

such as very loud sounds (Valls-Sole et al., 1999).

Importantly, we found that Start-React in Parkinson’s dis-

ease could be restored by pedunculopontine nucleus (PPN)

deep brain stimulation (DBS). Thus, taken together, these

findings raise the possibility of an associated impairment in

the output of intermittent sway control, which may be
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amenable to recovery, along with related clinical balance

impairment.

Indeed, the reversal of balance impairment in Parkinson’s

disease has become a major therapeutic challenge.

Conventional treatments for Parkinson’s disease such as

levodopa and subthalamic or pallidal DBS are often minim-

ally effective or can even worsen balance (Hariz et al., 2008;

Visser et al., 2008; St George et al., 2010). PPN DBS there-

fore arose as an experimental therapy for otherwise refrac-

tory gait and balance impairment. Small clinical studies have

found that PPN DBS can improve gait freezing and falls

(Ferraye et al., 2009; Moro et al., 2010; Thevathasan

et al., 2011a; Welter et al., 2015). However, it is unclear

if the benefit of PPN DBS on falls is because of improved

balance or due to less gait freezing or some other factor

(Thevathasan et al., 2018). Clinical studies of PPN DBS

have detected little or no specific benefit on postural instabil-

ity, as assessed by clinical scales such as the pull test (Ferraye

et al., 2009; Moro et al., 2010; Thevathasan et al., 2011b;

Welter et al., 2015). However, this may reflect a lack of

sensitivity of the assessment tools particularly where statis-

tical power was low. Thus currently, it is unknown whether

PPN DBS improves balance in Parkinson’s disease. The po-

tential of any therapy to improve balance in Parkinson’s

disease would be important information, even if only to

reveal a viable therapeutic mechanism.

In this study, we acquired posturography data from pa-

tients with Parkinson’s disease severely affected by clinical

balance impairment, whilst off and on PPN DBS and com-

pared results to healthy controls. Novel analysis methods

were applied to derive measures of control system perform-

ance. We hypothesized that balance impairment in

Parkinson’s disease is associated with deficits in intermittent

and continuous sway control and that these deficits would

improve with PPN DBS. We also assessed if balance control

system metrics correlated with clinical balance impairment,

and thus may have potential as biomarkers.

Materials and methods

Subjects and clinical assessments

Two subject groups were assessed: (i) 13 patients (10 males) with
Parkinson’s disease complicated by severe clinical balance impair-
ment, chronically implanted with bilateral PPN stimulators; and
(ii) 13 age and gender matched (10 males) healthy controls. The
two groups did not differ in age (70.0 � 6.95 versus 69.8 � 5.57
years; U = 183.5, P = 0.699). Subjects were recruited from centres
in Oxford (England, UK), and Brisbane, Sydney and Melbourne
(Australia). Data were collected over a 7-year period from
December 2009 to December 2016. A database identified 28
patients implanted with bilateral single target PPN DBS for
Parkinson’s disease across the centres during the assessment
period (up to March 2011 in Oxford and December 2016 in
Australia). All patients were considered for inclusion and patients
were not selected based on their benefit from DBS. Twelve pa-
tients were not assessed with posturography because of: death

(n = 1), device explantation due to lack of efficacy (n = 1), de-
mentia/frailty (n = 4), living in a remote location (n = 4), or in-
volvement in other research (n = 2). Posturography was
performed in 16 patients. Incomplete data from three patients
were rejected before analysis. Of the 13 patients included, clinical
outcomes of eight and reaction times of seven are previously
reported (Thevathasan et al., 2010, 2011a, b, 2012a). Ethics
committee approval was obtained from all centres and partici-
pants gave written informed consent. Clinical details of the
Parkinson’s disease patients are shown in Table 1.

Patients with Parkinson’s disease were selected for PPN
stimulation because of severe gait freezing and postural in-
stability persisting even ON medication, causing frequent
falls. The persistence of these deficits despite adequate dopa-
minergic medication was determined clinically, via examin-
ation in a practically defined ON medication state
(Thevathasan et al., 2018). This was the dominant symptom-
atic issue at surgery and motor fluctuations, if present, were
not severe. In Parkinson’s disease, gait freezing and postural
instability become more common and less medication respon-
sive with disease progression (Giladi et al., 2001a; Bloem
et al., 2004). However, it is unusual in Parkinson’s disease
for severe ON medication gait freezing and postural instability
to be the predominant issue (Factor, 2008; Jankovic, 2008). As
there is no definitive test for Parkinson’s disease in life, we
stress that the diagnosis of Parkinson’s disease here is
presumptive.

Patients with Parkinson’s disease were receiving lone bilat-
eral stimulation to the caudal PPN region, without implant-
ation of other targets (Hamani et al., 2016b). Surgical
implantation of the PPN from two of the centres has been
described previously (Pereira et al., 2008; Thevathasan et al.,
2011b). Figure 1 demonstrates the stimulation locations (mid-
point between active contacts for bipolar stimulation and cath-
odes for monopolar). Contacts were identified on
postoperative CT fused with preoperative MRIs and referenced
to local landmarks in the brainstem as described previously
(Ferraye et al., 2009). Coordinates were calculated as follows:
laterality from midline (mean 6.481 mm, range 2.465–
8.670 mm), ventrodorsal distance (d) from floor of the fourth
ventricle (mean 6.403 mm, range 4.050–9.160 mm), and
rostro-caudal distance (h) from a pontomesencephalic line con-
necting the pontomesencephalic junction to the inferior colli-
culi (mean �6.136 mm, range �2.185 to �12.544 mm).
Chronic stimulation parameters were as follows: frequency
30 Hz (except one patient: 40 Hz), voltage range 2.5–4.9 V
and pulse width 60 ms (except one patient: 90 ms).

Patients prospectively completed the Gait and Falls
Questionnaire (GFQ, score/64), which assesses parkinsonian
freezing, festination and falls (Giladi et al., 2000). The
Freezing of Gait Questionnaire (FOGQ, score/24) and Falls
Question (FallsQ, score/4) are components of the GFQ
(Giladi et al., 2000, 2009). These questionnaires were admin-
istered prior to surgery and on the day of experiments and
reflected function in patients’ usual environments and medica-
tion states in the preceding weeks. Cognition was assessed with
the Mini-Mental State Examination (score/30).

Experiments

In patients with Parkinson’s disease, assessments were per-
formed after overnight withdrawal of dopaminergic
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medication and after 12 h of PPN DBS washout. Patients were
assessed during two conditions, presented in counterbalanced
order (using the Latin square method): Off PPN DBS and on
bilateral PPN DBS. Patients were blinded to condition. The
effectiveness of blinding was assessed in seven patients who
were unable to guess the condition of stimulation better than
chance after the wash-in period. Choice of contacts and stimu-
lation parameters were as used for chronic therapy. After
changing stimulation, a minimum 30 min wash-in period was
enforced between conditions. Data were acquired using the
same equipment and recording parameters across sites.

All posturography was performed using an AccuGait force-
plate and accompanying NetForce Software (AMTI) with a
measurement resolution of 0.003 N. Subjects were instructed
to stand on the force-plate with eyes focussed on a wall
mounted marker 1.5 m ahead. Feet were placed symmetrically
across standardized markings on the force-plate. Distractions
were minimized, and subjects requested not to talk. After the
researcher observed that a state of quiet and stable stance had
been achieved, data were acquired in 30-s trials. Four trials
were obtained per condition. Patients were permitted to get off
the force-plate and rest between trials if necessary to reduce
fatigue. During experiments, one researcher (W.T. or J.L.T.)
supervised proceedings, and monitored patient safety and
altered stimulation. A second, blinded researcher operated
the force-plate system and tagged the data according to the
order of condition.

In a subgroup of eight patients with Parkinson’s disease, a
warned simple reaction time task was administered, providing
an estimate of feedback delay for the PID model. As described
and reported in seven of the patients previously, the task con-
sisted of the serial presentation of 35 trials, each consisting of
an auditory warning cue (92 dB, 40-ms duration, 300 Hz) fol-
lowed (after a variable interval) by the auditory imperative ‘go’

cue (40-ms duration, 1000 Hz) (Thevathasan et al., 2011b).
The imperative stimulus was either normal intensity (89 dB)
or loud (122 dB). Normal intensity trial results were used in
analyses here. Patients were seated comfortably in a quiet
room and instructed to react as quickly as possible with bal-
listic elbow flexion. Stimuli were controlled through a digital
to analogue converter (1401, Cambridge electronic design).
Auditory tones were delivered binaurally through headphones
(Audio Technica ATH-ES7). Reaction times were assessed with
a triaxial accelerometer taped to the radial styloid. Data were
sampled at 256 Hz (Porti amplifier, TMSI). Accelerometry
(TMSI) was band-pass filtered between 2 and 60 Hz.

Patients with Parkinson’s disease were clinically assessed
using the motor subsection (part III) of the Unified
Parkinson’s Disease Rating Scale (UPDRS, score/108), rated
unblinded by the same neurologist or physiotherapist specia-
lized in movement disorders (W.T., J.L.T.).

Anonymized data were transferred to a single centre (Bionics
Institute) where researchers blinded to stimulation condition
computed parameters using custom scripts in MATLAB
(MathWorks Inc., Massachusetts, USA). Conditions were
then revealed to permit statistical analysis.

Parameters and data analysis

Prior to analysis, all force-plate raw time series data were
band-pass filtered between 0.001 and 10 Hz. For all sway
values, the mean of the four trials per condition was used in
statistical analysis.

The primary outcome measure was the frequency of inter-
mittent switching in postural sway. Switching behaviour re-
flects abrupt changes or discontinuities in the preceding
linear trajectory of the sway path when viewed at a particular
time scale (Mosterman and Biswas, 1998). For example, this

Figure 1 Localization of stimulation locations (coloured dots) represented in Montreal Neurological Institute (MNI) space

(sagittal and coronal views). The relative location/extent of the pedunculopontine nucleus has been outlined on the sagittal view, based on

cholineacetyltransferase immunohistochemical (ChAT5) staining in the human. Coordinates were calculated in millimetres from midline (lat-

erality), ventrodorsal distance (d) from floor of the fourth ventricle and rostro-caudal distance (h) from a pontomesencephalic line connecting the

pontomesencephalic junction to the inferior colliculi caudal margin, as described previously (Ferraye et al., 2009). The mean (ranges) of these

stimulation site coordinates were as follows: laterality 6.481 mm (2.5 to 8.7 mm), ventrodorsal distance (d) 6.4 mm (4.1 to 9.2 mm), rostro-caudal

distance (h) 6.1 mm (�2.2 to �12.5 mm). IC = inferior colliculus; PM = ponto-mesencephalic line connecting the pontomesencephalic junction to

the caudal end of the inferior colliculi; SC = superior colliculus.
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may reflect switching between one subsystem of control to
another. Intermittent switching of postural sway was calcu-
lated according to a published algorithm designed to detect
such behaviour in posturography datasets based on a combin-
ation of wavelet analysis and Hilbert transformation (Nema
et al., 2017). This included (i) decomposing the filtered postur-
ography time series data using a Daubechies wavelet trans-
form. Like Fourier transformation, wavelet transforms
extract temporal and frequency characteristics of time series.
Wavelet analysis is particularly beneficial to analyse signals
where frequency components vary over time. A relative
strength of the Daubechies technique is to identify signal dis-
continuities; (ii) low-energy components were attenuated to
reduce noise before reconstructing the components to obtain
a filtered version of the original signal; and (iii) applying a
Hilbert transform of the filtered signal to compute a time-
frequency representation of the sway where discontinuities
manifest as prominent peaks (Nema et al., 2017). These peaks
represent instances where intermittent changes (rapidly arising
redirections of sway) had occurred. Peaks occurring above a
threshold were counted to yield the rate of intermittent switch-
ing of postural sway (represented as Hz). The threshold was set
at 10% of the standard deviation (SD) above the signal floor—a
level determined after direct visualization of the dataset as best
able to capture peaks in instantaneous frequency due to their
large variance in amplitude (Supplementary Fig. 1). The ampli-
tude of each peak represents the instantaneous frequency at the
switching moment and has no clear physical meaning when
considering complex multicomponent signals such as postural
sway (Boashash, 1992). Thus, amplitude was not measured as
an endpoint in its own right.

Sway data were also analysed according to a continuous PID
control model in a subgroup of eight patients (where reaction
time was available) in addition to the healthy controls using a
custom script developed in MATLAB according to the follow-
ing established method where standing is considered analogous
to an inverted pendulum (Hidenori and Jiang, 2006) (Fig. 2).
Assumptions included using ballistic elbow reaction time as a
measure of delay in feedback control and that the body was
rigid (without pivot points around limb or axial joints).
Ballistic elbow flexion was considered a reasonable estimate
of postural reaction times given its strong reticulospinal

innervation (Lawrence and Kuypers, 1968; Carlsen et al.,
2009a). Patient height (measured in millimetres) was used to
convert sway data to angular displacement according to trig-
onometry. The resultant parameters were gains in time do-
mains of future, present and past scaled in arbitrary units
(AU). To facilitate statistical analysis, we normalized these
values in the Parkinson’s disease patients relative to the data
for healthy controls and expressed the difference as a percent-
age. The mean of each percentage (future, present and past)
yielded a single value of PID model function for each patient/
condition relative to healthy controls.

We computed standard measures of sway using custom
scripts written in MATLAB. Two parameters were derived:
(i) C90 area, which represents the area of an ellipse (measured
in millimetres squared) that encompasses 90% of data points;
and (ii) sway velocity, which represents the mean of the differ-
entiated force-plate time series.

For the reaction time data, analysis was automated by a
script developed in MATLAB including initial baseline removal
(time constant individualized for each trial from the average
baseline level 0.45 ms prior to the imperative) before rectifica-
tion. The first five trials were rejected as practice. Response
onset was defined as an amplitude rise exceeding the mean of
the prestimulus (0.5 s) baseline by 3 SD. The mean normal
intensity (89 dB) reaction time was used in statistical analysis.

For the clinical data, items of the UPDRS part III yielded
two subscores (Fahn et al., 1987). First, a balance subscore
(score/8) representing summation of UPDRS items of chair
rise (item 27; score/4) and the pull test (item 30; score/4).
Second, the UPDRS item representing gait (item 29; score/4).

Statistical analysis

Given the small sample sizes, we adopted conservative non-
parametric tests. Differences between subject groups were
assessed with the Kruskal-Wallis test and post hoc Mann-
Whitney U-test. Differences in patients with Parkinson’s
disease between conditions (on versus off PPN DBS) were as-
sessed with the Wilcoxon signed ranks test. Post hoc tests were
corrected for multiple comparisons using the false discovery
rate (FDR) procedure (Bejamini and Hochberg, 1995). Level
of significance was P50.05.

Figure 2 Schematic showing the inverted pendulum model of human balance (A) used in the PID control system (B). The

setpoint input of the PID controller is fixed at zero and acquired posturography time-series data (converted to angular displacement using

participant’s height) gives the output allowing estimation of the factors Kp (proportional), Ki (integral) and Kd (derivative).
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Data availability

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

Results

Control system primary outcomes

Intermittent switching of postural sway

There was a significant difference in intermittent switching

of postural sway between groups [�2(38) = 10.292,

P = 0.006] (Figs 3A and 4). Post hoc tests revealed that

Parkinson’s disease patients off DBS had reduced intermit-

tent switching of postural sway compared to healthy con-

trols (1.908 Hz versus 2.517 Hz, U = 230, P = 0.016). PPN

DBS significantly increased intermittent switching of pos-

tural sway (1.908 Hz versus 2.350 Hz, W = 8, P = 0.016).

This meant that intermittent switching of postural sway in

Parkinson’s disease patients when on DBS did not differ

from healthy controls (2.350 Hz versus 2.517 Hz,

U = 185, P = 0.703).

Gains in the PID model

There was a significant difference in PID model gains be-

tween groups [�2(28) = 6.199, P = 0.045]. Post hoc tests re-

vealed that Parkinson’s disease patients off DBS were

significantly different in PID model gains compared to

healthy controls (difference 27.446%, U = 107, P = 0.010).

PPN DBS significantly improved PID model gains towards

normal (difference 5.016% versus difference 27.446%,

W = 35, P = 0.016). This meant that the PID model gains

were not different between Parkinson’s disease patients

when on DBS and healthy controls (difference 5.016%,

U = 135, P = 0.587). Looking at each PID time factor indi-

vidually revealed that PPN DBS increased past

(1.797 � 10�5 versus 3.654 � 10�5, W = 3, P = 0.039),

reduced present (0.957 versus 0.902, T = 35, P = 0.016),

and reduced future (9.938 versus 7.268, W = 34,

P = 0.023) PID gains towards values seen in healthy controls

(Fig. 3D–F).

Secondary outcomes

Sway area and velocity

There was a significant difference in C90 area between

groups [�2(38) = 23.494, P5 0.001]. Post hoc tests re-

vealed that Parkinson’s disease patients off DBS had

larger C90 areas compared to healthy controls (109.899

mm2 versus 21.451 mm2, U = 95, P5 0.001). PPN DBS

did not change C90 area (93.094 mm2 versus 109.899

mm2, W = 58, P = 0.5). This meant that C90 area remained

significantly larger in Parkinson’s disease patients when on

Figure 3 Postural sway parameters (medians and interquartile ranges) for healthy controls and Parkinson’s disease patients

(off and on PPN DBS). (A) Intermittent switching (abrupt, high amplitude redirections) of postural sway. (B) Sway C90 area (of an ellipse

measured in millimetres squared that encompasses 90% of data points). (C) Sway velocity (mean of the differentiated time series). (D–F) PID

continuous control model gains in time domains of past (D), present (E) and future (F) scaled in arbitrary units (AU). Differences between groups

and conditions are indicated by bridges with P-values.
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PPN DBS compared with healthy controls (93.094 mm2

versus 21.451 mm2, U = 94, P = 0.005) (Figs 3B and 4).

There was no significant difference in sway velocity be-

tween groups [�2(38) = 4.931, P = 0.085]. However, post

hoc tests revealed a strong trend for PPN DBS to increase

sway velocity (9.573 mm/s off DBS versus 10.785 mm/s on

DBS, W = 16, P = 0.060] (Fig. 3C).

Correlations between sway parameters

Intermittent switching of postural sway correlated signifi-

cantly with PID factors past (rho = 0.603, P = 0.015), pre-

sent (rho = �0.829, P50.001) and future (rho = � 0.659,

P = 0.007). There was a trend suggesting a positive correl-

ation between intermittent switching and sway velocity

(rho = 0.401, P = 0.053). There was no correlation between

intermittent switching of postural sway and C90 area

(P = 0.106).

Clinical measures

PPN DBS significantly improved the clinical balance score

(expressed as mean/median) (3.417/3.000 off DBS versus

2.667/3.000 on DBS, W = 28, P = 0.016) but not the

UPDRS gait subscore (2.417/2.000 off DBS versus 2.083/

2.000 on DBS, W = 10, P = 0.125).

Correlations of clinical measures with sway

parameters

The clinical balance score correlated significantly with

intermittent switching of postural sway (rho = �0.735,

P5 0.001) and overall PID gains (rho = 0.619, P = 0.011)

(Fig. 5). There was no correlation between clinical balance

score and C90 area (P = 0.408) or sway velocity

(P = 0.179). Interestingly, the UPDRS gait score also corre-

lated significantly with intermittent switching of postural

sway (rho = �0.414, P = 0.045) but did not correlate with

overall PID gains (rho = 0.096; P = 0.726) (Fig. 5).

Stimulation location

Stimulation locations varied considerably (Fig. 1), particu-

larly in depth (h-value; mean �6.136 mm, range �2.185 to

�12.544 mm) and extending beyond where immunohisto-

chemistry is reported to have identified cholinergic neurons

Figure 4 Example postural sway traces of a healthy control subject and Parkinson’s disease Patient 5 (off and on PPN DBS)

acquired during quiet stance on a force-plate (30-s trial). (A–C) Panels show movements in centre of pressure in two planes. Patients

with Parkinson’s disease have increased sway area but this did not change with PPN DBS. (D–F) Root mean square (RMS) of sway in millimetres.

(G–I) The results of the wavelet-based transformation of the RMS sway time series with intermittent switching behaviour (abrupt redirections)

clearly evident as instances of high frequency arising from the baseline.
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(and, by inference, PPN location) in post-mortem samples

(Mesulam et al., 1989; Manaye et al., 1999). However, we

found no correlation between h-value (averaged per patient

between the two sides) and intermittent switching of pos-

tural sway (rho = 0.451; P = 0.125) or clinical balance score

(rho = 0.268; P = 0.399). Furthermore, we found no differ-

ence between patients with stimulation sites within the PPN

region (defined as h-value between + 2 and �6) and those

with stimulation sites outside this region regarding the

impact of DBS on intermittent switching of postural sway

(50.847% improvement within the PPN versus 31.724%

outside the PPN, U = 32, P = 0.181) or clinical balance

score (10.000% reduction within the PPN versus

14.286% outside the PPN, U = 30, P = 0.747).

Discussion
In this study, we found that patients with Parkinson’s dis-

ease and severe clinical balance impairment demonstrated

reduced intermittent switching of postural sway compared

with healthy controls. Patients with Parkinson’s disease

also had abnormal feedback gains according to a PID

model of continuous control. Intermittent switching of pos-

tural sway and gains in the PID model were returned to

normal values by PPN DBS. However, PPN DBS improved

but did not resolve clinical balance impairment (summed

UPDRS items for arising from a chair and the pull test).

Clinical balance impairment correlated substantially with

both intermittent switching of postural sway

(rho = �0.735) and gains in the overall PID model

(rho = 0.619). Intermittent switching of postural sway and

gains in the PID model were highly correlated. However,

we found no correlation between control systems measures

and sway area. In patients with Parkinson’s disease, sway

area was significantly greater than in healthy controls but

did not change with PPN DBS. Sway velocity in patients

with Parkinson’s disease did not differ from healthy

subjects. Neither sway area nor sway velocity correlated

with clinical balance impairment. The location of stimula-

tion in the PPN region varied greatly in rostro-caudal lo-

cation between patients. Despite this variance, we found no

correlation between stimulation depth and the therapeutic

impact on sway control systems or on clinical balance

impairment.

First, we acknowledge limitations and potential con-

founds in this study. It should be noted that the control

models we refer to are conceptual representations of brain

functioning that aim to capture performance of the actual

underlying neural circuitry. This is particularly true of the

PID parameters, which were derived by assessing conform-

ance of the raw sway data to the model and assumptions

that elbow flexion reaction time reflected postural feedback

delays and the body acted as a rigid inverted pendulum

(Peterka, 2002; Hidenori and Jiang, 2006). However, inter-

mittent switching of postural sway was derived solely from

the postural sway data with a time-frequency representa-

tion (via wavelet analysis) (Nema et al., 2017). This yielded

information of when switching behaviour (abrupt redirec-

tions) were detected in the continuous sway pattern. The

occurrence of these sudden changes to sway are real but it

is an assumption that these represent the function of an

underlying intermittent control system. The sample size of

patients here is modest; however, this represents a large

cohort of patients implanted with PPN DBS, and required

7 years to recruit between multiple centres. Only around

100 patients with PPN DBS have been reported in the lit-

erature (Thevathasan et al., 2018). Selection bias may have

influenced results; however, we did not attempt to ‘enrich’

the cohort by selecting patients based on their response to

DBS. We included almost half of the implanted cohort

available across the study centres. Disease-related events

that prevented assessment such as dementia, frailty and

death are not unexpected given the prognosis of

Parkinson’s disease especially where associated with

severe axial deficits (Hely et al., 1999). Patients implanted

Figure 5 Correlations between clinical balance impairment and control system metrics. Correlations between clinical balance

impairment (score/8), which represents summation of UPDRS items of chair rise (item 27; score/4) and the pull test (item 30; score/4) with

measures of intermittent and continuous control of sway, namely: (A) intermittent switching (more switching behaviour correlates with lower

balance impairment); and (B) the difference in normalized PID values relative to healthy controls (lower PID model gains relative to controls

correlates with lower balance impairment).
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with PPN DBS are a highly selected and unusual subgroup

of patients with Parkinson’s disease who suffer severe gait

freezing and postural instability as their predominant form

of motor impairment, so these results may not be com-

pletely generalizable to the Parkinson’s disease population

as a whole. Assessment of the clinical impact of PPN DBS

was measured by retrospective use of UPDRS items that

suffer limited scaling and reliability, and more comprehen-

sive tools to assess balance impairment are now available

(Bloem et al., 2016). The scoring of clinical endpoints was

performed by unblinded clinicians. However, patients in

this study were blinded to the condition of stimulation

and postural sway analysis was performed by a computer

algorithm and blinded researchers.

Balance impairment in Parkinson’s
disease

This study suggests that dysfunction in sway control sys-

tems contributes to the pathophysiology of balance impair-

ment in Parkinson’s disease and is potentially reversible

with therapy, at least in patients similar to those studied

here. It has been relatively unexplored whether such control

systems are dysfunctional in Parkinson’s disease and con-

tribute to the pathophysiology of balance impairment

(Maurer et al., 2004; Yamamoto et al., 2011; Chagdes

et al., 2016). Here, we explicitly measured feedback gains

according to the PID model of continuous control and cal-

culated the frequency of intermittent switching behaviour in

the sway dataset (Hidenori and Jiang, 2006; Nema et al.,

2017). We found that in healthy controls and Parkinson’s

disease patients, gains in PID model factors future and pre-

sent were greatest with relatively little input from factor

past—as previously reported in healthy subjects (Peterka,

2002; Masani et al., 2006). This reliance on present and

future and not past error information (i.e. proportional-

derivative rather than proportional-integral-derivative con-

trol) could prioritize the damping of oscillations over the

diminution of steady state error. Such proportional-

derivative control of sway has been argued to be suffi-

ciently effective while less computationally demanding

(Masani et al., 2006). We found that in Parkinson’s disease

compared to healthy subjects, the gains in future and pre-

sent factors were increased and restored to normal levels by

PPN DBS. For intermittent control, we found that in

healthy subjects, intermittent switching of postural sway

occurred at median 2.517 Hz. This is a similar value to a

study reporting that in control of a virtual load, intermit-

tent taps of a joystick were optimally deployed at a rate of

around 2 Hz (Loram et al., 2011). Here, we found that in

patients with Parkinson’s disease and balance impairment,

intermittent switching of postural sway was reduced to

median 1.908 Hz and restored by PPN DBS to median

2.350 Hz.

Thus, it may seem that both continuous and intermittent

systems are active in healthy subjects and dysfunctional in

patients with Parkinson’s disease but can be improved to-

wards normal with therapy. An interaction between the

two control systems could even be speculated, for example

failure of the intermittent system in Parkinson’s disease

leading to compensatory overdrive of the PID system

(which reverts to normal levels with therapy).

Alternatively, the switching behaviour observed could rep-

resent continuous control acting intermittently. However, it

could be argued that we directly found evidence only of

intermittent switching behaviour in sway and the continu-

ous control system findings simply reflect how the primary

dataset aligns to the PID model and does not prove the

existence of a continuous control system in neural circuitry.

Furthermore, it has been demonstrated mathematically,

that an intermittent control system can mimic or improve

upon the performance of a continuous control system beset

by the type of long and variable feedback delays encoun-

tered in the nervous system (Gawthrop et al., 2011; Tanabe

et al., 2016).

Thus, the most robust findings from this study relate to

the impairment and recovery of switching behaviour de-

tected in sway patterns, interpreted as the impact of inter-

mittent control (but without proving the existence of this

model in neural circuitry), with substantial correlations

with clinical balance impairment. A possible mechanism

for reduced intermittent control in Parkinson’s disease, is

impaired release of ballistic, pre-programmed motor re-

sponses that use reticulospinal pathways (Valls-Solé et al.,

1995, 2008; Thevathasan et al., 2011b). In patients with

Parkinson’s disease and severe axial motor impairment, we

previously reported that the Start-React phenomenon was

absent but restored by PPN DBS, in line with the benefit on

gait freezing (Thevathasan et al., 2011b). Intermittent ad-

justments to postural sway, like the responses elicited by

Start-React, are considered to be pre-programmed (pre-

pared in advance and ready for automatic release), ballistic

(triggered off as a whole) and predominantly use reticulosp-

inal pathways (Gawthrop et al., 2014). The lack of Start-

React in Parkinson’s disease has since been corroborated by

others, and associated with gait freezing but not yet with

postural instability (Carlsen et al., 2009b; Nonnekes et al.,

2014, 2015). In healthy subjects, Start-React has been

observed not only in automatic adjustments to gait (e.g.

obstacle avoidance and stepping) but also to posture (e.g.

leg responses to platform translation) (MacKinnon et al.,

2007; Queralt et al., 2008; Nonnekes et al., 2013). Indeed,

balance impairment and gait freezing in Parkinson’s disease

often co-exist, which raises the possibility of shared mech-

anisms (Giladi et al., 2001b; Bekkers et al., 2017).

Impairment in the release of relatively small amplitude

intermittent adjustments to sway could be considered

analogous to the impaired release of larger amplitude re-

sponses to a postural challenge, as assessed with the ‘pull

test’ (Munhoz et al., 2004). Indeed, we found a close cor-

relation between intermittent switching of postural sway

and clinical balance impairment (combined score for the

pull test and arising from a chair). Intermittent switching
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of postural sway also correlated with the Parkinson’s dis-

ease gait subscore, supporting the concept of a partly

shared pathophysiology. This proposed ‘unblocking’ of

pre-programmed movement with PPN DBS could be seen

as analogous to the improvement in gait observed with

external cues and with startling stimuli (Keefe et al.,

1989; Glickstein and Stein, 1991; Nieuwboer et al., 2007).

Consistent with the variable results reported in previous

studies we found that simple sway parameters of sway area

and velocity did not correlate with clinical balance impair-

ment in Parkinson’s disease (Horak et al., 1992; Matinolli

et al., 2007; Frenklach et al., 2009; Ebersbach and Gunkel,

2011; Johnson et al., 2013). Levodopa and subthalamic

nucleus DBS have been reported across studies to have an

inconsistent impact on sway area and velocity—although

this could well reflect the variable impact of these therapies

on balance as well as the confounding effects of dyskinesia

(Maurer et al., 2003; Revilla et al., 2013; De la Casa-Fages

et al., 2017). We did find that sway area was abnormally

large in Parkinson’s disease, corroborating a wealth of pre-

vious research (Schoneburg et al., 2013). However, PPN

DBS did not change sway area despite the improvements

observed in clinical balance impairment and control system

performance. In this study, sway velocity did not differ

between subject groups although a trend suggested that

PPN DBS increases sway velocity—from being similar to

controls to being increased compared to controls. In the

one previous study of the impact of PPN DBS on sway

(four patients), a possible albeit modest increase in path

length (related to velocity) was also observed (Yousif

et al., 2016). That PPN DBS drives sway velocity to abnor-

mally high values could represent worsening of an aspect of

sway control or the activation of a compensatory mechan-

ism. The increase in velocity may be related to the increase

in switching behaviour as a strong trend suggested a cor-

relation between intermittent switching and sway velocity

although the nature of this relationship remains to be

established.

The balance control system methods and findings in this

study are novel and thus require more extensive investiga-

tion to assess their significance in a larger cohort of subjects

including Parkinson’s disease patients with a broader range

of phenotypes. One question is whether sway control

system metrics could be useful as biomarkers of balance

impairment in Parkinson’s disease. PID model parameters

correlated with clinical balance impairment but required

the additional assessment of reaction time and the assump-

tion that the body conformed to a rigid inverted pendulum.

The assessment of intermittent switching of postural sway

may therefore be a simpler candidate biomarker; however,

further investigation will be needed to assess validity.

Therapeutic potential of PPN DBS

Whilst we found that sway control system metrics returned

to normal values with PPN DBS, there was only partial

improvement on clinical balance impairment. A partial

therapeutic benefit has also been the experience for PPN

DBS for gait freezing (Thevathasan et al., 2018). This lim-

ited clinical efficacy may reflect that the clinical application

of PPN DBS has not yet been optimized or alternatively

may reflect a fundamental limitation of the therapeutic

mechanism. For example, if all that PPN DBS achieves is

a circumscribed unblocking of pre-prepared ballistic motor

programmes (such as adjustments to gait and balance), then

this may be insufficient for patients in whom other varied

systems, such as attentional processing, leads to clinical

impairment (Snijders et al., 2016). If so, then one strategy

may be to identify patients in whom such blocked ballistic

adjustments is the major issue and could therefore benefit

most from PPN DBS. Impaired Start-React and reduced

intermittent switching of postural sway could be investi-

gated as markers of such reversibility.

There has been much debate regarding the ideal clinical

application of PPN DBS, particularly the location of elec-

trodes and stimulation (Hamani et al., 2016b). Over time,

two PPN regions have been posited; caudal and rostral

(Thevathasan et al., 2012b; Tattersall et al., 2014). These

two regions span a large distance relative to the brainstem,

with the rostral PPN proposed as lying 2 mm above and

below the pontomesencephalic junction and caudal PPN

from 2 mm to 6 mm below the pontomesencephalic junc-

tion (Thevathasan et al., 2012a). It is reported that alpha

band oscillations in local field potentials in the caudal PPN

correlated with gait (real and imagined) whereas beta band

oscillations in the rostral PPN region did not (Thevathasan

et al., 2012b; Fraix et al., 2013; Tattersall et al., 2014; Lau

et al., 2015). Two studies have offered very preliminary

evidence suggesting that caudal PPN DBS may be more

effective for gait than rostral PPN DBS (Thevathasan

et al., 2012a; Fu et al., 2014). In this study, all the patients

were stimulated in the caudal PPN (or further below).

Within this group, we found no association between stimu-

lation depth and benefit on balance. The question of ideal

PPN DBS location would be better addressed in a repeated

measures assessment within patients whose electrodes span

both rostral and caudal regions. Regardless, it is intriguing

that the disparate locations of stimulation applied in this

study were capable of yielding a clinical benefit for balance.

Some variance in stimulation location is inevitable in clin-

ical practice and reflects both surgical targeting and the

contact chosen at the end of the electrode to apply stimu-

lation. In some cases, stimulation locations in this study

appear to extend beyond what would typically be con-

sidered to be the PPN region (Hamani et al., 2016a).

This could reflect that stimulation parameters typically

used by PPN DBS generate a wide enough field of influence

in the compact brainstem to overcome any targeting incon-

sistencies. Alternatively, the impact of what is termed ‘PPN’

DBS may actually reflect a fairly non-specific disinhibition

of motor responses available in a wide dorsal brainstem

region. This recalls a similarly large region where locomo-

tion could be induced in decerebrate animals known histor-

ically as the ‘mesencephalic locomotor region’ (Jenkinson
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et al., 2009). However, the current clinical consensus is to

accurately target the PPN, ideally with electrode contacts

on both rostral and caudal subregions, giving the option to

stimulate either (Thevathasan et al., 2018).

Much work is yet needed to see if the clinical application

of PPN DBS can be refined to a stage where it is ready to

be assessed in a randomized controlled trial evaluating

impact on quality of life. However, this study is encoura-

ging that balance impairment in Parkinson’s disease may be

partly reversible, and may offer mechanistic insights that

could assist other emerging therapies.
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