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Key Points 24 

Microsensors (accelerometers, gyroscopes and magnetometers) can be effectively used to 25 

detect movements that are specific to many individual and team sports, however there are a 26 

number of important limitations of current research.   27 

 28 

Current research limitations include detailing microsensor manufacturer and devices used as 29 

well as sample rate when detecting sport-specific movements. 30 

 31 

Detection of sport-specific movements using microsensors potentially provides coaches with 32 

an alternate perspective of non-locomotor activities.  33 

 34 

Abstract 35 

Background. Microtechnology has allowed sport scientists to understand the locomotor 36 

demands of various sports.  While wearable global positioning technology has been used to 37 

quantify the locomotor demands of sporting activities microsensors (i.e. accelerometers, 38 

gyroscopes and magnetometers) embedded within the units also have the capability to detect 39 

sport-specific movements. 40 

Objective. To determine the extent to which, microsensors (also referred to as inertial 41 

measurement units and microelectromechanical sensors) have been utilised in quantifying 42 

sport-specific movements. 43 

Methods. A systematic review of the use of microsensors and associated terms to evaluate 44 

sport-specific movements was conducted; permutations of the terms used included alternate 45 

names of the various technologies used, their applications and different applied environments.  46 

Studies for this review were published between 2008 and 2014 and were identified through a 47 

systematic search of six electronic databases including Academic Search Complete, 48 

CINAHL, PsycINFO, PubMed, SPORTDiscus, and Web of Science. Articles were required to 49 
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have used athlete-mounted sensors to detect sport-specific movements (e.g. Rugby Union 50 

tackle) rather than sensors mounted to equipment and monitoring generic movement patterns. 51 

Results. A total of 2,395 studies were initially retrieved from the six databases and 737 results 52 

were removed as they were duplicates, review articles or conference abstracts.  After 53 

screening titles and abstracts of the remaining papers, the full text of 47 papers was reviewed, 54 

resulting in the inclusion of 28 articles that met the set criteria around the application of 55 

microsensors for detecting sport-specific movements.  Eight articles addressed the use of 56 

microsensors within individual sports, team sport provided seven results, water sports 57 

provided eight articles, and five articles addressed the use of microsensors in snow sports. All 58 

articles provided evidence of the ability of microsensors to detect sport-specific movements. 59 

Results demonstrated varying purposes for the use of microsensors, encompassing the 60 

detection of movement and movement frequency, the identification of movement errors and 61 

the assessment of forces during collisions. 62 

Conclusion. This systematic review has highlighted the use of microsensors to detect sport-63 

specific movements across a wide range of individual and team sports.  The ability of 64 

microsensors to capture sport-specific movements emphasises the capability of this 65 

technology to provide further detail on athlete demands and performance.  However, there 66 

was mixed evidence on the ability of microsensors to quantify some movements (e.g. tackling 67 

within Rugby Union, Rugby League and Australian Rules football).  Given these contrasting 68 

results, further research is required to validate the ability of wearable microsensors containing 69 

accelerometers, gyroscopes and magnetometers to detect tackles in collision sports, as well as 70 

other contact events such as the ruck, maul and scrum in Rugby Union.   71 
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1. Introduction 72 

The use of global positioning system (GPS) devices has become an integral part of sporting 73 

performance analysis, allowing coaches and support staff to understand the physical demands 74 

on team sport athletes. Commercially-available microtechnology units have been used 75 

extensively to describe the physical movement demands of Rugby Union [1], Rugby League 76 

[2], Australian Rules football [3,4] and several other team sports [5]. Such studies have 77 

described the distance, intensity and frequency of various match-play demands; this 78 

information is subsequently used to assist in the physical preparation of athletes and the 79 

prevention of negative consequences that might be associated with excessive or inappropriate 80 

training loads [6]. Most commercially-available microtechnology units contain microsensors 81 

that include the use of accelerometers, gyroscopes and magnetometers with some 82 

commercially-available inertial measurement units (IMUs), such as microelectromechanical 83 

sensors (MEMS) containing one or a combination of these sensors. Most commercially-84 

available GPS devices now contain IMUs, which are housed in a small case then worn in a 85 

small purpose-built pocket or strapped to the athlete during training and competition. These 86 

devices, commonly referred to as wearable sensors, facilitate real-time detailed movement 87 

analysis and provide an alternative to labour-intensive video coding [1,5,7]. As previously 88 

noted, many researchers have used GPS to quantify the physical demands of sport [5] with 89 

some also using accelerometers to identify activity profiles [4,8-10], although few have used 90 

this technology to identify sport-specific movements.  Recent research has utilised this 91 

technology to assess running gait [11] and other continuous movements, but such movements 92 

are not sport-specific. 93 

 94 

Several studies have described the use of accelerometers to detect the physical activities and 95 

movement patterns of the general population [12]. Other types of accelerometers, such as 96 

actigraph technology have been used to detect movement and sleep patterns of the general 97 

population, by assessing the displacement of the accelerometer to determine stages of sleep 98 

and daily activity [13]. Given that sensors can have a sample rate of up to 500 Hz [4,8-11,14] 99 
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and can measure occurrence and magnitude of movement in three dimensions (anterior-100 

posterior, medial-lateral and vertical) [4], such IMUs have been applied in elite sporting 101 

populations to further understand movement demands, particularly in indoor sports, where 102 

GPS signal is unavailable.   103 

 104 

Some sporting microtechnology companies have attempted to describe the “workload” 105 

exerted by the athlete by quantifying the sum of the individual tri-axial accelerometer vectors.  106 

Various “workload” terminologies exist in these commercially-available software programs, 107 

including ‘Player Load’ (Catapult Sports, Melbourne, Victoria,) and ‘Body Load’ (GPSports 108 

Systems, Canberra, Australian Capital Territory, Australia). The ‘Player Load’ that is 109 

calculated using the Catapult Sports equipment is an arbitrary unit defined as an 110 

‘instantaneous rate of change of acceleration divided by a scaling factor’ (Figure 1) utilising 111 

the highly responsive accelerometers within the three planes of movement to quantify 112 

movement intensity [4]. Similarly, the ‘Body Load’ measure, as implemented by GPSports 113 

Systems is described as an ‘arbitrary measure of the total external mechanical stress as a 114 

result of accelerations, decelerations, changes of direction and impacts’ [14] and is calculated 115 

from the square root of the sum of the squared instantaneous rate of change in acceleration in 116 

the vertical, anterior-posterior and medial-lateral vectors. Athlete demands can be quantified 117 

by the aforementioned workload terminologies by applying formulas to inertial data [4], 118 

providing a different perspective to that of other technologies such as GPS [5]. 119 

 120 

INSERT FIGURE 1. 121 

 122 

Physical activity has been measured by MinimaxX units (Catapult Sports, Melbourne, 123 

Victoria, Australia) using ‘Player Load’ to describe the physical demands of sports such as 124 

Australian Rules football [4], Basketball [8], and Netball [9, 10]. Boyd et al. [4] found that the 125 

accelerometers offered good reliability in quantifying the low and high intensity components 126 

of Australian Rules football activity and that the technology could be confidently applied to 127 
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assess changes over multiple time periods or to assess differences between players. Boyd et 128 

al. [4] also found strong relationships between MinimaxX devices (r=0.996-0.999) for high 129 

intensity activity, although it was acknowledged that current practice fails to account for skill-130 

based and contact-based activities (passing, jumping, kicking, marking, tackling and 131 

blocking).  These findings indicate that the overall physical activity of Australian Rules 132 

football players may be underestimated, highlighting the potential for these devices to 133 

quantify additional movements other than locomotion. 134 

 135 

Similarly, Rugby League researchers have quantified the relationship between measures of 136 

internal (heart rate and perceived exertion) and external (high-speed distance, ‘Body Load’ 137 

and impacts) loads associated with training [14]. The authors found that the internal and 138 

external load measurements provided useful methods of quantifying various training 139 

modalities, with impacts and ‘Body Load’ contributing the highest loadings for skill sessions.  140 

However, it was also stated that further investigation was required to examine the derived 141 

measures of ‘Body Load’ and impacts using GPSports microsensors, as training demands may 142 

be underestimated using current methods. 143 

 144 

Microsensors have the capability to automatically detect various movements and intensities 145 

[15]. Bonomi and colleagues [15] found that activities ranging from lying, sitting, standing, 146 

dynamic standing, cycling, walking and running could be detected using algorithms and 147 

decision trees. Using data from a tri-axial accelerometer, activities were categorised by the 148 

dominance in intensity of accelerations occurring along a particular axis. For example, 149 

accelerations that were predominantly medial-laterally directed were primarily used to 150 

categorise lying, sitting and standing. Intensity was also categorised by quantifying the speed 151 

of movement and the resultant accelerometer traces that were produced. 152 

 153 

Movements such as jumping have also been assessed using accelerometers [16]. Previous 154 

research [16] has validated the use of accelerometers against a Myotest force platform 155 
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(Myotest SA, Sion, Valais, Switzerland).  The accuracy of the accelerometers were measured 156 

against the force platform with participants wearing a microsensor on their hip and measuring 157 

vertical force and power as well as leg stiffness and the reactivity index. Results of a five hop 158 

protocol, countermovement jump and squat jump demonstrated a high degree of reliability for 159 

the accelerometer system in comparison to the force platform (coefficient of variation <10%)  160 

[16].  161 

 162 

Specific skill-based activities and movements can distinguish the physical demands of one 163 

sport from another.  Currently there are relatively few studies that have assessed the reliability 164 

and validity of inertial sensor technology for detecting and assessing sport-specific skills.  To 165 

date, current research [5] has demonstrated that it is feasible to use microsensors to quantify 166 

work rate patterns and metabolic differences between athletes. However, this research has 167 

been heavily dependent on the use of wearable GPS devices to evaluate the locomotor 168 

demands associated with specific contact and non-contact sports (see Cummins et al. [5] for a 169 

review). Given that a large number of sports include physically-demanding activities that 170 

involve few locomotor demands (e.g. volleyball jumping, Rugby Union tackling, and soccer 171 

goalkeeping), it is likely that research that has focussed solely on characterising the locomotor 172 

demands of team sport [5] has underestimated the ‘true’ physical demands of the sport. As 173 

such, sport scientists now employ wearable sensors to identify sport-specific movements and 174 

activities in an effort to better evaluate the demands of a sport and to assist with physical 175 

preparation, injury prevention, and technical analysis of these activities. The aim of this 176 

review was to provide an overview of the use of microsensor technology, such as 177 

accelerometers, gyroscopes and magnetometers to detect non-locomotor activities that are 178 

specific to a particular sport. 179 

 180 

2. Methods 181 

2.1 Literature Search Strategy 182 
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This review investigates the use of microsensors to identify sport-specific movements. 183 

Articles for this review were systematically identified through the search of electronic 184 

academic databases that included Academic Search Complete, CINAHL, PsycINFO, 185 

PubMed, SPORTDiscus and Web of Science. These databases were searched using the 186 

combinations of the following key words: (i) ‘accelerometer’; ‘inertial’; ‘sensor’; 187 

‘measurement unit’; ‘IMU’; ‘microsensor’; ‘gyroscope’; ‘wearable’; (ii) ‘event’; ‘movement’; 188 

‘detection’; ‘specific’; ‘analysis’; (iii) ‘sport’; ‘athletes’; ‘game’; ‘match’. Terms were 189 

connected with ‘OR’ within each of the three combination groups and these three search 190 

categories were combined using ‘AND’. The search was restricted to full-length articles 191 

written in English, published after 2008 and articles included were limited to those where 192 

search terms were included in the title or abstract. 193 

 194 

2.2 Selection Criteria 195 

The process used for selecting articles is outlined in Figure 2. Duplicate articles were 196 

eliminated from the initial search results and the titles and abstracts of remaining articles were 197 

then independently reviewed by three assessors (RC, TJG and MHC) for relevance to the 198 

review. For the purpose of the review, articles included were required to have used wearable 199 

sensors to detect and assess a skill or movement that was specific to a sport (e.g. throwing, 200 

tackling, tennis strokes). As such, articles that attempted to categorise activity (e.g. running 201 

intensities) of athletes using microsensors or that solely attached microsensors to equipment 202 

were excluded. Other criteria for exclusion from this research consisted of review articles, 203 

abstracts and studies that used accelerometers to assess movements that are generic to many 204 

activities (e.g. running gait). Any disagreements between the three independent reviewers 205 

were discussed and resolved.  Once articles were selected, the complete manuscript was 206 

assessed for inclusion using the same criteria. The references of the selected articles were then 207 

scanned to detect any potentially relevant articles not identified by the original search.  208 

 209 

3. Results 210 
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A total of 2,395 studies were initially retrieved from the six databases, of which 441 were 211 

duplicates, 293 were conference abstracts and three were review articles, leaving 1,658 212 

unique research articles. After screening the titles and abstracts of these papers, 1,611 were 213 

excluded and 47 remained for full-text review. After full-text review, a further 19 were 214 

removed (Figure 2).  Therefore, 28 articles remained for inclusion in this review. Eight 215 

articles addressed the use of microsensors in individual sports [17-24] including tennis (n=2), 216 

track and field (n=2), golf (n=2) trampolining (n=1) and weightlifting (n=1) (Table 1). Seven 217 

articles addressed the use of microsensors in team sports [25-31], which incorporated baseball 218 

(n=2), Australian Rules football (n=2), Rugby League (n=1), Rugby Union (n=1) and cricket 219 

(n=1) (Table 2). Eight used microsensors in water sports [32-39], reporting on detection of 220 

various technical elements of swimming (Table 3) and five used microsensors in snow sports 221 

[40-44] involving ski jumping (n=2), alpine skiing (n=1), snowboarding (n=1) and cross 222 

country skiing (n=1) (Table 4). The manufacturer of microsensors differed between studies 223 

although ‘MinimaxX’ device was the most common (n=7) followed by the ‘Physilog inertial 224 

measurement unit’ (BioAGM, La Tour de Peilz, Vaud, Switzerland) (n=5). Studies used 225 

microsensors either to detect sport-specific movements (n=19), analyse sport-specific 226 

movement (n=8) or detect and analyse movement (n=1). Sampling frequencies of the devices 227 

used ranged from 30 Hz to 500 Hz, although some articles did not report the type or sampling 228 

frequency of the sensors used [21,25,39]. Articles varied with respect to the number and type 229 

of sensors used, although the selection of the equipment for each study was specific to the 230 

research question being addressed and the movement being analysed. 231 

 232 

INSERT FIGURE 2. 233 

INSERT TABLES 1 - 4 234 

 235 

4. Discussion 236 

The aim of this systematic review was to investigate published literature on microsensors and 237 

their ability to quantify and detect sport-specific movements. From the 28 studies identified, it 238 
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is apparent that single or multiple sensors (i.e. combining accelerometers, gyroscopes and 239 

magnetometers) have the capacity to identify sport-specific movements in a variety of 240 

individual and team sports and can even be effectively utilised in the water or snow. The use 241 

of microsensors to detect sport-specific movements offers an exciting and innovative 242 

approach to performance analysis by improving practitioners’ understanding of the physical 243 

and technical demands of sporting activities. Furthermore, accelerometers, gyroscopes and 244 

magnetometers have very high sensitivity allowing detection and analysis of movements that 245 

may not be easily identified by a coach. 246 

 247 

4.1 The Use of Microsensors to Detect Movements in Individual Sports 248 

Microsensors have had varied uses for detection of specific movements within individual 249 

sports. The use of IMUs in tennis has shown that these sensors are capable of detecting 250 

specific strokes during training and competition [18,19]. Connaghan et al. [19] used  251 

TennisSense devices (based on Tyndall’s 25mm Mote platform, Cork, Munster, Ireland) 252 

containing accelerometers, gyroscopes and magnetometers, placed on the arm to detect 253 

different strokes (serve, forehand and backhand) and non-stroke events. Accelerometer 254 

magnitude was used to determine a stroke event, while the addition of gyroscopes and 255 

magnetometers improved stroke detection to within 90% accuracy (the use of gyroscopes and 256 

magnetometers alone resulted in 88% accuracy of stroke detection).  Although Connaghan et 257 

al. [19] discussed the use of accelerometer magnitude to identify strokes, no information was 258 

provided on the role the magnetometers and gyroscopes played within the stroke detection 259 

model. Ahmadi and colleagues [18] found a significant correlation between gyroscope 260 

sensors and markers positioned on the arm, hand and chest for detecting serving trends in 261 

tennis, accelerometers were located within the device used but it is not revealed as to why 262 

these sensors did not contribute to the research. However, as only slow motion serves (not 263 

game speed) were performed, it is unclear whether inertial sensors could accurately detect 264 

power serves.  Ghasemzadeh et al. [21] provided a similar analysis by detecting wrist-rotation 265 

errors in golf using microsensors, although the specific nature of the devices used was not 266 
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reported. Using five microsensors (three located on the participant and two on the club) that 267 

were sampling at 30 Hz, Ghasemzadeh et al. [21] created a model to provide feedback based 268 

on inertial detection of the different phases of the golf swing. Half the trials performed by the 269 

four subjects were used to create the model; the other half was used to test how well the 270 

model could detect the movement (i.e. the sensitivity of the model). The model could 271 

successfully determine wrist angle during the golf swing and provide feedback on the length 272 

of back swing, swing plane and club head speed, although the low sampling frequency of the 273 

microsensors may have impaired the detection accuracy of high-frequency events, such as 274 

ball impact. A limitation of this study, however, was that the playing ability of the 275 

participating subjects was unclear and the framework used to identify the “correct” technique 276 

was also not reported. 277 

 278 

Adelsberger and Tröster [17] conducted the only research in weightlifting using IMUs to 279 

detect completed ‘thruster’ movements and exhaustion, using three microsensors placed on 280 

the ankle, lower back and wrist (although the ankle data was subsequently deemed irrelevant 281 

and excluded). Using 75% of the data from the completed ‘thruster’ movements, Adelsberger 282 

and Tröster [17] created an algorithm within a support vector machine to automatically detect 283 

successful ‘thruster’ movements. The remaining 25% of the trials were then used to test the 284 

algorithm’s accuracy for detecting successful ‘thruster’ movements.  The reliability of the 285 

detection algorithm was reported to be greater than 93%, which demonstrated the suitability 286 

of microsensors for detecting and assessing weightlifting movements, although the unused 287 

sensor at the ankle could have been relocated to another limb, potentially providing greater 288 

detection accuracy of movements. 289 

 290 

Similarly, Lee et al. [24] used IMUs containing accelerometers, gyroscopes and 291 

magnetometers to detect legal and illegal movements in seven race walkers, positioning a 292 

single device on the lower back of participants. Compared to high-speed camera footage, the 293 

IMU devices were able to detect illegal walking technique in 91% of the gait cycle data 294 
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collected, providing support for the use of microsensors to assist coaches and judges with 295 

providing feedback on performance. Nevertheless, despite the high detection accuracy 296 

demonstrated for race walkers, the speed of the walkers was not reported by the authors. As 297 

such, it is difficult to confirm the suitability of these devices during competition scenarios.   298 

 299 

Helten et al. [22] advanced the use of sport-specific movement detection by using a series of 300 

seven MTx IMU devices (Xsens, Enschede, Twents, Netherlands), which incorporate 301 

accelerometers, gyroscopes and magnetometers to classify different trampoline jumps.  302 

Movements were automatically divided into segments based on the inclination of a limb, 303 

enclosed angles between limbs and the angular velocities of the sensors during the routines. 304 

Similarly, Ganter et al. [20] assessed a former decathlete performing a discus throw using a 305 

suit that was fitted with 17 IMU devices. Synthesis of the data from the 17 independent 306 

devices allowed the authors to calculate kinematic variables, such as joint angles and 307 

velocities for 22 joints during the performance and detect phases of the throw solely using 308 

IMUs. Ganter et al. [20] suggested that IMUs can easily provide feedback for athletes that 309 

video-based systems cannot (e.g. determining the velocity of the throwing arm during the 310 

discus throw would be labour-intensive when using video-based systems). Collectively, these 311 

studies suggest that IMU devices, which incorporate accelerometers, gyroscopes and 312 

magnetometers, can be used for the detection of movements and error, as well as the 313 

provision of feedback in individual sports. 314 

 315 

4.2 The Use of Microsensors to Detect Movements in Team Sports 316 

Accelerometers, gyroscopes and magnetometers have been used in team sports to detect 317 

sport-specific movements and to provide feedback on performance. Ghasemzadeh and Jafari 318 

[25] evaluated the baseball swing using three sensor nodes placed on the chest, wrist, and hip, 319 

but the specific sensor type(s) used was not reported in their article.  Nevertheless, the authors 320 

initially used twenty-two trials to develop and refine a signal processing model and a further 321 

thirty-eight trials were used to validate the accuracy of the model. Data was passed through a 322 



 13 

five point filtering system to reduce high frequency noise and used to discriminate between ‘a 323 

swing with proper sequence and timing of motions’ and ‘a bad swing with improper 324 

sequencing of key events’. Although the researchers suggested that this novel method could 325 

be used to train a player in baseball, it should be noted that the three participants used had ‘no 326 

previous swing training’ and no elite athletes were used. The demands of baseball were 327 

further examined by Koda et al. [29] who investigated the throwing motion using two 328 

accelerometer and gyroscopic sensors mounted on the upper and lower arm.  Five 329 

participants, who included two former professionals, performed several throwing motions.  330 

Although the main objective of this research was to analyse the biomechanics of the baseball 331 

throw (trajectories of acceleration and angular velocity) this could only be done once the 332 

accelerometer and gyroscopic sensors had detected the throw. Therefore, the authors 333 

primarily discuss the biomechanical analysis of the throw rather than the reliability of throw 334 

detection. 335 

 336 

Researchers have also used one MinimaxX S4 device containing an accelerometer, 337 

magnetometer and gyroscope in cricket to detect fast-bowling events [31]. Highly skilled fast 338 

bowlers performed bowling and non-bowling events during training and competition to 339 

validate an algorithm capable of differentiating between bowling and non-bowling events. 340 

The algorithm demonstrated 99.0% sensitivity and 98.1% specificity with respect to correctly 341 

identifying bowling events during training, but the performance of the algorithm during 342 

competition was somewhat reduced (99.5% sensitivity, 74.0% specificity). McNamara et al. 343 

[31] suggested that the low specificity during competition could be due to players bowling the 344 

ball back to a bowler even when they were not the designated bowler. 345 

 346 

Collision sports such as Rugby League [26], Rugby Union [30] and Australian Rules football 347 

[27,28] have used commercially-available microsensors to automatically detect the non-348 

running demands of their respective sports. Gabbett et al. [26] used MinimaxX S4 devices to 349 

automatically detect collisions in elite Rugby League. To achieve this goal, the authors 350 
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developed an algorithm that relied on gyroscopic data to recognise when the unit was in a 351 

non-vertical position and accelerometer data to identify a spike in ‘Player Load’.  Collision 352 

data were then classified as mild, moderate or heavy depending on the magnitude of the spike 353 

in ‘Player Load’. All collision events recorded by the MinimaxX S4 device were compared 354 

against video notational analysis.  Of the 237 events recorded, significant correlations were 355 

found between video and automatically-detected events for mild (r=0.89), moderate (r=0.97) 356 

and heavy (0.99) collisions. Researchers in Rugby Union [30] used an SPI Pro device 357 

(GPSports Systems, Canberra, Australian Capital Territory, Australia) to detect collisions.  358 

These researchers used a training set of physical ‘contacts’ and applied a mathematical 359 

learning grid (learning grids were established to classify specific accelerometer data signals of 360 

tackle and non-tackle events to create algorithms) and static window features (static window 361 

was determined as 128 frames either side of peak detection of collision using accelerometry 362 

data). The SPI Pro device used in this research [30] only contains accelerometers, 363 

demonstrating that a single inertial sensor is sufficient to detect collisions in Rugby Union, 364 

although it is possible that had gyroscopes and magnetometers been used, the authors may 365 

have found greater specificity for collision detection (e.g. tackles, scrums, rucks and mauls). 366 

Using MinimaxX S4 units, Gastin et al. [27] used the formula proposed by Gabbett et al. [26] 367 

to quantify tackle demands in Australian Rules football. Three hundred and fifty-two tackles 368 

were recorded, comprising 173 tackles made and 179 tackles against. Of these recorded 369 

tackles, most were classified as medium intensity tackles (61%) while 33% were low intensity 370 

tackles and 6% were high intensity collisions. In a subsequent investigation, Gastin et al. [28] 371 

scrutinised the effectiveness of MinimaxX S4 devices when analysing ‘observed tackles 372 

versus the MinimaxX device’ and ‘MinimaxX device versus observed play events’ during 373 

four Australian Rules football matches. Observed tackles were detected with 78% accuracy 374 

by the MinimaxX device, accurately recording 66% of tackles made and 90% of tackles 375 

against. However, when the 1,578 “tackle events” recorded by the MinimaxX S4 device was 376 

compared against the observed play events, only 18% were correctly identified as tackles, 377 

while 82% were incorrectly identified.  Movements such as ruck contests, smothering, and 378 
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shoulder bumps comprised 57% of the incorrectly identified movements, whereas the 379 

remaining 25% involved no evident contact or collision. A possible reason for this high 380 

percentage of incorrectly identified events in this study is that the algorithm that was used to 381 

identify the collision events was specifically produced for Rugby League [26]. Compared to 382 

Australian Rules football, the collisions associated with Rugby League tackles are likely to be 383 

different to those experienced in Australian Rules football due to opposing teams ‘facing off’ 384 

rather than playing ‘man-on-man’. As such, while the ability to distinguish non-contact events 385 

from contact events is of great significance in a wide variety of sports, it seems that it may be 386 

important for researchers to develop algorithms that are specific to each sport. Given the 387 

contrasting results [26,28], clearly further research is required to validate the ability of IMUs 388 

to distinguish tackles in collision sports from other contact events such as the ruck, maul and 389 

scrum in Rugby Union. 390 

 391 

4.3 The Use of Microsensors to Detect Movements in Water Sports 392 

Eight of the twenty-eight studies focused on the use of microsensors to detect movements in 393 

swimming. A single accelerometer placed on the head of the swimmer, has been shown to 394 

provide reliable accuracy of stroke and turn detection [38]. Detection of turns demonstrated a 395 

classification rate of 99.8%, whereas detection of all four main swimming strokes (butterfly, 396 

backstroke, breaststroke and freestyle) returned classification results of 95%, although some 397 

misclassification was acknowledged between breaststroke and butterfly styles due to similar 398 

head movements and positioning of the unit. Beanland et al. [32] applied accelerometer trace 399 

data gathered by MinimaxX S4 devices located on the head of swimmers to determine valid 400 

automated stroke detection of butterfly (r=1.00) and breaststroke (r=0.99). Quantification of 401 

freestyle swimming has also been carried out by Dadashi et al. [33,34], Fulton et al. [35,36], 402 

and James et al. [37]. Fulton et al. [35] used gyroscope data obtained from sensors located on 403 

each thigh and shank of Paralympic swimmers to detect a valid and reliable form of kick 404 

count and kick rate, enabling quantification of the demands of freestyle. Data collected from 405 

gyroscope traces located on the shanks were strongly correlated with under water video of 406 
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swimming trials [35].  James et al. [37] also applied IMUs to understand the demands of 407 

freestyle by positioning units on the forearm, trunk and leg. Accelerometer data from the arm 408 

provided  detection of hand entry, glide, and the catch and recovery phases of freestyle 409 

swimming.  410 

 411 

Dadashi et al. [33]  found that accelerometers encased in Physilog IMUs were accurate for 412 

measurement of swimmers’ speed when compared with a commercially-available tether. 413 

Stamm et al. [39] demonstrated similar capabilities of microsensors for detecting the velocity 414 

of push-offs, by positioning a single IMU on the participants’ lumbar spine, although the 415 

specific sensor was not reported. Research conducted by Dadashi et al. [33] and Stamm et al. 416 

[39] reported valid and reliable methods of velocity measurements derived from data 417 

collected using microsensors when located on lumbar spine. These findings demonstrate that 418 

microsensors provide novel methods of measuring stroke and kick detection, allowing 419 

practitioners to quantify stroke and kick rate, and velocity of push-offs in swimming. 420 

 421 

4.4 The Use of Microsensors to Detect Movements in Snow Sports 422 

Snow sports accounted for 18% (5 of 28 articles) of the research included within this 423 

systematic review. Chardonnens et al., [40] applied Physilog IMUs to detect crossover and 424 

crossunder turn events in Alpine skiing, providing feedback on acceleration and angular 425 

velocity of the detected incidents. Accelerometers and gyroscopes, encased within Physilog 426 

IMUs, were applied in ski jumping and were able to detect temporal patterns of jumps from 427 

kinematic signals [41]. The microsensors were able to automatically-detect temporal phases 428 

and durations of ski jump sequences of both indoor training sessions and outdoor conditions. 429 

Physilog IMUs have also been used to characterise lower-limb coordination during ski jumps 430 

[42], by determining the relationship between the position of the shank-thigh and thigh-431 

sacrum segments during take-off. The biomechanical analysis of raw data detected from the 432 

IMUs placed on the sacrum and the thigh demonstrated that the movements of these segments 433 

during take-off were significantly correlated with the length of the jump [42]. 434 
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 435 

Aerial acrobatics of snowboarders were evaluated using accelerometer and gyroscopic data 436 

obtained from a  MinimaxX S4 device [43]. Mathematically-derived algorithms derived from 437 

these data were able to detect the amount of air-time using gyroscopic data, which determined 438 

the magnitude of rotation for the participants. However, it was reported that acrobatics that 439 

involved rotations greater than 720 degrees were often incorrectly classified when compared 440 

to video analysis. The authors suggested that wearable sensors provided a novel method for 441 

coaches and judges to objectively evaluate a snowboarder’s acrobatics when the skill that is 442 

being assessed involved rotations of 540 degrees or below. These findings are important, as 443 

snowboarders are assessed on their performance of these skills in competition, yet they are 444 

difficult to assess with the naked eye. Nevertheless, it is important to note that the research 445 

conducted by Harding et al. [43] predominantly used data from one axis that only provided 446 

detail on flat spins and rotations and not acrobatic activities that included inversion 447 

movements. Given that the authors used a MinimaxX S4 device, which contains a three-448 

dimensional accelerometer, gyroscope and magnetometer, it is reasonable to suggest that the 449 

data they collected could also be used to provide feedback on inversion movements and 450 

acrobatics.  451 

 452 

Marsland et al. [44] applied a MinimaxX S4 device containing a three-dimensional 453 

accelerometer, gyroscope and magnetometer to identify cross-country skiing movement 454 

patterns. Cyclical ski patterns, and kicking and skating actions on each side of the body were 455 

clearly identified by single sensors. Collectively, these results suggest that microsensors, 456 

coupled with sophisticated algorithms, can be used to detect movements in snow sports. 457 

 458 

4.5. Directions for Future Research 459 

The reviewed research demonstrates the ability of microsensors to accurately detect sport-460 

specific movements in a wide range of environments. The specific aim of the research (e.g. to 461 

identify correct or incorrect technique or further understand the demands of a sport), will 462 
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dictate the potential number of sensors used and their application for practitioners. The 463 

majority of team sports use single sensors to quantify the running demands placed on athletes 464 

during training and competition. As such, further research is required to determine whether 465 

movement patterns can be accurately detected during competitive games using a single sensor 466 

or whether multiple sensors would be required.  This is particularly important in collision 467 

sports, given the conflicting results [26,28] reported in this systematic review. Multiple 468 

sensors also provide a unique approach to biomechanical performance analysis of movements 469 

as demonstrated by research conducted within individual sports by not only detecting 470 

movements but detecting errors. 471 

 472 

To date, researchers have collected data from participants ranging from recreational to elite. It 473 

would be advantageous to understand the demands of elite sports in greater detail, as well as 474 

the biomechanical differences between sub-elite and elite populations for sport-specific 475 

movements.  Furthermore, it would also be beneficial for authors of future research to use a 476 

common language for microsensors, by defining the manufacturer and the sensors used (e.g. 477 

accelerometer, gyroscope and magnetometer) and the sampling frequency, as much of the 478 

research uses various terminologies to describe microtechnology and may not reveal the type 479 

or sampling frequency of the microsensor employed.  480 

 481 

5. Conclusion 482 

This paper provides a comprehensive review of the ability of microsensors to detect sport-483 

specific movements. The present results demonstrate that commercially-available 484 

microsensors have great potential to detect sport-specific movements and are capable of 485 

quantifying sporting demands that other monitoring technologies may not detect. 486 

Furthermore, multiple sensor models have the ability to provide researchers with a tool to 487 

understand specific movements in greater detail and provide coaches or judges with feedback 488 

on correct and incorrect techniques. 489 

 490 
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Table 1.  Summary of results from studies investigating sport-specific movements using wearable sensors within individual sports. 

 

Study 
Sport and sport-

specific movement 
Sample Microsensor used Method Findings 

Adelsberger and 

Tröster [17] 

Weightlifting, “thruster” 

movement 

Sixteen athletes 

participated (four female 
and twelve male), 

experience levels were 

assigned and ranged 

from beginner to expert 

ETHOS IMU (Zurich, 

Zurich, Switzerland) 

Each athlete equipped with three 

sensor devices: left ankle, lower 
back and left wrist. Athletes 

performed three sets of 

“thruster” movements, first two 

sets at a freely chosen weight, 
the final set consisted of three 

repetitions of maximum weight. 

Final set used to provide some 
data for exhaustion detection.  

Algorithm designed to classify 

“thruster” movements. System 
found to have an accuracy of 

94% when differentiating 

experts and beginners based on 

2 IMUs (ankle excluded) and 
individual instances defined 

with above 93% accuracy.  

Ahmadi et al. [18] Tennis, serve Four right handed, male 

tennis players (one 

amateur, two sub-elite 
and one elite) 

ADXRS300 Inertial 

Sensor (Kionix, 

Brisbane, Queensland, 
Australia) 

Players performed 30 successful 

slow motion serves in a 

controlled environment wearing 
microsensors located on chest, 

upper arm and hand to identify 

rotation and flexion. Also wore 
marker-based technology 

(Vicon).  

Significant correlation between 

inertial sensor and marker-based 

data for serve trends. Only slow 
motion serves were used as 

microtechnology used could not 

provide feedback on power 
serves. 

Connaghan et al.  [19] Tennis, classification of 

strokes 

Eight tennis players 

(three advanced players, 
three intermediate and 

two novice) 

TennisSense, Wireless 

IMU - based on 
Tyndall’s 25mm Mote 

Platform (Cork, 

Munster, Ireland) 

Single sensor place on player’s 

dominant forearm during a game 
in order to register spike in 

accelerometer data due to ball 

impact. Stroke classified as 
serves, backhands or forehands. 

Accelerometer data above 3g 

were classed as tennis stroke 

events, below 3g were classified 
as non-stroke events. Stroke 

Wireless IMU was able to 

recognise tennis stroke 
performance with 90% accuracy 

when using information from all 

3 sensors (accelerometers, 
gyroscopes & magnetometers). 

Accuracy rate was 10% higher 

than that of accelerometer, 

which contributed highest single 
sensor classification.  
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recognition was trained on 7 

players and then tested on an 

unseen player. 

Ganter et al. [20] Track and field, discus 

throw 

One male sports student 

(former decathlete) 

MTx (Xsens, Enschede, 

Twents, Netherlands) 

Athlete performed three discus 

throws (indoors; 1kg discus) 

whilst wearing suit comprising 
17 inertial sensor units and two 

transmission units. All throws 

filmed in high speed. All data 

from inertial sensors were 
exported for further processing 

using MATLAB. 

Body angles and velocities of 22 

joints analysed, with movement 

broken down into 6 critical 
phases. Demonstrated capability 

of kinematic analysis using full 

body inertial measurement 

system emphasising potential of 
approach when analysing other 

complex movements.  

Ghasemzadeh et al. 
[21] 

Golf, golf swing Three male subjects, one 
female 

Microtechnology not 
reported 

Five sensors used, three located 
on each subject (right wrist, left 

arm and lower back) other two 

located on golf club (club head 

and grip). Subjects performed 10 
golf swings, addressing the ball 

with varying degrees of wrist 

rotation. Each trial divided into 
four segments (take-away, 

backswing, downswing, follow-

through) and processed using 

five-point average moving filter 
to remove effect of noise. 50% of 

trials were used to build 

quantitative model, 50% were 
used to evaluate model. 

Body sensor networks 
demonstrated application to a 

quantitative feedback model. 

Results provided good 

reliability of model with respect 
to angle of wrist rotation when 

sensors sampled above 30 Hz. 

The overall value of absolute 
mean error was reported as 9.2, 

7.7, 6.6 and 6.5 degrees for take 

away, back swing, down swing 

and follow through respectively 
which introduces an average 

error of less than 10 degrees for 

all segments. 

 

Helten et al.  [22] Trampoline, jump 

classification 

Four female non-

professional athletes 

with intermediate skills 

MTx (Xsens, Enschede, 

Twents, Netherlands) 

Seven inertial microsensors worn 

on trunk, forearms, upper legs 

and lower legs. Athletes 

Microsensors provided 

automatic segmentation and 

classification of jumps. Used (1) 
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performed eight predefined 

routines and 2 self-selected 

routines with each routine 
performed two to three times.  

inclination of a limb, (2) the 

enclosed angle between limbs 

and (3) the angular velocity of 
sensors. Algorithms developed 

to assist in the automatic 

segmentation of movements. 

Lai et al. [23] Golf, golf swing 10 golfers (six beginners 

and 4 skilled low 

handicap golfers) 

MTx (Xsens, Enschede, 

Twents, Netherlands) 

Four inertial sensors were 

attached to the swing lead hand, 

swing lead arm, pelvis and upper 

back of each subject. Players 
performed 10 successful drives 

towards a net. A successful trial 

was recorded when the ball hit 
the net, a miss trial was recorded 

otherwise. Trials were 

segmented into back swing, 

down swing and follow-through 
during pre-processing phase. 

Results showed that inertial data 

of low-handicapped golfers 

achieved higher mean peak 

acceleration energy and also 
achieved higher accuracy than 

that of the beginners. In all 10 

trials, the professional group 
showed less variation in peak 

acceleration. Inertial sensor data 

can be successfully used to 

differentiate swing patterns 
between low-handicap golfers 

and beginners.  

Lee et al. [24] Race walking, walking 
technique 

Seven race walkers (five 
male and two female) 

MTx (Xsens, Enschede, 
Twents, Netherlands) 

Single inertial sensor placed 
directly on skin over sacral 

vertebra. Each athlete performed 

four trials of three walking 

styles: (a) walking legally at 
submaximal pace; (b) walking 

illegally at submaximal pace and 

(c) walking legally at maximal 
pace. Analysis of high-speed 

camera footage was performed.  

High-speed footage compared 
with the sensor-captured data on 

the same steps. 300 total gait 

events were tested (i.e. 50 heel 

strikes and 50 toe offs) and 
repeated three times.  The 

inertial sensor was 91% 

accurate. Seven incorrectly 
identified steps occurred with a 

time change less than human 

eye detection.  

IMU – Inertial measurement unit  
MEMS – Microelectromechanical sensors
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Table 2. Summary of results from studies investigating sport-specific movements using wearable sensors within team sports. 

 

Study 
Sport and sport 

specific movement 
Sample Microsensor used Method Findings 

Ghasemzadeh and 

Jafari [25] 

Baseball, baseball bat 

swing 

Three male subjects, no 

previous swing training 

Microtechnology not 

reported 

Three sensor nodes placed on 

subjects’ chest, right wrist and 
hip and asked to execute 20 

baseball swings with varying 

timing and sequences of 

identified key events (hip 
rotation, shoulder rotation and 

arm extension). Raw sensor 

readings passed through five-
point moving average filter to 

reduce effect of high frequency. 

Twenty-two good swing trials 

were used to train system, thirty-
eight trials (22 good trials, 16 

improper trials) were used for 

validation. Data contributed to 
designing and validation of an 

algorithm for analysing the 

baseball swing technique. 

Inertial node data was shown to 

have the capability to provide 
feedback on coordination of 

segmented areas. Inertial 

coordination data correlated 

positively with that of video 
data.  

 

 

Gabbett et al. [26] Rugby League, tackle Thirty male professional 
Rugby League players 

MinimaxX S4 (Catapult 
Sports, Melbourne, 

Victoria, Australia) 

Units worn in a small vest on the 
upper back of participants. 

Collision events from 21 training 

appearances and one trial match 
filmed and coded. To detect 

collision unit was required to be 

in non-vertical position and 
require a spike in player load. 

Collisions were classified as 

MinimaxX units found to 
provide a valid method of 

quantifying collision load. 

Strong correlation between 
video coded data and unit 

automated detection of mild 

(r=0.89), moderate (r=0.97) and 
heavy (r=0.99) contacts.  
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mild, moderate and heavy. 

Gastin et al. [27] Australian Rules 

football, tackle 

Twenty professional 

male Australian Rules 
football players (four 

defenders, five forwards 

and eleven midfielders)  

MinimaxX S4 (Catapult 

Sports, Melbourne, 
Victoria, Australia) 

MinimaxX units worn in playing 

jersey located on upper back. 
Data relating to tackle events 

from 4 AFL matches in 2011 

season. Tackles made by a 
player or when tackled by an 

opponent were coded from video 

footage. Tackles were classified 

as low, medium or high intensity 
based on criteria that considered 

an observed speed and impact. 

Total of 352 tackles recorded 

comprising 173 made and 179 
against. Majority of tackles were 

medium intensity (61%) only 

6% were high intensity. 
Significant difference found 

between the three tackle 

intensities for peak velocity and 

all accelerometer variables. 
Suggests ecological validity of 

tri-axial accelerometers to assess 

impact forces in tackles. 

Gastin et al. [28] Australian Rules 

football, tackle 

Twenty elite male 

Australian Rules football 

players 

MinimaxX S4 (Catapult 

Sports, Melbourne, 

Victoria, Australia) 

Cross-validation approach used 

to evaluate the effectiveness of 

MinimaxX in detection of tackle 

and collision impact events. Unit 
worn in pocket located in 

playing jersey. Unit worn in four 

AFL games during 2011 season. 
Tackles made by a player or 

when tackled by an opponent 

were automatically detected 

using commercially-available 
software and coded from video 

footage. Instances were then 

matched with MinimaxX data to 
determine if a “tackle” event had 

occurred. Allowed assessment of 

true positive, true negative, false 
positive and false negative tackle 

events. 

78% of tackles were correctly 

detected. Tackles against were 

more accurately detected (90%) 

than tackles made (66%). 77 
tackles were not detected; 

majority of these (74%) were 

classified as low intensity. 
 

MinimaxX versus observed play 

event showed detection of 1578 

events in the four matches. Of 
the 1510 events (68 not captured 

on video) only 18% were 

verified as tackles, the other 
82% were incorrectly identified. 

Fifty-seven percent of these 

were from contested ball 
situations. Of the 1510 events, 

385 (25%) detected events 
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where no contact was evident.  

Koda et al. [29] Baseball, throwing Five male volunteers 

(two of whom were 
former professional 

baseball players) 

ADXL193 (Analog 

Devices, Norwood, 
USA), ADXL320 

(Analog Devices, 

Norwood, 
Massachusetts, USA) 

(both accelerometers); 

Murata ENC03M 

(Nagaokakyo, Kyoto, 
Japan), Microstone 

MG3-01Ab (Nagano, 

Nagano, Japan) (both 
gyroscopes) 

Two sensors mounted on 

subjects (forearm and upper 
arm) who were asked to perform 

pitching motion several times 

each. All trials analysed using 
Vicon systems. 

Body mounted sensor indicate 

use to analyse motion of arm 
swing, flexion/extension of 

elbow and hanging of arm 

during pitching motion. Data 
used to estimate trajectories of 

throws and show agreement 

from position measured from 

Vicon, although it was 
suggested that body acceleration 

had possibility to cause error. 

Kelly et al. [30] Rugby Union, collision Seven elite Rugby 

Union players game data 

used for testing models. 
Four players assisted 

creation of classifiers of 

tackle and non-tackle 
during training. 

SPI Pro (GPSports 

Systems, Canberra, 

Australian Capital 
Territory, Australia) 

Device worn in purpose built 

harness located between 

shoulder blades. Indicators 
drawn from changes in temporal 

pattern and individual 

acceleration planes spanning 
from before to after the collision. 

Other features included impact 

peaks in accelerometry signals. 

Artificial learning models used. 
Analysed 4 models to detect 

contact: learning grid, support 

vector machine (static window), 
support vector machine (impact 

region) and hidden conditional 

random field. Models were 
selected to learn the relationship 

between source and target data.  

Automatically detected 

collisions were compared to 

manually labelled collisions and 
a set of performance measures 

classified using true and false 

positives and true and false 
negatives. Precision and recall 

analysis of results was also used. 

Learning grid method provided 

greatest number of true positives 
with strong precision and recall 

scores, with static window 

features providing low precision 
and recall scores.  
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McNamara et al. [31] Cricket, fast bowling Twelve highly-skilled 

bowlers, ten 

professionals (two 
international, eight first 

class) and two in first 

grade competition. 

MinimaxX S4 (Catapult 

Sports, Melbourne, 

Victoria, Australia) 

Participants were asked to 

execute normal bowling training 

to a batter in a net situation, and 
then perform a series of non-

bowling events such as run 

throughs ending in a single 
bound and run through with a 

return throw whilst wearing a 

microtechnology unit in a small 
vest located on their upper back. 

Competition events were also 

recorded using five bowlers. The 

aim of the study was to develop 
an algorithm to automatically 

detect fast bowling events. 

Results from this study proved 

the unit used accurately detected 

fast bowling events using the 
algorithm. The unit provided 

very strong sensitivity for 

counting bowling events in 
training (99.0%) and 

competition (95.0%) using elite 

fast bowlers. The unit was also 
able to detect non-bowling 

events, although better 

performance was observed in 

training (98.1%) as opposed to 
competition (74.0%). 

 

AFL – Australian Football League 
GPS – Global positioning system 

IMU – Inertial measurement unit  

MEMS – Microelectromechanical sensors
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Table 3.  Summary of results from studies investigating sport-specific movements using wearable measurement sensors within water sports. 

 602 

Study 
Sport and sport 

specific movement 
Sample Microsensor used Method Findings 

Beanland et al. [32] Swimming, stroke count 

of butterfly and 
breaststroke 

Twenty-one high level 

participants (12 males 
and nine females)  

MinimaxX S4 (Catapult 

Sports, Melbourne, 
Victoria, Australia) 

Criterion validation study. 

Swimmers completed three 100 
metre efforts in outdoor pool 

wearing GPS device with 

integrated triaxial accelerometer 

located on the head to obtain 
mid-pool velocity and stroke 

count. Video footage of each 

effort was captured allowing 
velocity and stroke count to be 

obtained. 

Strong correlations between 

stroke count observed on video 
and data gathered from the unit 

(r>0.99 for butterfly; r>0.98 for 

breaststroke). Acceleration data 

provided clear pattern of 
undulatory and cyclical 

mechanics of breaststroke and 

butterfly body position. 

Dadashi et al. [33] Swimming, front crawl Eleven elite swimmers 

(six male, 5 female) and 
nineteen recreational 

swimmers (twelve male, 

seven female) 

Physilog IMU 

(BioAGM, La Tour-de-
Peilz, Vaud, 

Switzerland) 

Each swimmer equipped with a 

single inertial sensor located on 
sacrum. SpeedRT was attached 

to waist of swimmers just 

beneath lower end of the sensor. 
Swimmers completed 

consecutive twenty-five metre 

trials increasing in velocity from 

70% to 100%. 

Variability assessment showed 

the range of velocity between 
inertial sensor and SpeedRT was 

less than 3.9%.  

Dadashi et al. [34] Swimming, front crawl Seven well-trained 

national level swimmers 

(5 male and 2 female) 

Physilog IMU 

(BioAGM, La Tour-de-

Peilz, Vaud, 
Switzerland) 

Waterproof units placed on both 

forearms and sacrum of 

swimmer whilst performing 
three 300 m trials. Verbal 

instructions given during trial 

(e.g. glide more or less) in order 

to perform each trial under 
different co-ordination mode to 

test system in broad range of 

Adaptive change algorithm 

applied to inertial signals to 

detect phases of arm stroke 
using peak of angular velocity 

curve. Study validated 

algorithms providing automated 

feedback of stroke.  
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coordination. Swim speed was 

controlled using Aquapacer. All 

trials filmed underwater from 2 
angles. 

Fulton et al. [35] Swimming, freestyle Twelve Paralympic 

swimmers (eight males 
and four females) 

MiniTraqua (version 5, 

Australian Institute of 
Sport, Canberra, 

Australian Capital 

Territory, Australia) 

Sensors worn on the thighs of 

participants. Swimmers 
performed a maximal-effort 

100m freestyle swim time-trial 

and a 100m kicking only time-

trial within 24 hours of each 
other. All trials were filmed 

underwater from one angle. 

Using an algorithm to detect 

swimming movements, strong 
correlations of 0.96 for 

swimming trials and 1.00 for 

kicking only trials were found 

between video and microsensor. 
Gyroscope traces of troughs 

allowed for semi-automated 

analysis of trials. Standard error 
of kick count validity was found 

to be higher in swimming trials 

(coefficient of variation 5.9%) 

than in kicking only trials 
(coefficient of variation 0.6%).  

Fulton et al. [36] Swimming, freestyle Fourteen Paralympic 

swimmers (eight males 
and six females) 

Single inertial system 

containing triaxial 
accelerometer and 

gyroscope. 

Sensors were worn on the calf of 

the dominant leg to quantify 
kick-count and kick-rate. 

Swimmers performed 100m 

freestyle swimming and 100m 

kicking only time-trials.  

Small to moderate decreases in 

kick rate were associated with 
reductions of swimming speed. 

Sensor identified kick-rate 

differences and temporal pattern 

changes between the 2 trials. 

James et al. [37] Swimming, front crawl Female triathlete MEMS triaxial 

accelerometers, MEMS 

pitch, yaw and roll 
gyroscopes. 

Three accelerometers were 

placed on forearm, lower back 

and lower leg. Participant 
completed three; two lap trials at 

two race pace settings: 400m and 

100m, respectively. 

Data analysed using MATLAB 

(Massachusetts, USA). 

Primarily used accelerometer 
data from medial-lateral axis for 

event identification of 

movements. Results reported 

distinct classification of hand 
entry, glide, catch and recovery 

phases of front crawl from 
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accelerometer trace. Spikes from 

the trace results made lap data 

identifiable allowing for 
potential future ability for 

automatic detection. 

Jensen et al. [38] Swimming, stroke 
classification and turn 

detection 

12 German 2nd league 
swimmers (five female, 

seven male) 

SHIMMER sensor 
platform (Dublin, 

Leinster, Ireland) 

Sensor node placed on the 
occiput of subject underneath 

swimming cap. Subjects were 

required to swim 200 metre 

medleys within 80% of their best 
time. Pattern recognition 

methods used for turn and 

swimming style detection. 

Demonstrated a high accuracy 
of turn events and swimming 

styles with a head worn 

kinematic sensor. Swimming 

style classification returned 
results of 95%. 

Misclassifications were 

registered for the butterfly and 
breaststroke swimming styles. 

Turn detection had an overall 

classification rate of 99.8%; 

algorithm detected a single 
misclassified turn. 

Stamm et al. [39] Swimming, push-off Seven male swimmers Microtechnology not 

reported 

Sensor was taped to lower back 

of swimmers along with SP5000 
tether. Each swimmer used their 

feet to push-off, and once in the 

glide position, remained in the 

same relative body position until 
out of breath or no longer 

moving forward. Twelve total 

repetitions were performed at 
three effort levels (slow, medium 

and fast).  

Raw acceleration data converted 

into gravitational units. Near 
perfect correlation (r=0.94) 

between tether and sensor 

derived velocity.  Single inertial 

sensor offered a valid 
measurement method of push-

off velocity. 

GPS – Global positioning system 

IMU – Inertial measurement unit  
MEMS – Microelectromechanical sensor 
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Table 4. Summary of results from studies investigating sport-specific movements using wearable sensors within snow sports. 

 

Study 
Sport and sport 

specific movement 
Sample Microsensor used Method Findings 

Chardonnens et al. 

[40] 

Alpine skiing, 

comparison of cross-
over and cross-under 

turns. 

Six alpine skiers (three 

professional instructors, 
three experienced skiers) 

Physilog IMU 

(BioAGM, La Tour-de-
Peilz, Vaud, 

Switzerland) 

Each skier wore four wireless 

inertial modules located on 
middle length of thighs and 

behind ski boots.  Each skier 

performed two cross-over and 

two cross-under techniques in a 
regular slope in their own skis. 

Each run was recorded by video 

camera and synchronised.  

Wearable system presented knee 

angle measurements and robust 
detection of events based on 3D 

acceleration and 3D angular 

velocity.  System showed high 

sensitivity regarding timing 
periods and allowed 

identification of parameters for 

intra-turn and the whole run. 

Chardonnens et al. 

[41] 

Ski jumping, identify 

temporal patterns of in-

run, take-off, early 

flight, stable flight and 
landing phases. 

Thirteen young ski 

jumpers from national 

ski junior team (five 

athletes used for indoor 
validation of jumping 

techniques) 

Physilog inertial 

measurement unit 

(BioAGM,  La Tour-de-

Peilz, Vaud, 
Switzerland) 

Each skier wore four IMU 

devices attached to thigh and 

shank of both legs.  Indoor 

validation of different jumping 
techniques was required. 

Athletes performed simulated 

jumps using 5 m ramp and a 
wheeled board. Forty jumps 

were recorded and analysed by 

Vicon motion capture system. 

 
For outdoor validation, thirteen 

athletes performed a maximum 

of three jumps on a HS-77 
jumping hill. Video camera 

captured all athletes and was 

analysed using Dartfish. 

Could identify temporal patterns 

of ski jumping phases using an 

inertial-based system. Relative 

system precision was calculated 
at 7% for indoors and less than 

9% for outdoor conditions. 

System automatically and 
precisely detected durations of 

three movements within a ski 

jump. System proved to be 

robust enough to accommodate 
differences in jumping durations 

between indoor and outdoor 

conditions.  

Chardonnens et al. 
[42] 

Ski jumping, 
Coordination of lower 

Thirty-three male 
athletes of different 

Physilog inertial 
measurement unit 

Five IMUs were worn by 
athletes located on thigh, and 

Demonstrated the ability of IMU 
to assess inter-segment 
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limbs and jump length 

performance 

performance level 

(twenty junior, nine 

Continental Cup, four 
World-Cup) from Swiss 

national ski jumping 

team 

(BioAGM, La Tour-de-

Peilz, Vaud, 

Switzerland) 

shank-thigh segments bilaterally 

and sacrum. Between one and 

three jumps were recorded for 
each athlete on HS-117 jumping 

hill.  Data collected from total of 

87 jumps. 

coordination of the shank-thigh 

and thigh-sacrum pairs during 

the take-off and extension in ski 
jumping using the CRP. IMU 

data of CRP showed significant 

relationship of athletes attaining 
longer jumps with those who 

had more symmetric movement 

of the thighs and sacrum.  

Harding et al. [43] Snowboarding, aerial 
acrobatics 

Ten athletes MinimaxX S4 (Catapult 
Sports, Melbourne, 

Victoria, Australia) 

Sensor was situated 
approximately 5 cm to the left of 

spine. Athletes wore unit during 

training of 80 m half-pipe runs. 
Video footage of training was 

analysed using Dartfish 

software. Data of 216 acrobatic 

manoeuvres was collected. 

Mathematically-derived 
algorithms used to automatically 

detect air-time and air-angle to 

measure rotational magnitude of 
acrobatic manoeuvres (180, 360, 

540, 720 or 900 degrees of 

rotation).   

Marsland et al. [44] Cross country skiing, 

movement patterns and 

techniques 

Two groups of 

participants: 

international group 
(three male, one female) 

and Australian group 

(three male, one female) 

MinimaxX S4 (Catapult 

Sports, Melbourne, 

Victoria, Australia) 

Participants wore single micro-

sensor unit and were filmed 

using a stationary camera from 
side-on performing classified ski 

techniques. Skiers performed 

sessions lasting three to four 

minutes per athlete and 
instructed to ski at “moderate 

intensity slightly faster than their 

normal easy distance skiing 
pace.” 

The microsensor was found to 

be useful in identifying cyclical 

movement patterns of major ski 
techniques. A combination of 

inertial data enabled skiing 

actions such as kicking to be 

clearly identified. 

CRP – Continuous relative phase 

IMU – Inertial measurement unit  

MEMS – Microelectromechanical sensor
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FIGURE LEGENDS 

Figure 1. Equation used to calculate ‘Player Load’ using the MinimaxX microtechnology 

unit. 

 

where 603 
𝑎𝑦 = 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 (𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟 − 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟) 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 604 
𝑎𝑥 = 𝑆𝑖𝑑𝑒𝑤𝑎𝑦𝑠 (𝑚𝑒𝑑𝑖𝑎𝑙 − 𝑙𝑎𝑡𝑒𝑟𝑎𝑙) 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 605 
𝑎𝑧 = 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 606 

 

Figure 2. Flowchart of the selection process for inclusion of articles in the systematic review 

  607 
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Figure 1.  

𝑃𝑙𝑎𝑦𝑒𝑟 𝑙𝑜𝑎𝑑 =  √
(𝑎𝑦1 − 𝑎𝑦−1) + (𝑎𝑥 − 𝑎𝑥−1) + (𝑎𝑧 − 𝑎𝑧−1)

100
 608 
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Figure 2. 

 




