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Abstract 24 

Analysing performance in competitive environments enables identification of key 25 

constraints which shape behaviours, supporting designs of more representative 26 

training and learning environments.  In this study, competitive performance of 244 27 

elite level jumpers (male and female) was analysed to identify the impact of candidate 28 

individual, environmental and task constraints on performance outcomes. Findings 29 

suggested that key constraints shaping behaviours in long jumping were related to:  30 

individuals (e.g., particularly intended performance goals of athletes and their impact 31 

on future jump performance); performance environments (e.g., strength and direction 32 

of wind) and tasks (e.g., requirement for front foot to be behind foul line at take-off 33 

board to avoid a foul jump). Results revealed the interconnectedness of competitive 34 

performance, highlighting that each jump should not be viewed as a behaviour in 35 

isolation, but rather as part of a complex system of connected performance events 36 

which contribute to achievement of competitive outcomes. These findings highlight 37 

the potential nature of the contribution of performance analysis in competitive 38 

performance contexts. They suggest how practitioners could design better training 39 

tasks, based on key ecological constraints of competition, to provide athletes with 40 

opportunities to explore and exploit functional intentions and movement solutions 41 

high in contextual specificity. 42 
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Performance analysis in sport competition provides a quantitative link 52 

between application, science and theory through an objective audit of athlete or team 53 

behaviours (Hughes & Bartlett, 2002; McGarry, 2009). Performance is traditionally 54 

described through evidence gained from notational analysis using competition, 55 

technical and tactical indicators, as well as biomechanical technique descriptors 56 

using kinematic and kinetic variables. In sports like track and field, performance 57 

analysis has predominantly taken the form of movement analysis. For example, in 58 

long jump, most analyses have been driven by biomechanical (e.g., Bridgett & 59 

Linthorne, 2006; Hay, 1993) and motor control research (e.g., Glize & Laurent, 60 

1997; Montagne, Glize, Cornus, Quaine, & Laurent, 2000) in controlled, 61 

experimental or training environments (for an exception see Hay, 1988). Whilst 62 

these studies have increased understanding of performance variables, insufficient 63 

attention has been paid to analysing how long jump performance under the specific 64 

constraints of competition environments might impact self-regulation in athletes. 65 

Performance analysis, investigating competition behaviours, could enrich 66 

understanding of self-regulatory interactions of athletes with the environment during 67 

practice, revealing links between strategies, psychological states, emotions and 68 

actions in individual athletes (Anderson, 2018; Hughes & Bartlett, 2002).  69 

With a large range of variables available to analyse during long jump 70 

competition performance, it is important that selection and interpretation of data are 71 

guided by an appropriate theoretical framework. One proposed framework is 72 

ecological dynamics which has enhanced the understanding of performance and 73 



learning in a variety of sport contexts (Araújo, Davids, & Hristovski, 2006; Vilar, 74 

Araújo, Davids, & Button, 2012; Warren, 2006). Ecological dynamics proposes how 75 

human behaviour emerges through continuous interactions with affordances 76 

(opportunities for action) available during performance, as multiple constraints act 77 

on the (athlete-environment) system (Araújo et al., 2006; Araújo, Davids, & Passos, 78 

2007; Gibson, 1979), providing rich information for self-regulation.  Adopting this 79 

theoretical framework to guide the analysis and interpretation of performance in long 80 

jump, moves performance analysis beyond merely documenting discrete variables 81 

from isolated events within competition.  Such an approach  allows for the 82 

recognition of the conditioned coupling evident in dynamic performance 83 

environments where constraints are deeply intertwined to shape athlete performance 84 

(Vilar et al., 2012). Practically, identifying these constraints provide practitioners 85 

with the opportunity to enhance the development of representative training designs 86 

where intentions, perceptions and actions emerge in faithful simulations of a 87 

performer’s actions in competition (Pinder, Davids, Renshaw, & Araújo, 2011).  88 

Current empirical research on how ecological dynamics can enrich 89 

performance analysis highlights the unique interactions of individual, environmental 90 

and task constraints that shape the emergence of athlete performance behaviours 91 

(Travassos, Duarte, Vilar, Davids, & Araújo, 2012; Vilar, Araújo, Davids, & Bar-92 

Yam, 2013; Vilar et al., 2012). Previous research on personal constraints suggest that 93 

a key variable that shapes the perception-action couplings of athletes is specific 94 

intentions during performance. Athlete intentionality concerns the adoption of 95 

specific performance goals (i.e., winning a competition, making the podium, 96 

qualifying for a final, jumping conservatively to avoid a 'no-jump'), constrained by 97 

the particular needs, wishes and desires of an athlete at a particular point in time 98 



(Araújo, Davids, & Renshaw, 2018). To exemplify, intentions to make a ‘safe’ jump 99 

or a jump for maximal distance clearly influence running velocity and foot 100 

placement error on the take-off board (Bradshaw & Sparrow, 2000; Maraj, Allard, & 101 

Elliot, 1998). This practical example illustrates how athletes might deliberately adapt 102 

movement behaviours in order to complete a task in a specific way, related to current 103 

performance goals or competitive needs. The successful (or unsuccessful) execution 104 

of specific performance strategies is likely to impact future jump performance as the 105 

athlete adapts to his/her emerging needs in an unfolding competitive event, with 106 

interconnected performance trials. Each jump within a competition comprises a 107 

complex system, a series of connected events to influence overall competitive 108 

performance outcomes (Renshaw & Gorman, 2015). This complex system of 109 

competitive jumps can be perturbed by emerging cognitive-emotional-physical 110 

demands at a specific performance event (Headrick, Renshaw, Davids, Pinder, & 111 

Araújo, 2015).   112 

Environmental constraints, including physical (i.e., wind, ambient light, 113 

temperature, altitude, air density) and social variables (i.e., family support, peer 114 

groups, an evaluating audience and cultural norms) can also influence athletic 115 

performance. In long jumping, the influence of wind speed and direction on jump 116 

performance is unique as stability of running and jump components can be perturbed 117 

during task execution. Mathematical modelling has suggested influences on long 118 

jump distance of between 0.08-0.12 m for a 1 m/s increase or decrease in wind 119 

velocity (de Mestre, 1991; Ward-Smith, 1985). The effects from drag during the 120 

aerial phase and running velocity during the approach run are primary causes of an 121 

increase in jump performance (Ward-Smith, 1985). The influence of wind on jump 122 

performance is compounded by sport regulations preventing a change in the 123 



direction of an athlete's run-up if there is a change in weather conditions during 124 

competition (Competition Rules 2014-2015, 2013). This type of environmental 125 

constraint emphasises the importance of attunement to potential variability in 126 

performance conditions when preparing for competition by elite athletes.  127 

Task constraints are more specific to performance contexts than 128 

environmental constraints (Davids, Button, & Bennett, 2008) and include the rules of 129 

a sport. In long jumping, the key rule is the requirement to keep the front foot behind 130 

the take-off line to register a legal jump, constraining run-up strategies. Research on 131 

the run-up approach in long jumping (e.g., Lee, Lishman, & Thomson, 1982; 132 

Montagne et al., 2000) has demonstrated that the presence of the take-off board, in 133 

comparison to jumping conditions with no take-off board, led to changes in foot 134 

placement throughout the entire run-up as well as lower levels of footfall variability 135 

(Maraj, 1999). The need to intercept an object or surface, such as a 20cm wide take-136 

off board, when completing a task nested at the end of a run-up (i.e., jumping) has 137 

important implications for training design. Gait regulation strategies in run-ups with 138 

the absence of a nested jumping task show few similarities with performance in tasks 139 

requiring a jump at the end (Bradshaw & Aisbett, 2006; Glize & Laurent, 1997). 140 

Identifying interacting constraints that shape exploration and utilisation of 141 

affordances (opportunities for action) in competition provides practitioners with a 142 

better understanding of the performance environment, thereby enhancing their 143 

capacity to design more effective practice tasks. Ecological dynamics proposes how 144 

training environments could be designed to provide athletes with opportunities to 145 

attune and calibrate their intentions, perceptions and actions in the landscape of 146 

affordances representative of competitive performance (Pinder et al., 2011). Such 147 

learning designs can enhance athlete adaptation to the dynamics of a competitive 148 



performance environment, ready to self-regulate their behaviours as a competitive 149 

event unfolds. Currently, there is limited research investigating the constraints of 150 

competition in long jumping and there is a need for a more in-depth analysis of 151 

performance in elite long jump competitions. Consequently, this study aimed to 152 

investigate how performance analysis, under the framework of ecological dynamics, 153 

can lead to the identification of more contextual information for the design of 154 

practice environments. These sources of information could better reflect the 155 

intertwined interactions that emerge in between athlete intentions, perceptions and 156 

actions in adapting to changing event conditions. Elite level long jumping will be 157 

used as the exemplar, with key individual, environment and task constraints 158 

identified through the statistical analysis of elite long jump competitions held 159 

between 1999 and 2016. These competitions will include Olympic Games, World 160 

Championships and Diamond league competitions.  161 

 162 

Methods 163 

Results from 108 (men = 56; women = 52) elite level long jump competitions 164 

were obtained from publicly available online databases (www.iaaf.org.au & 165 

www.diamondleague.com). These competitions included Diamond League 166 

competitions staged between 2011-2016 (men = 42; women = 39) and World 167 

Championship (men = 9; women = 8) and Olympic Game (men 5; women = 5) 168 

competitions between 1999-2016. These events covered a total of 244 athletes 169 

(male= 140; female=104) with 5 393 jumps (male = 2783; women = 2608) available 170 

for analysis. Two jumps under 2 m were excluded as outliers in the men’s dataset as 171 

they were not reflective of a genuine attempt at a jump at that performance level. 172 

http://www.iaaf.org.au/
http://www.diamondleague.com/


Only performances of athletes in competitions where all wind (m/s) and horizontal 173 

jump distance (m) data were available, were included in the analysis. 174 

Candidate variables that may potentially impact on performance were 175 

selected using an ecological dynamics rationale and the experiential knowledge of 176 

elite long jumping coaches identified in previous research (e.g., Greenwood, Davids, 177 

& Renshaw, 2012) (Table 1). For example, wind was selected as a candidate 178 

environmental variable, since mathematical modelling has suggested that a 1m/s 179 

increase or decrease in wind velocity has a 0.08-0.12 m impact on jump distance in 180 

long jump (de Mestre, 1991; Ward-Smith, 1985). The conceptualisation that each 181 

jump forms a part of a complex system, formed by a series of connected events 182 

(Renshaw & Gorman, 2015), supports the inclusion in the analysis of performance 183 

variables including previous round foul, round 1 foul, distance of round 1 jump, 184 

medal position after previous foul, top 8 previous round and previous round jump 185 

distance.  It was predicted that these variables might impact the intentions or strategy 186 

implemented by athletes throughout a competitive event, and subsequent movement 187 

(re)organisation, depending on their competitive needs at a specific point in time 188 

(Bradshaw & Sparrow, 2000; Maraj et al., 1998).  189 

#### Table 1 near here #### 190 

To determine the effects of competition on jump distance, descriptive 191 

statistics were calculated for each competition type with median jump distance 192 

values compared using a Kruskal-Wallis test with a Bonferroni correction for 193 

multiple comparisons (p < .001). Effects of year of performance on jump distance 194 

was calculated using multiple linear regression (p < .001) and effects of round on 195 

jump distance was determined using analysis of variance. Post-hoc procedures 196 



(Tukey’s HSD) determined where differences existed if statistically significant 197 

differences were found. 198 

To determine the variables that best predicted horizontal distance jumped, a 199 

linear mixed model with main effects, interactions and random intercepts was 200 

constructed. Univariate tests were first conducted to determine variables of 201 

significance. Variables tested for statistical significance appear in Table 1 (excluding 202 

‘Previous round jump distance’). These variables were explored in order of 203 

significance to determine the most parsimonious model explaining the most 204 

variability and were assessed using Aikake’s Information Criterion (AIC). Two-way 205 

interactions only were considered for the purposes of the analysis. Statistical 206 

significance level was set at p = .05.   207 

Descriptive statistics were calculated on jump classification (legal and foul 208 

jumps) with the effects of competition, round and time (years), on foul jumps made, 209 

determined using chi-square test for association and effect sizes. To determine 210 

variables which best predicted foul jumps, binary logistic regression was used. 211 

Variables included in the regression calculation were identical to those used in 212 

predicting jump distance with the addition of ‘Previous round jump distance’.   213 

Results 214 

Table 2 provides descriptive statistics for jump distance and jump 215 

classification across all competitions for both men’s and women’s competitions. 216 

Multiple linear regression showed a statistically significant effect of the year of the 217 

competition (p < .001) with mean distance jumped decreasing by 1.2 cms per year 218 

for both men and women. The frequencies of foul jumps showed a significant annual 219 

effect in women’s competitions only, but the effect size was small (χ2 = 25.6, p = 220 

.019, phi = 0.099). 221 



####   Table 2 near here #### 222 

Table 3 provides descriptive statistics of the effects of round on distance 223 

jumped and foul jumps recorded for male and female competitions. Analysis of 224 

variance demonstrated a significant effect of round (F (5, 1931) = 5.425, p = .003) on 225 

distance jumped for male competitions only. Post hoc testing indicated significant 226 

differences in distances jumped between Round 1 and 2 (p = .005), Round 1 and 3 (p 227 

= .008), Round 1 and 4 (p = .000) and Round 1 and 6 (p = .004). Overall, the number 228 

of foul jumps was significantly different between rounds (χ2 = 17.9, p = .003) for 229 

female competitions only, with a small effect size (Phi = 0.083). For both men and 230 

women, total percentage of fouls was higher in the last three rounds (men: 31.49% & 231 

women: 32.45%), compared to the first three rounds (men: 29.66% & women: 232 

26.85%). 233 

####   Table 3 near here #### 234 

Data on effects of competition on jump distance and classification for both 235 

male and female competitions are provided in Table 4. For men, median (non-normal 236 

distribution) jump distance for Diamond League (7.82 m) was significantly (p < 237 

.001) shorter than World Championship (7.99 cm) and Olympic Games (8.03 cm). In 238 

the female competitions, median distances (p < .001) and overall number of foul 239 

jumps were significantly different between competition types (Pearson Chi Square = 240 

10.87, p = .004, Phi = 0.065). 241 

#### Table 4 near here #### 242 

In determining the best predictors of jump distance in male competitions, the 243 

main effects model showed a significant difference of competition type between 244 

Olympic Games and both Diamond Leagues and World Championships. Estimated 245 

marginal means revealed a larger statistical effect for Diamond Leagues with mean 246 



jump distance value 16.8 cm (S.E. 0.64) less than that observed in Olympic Games 247 

with World Championships found to be 8.6 cm (S.E.0.70) less. Of the other 248 

variables, the largest effect on jump distance was found to be Round 1 jump distance 249 

(coefficient = 0.374). Effects of wind (1 m/s increase in tailwind or reduction in 250 

headwind) increased jump distance by 4.2 cm.  In the interactions model, ‘in medal 251 

position after last round’ with competition type, was significantly different between 252 

the Olympic Games and Diamond Leagues (p = .006) only. Estimated marginal 253 

means suggested that a jump into a medal position increased the value of the 254 

subsequent round jump distance. Interactions of ‘Distance of Round 1 jump’ with 255 

competition type were also significantly different between the Olympic Games and 256 

the World Championships (p < .001). 257 

 For the women’s competitions, a statistically significant difference was 258 

found between jump distance observed in Diamond Leagues and Olympic Games, 259 

with Diamond Leagues values being 12.8 cm shorter (S.E. 0.035) than Olympic 260 

Games, based on the estimated marginal means. Other variables found to be of 261 

significance in the main effects model were ‘Round 1 jump distance’ (coefficient = 262 

.219), ‘Medal position after previous round’ (coefficient = 0.113), and the effect of 263 

wind (5 cm increase in jump distance for 1 m/s increase in tailwind or reduction in 264 

headwind).  No variables within the interactions model were significant.  265 

In determining the best predictors of foul jumps, no factor or covariate was 266 

predictive of a foul jump in male competitions. Despite this observation, two factors 267 

in the current model appear to increase the odds of a given jump being a foul, albeit 268 

not statistically significantly. If a Round 1 jump was a foul, then the odds of the next 269 

jump being a foul increased by a factor of 1.67 - regardless of the round. 270 

Additionally, if the previous jump had been a foul, the odds of the next jump 271 



resulting in a foul, was 1.56 higher than if it had not been a foul. For female 272 

competitions, initial investigation showed that practically every factor measured was 273 

a significant predictor of foul jumps, but the final, most parsimonious model 274 

contained three terms: round, distance of first jump and previous jump being a foul. 275 

The odds of foul jumps (compared to round 1) are significantly increased in rounds 4 276 

(OR 1.615) and round 5 (OR 1.530). For distance of first round jump, a unit increase 277 

(metre) in distance increased the odds of the next jump being a foul by a factor of 278 

1.89. Thus, if an athlete made a first jump of 6.50 m, the odds of any remaining jump 279 

in the competition being a foul were increased by a factor of 1.89, compared to a 280 

competitor who made a first jump of 5.50 m. Furthermore, if an athlete recorded a 281 

foul in the previous round, then the odds of recording a second foul in succession 282 

were increased by a factor of 1.50.  283 

Discussion 284 

In this study, we sought to identify how the analysis of competition data, 285 

framed by concepts from ecological dynamics, can provide a more nuanced 286 

understanding of long jump performance. This relationship between performance 287 

analysis and key tenets of the theory of ecological dynamics could assist 288 

practitioners in designing more effective training environments to reflect the 289 

intertwined interactions between intentions, perceptions and actions of athletes in 290 

performance.  Analysis of competitive performance data of elite male and female 291 

long jumpers revealed that elite long jumping is defined by a mean jump distance of 292 

7.81 m for men and 6.48 m for women. Interestingly, mean jump distance decreased 293 

by 1.2 cm per year for both men and women. In classifying jump outcomes, the 294 

percentage of jumps deemed fouls was 30.40% and 29.19%, respectively, for men 295 



and women. The stagnation of long jump performance over time raises important 296 

questions, given advances in technology and sport sciences (e.g., Balague, Torrents, 297 

Hristovski, & Kelso, 2016; Pluijms, Canal-Bruland, Kats, & Savelsbergh, 2013) and 298 

potentially point to the need to carefully consider training designs to enhance 299 

performance.  300 

Findings revealed how continuous interactions of individual, task and 301 

environmental constraints influenced elite long jumping performance. The personal 302 

constraint of an athlete's (tactically defined) intentions continuously shape 303 

perception-action couplings during competition. It is these intentions, embedded 304 

within specific performances, that frame the interactions of athletes with task and 305 

environmental constraints to facilitate adaptive behaviours (Araújo et al., 2018). For 306 

example, the lowest value for mean jump distance and lowest percentage of fouls 307 

found in Round 1 suggests athlete intentionality on the first jump could be to record 308 

a ‘safe’ jump. Round 1 jumps were also significantly shorter than jumps in Rounds 309 

2, 3, 4 and 6 in the men’s competitions. The notions of a ‘safe’ jump could be 310 

interpreted as an athlete's deliberate adaptation of perception-action couplings (i.e., 311 

decrease in run-up velocity) to intentionally match his or her specific needs to the 312 

competition demands at specific points in time (Araújo et al., 2018; Maraj et al., 313 

1998). The importance of the first round was also highlighted by its role in 314 

predicting jump distance and fouls in future rounds across the competition. This 315 

relationship between jump performances demonstrates that each jump is connected 316 

and forms an event (Gibson, 1979) influencing emergent jump performance 317 

(Renshaw & Gorman, 2015). The outcome of round 1 is, therefore, likely to impact 318 

the athlete's intentions in subsequent rounds, depending on the needs of the athlete at 319 

that particular point in the competition. Intentions, and hence perception-action 320 



couplings, will be strongly influenced by an athlete's own goals, competitors’ 321 

performances and ultimately the rules of the sport (only the top 8 athletes at the end 322 

of round 3, get three further jumps). For example, after a round 1 foul, an athlete 323 

may place more emphasis on making a ‘safe’ jump (i.e., speed/accuracy trade-off) in 324 

round 2 in order to increase the chances of making a legal jump that enables him/her 325 

to receive three additional jumps after round 3. This conceptualisation of emergent 326 

behaviours in long jump is an important development in better understanding 327 

performance as a series of complex interconnected events rather than seeing training 328 

as a series of isolated jumps, with important implications for training design.  329 

The environmental constraint of wind was identified as a key influence on 330 

long jump competitive performance. A 1 m/s increase in tailwind (or decrease in 331 

headwind) increased jump distance for both women (by 5.0 cm) and men (by 4.2 332 

cm). Previous research has attempted to determine the aerodynamic effects of wind 333 

on jump performance (de Mestre, 1991; Ward-Smith, 1985) using mathematical 334 

modelling. However, to date, no research has reported in-competition data.  335 

Evidence on the impact of wind as an environmental constraint on jump performance 336 

highlights the relevance of training designs which include experiences in variable 337 

wind conditions.  338 

As expected, a major task constraint is rule-based: that a 'no jump' is recorded 339 

unless the take-off foot is behind the foul line. Satisfying this influential constraint 340 

shapes athletes’ behaviours and actions in seeking to intercept the take-off board 341 

with the front foot. Foul jumps (at any time in a competition) were seen to increase 342 

the odds of subsequent fouls later in the competition. With almost a third (men: 343 

30.40% and women: 29.19%) of jumps being classified as fouls, each athlete’s 344 

tactical behaviours are influenced at any point in competition by these ‘no’ jumps.  345 



For example, a foul jump in Round 1 increases pressure on an athlete to accurately 346 

hit the take-off board in Rounds 2 and 3, whilst also needing to jump for distance to 347 

qualify for the final three jumps. This increase in psychological and emotional 348 

demands, along with the known implications for run-up velocity and foot placement 349 

error on the take-off board when jumping for distance, defines how interactions 350 

between different constraints impact behaviour in elite long jump performance.  351 

The findings of the current study have important implications for the design 352 

of representative training environments. Long jump coach education resources (e.g., 353 

Brown, 2013) typically fail to consider how competition behaviours can be invited 354 

through the design of training environments. Simulating conditions of competitive 355 

performance allows practitioners to model environmental and task constraints to 356 

shape intentions, perceptions and actions influencing performance in elite long 357 

jumping. Our analyses of elite competition revealed that the most influential 358 

interactions were between: athlete intentionality, effect of wind (direction and speed) 359 

and rules of the sport.  360 

Identification of athlete intentions in the form of competition strategies 361 

highlights the need for training to focus on adaptations needed to achieve specific 362 

outcome goals, with athletes training in a series of connected jumps that replicate the 363 

demands of competition. This form of 'within-session periodisation' can be achieved 364 

by the creation of specific ‘vignettes’ for athletes, that seek to simulate the physical, 365 

emotional and psychological demands of competitive performance environments 366 

(Headrick et al., 2015). An exemplar scenario could focus on the context when an 367 

athlete has fouled in the first two rounds and must record a jump of sufficient 368 

distance in round 3 to qualify for a further three jumps. In this way, the reduction of 369 

emphasis on constant repetition in some practice sessions can have a functional value 370 



of highlighting focus on a single performance trial, which simulates competition 371 

conditions. In this way practice task design could involve 'repetition without 372 

repetition' as advocated by Bernstein (1967), for example, challenging athletes to 373 

calibrate their actions (Van Der Kamp & Renshaw, 2015) to exploit variable wind 374 

speeds and direction. Asking athletes to complete the run-up and jump in variable 375 

wind speeds and direction during training will facilitate their attunement to variable 376 

weather conditions and adaptation of movement patterns accordingly. Exploitation of 377 

this environmental constraint in training will promote 'dexterity' (Bernstein, 1967) in 378 

athletes and simulate the level of uncertainty that exists in competitive performance. 379 

The high percentage of fouls across all competitions for both men and women, 380 

suggests that there may be a failure to give due emphasis to the importance of legal 381 

jumps in practice conditions (e.g., Brown, 2013). Whilst allowing fouls in training 382 

may increase trial repetition (practice volume) and reduce performance complexity, 383 

this approach fails to simulate the individual-environment relationships that 384 

performers forge in the competition environment (Davids & Araújo, 2010; Renshaw, 385 

Chow, Davids, & Hammond, 2010). Coaches need to recognise the take-off board as 386 

a key affordance that athletes must attune to in order to enable the development of 387 

functional perception-action couplings required in competition.  388 

 389 

Conclusions 390 

In summary, the theoretical framework of ecological dynamics suggests that 391 

a more nuanced understanding of the complexities of long jump performance could 392 

facilitate the design of more representative practice environments by practitioners. 393 

We have considered how more contextual information from competitive 394 



environments can enhance practice designs, following recent conceptualisation of the 395 

use of ‘gold standard’ data in understanding sports performance constraints 396 

(Anderson, 2018). Results from this study revealed three key constraints that shape 397 

performance behaviours in both male and female elite long jumping: (i) athlete 398 

intentionality, (ii) wind effects on run-up and jump phases, and (iii), adhering to 399 

rules of the sport. The integrated manipulation of these key constraints in training 400 

can provide opportunities for athletes to adapt to major physical and emotional 401 

demands of performance environments. The use of ecological dynamics to guide the 402 

analysis of competition data shows how performance analysis can be enhanced to 403 

enrich the understanding of athlete interactions during competition. Recognising the 404 

conditioned coupling evident in dynamic performance environments is a critical 405 

advancement in understanding movement behaviours in individual sports.  406 

Our findings suggested the need to move beyond reductionist approaches to 407 

studying long jumping, currently provided by isolated biomechanical analysis of 408 

single jumping events (Mendoza, Nixdorf, Isele, & Gunther, 2009). Future work 409 

needs to embrace the complexity of competitive long jumping and adopt a more 410 

inter-disciplinary approach to performance analysis in context. Future research could 411 

also further our understanding of influential constraints on long jump performance 412 

through accessing the experiential knowledge of expert coaches and athletes. 413 

Integrating experiential knowledge with theoretical concepts and research data 414 

would enhance understanding of interacting constraints impacting long jump 415 

performance. It would also provide a basis for analysing how key long jumping 416 

performance variables (such as in the run-up) may be shaped by competitive 417 

performance contexts. This integrated approach would reveal informational 418 

constraints that regulate athlete intentions, and perception-action couplings during 419 



run-ups in sport tasks like long jumping, cricket bowling and gymnastics vaulting 420 

(Greenwood, Davids, & Renshaw, 2014).  421 
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Tables 533 

Table 1. Competition variables and definitions 534 
 

Competition 
Variables 

Constraint 
Classification Definition 

Round Task Each competition consists of six 
rounds 

Wind Environment Measured in metres per second. 
Readings must be under 2 metres per 
second for jump to be valid for team 
selection and records 

Competition ID Environment Three competitions used for analysis 
(1) Diamond League or DL (2) 
World Championships or WC and 
(3) Olympic Games or OG 

Previous round foul Individual Previous round was classified as a 
foul 

Round 1 foul Individual Round 1 jump was classified as a 
foul 

Distance of round 1 
jump 

Individual Round 1 jump distance measured in 
metres 

Medal position after 
previous round 

Individual Athlete enters round in either 1st, 2nd 
or 3rd position 

Top 8 previous round Individual Athlete is in a Top 8 position 
entering the round. After the 
completion of Round 3, athletes in 
the top 8 positions are permitted 3 
more jumps 

Previous round jump 
distance 

Individual Previous round jump distance 
measured in metres 

 

 

 

 

 

 

 

 

 



Table 2. Jump distance and classification – men and women 535 

 

  Jump Distance Jump Classification 

 Total jumps 
analysed 

Mean 
(±S.D.) 

Median 
(IQR) 

 
Legal (%) Foul (%) 

Male 2783 
7.81 

(±0.40) 
 

7.88m 
(0.34) 

1937 
(69.90%) 

846 
(30.40%) 

Female 2607 
6.48 

(±0.35) 
6.52 

(0.33) 
1846 

(70.81%) 
761 

(29.19%) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Jump distance and classification by round – men and women 536 

Round 

Men’s Competitions 
 

Women’s Competitions 

Total Jumps 
Analysed 

Jump 
Distance (m) Jump Classification 

 

Total Jumps 
Analysed 

Jump 
Distance (m) 

Jump Classification 

Mean 

(±S.D.) 

Legal 

(%) 

Foul 

(%) 

 Mean 

(±S.D.) 

Legal 

(%) 

Foul 

(%) 

1 559 7.73 

(± 0.44) 

406 

(72.63%) 

153 

(27.37%) 

 509 6.45 

(± 0.33) 

381 

(74.85%) 

128 

(25.15%) 

2 557 7.83 

(± 0.37) 

378 

(67.86%) 

179 

(32.14%) 

 506 6.49 

(± 0.30) 

355 

(70.16%) 

151 

(29.84%) 

3 543 7.83 

(± 0.39) 

383 

(70.53%) 

160 

(29.47%) 

 501 6.47 

(± 0.35) 

373 

(74.45%) 

128 

(25.55%) 

4 380 7.87 

(± 0.35) 

269 

(70.79%) 

111 

(29.21%) 

 374 6.50 

(± 0.34) 

247 

(66.04%) 

127 

(33.96%) 

5 369 7.82 

(± 0.46) 

252 

(68.29%) 

117 

(31.71%) 

 361 6.49 

(± 0.41) 

234 

(64.82%) 

127 

(35.18%) 

6 375 7.85 

(± 0.41) 

249 

(66.40%) 

126 

(33.60%) 

 356 6.49 

(± 0.39) 

256 

(71.91%) 

100 

(28.09%) 



 

Table 4. Jump distance and classification by competition – men and women 537 

Competition 

Men’s Competitions 
 

Women’s Competitions 

Total 
Jumps 

Analysed 

Jump Distance (m) Jump Classification 
 

Total 
Jumps 

Analysed 

Jump Distance (m) Jump Classification 

Mean 
(±S.D.) Median Legal 

(%) 
Foul 
(%) 

 Mean 
(±S.D.) Median Legal 

(%) 
Foul 
(%) 

Diamond 
League 

1901 7.78 
(± 0.35) 

7.82 1337 
(70.33%) 

 

564 
(29.67%) 

 

 1833 6.44 
(± 0.35) 

6.48 1331 
(72.61%) 

 

502 
(27.39%) 

 
World 

Championships 
586 7.83 

(± 0.37) 
7.99 393 

(67.07%) 
193 

(32.93%) 
 477 6.57 

(± 0.30) 
6.60 324 

(67.92%) 
153 

(32.08%) 

Olympic Games 296 7.83 
(± 0.39) 

8.03 207 
(69.93%) 

89 
(30.07%) 

 297 6.62 
(± 0.38) 

6.67 191 
(64.31%) 

106 
(35.69%) 

 


