
Br J Math Stat Psychol. 2023;76:491–512. wileyonlinelibrary.com/journal/bmsp  491

1Institute for Learning Sciences & Teacher 
Education, Australian Catholic University, Brisbane, 
Queensland, Australia
2Faculty of  Education, The University of  Hong 
Kong, Hong Kong, China

Correspondence
Xuelan Qiu, Institute for Learning Sciences & 
Teacher Education, Australian Catholic University, 
Brisbane, Qld 4000, Australia.
Email: shqiu@acu.edu.au

Funding information
Faculty Research Fund, Faculty of  Education, The 
University of  Hong Kong

Abstract
The use of  multidimensional forced-choice (MFC) items to 
assess non-cognitive traits such as personality, interests and 
values in psychological tests has a long history, because MFC 
items show strengths in preventing response bias. Recently, 
there has been a surge of  interest in developing item response 
theory (IRT) models for MFC items. However, nearly all 
of   the existing IRT models have been developed for MFC 
items with binary scores. Real tests use MFC items with more 
than two categories; such items are more informative than 
their binary counterparts. This study developed a new IRT 
model for polytomous MFC items based on the cognitive 
model of  choice, which describes the cognitive processes 
underlying humans' preferential choice behaviours. The new 
model is unique in its ability to account for the ipsative nature 
of  polytomous MFC items, to assess individual psychologi-
cal differentiation in interests, values and emotions, and to 
compare the differentiation levels of  latent traits between 
individuals. Simulation studies were conducted to exam-
ine the parameter recovery of  the new model with existing 
computer programs. The results showed that both statement 
parameters and person parameters were well recovered when 
the sample size was sufficient. The more complete the linking 
of  the statements was, the more accurate the parameter esti-
mation was. This paper provides an empirical example of  a 
career interest test using four-category MFC items. Although 
some aspects of  the model (e.g., the nature of  the person 
parameters) require additional validation, our approach 
appears promising.
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1 | INTRODUCTION

The use of  multidimensional forced-choice (MFC) items in non-cognitive tests to measure traits such 
as career interests, values and personality has a long history (Johnson et al., 1988). Take career interest 
tests as an example. A typical MFC item is ‘Which activity do you prefer: visiting museums or attending 
parties?’, which pairs activities measuring artistic and social interests and presents them in a single item. 
Respondents are required to select their preferred activity from the two statements. There are other 
types of  MFC items with more than two statements. For example, in multidimensional ranking items, 
respondents are asked to rank several (e.g., four) statements according to their levels of  preference for the 
statements. MFC items have been found to effectively reduce response bias (e.g., acquiescence or social 
desirability) and detect faking (Murphy et al., 1993; Salgado et al., 2015). Popular tests using MFC items 
include the Jackson Vocational Interest Survey (JVIS; Jackson, 1977), the Edwards Personal Preference 
Schedule (EPPS; Ashman & Telfer, 1983), the Career Interest Test (CIT; Bartlett et al., 2016), the Allport–
Vernon–Lindzey Study of  Values (SOV; Kopelman et al., 2003), and the ipsative Occupational Personality 
Questionnaire (OPQ; SHL, 2006).

Multidimensional forced-choice items are usually scored dichotomously, with 1 being assigned to 
the statement preferred by the respondent and 0 to the non-preferred statement (analogous to 1 for 
correct response and 0 for incorrect responses in the context of  ability testing). Such items are henceforth 
referred to as dichotomous MFC items. For the example item above, the respondent gets a score of  1 if  s/
he selects ‘visiting museums’, and a score of  0 otherwise. This scoring method results in scores with a 
unique feature referred to as ipsative (from the Latin ipse: he, himself), where each individual has iden-
tical summed scores (Cattell, 1944; Meade, 2004). Ipsative scores allow comparisons of  different latent 
traits within a person, but not between persons (Meade, 2004). For example, these scores can be used to 
compare a student's distinct career interests (e.g., ‘Mary has a higher level of  social interest than artistic 
interest’). However, ipsative scores cannot be used to compare one student's career interest with anoth-
er's (i.e., it would be incorrect to say ‘Mary has a higher level of  social interest than John does’). Thus, 
researchers are sometimes reluctant to use MFC items in their tests (Matthews & Oddy, 1997).

Recently, there has been a surge of  research interest in developing item response theory (IRT) models 
to analyse MFC items. Such models can be broadly categorized into two frameworks: dominance and ideal 
point. Models developed within the dominance framework assume that the higher a person's trait level is 
and the more attractive a statement is, the greater the probability of  the person selecting the statement. 
Models in the dominance framework include Thurstonian IRT models (Brown & Maydeu-Olivares, 2011, 
2013) and the Rasch ipsative models (RIMs; Wang et al., 2016; Wang et al., 2017). The ideal point approach 
assumes that the closer locations between a person's trait and a statement's utility (attractiveness) are, the 
greater the probability of  the person selecting the statement. Examples of  models developed within the 
ideal point framework are the multi-unidimensional pairwise-preference model for multidimensional pair-
wise comparison items and ranking items (Hontangas et al., 2015; Stark et al., 2005).

Despite these attempts, nearly all existing IRT models are for dichotomous MFC items. However, MFC 
items with more than two categories are used in real tests. For instance, Brown and Maydeu-Olivares (2018) 
described MFC items that were used in their testing, which require respondents to indicate their degree 
of  preference for one statement over another by selecting one of  four categories. Figure 1 shows two 
items that are similar in form to those discussed by Brown and Maydeu-Olivares (2018). Another exam-
ple appears in Part I of  the SOV (Kopelman et al., 2003), which requires respondents to distribute three 
points over a pair according to the degree to which they prefer one statement over another. This yields 
four response patterns, namely (3,0), (2,1), (1,2), and (0,3). The MFC items in these applications yield 
more than two categories of  responses and are henceforth referred to as polytomous MFC items. This item 
format is conceived to inherit the advantages of  both MFC items and polytomous items. Specifically, 
the format consists of  statements that usually have similar levels of  social desirability, making it more 
power ful to resist the response bias than the Likert-type format. At the same time, it provides information 
about preference and intensity of  the preference, and thus is more informative than the dichotomous 
MFC format which provides preference information only. Thus, the item format is particularly useful in 
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those testing contexts in which researchers are more interested in the question ‘how strong are the pref-
erences?’ than in ‘which do participants prefer?’

Polytomous MFC items are less well understood. To the best of  our knowledge, only one model 
(Brown & Maydeu-Olivares, 2018), which is an extension of  the Thurstonian IRT model (Brown & 
Maydeu-Olivares, 2011) for ordinal preference data, treats the categories as ordinal responses. Thus, 
the present study aims to develop a new IRT model for polytomous MFC items based on a cogni-
tive modelling approach. The new model and Brown and Maydeu-Olivares's model are similar in the 
sense that both models are developed within the dominance framework, but are different in many other 
important aspects. Analogous to their Thurstonian IRT model for dichotomous MFC items (Brown & 
Maydeu-Olivares, 2011), the new model can recover the normative or absolute levels of  latent traits, albeit 
relying on the items consisting of  both positively and negatively keyed statements. By contrast, the dual 
process IRT model (DPM) aims to estimate the relative levels of  latent traits that represent construct 
differentiation, without requiring special design for paired statements in items. Moreover, as its name 
implies, the DPM assumes dual cognitive processes underlying preferential choice behaviours, whereas 
Brown and Maydeu-Olivares's model does not.

The DPM is a type of  tree-based IRT model (Böckenholt, 2012; De Boeck & Partchev, 2012) which 
has been applied to study the judgement or choice behaviours associated with Likert-type scales. However, 
the DPM focuses on preferences when respondents are presented with multiple statements, whereas 
previous tree-based models are mainly concerned with preferences for a single item. To the best of  our 
knowledge, the tree-based models have never been applied to study choice behaviours in MFC items.

The rest of  this paper is organized as follows. In Section 2 the new model is introduced and formu-
lated. In Section 3 parameter estimation for the new model using the freeware Just Another Gibbs 
Sampler (JAGS; Plummer, 2003) is presented. Section 4 reports on a series of  simulations conducted 
to assess parameter recovery under various combinations of  conditions, and summarizes the results. In 
Section 5 an empirical example is provided to demonstrate the implications and applications of  the new 
model. Section 6 concludes with a summary and discussion.

2 | THE DUAL PROCESS IRT MODEL FOR POLYTOMOUS MFC 
ITEMS

The cognitive model of  choice for decision-making describes the cognitive processes underlying human 
preferential choice behaviours. This study specifically uses the multialternative decision field theory 
(MDFT; Roe et al., 2001), because it can uniquely explain the dynamic and sequential process of  choosing 
from more than two options. In the MDFT, a person's preference for each alternative evolves by focusing 
on the most important attribute of  the options and evaluating the specific aspects of  this attribute. The 
evaluation depends on whether some options have a similar or higher utility for the attended attribute. 
Then the evaluation switches to another less important attribute and compares the aspects relevant to this 
second attribute based on the previous preference.

F I G U R E  1  Examples of  multidimensional forced-choice items that produce polytomous responses.
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Based on the MDFT, when they encounter a polytomous MFC item, respondents are assumed to first 
focus on the most important attribute of  the options (e.g., do the statements describe artistic or social 
activities?) and choose the statement they prefer from the pair based on their evaluation of  the attrib-
ute. They then decide how much they prefer the chosen statement (e.g., the specific activity). These two 
processes are referred to as the choice process and the judgement process, respectively. Figure 2 illustrates 
the dual process for polytomous MFC items with four category responses. Since this study focuses on 
MFC items, for which ties are not allowed, the items always have even numbers of  response categories. 
The initial preference responses (denoted by s or t) are indicated in rhombuses, suggesting which state-
ment is preferred in Process I (i.e., the choice process). At this stage, only dichotomous responses are 
observed. In Process II (i.e., the judgement process), for the preferred statement, a further decision is 
made in terms of  the intensity of  the preference; the outcomes are indicated in squares. For example, 
when the initial preference response is s, and a respondent decides that he or she prefers statement s much 
more than statement t, the observed response will be (3,0). Collectively, the category j = 3 will be selected.

Mathematically, responding to a polytomous MFC item can be formulated as a hierarchy of  statistical 
models for the two processes. An IRT model with dichotomous MFC items can be used for Process I 
(choice), and a conventional IRT model with dichotomous or Likert-type items can be used for Process 
II (judgement). This study uses the RIM (Wang et al., 2017) for Process I because the RIM was developed 
for multidimensional pairwise comparison (MPC) items and possesses the measurement property of  
specific objectivity (Whitely & Dawis, 1974). Specifically, let 𝐴𝐴 𝐴𝐴𝑛𝑛𝑛𝑛 = 1 denote that person n prefers state-
ment s over statement t for item i with {s, t}; then the probability of  𝐴𝐴 𝐴𝐴𝑛𝑛𝑛𝑛 = 1 under the RIM is

𝑝𝑝(𝑥𝑥𝑛𝑛𝑛𝑛 = 1|θ𝑛𝑛, 𝛿𝛿𝑠𝑠𝑛𝑛, 𝛿𝛿𝑡𝑡𝑛𝑛) =
exp((𝜃𝜃𝑎𝑎𝑛𝑛 + 𝛿𝛿𝑠𝑠𝑛𝑛) − (𝜃𝜃𝑏𝑏𝑛𝑛 + 𝛿𝛿𝑡𝑡𝑛𝑛))

1 + exp((𝜃𝜃𝑎𝑎𝑛𝑛 + 𝛿𝛿𝑠𝑠𝑛𝑛) − (𝜃𝜃𝑏𝑏𝑛𝑛 + 𝛿𝛿𝑡𝑡𝑛𝑛))
, (1)

where δsi and δti represent the overall utilities (attractiveness) of  statement s and statement t, respectively, in 
item i; θan and θbn are the relative levels of  latent trait a measured by statement s and latent trait b measured 
by statement t, respectively, for person n; and 𝐴𝐴 θ

T
𝑛𝑛 = (𝜃𝜃𝑎𝑎𝑛𝑛, 𝜃𝜃𝑏𝑏𝑛𝑛) . The θ variables represent the deviations of  

each latent trait from the mean of  D latent traits, with an extreme value representing a greater differentia-
tion level than a value close to zero. Thus, these variables reflect individuals' degree of  construct differen-
tiation (Witkin et al., 1979) such as personality differentiation (Harris et al., 2005), interest differentiation 
(Hirschi, 2009) and emotion differentiation (Barrett, 2004).

A unique and important property pertaining to the θ variables is worth noting. According to the 
definition of  ipsative measure, the sum of  the trait scores in MFC items is a constant C for every person 
(Meade, 2004), where C can be zero or a non-zero constant. Therefore, for dth dimensional trait score, 
it equals C minus the sum of  the remaining (D − 1) trait scores. Without loss of  generality, it is assumed 
that the dth dimension is the last (i.e., the Dth) dimension. As shown in Appendix S1 in the Supporting 

F I G U R E  2  Diagram of  dual process model for a four-category multidimensional forced-choice item.
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Information, the value of  C will affect the expected value (i.e., the scale origin) of  the Dth trait only, 
but will not affect its variance and covariance with other traits. As in the IRT literature where zero is 
usually arbitrarily chosen as the scaling origin, C is set to zero for the θ variables in this study. Hence, 

𝐴𝐴 𝐴𝐴𝐷𝐷𝐷𝐷 = −
∑𝐷𝐷−1

𝑑𝑑=1
𝐴𝐴𝑑𝑑𝐷𝐷 for person n.

In Process II, let znij be the outcome j of  judging the preference intensity of  person n for item i. 
For example, for a four-category item, as shown in Figure 2, there are only two outcomes for znij in this 
process. These outcomes are defined as follows:

𝑧𝑧𝑛𝑛𝑛𝑛𝑛𝑛 =

⎧
⎨
⎩

0 if 𝑛𝑛 ∈ ı1, 2#

1 otherwise
. (2)

In this definition, znij = 1 indicates that person n judges the intensity of  preference for the chosen 
statement for item i to be much more, whereas znij = 0 denotes that the intensity of  preference is a little more 
only. Any one of  the IRT models for dichotomous items can be used for this probability. For example, 
the following Rasch model (Rasch, 1960) can be used:

𝑝𝑝
(
𝑧𝑧𝑛𝑛𝑛𝑛𝑛𝑛 = 1|𝛾𝛾𝑛𝑛, 𝜉𝜉𝑛𝑛𝑛𝑛

)
=

exp
(
𝛾𝛾𝑛𝑛 + 𝜉𝜉𝑛𝑛𝑛𝑛

)

1 + exp
(
𝛾𝛾𝑛𝑛 + 𝜉𝜉𝑛𝑛𝑛𝑛

) , (3)

where γn represents the overall level of  preference intensity for person n, and ξij represents the specific 
utility of  category j for item i. A respondent tends to choose the much more category for the preferred 
statement when ξij > 0.

The Rasch model, which is a dichotomous IRT model, is used in Equation (3) because there are only 
two categories as outcomes in Process II when four-category MFC items are used. In practice, more 
response categories may be found. Figure 3 shows an MFC item with six categories. Any polytomous IRT 
model, such as the graded response model (Samejima, 1969), can be used in Process II.

Finally, the two processes are combined multiplicatively to produce the observed responses. The 
probability of  selecting category j in item i for person n can be expressed as

𝑝𝑝
(
𝑦𝑦𝑛𝑛𝑛𝑛 = 𝑗𝑗|θ𝑛𝑛, 𝛾𝛾𝑛𝑛, 𝛿𝛿𝑠𝑠𝑛𝑛, 𝛿𝛿𝑡𝑡𝑛𝑛, 𝜉𝜉𝑛𝑛𝑗𝑗

)
= 𝑝𝑝

(
𝑦𝑦(I) = 𝑥𝑥𝑛𝑛𝑛𝑛

)
× 𝑝𝑝

(
𝑦𝑦(II) = 𝑧𝑧𝑛𝑛𝑗𝑗

)
, (4)

where 𝐴𝐴 𝐴𝐴
(
𝑦𝑦(I) = 𝑥𝑥𝑛𝑛𝑛𝑛

)
 is the probability of  observing 𝐴𝐴 𝐴𝐴𝑛𝑛𝑛𝑛 in Process I, which follows Equation (1); and 

𝐴𝐴 𝐴𝐴
(
𝑦𝑦(II) = 𝑧𝑧𝑛𝑛𝑛𝑛

)
 is the probability of  observing 𝐴𝐴 𝐴𝐴𝑛𝑛𝑛𝑛 in Process II, which can follow any dichotomous or 

F I G U R E  3  Dual process model for a six-category multidimensional forced-choice item.
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polytomous IRT model (e.g., Equation 3). Equation (4) is henceforth referred to as the dual process IRT 
model (DPM) for polytomous MFC items. For illustration, when J = 4, the probabilities are as follows:

𝑝𝑝
(
𝑦𝑦𝑛𝑛𝑛𝑛 = 0|θ𝑛𝑛, 𝛾𝛾𝑛𝑛, 𝛿𝛿𝑠𝑠𝑛𝑛, 𝛿𝛿𝑡𝑡𝑛𝑛, 𝜉𝜉𝑛𝑛𝑖𝑖) = 𝑝𝑝(𝑥𝑥𝑛𝑛𝑛𝑛 = 0) × 𝑝𝑝(𝑧𝑧𝑛𝑛𝑛𝑛𝑖𝑖 = 1), 𝑖𝑖 = 0,

𝑝𝑝
(
𝑦𝑦𝑛𝑛𝑛𝑛 = 1|θ𝑛𝑛, 𝛾𝛾𝑛𝑛, 𝛿𝛿𝑠𝑠𝑛𝑛, 𝛿𝛿𝑡𝑡𝑛𝑛, 𝜉𝜉𝑛𝑛𝑖𝑖) = 𝑝𝑝(𝑥𝑥𝑛𝑛𝑛𝑛 = 0) × 𝑝𝑝(𝑧𝑧𝑛𝑛𝑛𝑛𝑖𝑖 = 0), 𝑖𝑖 = 1,

𝑝𝑝
(
𝑦𝑦𝑛𝑛𝑛𝑛 = 2|θ𝑛𝑛, 𝛾𝛾𝑛𝑛, 𝛿𝛿𝑠𝑠𝑛𝑛, 𝛿𝛿𝑡𝑡𝑛𝑛, 𝜉𝜉𝑛𝑛𝑖𝑖) = 𝑝𝑝(𝑥𝑥𝑛𝑛𝑛𝑛 = 1) × 𝑝𝑝(𝑧𝑧𝑛𝑛𝑛𝑛𝑖𝑖 = 0), 𝑖𝑖 = 2, and

𝑝𝑝
(
𝑦𝑦𝑛𝑛𝑛𝑛 = 3|θ𝑛𝑛, 𝛾𝛾𝑛𝑛, 𝛿𝛿𝑠𝑠𝑛𝑛, 𝛿𝛿𝑡𝑡𝑛𝑛, 𝜉𝜉𝑛𝑛𝑖𝑖) = 𝑝𝑝(𝑥𝑥𝑛𝑛𝑛𝑛 = 1) × 𝑝𝑝(𝑧𝑧𝑛𝑛𝑛𝑛𝑖𝑖 = 1), 𝑖𝑖 = 3.

 (5)

When applying the DPM, polytomous responses in the MFC items are treated as a set of  pseudo-items. 
For example, for MFC items with four categories, as shown in Figure 2, two pseudo-items were intro-
duced that corresponded to Process I and Process II, respectively. Specifically, category 4 (j = 3) was 
treated as two pseudo-items with a value of  1 in both; category 3 (j = 2) was treated as two pseudo-items 
with the values 1 and 0, respectively; category 2 (j = 1) was treated as two pseudo-items with a value of  0 
in both; and category 1 (j = 0) was treated as two pseudo-items with the values 0 and 1, respectively. The 
RIM and the Rasch model can be used for Process I and Process II, respectively.

3 | PARAMETER ESTIMATION

As mentioned earlier, due to the ipsative nature of  the data, 𝐴𝐴 𝐴𝐴𝐷𝐷 = −
∑𝐷𝐷−1

𝑑𝑑=1
𝐴𝐴𝑑𝑑 . In other words, only D − 1 

θ traits will be freely estimated. As such, there are a total of  D (D − 1 θ traits plus one γ trait) random-effect 
parameters in the DPM. Apart from this constraint, the mean statement utility of  each dimension should 
be constrained to be zero and the mean of  category utilities to be zero to identify the new model.

Ipsative tests often have many dimensions (e.g., the JVIS measures 34 dimensions and the EPPS 
measures 15 dimensions). Following previous studies on IRT models for ipsative data (Wang et al., 2016, 
2017), the freeware JAGS (Plummer, 2003) which implements the Bayesian Markov chain Monte Carlo 
(MCMC) method, was used in this study. For the DPM, the full posterior distribution is given by

𝑝𝑝(θ, 𝛿𝛿, 𝛿𝛿|𝐘𝐘) ∝
𝑁𝑁∏

𝑛𝑛=1

𝐼𝐼∏

𝑖𝑖=1

𝑝𝑝
(
𝑦𝑦𝑛𝑛𝑖𝑖𝑛𝑛|θ𝑛𝑛

)
𝑝𝑝(θ𝑛𝑛|µ,𝚺𝚺)𝑝𝑝(µ|𝚺𝚺)𝑝𝑝(𝚺𝚺)𝑝𝑝(𝛿𝛿)𝑝𝑝(𝛿𝛿), (6)

where 𝐴𝐴 θ
𝑇𝑇
𝑛𝑛 = (𝜃𝜃𝑛𝑛1, … , 𝜃𝜃𝑛𝑛𝑛𝑛, 𝛾𝛾𝑛𝑛) follows a multivariate normal distribution with mean vector μ and covar-

iance matrix 𝐴𝐴 𝚺𝚺 ; Y denotes the item responses; 𝐴𝐴 𝐴𝐴
(
𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛|θ𝑛𝑛

)
 denotes the probability of  choosing category j 

of  item i for person n with latent trait 𝐴𝐴 θ𝑛𝑛 , which is calculated as in Equation (4); 𝐴𝐴 𝐴𝐴(θ𝑛𝑛|µ,𝚺𝚺) is the condi-
tional probability of  latent trait 𝐴𝐴 θ𝑛𝑛 for person n; and 𝐴𝐴 𝐴𝐴(µ|𝚺𝚺) , 𝐴𝐴 𝐴𝐴(𝚺𝚺) , 𝐴𝐴 𝐴𝐴(𝛿𝛿) , and 𝐴𝐴 𝐴𝐴(𝜉𝜉) are the priors for 𝐴𝐴 µ , 

𝐴𝐴 𝚺𝚺 , 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 , respectively. Like previous studies (Wang et al., 2016, 2017), this study used non-informative 
priors, unless specified otherwise. Specifically, for the D random-effect parameters, the priors were spec-
ified as 𝐴𝐴 𝐴𝐴𝑑𝑑 ∼ 𝑁𝑁(0, 1) , where μd is the mean level for the dth dimension, and 𝐴𝐴 𝚺𝚺 follows the inverse 
Wishart distribution W −1(I, df), where I denotes the identity matrix, and df = D. For the fixed-effect 
parameters, they were specified as 𝐴𝐴 𝐴𝐴 ∼ 𝑁𝑁(0, 1) , and 𝐴𝐴 𝐴𝐴 ∼ 𝑁𝑁(0, 1) . It was found in the pilot study that 
non-informative priors did not lead to improper posterior distributions.

To obtain appropriate estimates of  the parameters, it is important that the MCMC algorithms sample 
from the target posterior distribution after it has converged to a stationary distribution. Thus, the number 
of  iterations to discard (burn-in) and the number of  subsequent iterations for further analysis should be 
specified, and the convergence of  the MCMC chain(s) should be checked. In this study, two chains with 
10,000 (in the simulation study) or 15,000 (in the empirical study) iterations as burn-in, followed by an 
additional 5000 iterations, were run. The burn-in period was determined based on the pilot analysis. In 
the simulation study, only the δ parameters were provided initial values which were their generating values, 
while in the empirical example, no initial value was provided. Graphical methods such as history plots 
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A DUAL PROCESS IRT MODEL FOR POLYTOMOUS MFC ITEMS  497

and the Gelman–Rubin statistical index 𝐴𝐴 �̂�𝑅 (Cowles & Carlin, 1996; Lunn et al., 2012) have been used in 
many previous studies (Wang et al., 2017), as well as in this study. As a rule of  thumb, a value of  𝐴𝐴 �̂�𝑅 near 1 
indicates the means of  the samplers in first and second half  are the same and thus convergence has been 
achieved.

4 | SIMULATION STUDY

4.1 | Design and analysis

In the simulation study, the following four variables were manipulated: the number of  latent traits or 
dimensions, D (2, 6 or 12); the number of  statements in each dimension, L (6 or 10); the sample size, N 
(300 or 1000, representing a median or a large sample size, respectively); and the linking design (complete 
linking or spiral linking). In a complete linking design, as shown in Figure 4 (left), any two statements from 
different latent traits are paired to form an MFC item. Consequently, there are 𝐴𝐴 𝐴𝐴2 × [𝐷𝐷 × (𝐷𝐷 − 1)∕2] 
MFC items, where D is the number of  dimensions and L is the balanced number of  statements in each 
dimension. In a spiral linking design, the statements are linked as shown in Figure 4 (right), which yields 
D × L MFC items. Obviously, a complete linking design will produce a large number of  items when D is 
high. For example, for D = 6 and L = 6, 540 items are constructed. If  L increases to 10, there will be a 
total of  1500 MFC items. For this reason, the complete linking design was not considered under D = 6 
and D = 12 in this study, because the calibration of  the data was beyond the computer's memory capacity. 
The simulation design is shown in Table 1, and a total of  16 conditions were examined in this simulation 
study. The condition D = 6, L = 6, N = 300, and spiral linking mimicked the design of  the empirical 
example in this study.

A Matlab program was written to generate item responses using the DPM. The data-generation 
procedure contained the following steps. First, the utilities of  the statements (𝐴𝐴 𝐴𝐴 ) were generated from 
N(0, 1) because theoretically the parameter can be in the range between 𝐴𝐴 −∞ and 𝐴𝐴 +∞ . The number of  

F I G U R E  4  Complete (left) and spiral (right) linking design under the condition D = 6 and L = 6.

T A B L E  1  Simulation design in the simulation study.

Number of  statements in dimension, L Sample size, N Linking design
Number of  
conditions6 10 300 1000 Complete Spiral

D = 2 ✓ ✓ ✓ ✓ ✓ ✓ 8

D = 6 ✓ ✓ ✓ ✓ – ✓ 4

D = 12 ✓ ✓ ✓ ✓ – ✓ 4

Total 16
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QIU and DE LA TORRE498 

categories was fixed at four. The utilities of  the categories (𝐴𝐴 𝐴𝐴 ) were generated from N(0, 1). For condi-
tions that mimicked the empirical example, the estimates from the real data were used as the generat-
ing values. Second, the latent traits were randomly generated from a D-dimensional (D − 1 θ traits plus 
one γ trait) multivariate normal distribution with mean zero vector and a particular correlation matrix. 
Interested readers can find the Matlab code and the correlation matrix that was used to generate data 
for the D = 6 conditions in Appendix S2 of  the Supporting Information. For D = 2 and 12 conditions, 
the correlation matrices used were obtained from previous studies (Brown & Maydeu-Olivares, 2011; 
Wang et al., 2017). The ability level for the Dth dimension was not generated. Rather, it was computed 
as 𝐴𝐴 −

∑𝐷𝐷−1

𝑑𝑑=1
𝜃𝜃𝑑𝑑𝑑𝑑 in line with the nature of  ipsative data. For example, for conditions of  six dimensions, 

we have 𝐴𝐴 𝐴𝐴6 = −(𝐴𝐴1 +⋯ + 𝐴𝐴5) . Third, these generated random-effects parameters and the fixed-effects 
statement utility parameters were used to compute the corresponding category probabilities and their 
cumulative probabilities using the DPM. Fourth, these cumulative probability values were compared with 
a randomly generated number from a uniform distribution U(0, 1), and the simulated item response was 
defined as the highest score category in which the random number was less than or equal to the associated 
cumulative probability. After the data had been generated, the data-generating models were used to fit the 
data sets. Thirty replications were conducted in each condition using JAGS. The number of  replications 
was decided by referring to previous studies (Wang et al., 2017), and, more importantly, the accurate and 
stable estimation of  parameters across replications, as shown in the simulation study results.

The dependent variables were the bias and root mean square error (RMSE) in the estimates across 
replications. For the simulation study, it was expected that the larger the sample size was, the better the 
parameter recovery would be. The complete linking design was expected to yield a more accurate estima-
tion than the spiral linking design because there are many more data points (and thus smaller sampling 
variances and RMSE values) under the former than the latter. Conversely, for the spiral design, the larger 
the number of  dimensions (D) and the more statements in each dimension there were (L), the poorer 
the parameter estimation was expected to be. To interpret, an index that represents the degree of  linkage 
(dl) is computed as the proportion of  the linked items relative to all possible items. It appears that that the 
larger the value of  dl, the less missingness of  data, the more accurate the parameter estimates are. For the 
complete design conditions, dl = 1. For the spiral design conditions,

𝑑𝑑𝑑𝑑 =
𝐷𝐷 × 𝐿𝐿

𝐿𝐿2 × [𝐷𝐷 × (𝐷𝐷 − 1)∕2]
=

2

(𝐷𝐷 − 1) × 𝐿𝐿
, (7)

where dl is inversely proportional to D and L.

4.2 | Results

All analysis were performed on a computer with two Xeon 2.6 GHz cores and 64 GB memory. The 
computation time for each replication under various conditions of  D = 2 was between 1.5 and 18 h. Due 
to space constraints, Tables 2 and 3 show the summarized results of  L = 6 and L = 10, respectively. More 
information is provided in Appendix S3 in the Supporting Information, where Figures S1–S4 present 
the bias and RMSE values of  the parameters for the condition L = 6, and Figures S5–S8 plot the results 
for L = 10. The convergence checks of  MCMC for simulation study are provided in Appendix S4 in the 
Supporting Information.

Specifically, for L = 6 (Table 2), under the conditions of  the complete linking design, the bias values 
were between −.056 and .056, and the RMSE values were between .024 and .158. Under the conditions of  
the spiral linking design, the bias values were between −.060 and .076, and the RMSE values were between 
.033 and .177. As in previous studies (Wang et al., 2017), most bias and RMSE values were less than .1, 
indicating that the parameters were well recovered. In general, the recovery of  the parameters under the 
complete linking design was better than that for the spiral linking design, and the accuracy of  estimation 
increased as the sample size increased.
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A DUAL PROCESS IRT MODEL FOR POLYTOMOUS MFC ITEMS  499

For L = 10 (Table 3), under the conditions of  the complete linking design, the bias values were 
between −.053 and .046, and the RMSE values were between .021 and .168. Under the conditions of  the 
spiral linking design, the bias values were between −.131 and .085, and the RMSE values were between 
.036 and .239.

A comparison of  Tables 2 and 3 reveals that when the complete design is used, the recovery of  
parameters with L = 10 is better than that with L = 6. As expected, when the spiral linking design is used, 
the recovery of  parameters is poorer under L = 10 than that under L = 6. The reason is that there were 
100 possible items for the conditions of  L = 10, of  which 20 were used for linking, whereas there were 
36 possible items for L = 6, of  which 12 items were used. Following Equation (7), dl values were .200 for 
L = 10 and .333 for L = 6, respectively. The former conditions have smaller dl, suggesting more missing-
ness of  the data, and hence yielded poorer estimations.

For D = 6, the computation time under the spiral linking design ranged from about 2 to 17 h. Table 4 
shows the summarized results for the parameter estimates. The parameter recovery was acceptable when 
N = 300 and satisfactory when N = 1000. For example, for the condition D = 6, L = 6 and N = 300, 
in which item responses were generated with the estimates of  the DPM used in the empirical example 
shown in Table 6, the bias values were between −.070 and .098, and the RMSE values were between .060 
and .267. The detailed results are shown in Figures S9 and S10 for L = 6, and in Figures S11 and S12 
for L = 10. The respective dl values for L = 6 and L = 10 were .07 and .04. Again, a smaller dl under 
L = 10 led to relatively larger bias and RMSE values for the parameters. In particular, the RMSE values 
of  the δ parameters are relatively large because less information is available for the estimation of  the δ 
parameters, compared with the other parameters, due to the small number of  items in the spiral design. 
For the condition D = 12, the computation was very time-consuming, ranging from 4 to 38 h. As shown 
in Table 5, the parameter recovery was poor for N = 300 due to the use of  a complicated model, a large 

T A B L E  2  Summary of  bias values and root mean square errors for the parameter estimates of  the DPM in the simulation 
study with two dimensions and six statements in each dimension.

Par. Est.

N300_complete N1000_complete N300_spiral N1000_spiral

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

δ Mean .000 .057 .000 .031 .000 .153 .000 .083

SD .012 .007 .007 .005 .047 .015 .013 .020

Min. −.017 .048 −.014 .024 −.051 .128 −.023 .065

Max. .024 .075 .006 .039 .076 .177 .021 .127

ξ Mean .000 .138 .000 .076 .000 .138 .000 .074

SD .036 .024 .013 .012 .044 .017 .020 .014

Min. −.056 .097 −.024 .047 −.060 .103 −.032 .049

Max. .056 .158 .035 .103 .058 .159 .024 .093

μ Mean .000 .041 .000 .027 .000 .037 .000 .022

SD .020 .036 .008 .024 .005 .032 .001 .019

Min. −.020 .062 −.008 .041 −.005 .056 −.001 .033

Max. .020 .062 .008 .041 .005 .056 .001 .033

σ Mean .003 .064 .001 .034 −.004 .097 −.003 .040

SD .008 .032 .008 .018 .015 .055 .006 .020

Min. −.006 .073 −.004 .034 −.032 .082 −.014 .042

Max. .017 .085 .017 .051 .009 .141 .000 .052

Note: δ is the statement utility parameter; ξ is the category utility parameter; μ is the mean level of  the θ variables; σ represents the variance–
covariance elements between the latent variables; N300_complete indicates a sample size of  300 and the complete linking design; N300_spiral 
indicates sample size 300 and the spiral linking design; and so on.
Abbreviations: Est., estimates; Max., maximum value; Min., minimum value; Par., parameters; RMSE, root mean square error; SD, standard 
deviation.
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QIU and DE LA TORRE500 

proportion of  missingness in the spiral linking design, and small sample size. However, the recovery was 
acceptable when the sample size was increased to 1000. More results are provided in Figures S13–S16.

The simulations showed that the parameters in the DPM could be well recovered using JAGS. The 
complete linking design yielded more accurate estimates than the spiral linking design. In general, the 
larger the sample was, the more accurate the estimates were. Moreover, the effect of  the number of  
statements in each dimension, L, varied between linking designs. When the complete design was used, the 
accuracy increased as L increased. In contrast, when the spiral linking design was used, the accuracy of  
parameter estimation decreased as L increased.

5 | AN EMPIRICAL EXAMPLE

A questionnaire was constructed to measure career interests using four-category polytomous MFC items, 
as shown in Figure 1. It was designed following the popular Holland code (Holland, 1997), which assesses 
six types of  career interest: realistic (R), investigative (I), artistic (A), social (S), enterprising (E) and 
conventional (C). Statements were retrieved from open-access sample items, and all of  the statements 
were positively keyed. Each career interest was measured with six statements, and the spiral linking design 
shown in Figure 4 (right) was implemented. Therefore, the questionnaire consisted of  36 polytomous 
MFC items, and each statement was presented to the participants twice. A counterbalancing method was 
used to control the sequence effects of  the statements. Specifically, when a statement was presented as 
the first one for an item, it was later presented as the second one for another item. It is important to note 
that the utilities of  a statement in two different items are constrained to be identical. The survey took 
about 20 min to complete.

T A B L E  3  Summary of  bias values and root mean square errors for the parameter estimates of  the DPM in the simulation 
study with two dimensions and ten statements in each dimension.

Par. Est.

N300_complete N1000_complete N300_spiral N1000_spiral

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

δ Mean .000 .049 .000 .027 .000 .178 .000 .117

SD .008 .006 .005 .004 .064 .026 .035 .011

Min. −.023 .040 −.012 .021 −.131 .147 −.056 .095

Max. .016 .065 .008 .033 .085 .239 .067 .147

ξ Mean .001 .128 .001 .071 .001 .126 .001 .073

SD .023 .018 .013 .010 .026 .015 .016 .009

Min. −.053 .093 −.031 .049 −.083 .110 −.035 .059

Max. .046 .168 .036 .094 .071 .165 .044 .102

μ Mean .000 .038 .000 .020 .000 .039 .000 .024

SD .012 .033 .002 .017 .014 .034 .011 .021

Min. −.012 .058 −.002 .030 −.014 .058 −.011 .036

Max. .012 .058 .002 .030 .014 .058 .011 .036

σ Mean .012 .070 −.001 .039 −.007 .080 .007 .045

SD .017 .038 .002 .023 .026 .051 .010 .025

Min. −.003 .066 −.006 .032 −.037 .059 −.010 .040

Max. .033 .100 .001 .064 .032 .143 .015 .070

Note: δ is the statement utility parameter; ξ is the category utility parameter; μ is the mean level of  the θ variables; and σ represents the variance–
covariance elements between the latent variables. N300_complete indicates a sample size of  300 and the complete linking design; N300_spiral 
indicates a sample size of  300 and the spiral linking design; and so on.
Abbreviations: Est., estimates; Max., maximum value; Min., minimum value; Par., parameters; RMSE, root mean square error; SD, standard 
deviation.
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A DUAL PROCESS IRT MODEL FOR POLYTOMOUS MFC ITEMS  501

Three hundred and one students at a university in Hong Kong were invited to complete the question-
naire in return for a feedback report if  requested. They were required to compare their preferences for 
two activities related to different careers and choose one of  the four categories according to their pref-
erences. Demographic data such as age range, gender, and educational level were also collected. Of  the 
participants who provided responses to the questionnaire, 63.79% were female. The distribution across 
the age groups was as follows: 1.66% of  participants were below 18 years of  age, 85.38% were in the 
18–25 age range, 8.97% were 26–35, and 3.99% were over 35. Furthermore, 81.06% of  the participants 
were undergraduate students; the remaining participants were studying for master's or doctoral degrees. 
The study protocol was approved by the Institutional Ethical Review Board of  the university at which the 
study was conducted.

The DPM was fitted to the data using JAGS (with the JAGS codes shown in the Appendix S5 in 
the Supporting Information). As mentioned earlier, the mean vector and covariance matrix for the 
five θ variables and one γ variable were freely estimated, and the sixth θ variable was computed as 

𝐴𝐴 𝐴𝐴6 = −(𝐴𝐴1 +⋯ + 𝐴𝐴5) . Non-informative priors were used for the utility parameters, step parameters, 
and mean vector by setting as N(0, 1). The priors for the covariance matrix were set using an inverse 
Wishart distribution W −1[R, K], with R = I and the hyperparameter K = 6. In the subsequent analysis, the 
posterior mean and standard deviation were treated as the point estimate and standard error, respectively.

A visual inspection of  the sampling histories of  the chain was used to examine their convergence 
(See Appendix S4 in the Supporting Information). For illustration, Figure S19 shows the history plots 
with two chains after burn-in for the overall utility of  the first statement describing realistic interest (δ1,1), 
the category utility of  the first statement describing realistic interest (ξ1), and the mean level of  realistic 
interest (μθ1) under the DPM. The plots indicated convergence to a stationary distribution because the two 

T A B L E  4  Summary of  bias values and root mean square errors for the parameter estimates of  the DPM in the simulation 
study with six dimensions and a spiral linking design.

Par. Est.

L = 6 L = 10

N300_spiral N1000_spiral N300_spiral N1000_spiral

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

δ Mean .000 .203 .000 .137 .000 .255 .000 .188

SD .048 .019 .044 .017 .121 .045 .041 .019

Min. −.070 .163 −.055 .097 −.292 .182 −.091 .155

Max. .098 .239 .084 .164 .223 .385 .061 .253

ξ Mean .000 .120 .000 .071 .000 .175 .000 .077

SD .027 .015 .011 .009 .043 .029 .017 .015

Min. −.063 .083 −.019 .056 −.109 .113 −.054 .044

Max. .047 .148 .028 .092 .099 .261 .041 .110

μ Mean −.003 .061 −.003 .034 .000 .075 .000 .031

SD .016 .028 .014 .018 .009 .036 .009 .014

Min. −.026 .060 −.031 .030 −.012 .066 −.013 .031

Max. .025 .078 .013 .057 .014 .108 .012 .044

σ Mean .001 .109 −.001 .059 −.005 .116 .001 .054

SD .020 .039 .012 .024 .029 .046 .008 .023

Min. −.032 .067 −.023 .038 −.071 .071 −.015 .031

Max. .036 .267 .031 .154 .048 .321 .019 .152

Note: δ is the statement utility parameter; ξ is the category utility parameter; μ is the mean level of  the θ variables; and σ represents the variance–
covariance elements between the latent variables. N300_spiral indicates a sample size of  300 and the spiral linking design; N1000_spiral indicates a 
sample size of  1000 and the spiral linking design.
Abbreviations: Est., estimates; Max., maximum value; Min., minimum value; Par., parameters; RMSE, root mean square error; SD, standard 
deviation.
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QIU and DE LA TORRE502 

chains were mixed and were located in the same parts of  the target distribution. Moreover, the 𝐴𝐴 �̂�𝑅 values 
for all the parameters were near 1.0, indicating convergence in the MCMC estimation.

To demonstrate the advantages of  fitting the DPM to polytomous MFC items, the RIM was also 
fitted to the data where the responses were dichotomized by transforming those of  ‘I prefer A much 
more’ and ‘I prefer A slightly more’ in Figure 1 to score 0 and those of  ‘I prefer B much more’ and ‘I 
prefer B slightly more’ to score 1. When fitting the RIM using JAGS, the specifications were similar to 
those of  the DPM. The models were compared using two criteria: deviance information criterion (DIC; 
Lunn et al., 2012), which is a simple estimate of  predictive error; and leave-one-out cross-validation 
(LOO; Vehtari et al., 2017), which compares the predictive performance of  models on new data. The 
DIC was obtained directly from JAGS, whereas the LOO was computed using the R package loo (Vehtari 
et al., 2022). In particular, LOO estimates the expected log pointwise predictive density (elpd) as the 
measure to evaluate the out-of-sample prediction accuracy, and implements the efficient Pareto-smoothed 
importance sampling (PSIS) procedure to compute the LOO (PSIS-LOO). The results show that the 
DPM had a smaller DIC than the RIM (24,040 compared to 27,422), and the estimated elpd difference 
of  1964.75 with a standard error of  132.33 favours the DPM. Both the DIC and PSIS-LOO indicate that 
the DPM provided a better fit to the data. With respect to the six θ traits being measured in this example, 
the correlations between the estimates derived from the two models were .84, .83, .88, .92, .88, and .90, 
respectively, suggesting moderate to high correlations between the DPM and RIM estimates across the six 
traits. Nevertheless, it is worth noting that the DPM provides additional information about the preference 
intensity with γ estimates, while the RIM does not.

To check the model–data fit of  the DPM, this study implemented the posterior predictive model 
checking (PPMC) method (Gelman et al., 1996). Specifically, when running the MCMC algorithm with 

T A B L E  5  Summary of  bias values and root mean square errors for the parameter estimates of  the DPM in the simulation 
study with 12 dimensions and spiral linking design.

Par. Est.

L = 6 L = 10

N300_spiral N1000_spiral N300_spiral N1000_spiral

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

δ Mean .000 .235 .000 .172 .000 .268 .000 .212

SD .115 .030 .087 .021 .178 .082 .100 .039

Min. −.234 .173 −.154 .125 −.482 .164 −.284 .145

Max. .207 .300 .159 .227 .332 .546 .173 .339

ξ Mean .000 .134 .000 .075 .000 .140 .000 .077

SD .035 .022 .016 .012 .036 .021 .015 .013

Min. −.084 .086 −.056 .052 −.086 .097 −.040 .044

Max. .096 .210 .033 .104 .084 .212 .038 .129

μ Mean .000 .073 .000 .046 .000 .079 .000 .045

SD .015 .025 .013 .016 .013 .026 .012 .014

Min. −.024 .067 −.026 .040 −.025 .073 −.017 .041

Max. .030 .117 .021 .072 .024 .108 .016 .058

σ Mean −.015 .191 −.011 .120 −.010 .149 −.005 .088

SD .159 .088 .096 .048 .092 .066 .044 .032

Min. −.361 .069 −.203 .045 −.226 .056 −.110 .037

Max. .275 .539 .158 .270 .140 .533 .064 .249

Note: δ is the statement utility parameter; ξ is the category utility parameter; μ is the mean level of  the θ variables; σ represents the variance–
covariance elements between the latent variables; N300_spiral indicates a sample size of  300 and the spiral linking design; and N1000_spiral indicates 
a sample size of  1000 and the spiral linking design.
Abbreviations: Est., estimates; Max., maximum value; Min., minimum value; Par., parameters; RMSE, root mean square error; SD, standard 
deviation.
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A DUAL PROCESS IRT MODEL FOR POLYTOMOUS MFC ITEMS  503

the DPM, the replicated data were obtained by drawing samples from the posterior distribution after 
JAGS converges. Then the differences in some selected discrepancy measures between the observed 
and replicated data were evaluated. If  the posterior predictive p-value of  the observed data is beyond a 
critical range (e.g., .025–.975) of  the replicated data, it can be concluded that the DPM does not fit the 
observed data (Meng, 1994). Four discrepancy measures were used for PPMC in this study: the frequency 
of  categories of  each item; the frequency of  categories in the test; the item score distribution, which is 
the number of  examinees responding to each category for each item (Zhu & Stone, 2012); and Yen's Q3 
statistic (Yen, 1993). The first statistic has previously been applied to examine model–data fit for ipsative 
tests with MPC items (Wang et al., 2017). The other three measures, which are powerful in detecting 
misfit in tests using Likert-type items (Zhu & Stone, 2012), have never been applied in ipsative tests. Due 
to space constraints, the detailed computation of  the posterior predictive p-value for the discrepancy 
measures and the results are provided in the Appendix A. The findings indicate a good model–data fit 
of  the DPM.

Table 6 shows the estimates and standard errors (SE) for the individual statement utilities and the 
mean level of  traits under the DPM in the empirical example. For the 36 statements, the utilities ranged 
from −.76 to .65 (M = 0, SD = .28). The statement ‘Like to meet important people’, which measures 
enterprising interest, had the highest utility, whereas the statement ‘Can play a musical instrument’, which 
measures artistic interest, had the lowest utility. Table 7 shows the frequencies of  the categories for items 

T A B L E  6  Estimates and standard errors for statement parameters, mean level of  latent traits, variance–covariance and 
correlation matrix between latent traits under the DPM in the empirical example.

Par. Est. SE Par. Est. SE Par. Est. SE Par. Est. SE Par. Est. SE

δ1,1 .27 .21 δ4,2 .08 .18𝐴𝐴 𝐴𝐴𝜃𝜃1 −.09 .04𝐴𝐴 𝐴𝐴2
𝜃𝜃2,𝜃𝜃4

 −.08 .03 ρθ4,θ5 −.35 .15

δ1,2 −.19 .18 δ4,3 .00 .21𝐴𝐴 𝐴𝐴𝜃𝜃2 −.11 .04𝐴𝐴 𝐴𝐴2
𝜃𝜃3,𝜃𝜃5

 −.05 .03 ρθ5,θ6 −.26 .11

δ1,3 .25 .19 δ4,4 −.32 .20𝐴𝐴 𝐴𝐴𝜃𝜃3 .01 .05𝐴𝐴 𝐴𝐴2
𝜃𝜃4,𝜃𝜃6

 −.03 .03 ρθ1,θ3 .08 .17

δ1,4 .00 .21 δ4,5 −.20 .19𝐴𝐴 𝐴𝐴𝜃𝜃4 .31 .05𝐴𝐴 𝐴𝐴2
𝜃𝜃1,𝜃𝜃4

 −.08 .03 ρθ2,θ4 −.40 .13

δ1,5 .02 .18 δ4,6 .00 .19𝐴𝐴 𝐴𝐴𝜃𝜃5 −.10 .05𝐴𝐴 𝐴𝐴2
𝜃𝜃2,𝜃𝜃5

 −.02 .03 ρθ3,θ5 −.22 .14

δ1,6 −.31 .19 δ5,1 −.27 .19𝐴𝐴 𝐴𝐴𝜃𝜃6 .00 .05𝐴𝐴 𝐴𝐴2
𝜃𝜃3,𝜃𝜃6

 −.10 .03 ρθ4,θ6 −.10 .11

δ2,1 .18 .21 δ5,2 −.02 .18𝐴𝐴 𝐴𝐴𝛾𝛾 −1.22 .09𝐴𝐴 𝐴𝐴2
𝜃𝜃1,𝜃𝜃5

 .00 .02 ρθ1,θ4 −.37 .12

δ2,2 .01 .18 δ5,3 .65 .21𝐴𝐴 𝐴𝐴2
𝜃𝜃1

 .14 .03𝐴𝐴 𝐴𝐴2
𝜃𝜃2,𝜃𝜃6

 .02 .02 ρθ2,θ5 −.09 .16

δ2,3 .31 .20 δ5,4 −.09 .19𝐴𝐴 𝐴𝐴2
𝜃𝜃2

 .13 .03𝐴𝐴 𝐴𝐴2
𝜃𝜃1,𝜃𝜃6

 −.07 .02 ρθ3,θ6 −.45 .09

δ2,4 −.41 .20 δ5,5 .14 .19𝐴𝐴 𝐴𝐴2
𝜃𝜃3

 .22 .05𝐴𝐴 𝐴𝐴2𝛾𝛾 2.13 .22 ρθ1,θ5 .01 .14

δ2,5 .25 .18 δ5,6 −.41 .20𝐴𝐴 𝐴𝐴2
𝜃𝜃4

 .30 .06𝐴𝐴 𝐴𝐴2
𝜃𝜃1,𝛾𝛾

 .08 .06 ρθ2,θ6 .13 .12

δ2,6 −.34 .20 δ6,1 −.18 .19𝐴𝐴 𝐴𝐴2
𝜃𝜃5

 .21 .04𝐴𝐴 𝐴𝐴2
𝜃𝜃2,𝛾𝛾

 −.05 .06 ρθ1,θ6 −.39 .12

δ3,1 .17 .21 δ6,2 .23 .19𝐴𝐴 𝐴𝐴2
𝜃𝜃6

 .23 .04𝐴𝐴 𝐴𝐴2
𝜃𝜃3,𝛾𝛾

 −.15 .07 ρθ1,γ .13 .06

δ3,2 .37 .18 δ6,3 .11 .21𝐴𝐴 𝐴𝐴2
𝜃𝜃1,𝜃𝜃2

 .00 .02𝐴𝐴 𝐴𝐴2
𝜃𝜃4,𝛾𝛾

 −.01 .07 ρθ2,γ −.09 .06

δ3,3 .19 .21 δ6,4 .23 .19𝐴𝐴 𝐴𝐴2
𝜃𝜃2,𝜃𝜃3

 −.05 .03𝐴𝐴 𝐴𝐴2
𝜃𝜃5,𝛾𝛾

 .09 .06 ρθ3,γ −.19 .07

δ3,4 .02 .20 δ6,5 −.24 .19𝐴𝐴 𝐴𝐴2
𝜃𝜃3,𝜃𝜃4

 −.03 .04𝐴𝐴 𝐴𝐴2
𝜃𝜃6,𝛾𝛾

 .05 .07 ρθ4,γ −.02 .06

δ3,5 .01 .19 δ6,6 −.15 .21𝐴𝐴 𝐴𝐴2
𝜃𝜃4,𝜃𝜃5

 −.09 .04 ρθ1,θ2 −.05 .16 ρθ5,γ .14 .06

δ3,6 −.76 .20 ξmin −.72 .14𝐴𝐴 𝐴𝐴2
𝜃𝜃5,𝜃𝜃6

 −.06 .02 ρθ2,θ3 −.30 .17 ρθ6,γ .07 .07

δ4,1 .43 .20 ξmax .65 .17𝐴𝐴 𝐴𝐴2
𝜃𝜃1,𝜃𝜃3

 .01 .03 ρθ3,θ4 −.13 .15

Note. δs denote the statement utility parameters, with the first number in the subscript representing the latent trait θ (1, realistic; 2, investigative; 3, 
artistic; 4, social; 5, enterprising; 6, conventional) and the second number representing the statement; ξs denote the category utility parameters; μs 
denote the mean level of  the latent variables; γ is the latent trait in Process II in the DPM; σs denote the variance–covariance elements between the 
latent variables; and ρs denote the correlation between the latent variables.
Abbreviations: Est., estimates; Max., maximum value; Min., minimum value; Par., parameters; SE, standard error.
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involving the statements with the highest and lowest utility estimates in the raw scores. For example, the 
statement ‘Like to meet important people’ was presented as the first statement in item 2 and the second 
statement in item 30. When presented with the first statement in item 2, 27.91% of  the participants chose 
the category ‘I prefer A a little more’, and 28.24% of  them chose the category ‘I prefer A much more’. 
Therefore, 56.15% of  the participants chose the categories ‘I prefer A a little more’ and ‘I prefer A much 
more’. Similarly, when the statement was presented as the second statement in item 30, 58.48% of  the 
participants chose the categories ‘I prefer B much more’ and ‘I prefer B a little more’. The results showing 
that the participants preferred the statement ‘Like to meet important people’ over the paired statements 
are consistent with the DPM estimation that the aforesaid statement had the highest utility estimate. The 
frequencies of  categories for the statement ‘Can play a musical instrument’ in Table 7 were consistent 
with the expectation that the statement had a lower utility than the paired statement.

In terms of  the mean level of  latent traits, the differential level of  social interest displayed the high-
est mean (μθ4 = .31, SE = .05), whereas the differential levels of  investigative (μθ2 = −.11, SE = .09) and 
conventional (μθ5 = −.11, SE = .05) interests showed the lowest means. The variances of  the six latent 
traits were between .13 (𝐴𝐴 𝐴𝐴2

𝜃𝜃3
 ) and .30 (𝐴𝐴 𝐴𝐴2

𝜃𝜃5
 ), suggesting that artistic interest differentiation has the smallest 

variation among students while enterprising interest differentiation has the greatest variation. Most of  
the correlations between the differential levels of  the six types of  career interest were moderately nega-
tive. Artistic and conventional interests had the highest negative correlation (r = −.45), followed by that 
between investigative and social interests (r = −.40). The θ variables were negatively correlated, because 
the expected correlations between the ipsative measures were 𝐴𝐴 − 1∕(𝐷𝐷 − 1) , where D is the number of  
latent traits (Dunlap & Cornwell, 1994), which is also proved in Appendix S1 in the Supporting Infor-
mation. Whereas judgement ability (γ) was significantly and negatively correlated with artistic interest 
differentiation (ρθ3,γ = −.19, SE = .07), it was significantly and positively correlated with realistic interest 
differentiation (ρθ1,γ = .13, SE = .06) and with enterprising interest differentiation (ρθ5,γ = .14, SE = .06).

For each student, the mean and standard deviation of  the posterior distribution of  each θ latent trait were 
computed as the point estimate of  career interest differentiation and its standard error. As a demonstration, 
Table 8 provides the point estimates and their SE of  career interest differentiation for two students (S124 
and S179), and Figure 5 provides a radar chart based on the θ estimates. These two students were selected 
according to the variance of  their θ estimates which reflects the level of  differentiation. As shown in the last 
column of  Table 8, the variance for S124 was .621 and that for S179 was .010. Thus, the two students repre-
sented persons who have a high and low level of  differentiation, respectively. The results and the chart can be 
used to interpret the career interest differentiation of  a student (intrapersonal comparison) and to compare 
the levels of  differentiation between students (interpersonal comparison). Again, it is important to note that 
both intra- and interpersonal comparisons are based on the θ estimates in the DPM (Equation 4), which 
represent levels of  career interest differentiation in this situation, rather than levels of  career interest per se.

In terms of  the intrapersonal comparison, as shown in Figure 5, the locations of  the differentiation 
of  the six types of  career interest were very diverse for S124. According to Table 8, S124 had the highest 

T A B L E  7  Frequencies of  categories for the statements with highest and lowest utilities in the empirical example.

Item Statements j = 3 (%) j = 2 (%) j = 1 (%) j = 0 (%) Missing (%)

2 (A) Like to meet important people
(B) Like social activities

28.24 27.91 33.55 9.63 .66

30 (A) Like keeping records and files
(B) Like to meet important people

10.30 31.23 39.21 19.27 0

4 (A) Can play a musical instrument
(B) Can understand science and use 

information to figure things out

15.95 28.91 34.22 20.93 0

5 (A) Cooperate well with others
(B) Can play a musical instrument

36.88 37.21 21.93 3.65 .33

Note: 3 = ‘I prefer A much more’; 2 = ‘I prefer A a little more’; 1 = ‘I prefer B a little more’; 0 = ‘I prefer B much more’. The statement ‘Like to meet important 
people’ had the highest utility; the statement ‘Can play a musical instrument’ had the lowest utility.
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A DUAL PROCESS IRT MODEL FOR POLYTOMOUS MFC ITEMS  505

level of  differentiation for social interest (1.074) and the lowest level of  differentiation for artistic interest 
(−.756). Therefore, S124's level of  differentiation for social interest was much higher than that for artistic 
interest. Conversely, the locations were very similar for S179, who had the highest level of  differentiation 
for artistic interest (.126) and the lowest level of  differentiation for investigative interest (−.147). It can be 
concluded that S179's artistic interest differentiation was slightly higher than his/her investigative interest 
differentiation.

In terms of  the interpersonal comparison, first, the results could be used to compare students' differ-
entiation levels within a specific interest. As shown in Figure 5, for artistic interest, S124's differential 
level was much higher than that of  S179, whereas for artistic interest, S124's differential level was much 
lower than that of  S179. Second, the results could be used to compare the students' holistic differentia-
tion levels. As mentioned earlier, the variance of  the six estimates for latent traits was computed for each 
student. As variance measured the spread of  differentiation of  the six career interests, it reflected the 
holistic differentiation for individual students. According to the variances that are shown in Table 8, S124 
had a much higher holistic differentiation across career interests than S179 did.

The DPM also yields a γ estimate for the trait level of  preference intensity in Process II for each 
student. To reveal the implications of  the γ estimate, we compared three selected students as shown in 
Table 9. In the table, the students' responses to 12 items that associated with θ1 are first given (due to 
space constraints, we focused on realistic interest, θ1, only). For example, in the first item, statement A 
measured realistic interest while statement B measured other interest. For this specific item, S128 chose 
j = 0 (‘I prefer B much more’), suggesting that the student much preferred the other interest over realistic 

T A B L E  8  Estimates of  career interest differentiation for two selected students in the empirical example.

Student Par. Realistic Investigative Artistic Social Enterprising Conventional Variance

124 Est. −.497 .163 −.756 1.074 −.735 .752 .621

SE .212 .205 .196 .251 .190 .261

179 Est. −.047 −.147 .126 .051 .067 −.049 .010

SE .279 .269 .233 .273 .217 0.247

Abbreviations: Est., estimates; Par., parameters; SE, standard error.

F I G U R E  5  Radar chart of  career interest differentiation for two students in the empirical example.
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interest. Other responses can be interpreted similarly. Note that when statement that measured θ1 was 
preferred by the student, the response is underlined. Of  the 12 items, S128 preferred realistic interest 3 
times, S58 4 times, and S236 11 times. Hence, it is expected that S128 and S58 should have very similar θ1 
estimates while S128 and S236 should have very different θ1 estimates: to be precise, S236 should have a 
much higher θ1 estimate than S128.

The next four columns in Table 9 display the frequencies of  the four categories across 12 items, where 
the sum of  each row is a constant value of  12 because of  the ipsative nature of  the raw scores. An exami-
nation of  the frequencies of  S128 and S58 shows that S128 selected categories indicating favouring state-
ment B (i.e., j = 1 and j = 0) 10 times out of  12, while S58 selected them 9 times. However, S128 chose 
the high-intensity category (j = 0) 10 times, while S58 chose it only once. On the other hand, S128 selected 
categories indicating favouring statement A (j = 3 and j = 2) twice, while S58 selected them 3 times, with 
S128 consistently choosing the high-intensity category (j = 3) and S58 not at all. For S236, the frequencies 
indicate that the student's preference of  θ1 was substantially different from that of  S128. S236 always 
selected high-intensity categories, favouring statement B (j = 0) 4 times and statement A (j = 3) 8 times.

In sum, from the observations it appears that S128 and S58 had similar preferences for a realistic 
career, but S128's preference was more intense than that of  S58. Thus, these two students represent 
persons with similar θ, but different γ. By contrast, S128 and S236 had very different preferences for a 
realistic career, but their intensities of  preferences are similar. Thus, they represent persons with different 
θ, but similar γ.

The next two columns in Table 9 provide θ1 and γ estimates from the DPM. It can be seen that 
the estimates perfectly reflect the observed differences and similarities of  the students discussed above. 
Specifically, S128 (−.273) and S58 (−.287) had close θ1 estimates but very different γ estimates (3.127 for 
S128 and −2.070 for S58). Conversely, S236 had a very different θ1 estimate (.467) from that of  S128 
but a similar γ estimate (2.151). As mentioned earlier, the data were also analysed with the RIM, and the 
estimates are provided in the last column of  Table 9. The results can be utilized to understand different 
persons' preferences, but only to some extent.

6 | CONCLUSION AND DISCUSSION

In real tests, polytomous MFC items are used because of  their own advantages: they can reduce response 
bias and are more informative by providing information about respondents' preferences and the intensity 
of  these preferences. Specifically, the forced-choice form of  the items is prevalent across a wide range 
of  psychological assessments for non-cognitive abilities. In the field of  vocational counselling, where, for 
the purpose of  identifying a suitable career, discriminating between career interests is more relevant than 
comparing individuals. Thus, MFC items are employed in many tests in this field (e.g., JVIS, EPPS, CIT, 
OPQ, and situational judgement tests). Beyond vocational counselling, the MFC format is also often used 
in personality assessment (Cao & Drasgow, 2019), values assessment (Josef  et al., 2017), and emotion 
assessment (Anguiano-Carrasco et al., 2015). Along with the forced-choice format, the polytomous form 
of  the items makes them more informative than their dichotomous counterpart. From a psychomet-

T A B L E  9  Responses, frequencies of  responses, and estimates for three selected students in the empirical example.

Responses Frequencies DPM estimates RIM estimates

A A A B B B B A A A A B 3 2 1 0 θ1 γ θ1

S128 0 0 0 0 3 0 0 0 0 0 0 3 2 0 0 10 −.273 3.127 −.153

S58 0 1 1 1 1 2 2 2 1 1 1 1 0 3 8 1 −.287 −2.070 −.096

S236 3 3 3 0 0 0 0 3 3 3 3 3 8 0 0 4 .467 2.151 .265

Note: For responses, ‘A' means statement A in the item measured θ1 and ‘B’ means statement B did so. 3 = ‘I prefer A much more’; 2 =’ I prefer A a 
little more’; 1 = ‘I prefer B a little more’; 0 = ‘I prefer B much more’. An underline indicates the statement that measured θ1 was preferred by the student. 
θ1 estimates are the differentiation of  first (i.e., realistic) career interest obtained from the DPM or RIM; γ estimates are the trait level of  judgement 
obtained from the DPM.
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ric point of  view, the greater amount of  information can yield more accurate ability estimates (de la 
Torre, 2008). Note, however, that items with more than two categories also have practical disadvantages: 
for example, they are likely to increase the cognitive load on respondents, and they may be unable to 
completely eliminate responding bias in the form of  faking, central or extreme responding.

Nearly all existing IRT models for MFC items have been developed for dichotomous MFC items, 
and thus cannot be applied to polytomous MFC items. This study has developed a new IRT model, the 
DPM, for polytomous MFC items. A prominent feature of  the DPM is its cognitive modelling approach. 
Using this approach, the DPM describes the underlying cognitive processes involved in choosing from 
multiple alternatives. Specifically, the participants decide which statement they prefer (choice), and then 
judge the intensity of  their preference for the selected statement (intensity). Thus, the proposed model 
contributes to the understanding of  the potential psychological mechanism of  human choice-making. 
Another prominent feature of  the DPM is its ability to allow researchers to assess and compare differen-
tiation levels (with the θ parameter) and preference intensity (with the γ parameter) within an individual 
and/or between individuals using polytomous MFC items. Such comparisons have important practical 
implications. Taking the applications in the fields of  industrial and organizational settings as an example, 
studies have found that interests differentiation is an effective predictor of  attributes and behaviours in 
career decisions (Hirschi, 2009), and individuals with higher differentiation interests tend to have more 
career-choice readiness and a greater vocational identity (Nauta & Kahn, 2007). Hence, in a counsel-
ling  context, career consultants can use the results of  the DPM to help the client better understand to 
what extent his/her career interests differ from each other (intrapersonal comparisons). Similarly, in a 
selection context, practitioners can use the results to identify candidates who have higher differentiation 
levels regarding specific career interests (interpersonal comparisons).

A series of  simulations was conducted to evaluate parameter recovery under the new model. Imple-
menting Bayesian methods with MCMC algorithms in JAGS was recommended to calibrate the new model, 
because of  the high dimensionality of  the data. The parameters were recovered fairly well with the complete 
linking design. When the spiral linking design was used, the accuracies of  the statement utilities were lower 
due to the large proportion of  missing data. These results can have useful practical implications. First, 
both linking designs used in the simulation study, as shown in Figure 4, connected the statements success-
fully. Note that successful connections are necessary to place the statements being calibrated on the same 
scale (Wang et al., 2016, 2017). Second, although statements can be connected regardless of  the linking 
design, the complete linking design yields more accurate parameter estimates than the spiral linking design. 
However, when D is large, a complete linking design also yields a much larger number of  items, which can 
be computationally challenging. For these reasons, researchers should strike a balance between successful 
connections and the number of  items when constructing their MFC tests. One simple and practical solution 
is to add more items within the spiral linking design to ensure successful connections without using an inor-
dinate number of  items. Third, as mentioned before, the DPM belongs to the family of  IRT tree models, 
for which one needs to pay special attention to the conditions of  model identification when using the new 
model. The simulation results showed that the conditions for identifying the DPM provided in this paper 
are sufficient and can be applied to real data analysis. However, it would be helpful if  future research could 
continue examining the identification issues associated with the DPM and other related models.

The empirical example of  career interest was used to demonstrate the implications and applications 
of  the new model. The model–data fit was examined using PPMC methods with various discrepancy 
indices. The results showed that the model–data fit was good. Of  the six types of  career interest, the 
differential level of  social interest displayed the highest mean, whereas the differential level of  investiga-
tive interest showed the lowest mean. This finding seems reasonable, because most of  the participants in 
this study were undergraduate students, who are in a critical period in their development of  social skills 
and social network building. Most of  the latent traits had moderately negative correlations. Interestingly, 
artistic interest differentiation had a significant negative correlation with judgement ability, suggesting that 
in general, the lower the level of  artistic differentiation is, the stronger the judgement ability is. Conversely, 
realistic interest differentiation and enterprising interest differentiation had a significant positive correla-
tion with judgement ability. Hence, the higher the levels of  realistic and enterprising interest differentia-
tion are, the stronger the judgement ability is.
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Although promising, the work in this paper is only an initial step in making tests with MFC items 
more useful and reliable in assessing psychological traits such as career interests, values and personality. 
It also serves as an impetus for future work in this area. First, contexts in which statements or activities 
are compared are likely to affect the consistency of  choice for a person (Lin & Brown, 2017), and conse-
quently harm the reliability of  θ estimates in the DPM. Future studies can explore the effects of  contexts 
on MFC items. Second, although empirical data, albeit simulated, have shown that the θ and γ parameters 
can be well estimated, additional studies are needed to further establish the separability and interpretability 
of  the person parameters. For example, it would be useful to collect experimental data from an interven-
tion study specifically designed to change either the differentiation between the constructs or the intensity 
of  differentiation. Finally, this study used the Bayesian Gibbs sampling method, which can be slow to 
converge when the number of  dimensions is high (e.g., greater than six). Future studies could explore 
how to implement new estimation methods such as Metropolis–Hastings Robbins–Monro (Cai, 2010) to 
fit IRT models for MFC items.

It is important to note that although multidimensional ranking items are usually scored by assigning 
several numbers (ranks) to the statements, they are not the polytomous MFC items discussed in this paper. 
To clarify, let there be three statements, A, B and C, in a ranking item. These three statements produce 
three pairwise comparison items: (A, B), (A, C) and (B, C). The statements with higher ranks in these 
resulting pairwise comparison items will be scored 1, while the others 0 (Brown & Maydeu-Olivares, 2011; 
Wang et al., 2016). Essentially, the multidimensional ranking items scored in this way are binary MFC 
items. Nevertheless, they can be extended to be polytomous by asking the respondents to indicate how 
much they prefer the statements they are ranking. The format of  polytomous ranking items is deemed 
more informative than that of  dichotomous ranking items or polytomous pairwise comparison items. 
Future studies could investigate how the DPM can be adapted to fit the polytomous ranking items.

As a closing remark, it is important to note the issue of  whether scores from tests that consist of  
purely MFC items can be used for interpersonal comparisons remains open. Some authors argue that 
scales of  latent traits can be identified with MFC items (Brown & Maydeu-Olivares, 2011, 2013, 2018; 
Morillo et al., 2016), while other authors claim that mixing MFC items with some normative items, such 
as unidimensional Likert-type or unidimensional forced-choice items, is necessary to identify the origin of  
the scales (Böckenholt, 2004; Chernyshenko et al., 2009; Wang et al., 2017). This study tends to support 
the latter argument. Until a more unequivocal conclusion can be reached, people interested in using 
MFC items for interpersonal comparisons should be particularly cautious about how the MFC tests are 
designed and which specific IRT models are used.
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APPENDIX A:  POSTERIOR PREDICTIVE MODEL CHECKING IN THE 
EMPIRICAL STUDY
As mentioned in the main text, the posterior predictive model checking (PPMC) method with the four 
discrepancy measures (the frequency of  categories of  each item, the frequency of  categories in the test, 
the item score distribution, and Yen's Q3 statistic) was used to evaluate the model–data fit of  the proposed 
dual process IRT model (DPM) in the empirical study. This appendix provides the detailed computation 
of  the posterior predictive p-value (PPP) for the discrepancy measure 𝐴𝐴 𝐃𝐃(𝐲𝐲) of  an item and the results.

Take the discrepancy measure of  the frequency of  categories in each item as an example. Let 
𝐴𝐴 𝐲𝐲1,… ,𝐲𝐲𝑟𝑟,… ,𝐲𝐲𝑅𝑅 (r = 1, …, R) be R (R = 100 in this study) sets of  sampled responses after burn-in 

according to the models. The PPP for the discrepancy measure 𝐴𝐴 𝐃𝐃(𝐲𝐲) of  item i was computed as follows.

1. Compute the frequency of  category j (j = 0, …, 3) in item i for the rth simulated data set, denoted 
by 𝐴𝐴 𝐃𝐃(𝐲𝐲𝑟𝑟𝑖𝑖

)
=
[
𝜐𝜐𝑟𝑟
0𝑖𝑖 ,… , 𝜐𝜐𝑟𝑟(𝐽𝐽−1)𝑖𝑖

]
 , where υ is the frequency of  category  j across persons in replication r 

and J is the number of  categories in item i. The subscript i is omitted for simplicity of  notation in the 
following steps.

2. Repeat step 1 for the R samples. Collect 𝐴𝐴 𝐃𝐃(𝐲𝐲𝑟𝑟) for a total of  100 samples into a matrix form, as            
𝐴𝐴 𝐃𝐃(𝐲𝐲rep) .

3. Sort 𝐴𝐴 𝐃𝐃(𝐲𝐲rep) for each category and obtain the value of  𝐴𝐴 𝐃𝐃(𝐲𝐲) at the 2.5% and 97.5% points, denoted by 
𝐴𝐴 𝐃𝐃.025(𝐲𝐲) and 𝐴𝐴 𝐃𝐃.975(𝐲𝐲) , respectively. The 95% credible intervals of  𝐴𝐴 𝐃𝐃(𝐲𝐲) for the items are thus defined 

using 𝐴𝐴 𝐃𝐃.025(𝐲𝐲) and 𝐴𝐴 𝐃𝐃.975(𝐲𝐲) .
4. Compute the frequency of  each category for the observed data, denoted by 𝐴𝐴 𝐃𝐃(𝐲𝐲obs) .
5. Compute the p-value of  𝐴𝐴 𝐃𝐃(𝐲𝐲) (𝐴𝐴 𝐴𝐴𝐃𝐃(𝐲𝐲) ) as the proportion of  𝐴𝐴 𝐃𝐃(𝐲𝐲obs) among the sorted 𝐴𝐴 𝐃𝐃(𝐲𝐲rep) for 

each category. If  the 𝐴𝐴 𝐴𝐴𝐃𝐃(𝐲𝐲) is beyond a critical range (e.g., .025–.975), it should be concluded that the 
chosen model does not fit the observed data (Meng, 1994).

The method was similarly employed for the other three discrepancy measures. For the frequency of  
categories across items, the PPP was the averaged 𝐴𝐴 𝐴𝐴𝐃𝐃(𝐲𝐲) across items. For the score distribution, it was 
the averaged 𝐴𝐴 𝐴𝐴𝐃𝐃(𝐲𝐲) across the four categories. For Yen's Q3 measure, it was the averaged 𝐴𝐴 𝐴𝐴𝐃𝐃(𝐲𝐲) across the 
630 item pairs.

For the PPMC results with the discrepancy measure of  the frequency of  categories in each item, 
because as many as 36 items were used, a graphical display was used to evaluate the results. The observed 
frequency 𝐴𝐴 𝐃𝐃(𝐲𝐲obs) was plotted against the 95% credible intervals of  𝐴𝐴 𝐃𝐃(𝐲𝐲) for each category in each 
item. A poorly fitting model can be immediately identified by the extremeness of  the observed frequency 

𝐴𝐴 𝐃𝐃(𝐲𝐲obs) beyond the 95% credible intervals of  𝐴𝐴 𝐃𝐃(𝐲𝐲) for the item. Figure A1 shows the observed frequency 
𝐴𝐴 𝐃𝐃(𝐲𝐲obs) for each of  the 36 polytomous MFC items and the 95% credible intervals of  𝐴𝐴 𝐃𝐃(𝐲𝐲) for the items 

obtained from the replicated data sets under the DPM. It appears that for the majority of  the items, the 
frequency from the observed data set was within the 95% credible intervals. The number of  items beyond 
the 95% credible intervals for the categories was 4, 0, 0, and 2, respectively.
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The results of  PPMC with the other three discrepancy measures were as follows. For the frequency 
of  categories in the test, the PPPs for j = 0, 1, 2 and 3 under the DPM were .272, .584, .488, and .695, 
respectively. For the item score distribution, the PPP was .322. For Yen's Q3 statistic, the PPP was .343. 
All of  these PPPs were within the critical range of  .025 to .975, indicating a good model–data fit.

F I G U R E  A 1  Results of  posterior predictive model checking for the DPM with discrepancy measure of  frequency of  
categories in each item. Note: Obs = observed data; Items beyond the 95% credible intervals are circled.
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