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Abstract
In this article, we describe the generation of a Design and Implementation Framework for
Mathematical Modelling Tasks (DIFMT) through a researcher-teacher collaboration. The
purpose of the framework is to support holistic approaches to instructional modelling
competency. This framework is underpinned by principles drawn from theory and praxis
which are informed by the anticipatory capabilities that teachers require for the design and
effective implementation of quality modelling tasks in secondary classrooms. A draft
DIFMT was developed from a synthesis of research literature and was refined through an
iterative process of task development, implementation and observation, reflection through
teacher/student interviews, and revision of the framework. Each iteration made use of the
most recent refinement of the co-constructed DIFMT, building theory while simulta-
neously addressing a problem in educational practice, consistent with a design-based
methodology. Thus, the DIMFT developed organically throughout the project. While
initial modelling exemplars were researcher-designed, the locus of responsibility moved
to teachers as the project progressed. The DIFMT consists of two major components—
principles for modelling task design and pedagogical architecture—each of which is
structured around dimensions that include elaborations which detail the knowledge
required for modelling as well as teacher and student capabilities.

Keywords Mathematical modelling . Competencies . Competency . Task design . Task
implementation . Framework

1 Introduction

The importance of mathematical modelling within school education has been recognized in
areas such as national economic prosperity (e.g., STEM) and critically informed citizenship
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(e.g., Maaß, Geiger, Ariza, & Goos, 2019). This recognition is reflected in the inclusion of
modelling in school mathematics curriculum in a growing number of countries, including
Australia.

Research into mathematical modelling competency has provided insight into a range of
influential factors including teachers’ and students’ personal knowledge (e.g., Blum, 2011),
dispositions and beliefs (e.g., Jankvist & Niss, 2019), blockages between phase transition (e.g.,
Galbraith & Stillman, 2006), and use of digital tools (e.g., Geiger, 2011). Despite such
findings, the development of students’ modelling competency and teachers’ instructional
modelling competency continues to present unresolved issues in educational research and
practice (e.g., Maaß, 2010).

The purpose of this article is to report on the development of an evidence-based Design and
Implementation Framework for Mathematical Modelling Tasks (DIFMT) aimed at supporting
holistic approaches to instructional modelling competency. Development of the DIFMT was
informed by a critical review of research literature related to factors that are key to the
development of mathematical modelling competency. As the DIFMT was designed to be first
and foremost a tool for teachers’ reflective practice, our goal was that it be directly relevant to
mathematics classrooms. Thus, DIFMT development was undertaken in close collaboration
with teachers, an approach consistent with research in task design and implementation (e.g.,
Geiger, 2019; Jones & Pepin, 2016), in which teachers’ knowledge of student needs and
classroom conditions is recognised as central.

In addressing this purpose, we will first review and synthesise relevant literature related to
the nature of mathematical modelling, the notions of competency and sub-competencies,
implemented anticipation, and task design and implementation. Second, the DIFMT genera-
tion process will be described and illustrated via data drawn from field trials including selected
examples of researcher/teacher discussion. Finally, we discuss the framework in the light of
knowledge related to effective instruction in mathematical modelling.

2 Theoretical perspectives

In this section, we provide a critical review of the research literature that informed the
theoretical foundations of the DIFMT.

2.1 The nature of the mathematical modelling process

The purpose of modelling a real-world situation is typically to understand key features and
properties, explain or predict phenomena and processes, and to inform related decision-
making. At its core, mathematical modelling consists of identifying a problem within a real-
world context, developing a relevant mathematical representation, determining a subsequent
mathematical solution, interpreting the solution within the original context, and evaluating the
solution’s validity for resolving the problem. The capacity to undertake all aspects of math-
ematical modelling in a holistic manner is what we understand as modelling competency.

As it is often necessary to engage in the iterative refinement of solutions to real-world
problems, modelling is typically depicted as cyclic in nature (e.g., Blomhøj & Jensen, 2003).
While different representations of the modelling process have been proposed, none describes
the actual sequentially ordered itineraries followed by any given modeller. Rather, they are
analytic reconstructions of the components that are identifiably present in the complete
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solution to any modelling problem (Niss & Blum, 2020). Thus, we make use of a represen-
tation adapted from Stillman, Galbraith, Brown, and Edwards (2007), presented in Fig. 1, that
represents both the key phases and transitions related to the modelling process. Entries A–G
denote the phases in the modelling process, with thicker arrows indicating transitions in
activity as noted in descriptors 1–7. The double-headed arrows indicate forwards and/or
backwards looking reflective activity between phases. Transitions may also occur in a non-
sequential manner across the cycle, but additional arrows have been omitted for the sake of
simplicity.

Student sub-competencies therefore include the capacity to undertake work within each of
the phases of the modelling process as well as the management of the transitions between and
across phases—cognitive and metacognitive capabilities (see Stillman et al., 2007). The
ultimate goal of instruction is to develop a holistic competency that enables a modeller to
address a problem in its totality within a real-world context.

2.2 Developing modelling competency and (sub-)competencies

Teacher competence is a subject of increasing research interest. Competence refers to real-
world performance within a specific domain, a combination of knowledge, cognition, purpose,
affect, and motivation (Blömeke, Gustafsson, & Shavelson, 2015). The nature of competence
is a concern within most trades, and many professions—such as law, engineering, medicine,
and teaching. Teacher competence involves knowledge, skills, problem-solving capacities, and
affective factors that must be orchestrated to optimise performance (e.g., Shulman, 1987). How
to promote competence remains an issue of ongoing debate focused on two principal perspec-
tives: (1) an analytic view associated with distinct traits of performance that can be measured
separately, and (2) a holistic view that recognises the complexity of “live” performance and
gives primacy to the complete execution of a role. Both perspectives are seen to have inherent
strengths and weaknesses with some researchers arguing that they should be seen as
complementary—both needed for a complete picture of performance quality (e.g., Blömeke
et al., 2015). The tension between these two perspectives, however, remains unresolved.

Mathematics teacher competence has been the focus of significant research studies includ-
ing TEDS-M (e.g., Blömeke, Hsieh, Kaiser, & Schmidt, 2014) and TEDS-FU study (e.g.,
Santagata & Yeh, 2016). While most studies have investigated cognitive aspects of compe-
tence, more recently, recognition of the situated nature of teaching performance has led to a
complementary focus on its affective dimensions (e.g., Schoenfeld, 2011). The findings of
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Fig. 1 The process of mathematical modelling (adapted from Stillman et al., 2007)
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such projects indicate that both cognitive and situated aspects influence the quality of teaching
practice (Kaiser et al., 2017).

The notion of modelling competency can be traced back to research related to the
development of activities designed to promote a learner’s capacity to carry out the modelling
process—competency as a modeller (e.g., Treilibs, 1979). Other early developments in this
area include investigations into the quality of mathematical processes learners employed
during modelling activity (e.g., Haines, Crouch, & Davies, 2001) and the role of metacognitive
processes in the coordination of modelling capacities (e.g., Stillman, 1998).

Current discussion about developing competency in mathematical modelling is centred on
two primary themes, holistic and atomistic approaches (Blomhøj & Jensen, 2007). The holistic
or “top-down” approach acknowledges an overarching integrated competency necessary to
undertake mathematical modelling in a broad variety of contexts. From this perspective, it is
possible to identify several crucial components as modelling sub-competencies. These are not
perceived as independent entities, however, but as facets of an overarching modelling com-
petency (e.g., Kaiser & Brand, 2015). The atomistic or “bottom-up” approach operates with a
set of separate and independent modelling sub-competencies typically aligned with phases of
the modelling cycle, for example, making assumptions, mathematizing, and validating a
model. In this approach, the aggregation of individual (sub-) modelling competencies is seen
as resulting in modelling competency, although Niss and Blum (2020) argue this conglomerate
has no further properties in and of itself.

How teachers can assist learners to develop modelling competency has been the focus of a
number of studies. Borromeo Ferri (2018) and Borromeo Ferri and Blum (2010), for example,
have developed theoretically initiated dimensions from a sub-competency perspective, pre-
sented in Fig. 2. In this model, they defined the cognitive demands of task creation, quality
instruction, and assessment of modelling activity. Taken as a whole, however, studies into the
effectiveness of holistic and atomistic approaches to instruction aimed at developing modelling
competency have yielded mixed results, both with strengths and weaknesses. Kaiser and
Brand (2015), for example, claimed that while a holistic approach appeared to be more
effective in promoting, interpreting, and validating capacities, an atomistic approach better
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c) Types of modelling tasks

a) Mul�ple solu�on of modelling tasks
b) Cogni�ve analyses of modelling tasks
c) Development of modelling tasks

Task dimension

Instruc�on dimension

Diagnos�c dimension

a) Planning lessons with modelling tasks
b) Carrying out lessons with modelling tasks
c) Interven�ons, support and feedback

a) Recognising phases in modelling process
b) Recognising difficul�es and mistakes
c) Marking modelling tasks

Fig. 2 Model for competencies needed in teaching mathematical modelling, Borromeo Ferri (2018)
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supported the development of working mathematically. Thus, there remain unresolved ques-
tions about how to best promote competency in mathematical modelling, in part because “there
has not yet been a comprehensive description of modelling competencies” (Maaß, 2010, p.
289). This has implications for the achievement of overall competence. It is in this context we
seek to contribute a new perspective on teacher instructional modelling competency.

Thus, our current research is focused on fostering teachers’ instructional competency in
mathematical modelling with the goal of supporting upper secondary students’ holistic
modelling competency. Consistent with this goal, we have developed the DIFMT, a research
informed framework aimed at supporting the teaching of modelling through attention to task
design and the demands of implementation. In developing the DIFMT, we draw on modelling
sub-competencies (embedded in the DIFMT), while maintaining a focus on holistic modelling
competency and related pedagogical action.

A focus of this study is the role of anticipation in enabling modelling competency (see
Section 2.3). As such, modellers must be aware of the specific role of sub-competencies and
how they interrelate in parallel and in sequence. That is, they must be capable of looking
forward and backwards, to determine how current activity informs decision-making about
consequent action. This means that modellers must be able to both enact modelling sub-
competencies and synthesise these into a global competency. For this reason, we adopt the
overarching, holistic modelling competency (top-down) approach (Niss, Blum, & Galbraith,
2007), which used the singular Modelling Competency consistent with the singular holistic
perspective of Blomhøj and Jensen (2003) and what Kaiser and Brand (2015) call “the holistic
dimension” of the competency classification.

2.3 The role of implemented anticipation in modelling

As observed in the previous section, in developing their competency, modellers must also
appropriate forward-looking metacognitive processes related to what is likely to be useful
mathematically in subsequent steps, which act as enablers of successful decision-making and
consequent action (Niss & Blum, 2020). Niss (2010) used the term implemented anticipation
to identify such activity and proposed three constituent processes:

1. Structuring of an extra-mathematical situation, to prepare it formathematization,must be focused
on features that are anticipated as essential in addressing a mathematically feasible problem.

2. Anticipation of mathematical representations that are suitable for capturing the situation as
structured in (1). Such representations must be familiar to the modeller and, ideally, the
modeller would have had experience with their use in mathematizing similar situations.

3. Anticipation of how the mathematization and resulting model will provide a mathematical
solution to the questions posed. This means that the outcomes of applying selected
mathematical procedures and problem-solving strategies must also be anticipated after
mathematization is complete.

These processes are qualified by a presumption that modellers must have the following
attributes:

1. Mathematical knowledge relevant to the modelling context.
2. Capability with relevant mathematical knowledge to engage with modelling.
3. Positive disposition towards the use of mathematics to address real-world problems.
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4. Confidence in their mathematical capacities and preparedness to persevere when
challenged.

We have added a fifth requirement that students need to be familiar with the mathematical
modelling process in order to activate 2 (Geiger, Galbraith, &Niss, accepted for publication). The
key role of implemented anticipation in mathematization has been identified in other studies (e.g.,
Czocher, 2018; Jankvist & Niss, 2019; Stillman & Brown, 2014); however, a modeller must also
anticipate potential mathematical representations, relationships, procedures, and problem-solving
strategies (e.g., Geiger, Stillman, Brown, Galbraith, & Niss, 2018). This also requires the
instantiation of implemented anticipation—to strategize a solution to the mathematical problem,
and to think forward about how a chosen pathway will lead to an effective solution.

In this study, we have focused on the essential role of teacher’s own anticipation in
developing their instructional competency in modelling. We argue that is key to both the
design and implementation of modelling tasks, as teachers must anticipate how students will
respond, what scaffolds should be prepared, and where challenges are likely to emerge.
Accordingly, the notion of anticipation is embedded, implicitly and explicitly, in both the
design and implementation components of the DIFMT.

2.4 Principles for task design and implementation in mathematical modelling

In developing the DIFMT, we found the notions of both design as intention and design as
implementation (Czocher, 2017) useful in framing discussion around their development. The
former is concerned with the initial formulation of the design, while the latter is related to the
processes by which a task is delivered into a classroom environment and then progressively
refined. In this construction, task design and implementation are different sides of the same
coin—offering a more coherent perspective than when considered separately.

The coupling of design and implementation has implications for the relationship between
expert designers (mathematical modelling in this context) and those who implement tasks. In
our case, it was apparent that teachers’ intimate knowledge of key factors, such as local
curriculum requirements and students’ previous experience in mathematics, was essential if
tasks were to be successfully implemented in classrooms. Furthermore, teachers must under-
stand the principles that underpin a task in order that it be successfully implemented. Jones and
Pepin (2016) argue that the most effective way of enabling this level of understanding is
collaboration between teachers and others with expertise in task design. Hence, we saw the
most effective approach to generating the DIFMT was through researcher-teacher
collaboration—identified as key across a range of studies concerned with task design (e.g.,
Johnson, Coles, & Clarke, 2017).

A number of researchers have offered advice on the nature of modelling tasks and
how these can be generated. Maaß (2010), for example, argues the quality of a task is
key to promoting modelling competency. In her view, the first step in promoting quality
is to identify the objectives of a task, which include focus of the modelling activity,
nature of the relationship to reality, type of model used, type of representation, openness
of a task, cognitive demand, and mathematical content. Clarity about objectives informed
the selection of tasks for specific cohorts of students. While this scheme can inform the
selection of appropriate tasks for particular groups of students, it does not specifically
address the issue of how to design and implement modelling tasks—an area in which
there is limited advice within the literature.
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One of the few frameworks that address this gap is Galbraith’s (2006) principles of
design for real-world problems (Table 1)—generated by identifying structural compo-
nents needed to scaffold the development of tasks aimed at promoting secondary stu-
dents’ successful modelling performance. It should be noted, however, that these
principles provide necessary but not sufficient conditions for an effective task. Accord-
ingly, these principles were used as a starting point for the design component of the
DIFMT (Table 2).

Consistent with our commitment to the coupling of the design and the implementation of
tasks, we drew on Geiger’s (2019) notion of pedagogical architecture (Geiger, 2019; Goos,
Geiger, Dole, Forgasz, & Bennison, 2019)—a frame for identifying and structuring teachers’
activities both prior to and when actualising tasks in classrooms. The pedagogical architecture
of a lesson is concerned with teacher capabilities related to:

& Initial setup of a lesson
& Initial selection of pedagogy (or pedagogies) that are appropriate for a task
& Flexible use of a repertoire of pedagogical strategies to align with classroom

circumstances
& Adapting tasks in situ when students provide unanticipated responses
& Utilizing measured responsiveness to provide just enough information for students to make

progress
& Orchestrating progress on critical aspects of a task

(Geiger, 2019)

These capabilities informed the implementation component of the DIFMT which is
focused on structured planning, knowledge of resources (e.g., materials), anticipatory
capability, and pedagogical flexibility. The refinement of pedagogical architecture was
further informed by other known factors impacting on the teaching and learning of
modelling including teachers’ tendency to intervene in ways which reduced cognitive
challenge (e.g., de Oliveira & Barbosa, 2010); propensity of teachers to channel students’
efforts toward pre-determined solutions (Tan & Ang, 2016) in contrast to advice about

Table 1 Galbraith's (2006) principles of design for real-world tasks

Principle 1: There is some genuine link with the real world of the students.

Principle 2: There is opportunity to identify and specify mathematically tractable questions from a general
problem statement.

Principle 3: Formulation of a solution process is feasible, involving the use of mathematics available to
students, the making necessary assumptions, and the assembly of necessary data.

Principle 4: Solution of the mathematics for the basic problem is possible for the students, together with
interpretation.

Principle 5: An evaluation procedure is available that enables checking for mathematical accuracy, and for
the appropriateness of the solution with respect to the contextual setting.

Didactical
principle:

The problem may be structured into sequential questions that retain the integrity of the real
situation. (These may be given as occasional hints or used to provide organized assistance
by scaffolding a line of investigation.)
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openness to multiple possible solutions (Schukajlow & Krug, 2014; Schukajlow, Krug, &
Rakoczy, 2015); opportunity for diagnosing students’ difficulties with the development of
modelling competency (Jankvist & Niss, 2019); and the importance of task authenticity
(Hernandez-Martinez & Vos, 2018).

We also drew on educational research from outside modelling, including Brousseau’s
(1984) notion of didactical contract which relates to students’ understanding of teacher
expectations. What kinds of task, for example, will the teacher give students to work on?
In the same way, what can the teacher expect students to do, and not do? From this
perspective, teachers’ expectations of new or different work require the overt renegoti-
ation of an existing didactical contract. Additionally, the influence of socio-mathematical
norms (Yackel & Cobb, 1996) should not be underestimated when considering the
optimal level of intervention. Socio-mathematical norms govern acceptable modes of
reasoning and ways of working, as well as judgements about the quality of mathematical
ideas and the appropriateness of solutions to problems. Socio-mathematical norms are
established and promulgated in a context governed by the didactical contract, which in
turn is partly shaped by students’ and teachers’ enactment of those norms. This circu-
larity engenders reinforcing feedback whereby the constituents tend to confirm rather
than challenge each other. If it is desired to instigate sustained change (e.g., through a
modelling initiative), it is necessary to identify, confront, and alter elements responsible
for resisting change.

In operationalizing this component when working with teachers, we took the position that
the teachers themselves must first undertake open real-world mathematical modelling in order
to develop a holistic appreciation for, and understanding of, relevant constructs and
processes—a pre-requisite for anticipating and understanding issues surrounding modelling
competence.

3 Research questions

The literature reviewed in the previous section points to two theory-practice gaps that are
embodied in the following research questions:

1. What are the principles for the design and implementation of tasks that support
instructional competency in mathematical modelling of practicing secondary
teachers?

2. What role can teachers play in developing principles for the design and implemen-
tation of mathematical modelling tasks that support their own instructional
competency?

These questions were used to guide the development of the DIFMT in collaboration with
experienced teachers, the goal of which was to support the development of their instructional
practice in modelling. Our response to the first question was initially informed by a review of
existing research literature, with the DIFMT refined through fieldwork trials and teachers’
reflections on its effectiveness for guiding instructional competence. The second question was
addressed via the methodological approach and teacher input that contributed to the refinement
of the DIFMT.

320 Geiger V. et al.



4 Research design and instrumentation

Our research design was derived in response to the research questions, with selection of data
sources, interpretations, analyses, and syntheses following as consequences. Our approach can
be recognized as related to the design-based methodology advanced by Cobb, Confrey,
diSessa, Lehrer, and Schauble (2003). This methodology is suited to applied research that sets
out to develop contextualised theories of learning and teaching in tandem and geared towards
educational problems that feature variable and multiple settings.

4.1 Participants

Participants included six teachers and their year 9–11 classes drawn from schools in Queensland
(Australia). Targeted year levels allowed for the deployment of tasks with sufficient challenge to
provoke sophisticated modelling practices. Teachers were selected purposively (Burns, 2000), on
the basis of their interest in promoting student modelling competency within their classrooms.
Their experience with teaching modelling varied from novice to highly experienced. Groups of
students within these classes were also selected purposively for classroom observation and
interviewed on the basis of teacher advice, with criteria including the capacity to articulate their
approaches to a task clearly and a willingness to share their thoughts with both fellow students
and researchers.While mathematical modelling is a mandatory element of the curriculum context
in which the study was conducted, there is no advice within relevant documents related to its
instruction. What the syllabus sets out are criteria by which modelling is to be characterised and
assessed. These include formulation, solution (that includes interpretation), evaluation and
verification, and communication. Together, these embody the complete modelling process.
Consequently, the notions of holistic or atomistic modelling are not part of the discourse
surrounding modelling implementation in school classrooms. Consistent with how modelling
is characterised in curriculum documents and assessed, its practice is aimed at total competency
and is therefore aligned with holistic rather than atomistic approaches. Of course, modelling
subskills are dealt with directly, but always in the context of the complete modelling process.
There is no necessary one-on-one alignment between their articulation and the nomenclature
commonly surrounding sub-competencies in the atomistic approach.

4.2 Design

The research program was based on an iterative process of design-implement-reflect as the basis
for researcher/teacher collaboration in developing the DIFMT. This process was effected
through three whole-day researcher/teacher meetings and two classroom observation visits per
year. Classroom visits took place between researcher/teacher meetings. This cycle of researcher/
teacher meetings and classroom observation visits (Fig. 3) took place in each year of the project.

Fig. 3 Yearly cycle of researcher/teacher meetings and classroom observation visits
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The purpose of researcher/teacher meetings was to develop tasks, plan for their implemen-
tation, and iteratively refine the DIFMT through collaborative reflection on data gathered
during classroom observation visits. The developing framework was used progressively as a
lens to code transcripts of data collected during school visits. Ongoing reflection on the
DIFMT as a tool supporting coding led to its further refinement. Active teacher involvement
throughout the research-development process was central, in contrast to research approaches in
which teachers are treated as objects of research (Jung & Brady, 2016).

Data (classroom observations, teacher and student interviews, researcher/teacher meetings)
were collected relevant to teachers’ efforts to support students’ modelling competency as
follows: mapping progress on modelling tasks; gathering information on what supported or
hindered progress; the extent to which students consciously used a modelling process; ways in
which students indicated forward thinking in planning and executing sub-tasks; how collabo-
rative groups functioned; how students saw modelling activity in terms of importance and
interest. Student data sources included post-lesson interviews with target students after model-
ling sessions, followed by a later video-stimulated recall interview based on incidents selected
by the researchers after viewing lesson material. Lesson observation data included video-
recordings of teachers, small groups of target students, and student written work. Teacher data
were gathered via pre- and post-lesson interviews and collaborative discussion that took place
during researcher/teacher whole-day meetings. These augmented data were generated, as noted
above, by the teachers’ own prior anticipations in respect to the design and adaptation of tasks
and planning for their subsequent implementation. As this article is concerned with the
development of the DIFMT in collaboration with teachers, we draw on data that is reflective
of their input into its design.

4.3 Instrumentation

Data collection procedures, focused on the researcher/teacher collaboration that generated the
DIFMT, are presented in the following section.

Modelling problems: Sample modelling problems included the following: a bushwalking
problem which involved the faster of two walkers estimating how much further to travel after
the other had started to return, so that they arrived home at the same time (Galbraith, 2015); a
waste problem which involved predicting the amount of rubbish generated by Australians over
coming decades; a petrol pricing problem (motivated by Blum & Leiß, 2005) which involved
selecting the best option for filling a tank from outlets offering different prices per litre; a
sausage sizzle task which involved pricing sausages at a school fete to maximize profit; and a
problem involving calculation of costs associated with the conversion of a bullring in
Barcelona (Las Arenas) to a shopping centre. Relevant assumptions and data for all problems
could be generated either on the basis of observation, experience, or through internet searches.
An exemplar item is presented in Fig. 4.

Interview schedules: Pre- and post-lesson teacher interviews probed what teachers expected
to unfold in the lesson, and reflection on what had actually happened. These included both
cognitive and affective components. Examples of these questions are presented below:

& Where do you anticipate students will need the most support, for example, specific aspects of
modelling, the modelling process, content knowledge, etc.? How might you deal with this?

& What do you think your students learned in terms of the task? Is this different from what
you anticipated? In what ways?
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Research/teacher whole-day meetings: Researcher/teacher meetings were recorded and tran-
scribed. These focused on both retrospective reflection on the most recent task implementation,
forward reflection focusing on planning for the next implementation in the sequence, and the
collaborative development of the DIFMT.

5 Developing the DIFMT

In this section, we describe and illustrate the development of the DIFMT by connecting
literature relevant to the components/dimensions of the DIFMT to teachers’ perspectives on
the connection of the framework to changes in their instructional modelling competency.

5.1 The design and implementation framework for mathematical modelling tasks

The DIFMT consists of two major components—principles for modelling task design and
pedagogical architecture—each of which is structured around a number of dimensions. The
first component is primarily concerned with the development of a modelling task itself, while
the second relates to its classroom implementation—consistent with the dual notions of design
as intention and design as implementation (Czocher, 2017). The dimensions of the DIFMT
draw on research related to teacher instructional competency in modelling or aligned fields
such as numeracy; principles for modelling task design (e.g., Galbraith, 2006); pre-
engagement (e.g., Goos et al., 2019); initial problem presentation (Borromeo Ferri, 2018);
body of lesson (e.g., Maaß, 2010; Schukajlow et al., 2015); and conclusion and reporting (e.g.,
Haines et al., 2001; Stillman et al., 2007). The complete DIFMT is depicted in Table 2.

THE BEST PRICE FOR PETROL

The rapid change in the price of petrol at the bowser has become common place in recent years. Prices also 

vary significantly between suburbs towns and states. Some have developed the habit of scouring apps such 

as Fair Fuel Prices hosted by the RACQ (https://www.racq.com.au/cars-and-driving/driving/fair-fuel-

prices) to determine the best location at which to fill up. But is simply finding the cheapest price and driving 

to the relevant location effective in terms of minimizing your costs?

Think about your own circumstances, where you live, the type of car your family owns, and any other 

relevant factors before developing a plan to fill up the tank of your car. This plan should include travel to 

and from the petrol station you select. Write up your plan as a report that includes all relevant factors, how 

these are accommodated and justifications for any decisions you make.

To assist in your report, consider the following situation to start. Sam has just finished his shopping at the 

'The Gap Village Shopping Center' and realises that they are almost out of fuel with only 4 litres left! 

Although Sam lives just across the road from the Shopping Center it is important the car returns home with 

a full tank (or near to). Sam checks a phone fuel app and is presented with the following data for 

surrounding petrol stations:

Name Petrol Cost (Cents/Litre).

7 Eleven Albany Creek 120.7

BP Noonans Garage 135.7

BP Stafford 130.6

Puma Everton Park 125.7

What Petrol Station should Sam choose to fill the tank and spend the least amount of money? Is this the 

best choice for Sam?

Sam’s car has the following attributes

Car: Toyota Yaris Ascent Hatch Manual
Fuel Tank: 42 L

Fuel Consumption: 7.1L / 100km or 14.08km/L

Current Fuel Tank Level: about 4 L

Fig. 4 Petrol pricing problem (motivated by Blum & Leiß, 2005)
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Table 2 The Design and Implementation Framework for Mathematical Modelling Tasks (DIFMT)

Principles for modelling task design

Nature of problem Problemsmust be open-ended and involve both intra- and extra- mathematical
information. The degree of open-endedness is dependent on students’
previous experience with modelling. Less experienced students may need
additional scaffolding questions or information. More experienced students
should be expected to engage with less defined problems.

Relevance and motivation There is some genuine link with the real-world of the students. This will
depend on factors including students' age, year level, personal
circumstances, etc. Problems may need to be contextualised for specific
student groups.

Accessibility It is possible to identify and specify mathematically tractable questions from
a general problem statement. Is there a mathematical approach accessible
to students? Problems must be tractable from the perspective of the
student group.

Feasibility of approach Formulation of a solution process is feasible, involving (a) the use of
mathematics available to students, (b) the making of necessary
assumptions, and (c) the assembly of necessary data. Teachers must work
through the problem.

Feasibility of outcome Solution of the mathematics for a basic problem is possible for the students,
together with interpretation. Expectations in relation to the type of
response, for example, arithmetical versus generalised solutions, are
dependent on the characteristics and year level of the specific student
group being engaged.

Didactical flexibility The problem may be structured into sequential questions that retain the
integrity of the real situation. (Having worked through the problem, how
can it be implemented?) For example, can prompts/assistance to students be
structured into sequential questions (identify sub-sections of the problem)?

Pedagogical architecture

Pre-engagement: Understanding
of the modelling process and its
application including support
materials (learn/illustrate what
the modelling process is)

Students need to be initially familiarised with the modelling process. This
can be supported via materials including:

- A copy of the of the modelling process (diagram/graphic) [modelling
infrastructure] [also for students to map their way around the graphic
during implementation].

- An example of a simple modelling problem matched to the phases of the
cycle: problem statement; formulation; solution; interpretation; and
evaluation

- A copy of report structure. Students should have a clear idea what their
report should look like at the end.

Modelling process review Reviewing pre-engagement as
required.

- The length of the discussion is
dependent on students’ prior
experience with the modelling
process.

- Each student is provided with a
copy of the modelling task, and a
representation of the modelling
process (e.g., a diagram) that is a
depiction of the logical process
that will guide their efforts.

Points that may be considered by
teachers and students:

- It is necessary to leave the realm of
pure mathematics to build a
model, e.g. by procuring
extra-mathematical information
and data.

- Several different models may be
reasonable. There is rarely a
unique, or a best, answer to a
modelling problem.
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Table 2 (continued)

- That modelling is not a
five-minutes-to-get-an answer
activity.

- Simplifications are likely to be
needed and assumptions may be
necessary to reduce the
complexity of the
extra-mathematical domain being
modelled or to make the
mathematics tractable.

- Assumptions can be made at any
point in the cycle.

- Students should be encouraged to
ask clarifying questions.

Initial problem presentation - Teacher provides brief general
description of the task scenario
[2-3 minutes].

- Students should be organised into
small groups. They are provided
with time to read the task
description and identify a
mathematical question(s) [5
minutes]

- Teacher calls the class back
together to discuss their initial
understanding of the task and
possible mathematical questions.
Each group contributes via a
representative.

- Students in groups then consider
assumptions and variables
relevant to the mathematical
question as well as other
observations such as trends in
data, etc. [5 minutes]

- Teacher once more calls the class
back together. Each group reports
back to whole class by group
representative. Teacher
synthesizes/prioritizes students’
initial assumptions and variables
sufficient to begin modelling
process for an initial model.

Points that may be considered by
teachers and students:

- Teachers use facilitating questions
that emerge from students’
engagement in the task rather than
clarify problem contexts or ask
questions up front. Responses
should align with the question
“What should a modeller be
asking himself/herself at this
point in the modelling process?”
(metacognitive connection)

- There should be a focus on student
decision making – with students
required to initiate suggestions
regarding relevant mathematical
content, assumptions, variables;
and for the more experienced,
possible alternative questions.

- Students should be encouraged to
pose explorative questions as to
the nature of the endeavour as
well

Body of lesson Students:
- Proceed in their groups to create

model, solve, interpret, etc., in
terms of the question they are
addressing.

- Engage in productive
student-student collaboration

- Identify and make productive use
of technology where applicable,
for example, to source relevant
information, check calculations
and/or generate solutions.

- Develop a report of their progress
in terms of the stages of the

Points that may be considered by
students:

- Documenting progress against a
visual representation of the
modelling process. Problem
statement → Formulate →
Mathematical solutions →
Interpreting outcomes →
Evaluation.

- Forms of collaboration: Working
separately and then coming
together; Working together from
the beginning;
Negotiating/confirming
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Table 2 (continued)

modelling process (e.g.,
formulate, solve, interpret,
evaluate)

Teachers:
- Bring to consciousness those things

that are implicit …actions are
then deliberate.

- Activate teacher meta-meta
cognition: (a) How will the
students be interpreting what I as
a teacher am doing/saying at this
point? (b) What should the
students be asking themselves at
this point in the modelling
process?

- Support students with making
progress through the modelling
process.

- Anticipate where students might
have problems, e.g., interpreting
the problem, generalizing the
solution.

- Employ measured responsiveness –
rather than providing specific
advice about the problem,
teachers should prompt students
to think about where they are in
the modelling process. Structure
mathematical questions that
promote a viable solution
pathway.

- Encourage the use of digital or
other tools as appropriate.

- Support student development of a
modelling report.

consensus; Explaining external to
the group [Teacher/Researcher –
Student). Students also
encouraged to identify groups
working on a similar
problem/issue and extend
collaborations.

- Points that may be considered by
teachers:

- Checking if documenting progress
against the modelling process is
taking place (both in the doing
and in the recording).

- Focusing students’ attention on
phases of the modelling cycle
(there should be no specific
direction towards a solution).

- Support student decision making –
multiple solution pathways
should be encouraged.

- Responses to students’ questions or
requests for assistance could
include: What are you doing?
What are you trying to do? Where
are you in the modelling process?
How have you checked your
answer? (both mathematically
and in terms of context); Can your
solution be generalized?

- Take account of student capability
(catering for diversity)

Conclusion: Presentations of
findings and teacher summary

- Students share what they have
found with justification
(representative from each group
as spokesperson). Findings
should be reported in a succinct
fashion (e.g., via 3-4-minute
video)

- Teachers/students ask questions of
clarification as required or to test
arguments.

Points to be considered by teachers
and students:

- Students in the audience should
provide commentary that includes
questions, elaborations,
clarifications (e.g., each student to
write down one question or
comment about the presented
model).

- Comments could also be directed
towards criteria related to making
judgements about the quality of
the presentation of findings (e.g.,
Problem statement → Formulate
→ Mathematical solutions →
Interpreting outcomes →
Evaluation). All students should
have access to these criteria.

- Teacher clarification questions can
include: How does that work with
your model? (e.g., teacher has
identified an error); Will your
solution work for other situations?
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Within the cycle of researcher/teacher meetings and classroom visits, the following process
was employed in the development of the DIFMT: presentation of tasks designed according to
preliminary DIFMT principles at researcher/teacher meetings; individual completion of the task
by teachers; teacher accepting or adapting task for own classroom; teacher implementing task;
teachers/researchers meeting to analyse and reflect on implementation; refinement of the DIFMT
after researcher/teacher reflections upon data collected during implementation. While each
DIFMT dimension and elaboration is an outcome of this cycle, space allows for only illustrative
examples of teacher input into the DIFMT, as set out in the following text.

5.2 Teachers’ response to initial theoretical perspectives

We initiated discussion about the design of tasks by presenting the original draft of the DIFMT
during the first whole-day teachers’meeting. A question asked consistently by all teachers was
“What would this principle look like in a classroom?”

Teacher F: From the framework, I can tell at each implementation step what to do… [but] I need to
go and look at how do I actually deal with the formulating bit of it. The implementation
framework has some ideas for me there…on how I can bring it into the class.

This was a typical comment as teachers interrogated the developing framework through each
cycle of refinement. Thus, when providing clarification, we emphasised that task design
principles be thought of as necessary criteria for a task to be considered suitable for possible
classroom implementation. The design principles were not sufficient in themselves, as teachers
had to then consider whether and how a task may require adaptation for a particular class.

5.3 Principles of task design

Typical examples of collective discussions about the principles of task design are illustrated below.
Teachers asked for clarification of an original aspect of the DIFMT, Galbraith’s (2006)

Principle 1: There is some genuine link with the real-world of the students.

Table 2 (continued)

(e.g., teacher encouraging
students to generalize). What did
you do to evaluate the model?
(e.g., teacher encouraging
students to validate and verify am
proposed solution).

- The focus should be on what was
learnt about the modelling
process

Report (if required) - Students should communicate their
findings via a succinct, coherent,
systematic report. The report must
make use of appropriate
mathematical language.

- Teacher checks for the validity of
the solution and supporting
justification.

- Students report findings should
address Formulating, Solving,
Interpreting, Evaluating (FSIE).
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This resulted in a revision—an expansion of this aspect of the DIFMT into two new
components—the nature of the problem and relevance and motivation (see Table 2). The
former related to authenticity as a real-world problem and the later to students’ perceived
readiness. This included the need for task contexts to be relevant to factors such as year level
and personal circumstances, key when adapting existing tasks. The significance of this change
was noted by Teacher A in a response to the revised framework.

Teacher A: It [the DIFMT] certainly helped in terms of me designing tasks that I think are
accessible for students... I think it’s really good if you can find something that
the students have got some sort of interest in…if it’s something that is relevant to
their lives…they’re more likely to persevere through that.

In a similar vein, Galbraith’s Principle 2 was refined under the dimension of accessibility by
adding that problems must be tractable from the perspective of the specific student group.

Teacher B, while agreeing with the need for tasks to be accessible, also argued that tasks
remain challenging in order to develop students’ reasoning capability.

Teacher B: The tasks need to be accessible to the kids, but it can’t be trivial. They need to be
able to reason it and work it through... Also, teachers should make the task clear
to the students.

Similar data-informed discussion between researchers and teachers contributed to the refinement of
the elaborations of each principle presented in Table 2. It should be noted, however, that these focused
centrally around changes deemed necessarywhen an authentic task, written in general terms, required
adaptation for particular classroom settings. When considering adaptations of existing tasks, it must
be recognized that teachers’ anticipation of student responses plays a central role.

5.4 Pedagogical architecture

The pedagogical architecture component of the DIFMTwas also developed from a synthesis of
relevant research literature and refined through ongoing discussion with teachers. As the project
progressed, teachers placed an increasing importance on the role of anticipation in planning for
the implementation of a task—exemplified by the following comment:

Teacher E: In terms of the Design and Implementation Framework, the part I think is most
important is the questioning and the anticipation parts…to guide my thinking. I
recognize that I need to be able to do that.

In response to classroom observations in which half the teachers presented students with tasks
following limited preparation, we included a dimension dedicated to Pre-engagement, in which
initial (at least) familiarity with the modelling process is promoted. This familiarization includes
discussion of a graphical representation of the modelling process, a straightforward modelling
task including a solution pathway aligned with the phases of modelling process, and expecta-
tions for reporting back on a solution. This phase is consistent with our addition to Niss’ (2010)
enablers that students be specifically acquainted with the modelling process. The latter require-
ment needs to be made explicit for novice modellers. For those with significant prior or recent
experience, it can receive less teaching emphasis but needs to be consciously reviewed.
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Later in the project, Teacher D stressed the importance of illustrating the process with a less
sophisticated modelling problem in this introductory phase.

Teacher D: …I think that whole lesson we spent on Friday where we had the students focus
on learning how to model was critical… It’s about taking that real-world
problem and simplifying it.

Also, after initial classroom observations, we noted a tendency for teachers to take one of two
directions when beginning a modelling session:

(1) Ask students to work on a task with very little introduction.
(2) Provide too much preliminary information and direction, making the pathway to

solution obvious.
To mitigate both approaches, we introduced a modelling process review to the DIFMT. The

time that should be dedicated to this review is dependent on the experience and confidence of
the students in relation to modelling. This dimension includes the distribution of a graphical
representation of the modelling process.

Other aspects of implementation were made explicit in this dimension because they interact
with notions of socio-mathematical norms and didactic contracts students have previously
acquired. These included explicit advice that different pathways to a solution were acceptable
and that a range of valid but different assumptions and associated simplifications were possible.
After incorporating these elaborations into the DIFMT and subsequently classroom practice,
teachers noted that students’ appropriation of the modelling process proceeded at different
rates—with some needing to be convinced that the process of simplification, for example, was
an essential element of modelling and that solving such problems took time and persistence:

Researcher: Have the students taken that on board much so far? [the modelling process]
Teacher F: A number of them have really jumped on board with that modelling cycle. Some

of them are still kind of in the throes of trying to make sense of the modelling
cycle…other things that I anticipate is trying to convince students to start with
something simple and then come back and refine it later…they think they need to
have automatically got the answer from just reading the question.

We suggested that teachers, after revising the modelling process with their students, structure
the remainder of the review according to whether their students were novice or experienced
modellers—a further clarification made within the DIMFT after classroom observations.

A further refinement included the addition of an initial problem presentation phase to
provide structure when introducing a task to a class. This phase included advice on classroom
organisation and a focus on the identification of key mathematical questions. Student decision-
making was also emphasised, with no specific mathematical suggestions from teachers
regarding relevant content, assumptions, or choice of variables. This advice represented a
significant change to previous practice for all participant teachers. A typical reflection on the
value of this phase of the lesson is captured in the following comments:

Researcher: Two things that happened at the beginning of the lessonwere your introduction and then
you came back again later on and hauled things together…a bit different to what you’ve
done before.
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Teacher A: It certainly helped the kids relax a little bit. That we were just going to take an initial
look and then we were going to all come back together. So, having told them “Here’s
your task. Have a read. Have a think about what you might do in terms of the
modelling cycle but that’s all I want you to do for now.” They were all happy to read
about it and to start a conversation about what theymight need to do…Theywere then
going to have a little safety net: “let’s just make sure we’re all on the same page here”.

I think that bringing themback together really did enable the students to get further into
the task quickly and just minimize the number of tangents that could be gone on.
Obviously, some students were still going off in different directions…but they were
different directions still associated with the task…Because they had that key mathe-
matical question that needed to be answered.

At this stage, Teacher A can see advantage in a new approach but does not (yet) seem to have a clear
idea how it can be structured formaximumbenefit. This is a reminder that the didactical contract and
socio-mathematical norms apply to teachers as well as to students and that such change takes time.

Within the body of the lesson, students were expected to apply the modelling process. We
noted that in at least half the classrooms we visited, in the early stages of the project, teachers
were inclined to intervene often and sometimes provide too much input. In response, we
emphasised the notion of measured responsiveness, where teachers should provide prompts
that focused students on the modelling process or ask questions structured to promote
exploration of a range of possible solution pathways without directing them to a single pre-
determined response. While this had been discussed early in the project, it was apparent further
discussion of the issue was needed in researcher/teacher meetings with subsequent and more
detailed elaborations added to the DIMFT. This change eventually made impact on Teacher
F’s practice, who had previously tended to provide too much support.

Teacher F: I was just trying to make sure that I didn’t give too much away. And ask the right
questions, not explain things too much...

Researcher: So, you’re looking at that measured responsiveness part of it. Anything else sort
of ring a bell with you as you were going through?

Teacher F: Not to explain things toomuchor panic because they’re running out of time or something.

Teacher C reported a similar change to their approach.

Teacher C: At the start I think I was trying to lead them too much and guide them…I think
leaving them alone is a lot better because they discover it for themselves rather
than, “Oh, yeah, I would have used that.” Thanks for telling me it doesn’t work!

In concluding the lesson or lesson sequence, we have recommended a presentation of findings
and teacher summary in which students outline the outcomes of their work to their peers—
perhaps via a representative from each group. The teacher’s role during this activity is to facilitate
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discussion by asking clarifying questions and encouraging students to make comments about the
quality of the findings and their justification. This dimension should also incorporate a conver-
sation about what was learned about the modelling process itself. To date, we have observed
limited occasions in which this dimension was enacted because of the constraints of time.

In cases where a formal report is required, teachers were advised to request that students provide
a succinct, coherent, systematic report of their findings—an area in which students often had trouble
knowing how to proceed. In one instance, a teacher provided scaffolding via a report template in
which students were expected to record the outcomes of their thinking and reflections against the
phases of the modelling process. Another teacher asked students to document the results of their
work phase by phase on an A3-sized graphic of the modelling cycle. He also advised students that
they should continually revise and update these records. In both cases, these devices were used to
scaffold the writing of the final report.

Teacher D: I hadn’t anticipated that they would work so effectively through the booklet…
They very much clarified the question quite quickly and were able to move,
almost through the flowchart, as you would like them to move through it.

Teacher A: So, I’ve given [the students] an A3 page with the cycle on it. I found it was
useful last time. And I think that being able to refer the students to what is
important. Then, when they say “Oh, we’ve got our answer…I can go, “This
iteration. You’ve done here, here and here. The first three steps and you’ve
stopped. We’ve got a lot more we can do. Let’s go and think about those things.”

As part of the process of consolidating teachers’ views of the holistic effectiveness of the
DIFMT, we asked if it was helpful in their efforts to design and implement modelling tasks.

Teacher B: It’s very good. No, really! I can’t say I’ve internalized it, but I certainly think
about it a lot. And it fits nicely with that thing that QCAA [local curriculum
authority] put together in terms of a problem solving and modelling approach.

6 Discussion and conclusion

In this section, we address the two research questions which provided the foci of this article.

6.1 What are the principles for the design and implementation of mathematical
modelling tasks that support instructional competency in mathematical modelling
of practicing secondary teachers?

The DIFMT, an outcome of a research/teacher collaboration, embodies characteristic princi-
ples for the design and implementation of modelling tasks and provides guidance for teachers’
instructional competency in modelling. In developing the DIFMT, we adopted Niss et al.’s
(2007) perspective on holistic modelling competency as the focus of the project was on the
implementation of the complete modelling process. This by no means suggests that individual
sub-competencies are unimportant, but we take the position that a holistic perspective is
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necessary for their appropriate selection and coordination across the modelling process. While
the capabilities identified in the DIFMT are related to the sub-competencies identified in
previous research (e.g., Borromeo Ferri & Blum, 2010; Maaß, 2006), they represent a
departure from earlier work in that they were developed in collaboration with teachers as an
outcome of a three-year long longitudinal study. This long-term engagement enabled teacher
input from the perspective of classroom practice as the DIFMT was developed. As far as we
can determine, this approach is unique in its approach to developing guidelines to instructional
competency in mathematical modelling.

While there has been previous research into task design (e.g., Czocher, 2017; Galbraith,
2006; Maaß, 2010) and task implementation (e.g., Geiger, 2019; Goos et al., 2019; Hernandez-
Martinez & Vos, 2018; Schukajlow et al., 2015; Tan & Ang, 2016) in mathematical model-
ling, the DIFMT is the first attempt to bring these components together into a single cohesive
framework—a contribution to new knowledge in the field. Furthermore, in developing the
DIFMT, we have extended what has been previously known about both task design and
implementation separately. In the case of task design, our principles are seen as necessary but
not sufficient criteria for classroom effectiveness, as it is teachers who must also determine
how a task must be shaped (or not) to meet the needs of their own students and to align with
the classroom/curriculum/system contexts. This represents a departure from previous research
(e.g., Maaß, 2010) which has tended to generate modelling tasks that teachers themselves are
expected to adapt. This finding provides a new focus for Niss’ (2010) construct of implement-
ed anticipation, conceptualized as an enabler for modellers themselves, in that it also has
relevance to those who provide instruction in modelling.

The task implementation component of the DIFMT extends Geiger’s (2019) notion of
pedagogical architecture, developed within the context of numeracy education, into the realm
of mathematical modelling. This component of the DIFMT also takes into account the specific
circumstances in which modelling is being taught and learned. This is distinct from previous
research (e.g., Borromeo Ferri, 2018) which has tended to generate schemes of modelling sub-
competencies to which teachers and classrooms need to adapt. A specific case in point is the
degree of attention devoted to the modelling process review conducted before the implemen-
tation of a new task. The degree of attention to this phase is dependent on a teacher’s capacity to
anticipate how a task will be received and acted upon by their students, and what support will be
required. This is an anticipatory capability not previously discussed in other approaches that
emphasise the need to provide instruction related to the modelling process.

While teachers’ responses to the usefulness of the DIFMT have been unanimously positive,
we have noted that the changes to their instructional practices in modelling depend upon
existing didactical contracts (Brousseau, 1984) and socio-mathematical norms (Yackel &
Cobb, 1996). The DIMFT is unique, in terms of a framework related to the developing of
modelling competency, in that it accommodates aspects of theses constructs rather than taking
a purely cognitive approach (e.g., Borromeo Ferri, 2018).

6.2 What role can teachers play in developing principles for the design
and implementation of mathematical modelling tasks that support their own
instructional competency?

Teachers provided vital input when co-developing tasks with researchers. In the initial stages,
teachers provided advice about adaptions to researcher-developed tasks to ensure relevance to
specific classroom contexts. Over time, teachers accepted increasing responsibility for the
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development of tasks, incorporating their detailed knowledge of essential contextual features,
such as local curriculum requirements, and students’ previous learning experiences in math-
ematics. The development of this capability is consistent with approaches advocated within the
field of task design (e.g., Jones & Pepin, 2016).

In a similar way, teachers provided input into the clarifications and extensions needed to
enhance the DIMFT. This insight grounded the dimensions and elaborations of the DIFMT
in the practical reality of classroom practice and indicated where refinements to the DIMFT
could make it more accessible to other teachers. As a consequence of their active involve-
ment in the research-development process, teachers developed an intimate understanding of
both the principles underpinning tasks and the dimensions of the pedagogical architecture.
These outcomes are consistent with approaches to research conducted with teachers rather
than to them, such as that advocated by Jung and Brady (2016).

6.3 Future research directions and limitations

This study opens up research around teachers’ instructional competency in mathemat-
ical modelling that is distinct from a focus on their proficiency with sub-competen-
cies. We argue that this can best be achieved by considering task design and task
implementation as different sides of the same coin, as embodied in the DIFMT. The
feature that moderates the successful deployment of these components of the DIFMT,
in an interactive way, is teachers’ capacity to anticipate, as design and implementation
must each inform the enaction of the other. While this co-dependency has been noted
in our study as essential for effective instructional practice in mathematical modelling,
further research is needed to identify what enables teachers’ anticipation in designing
tasks and planning for their implementation.

We also note that existing didactical contracts (Brousseau, 1984) and socio-mathematical
norms (Yackel & Cobb, 1996) are strongly influential when attempting to change classroom
practice. These constructs have had limited attention in mathematical modelling research to
date, but our experience in the current study suggests these ideas represent potentially rich
avenues for further research into how to manage effective change in mathematical modelling
practice. Our current study indicates that both teachers and students need to be convinced of the
benefits of new ways of working, a process that may involve multiple trials and some
persistence before success is forthcoming.

The strengths of this study include its longitudinal nature, which means that claims
are not based on brief engagement with participants, but rather on involvement over
an extended period of time—allowing teachers’ perspectives and understandings to
stabilise. This study provides for a strong alignment between the type of educator
involved in developing the DIMFT and those to whom it is applicable—practising
teachers to practising teachers—an alignment that allows for fewer qualifications when
applying research findings to practice. At the same time, it must be acknowledged
that the research has been conducted with a relatively small number of participants,
drawn from a limited pool of school contexts and circumstances. For this reason, we
are aware that general advice about the effectiveness of the DIMFT can only be
extended beyond the cohort of teachers involved in the study in a tentative manner.
This means that further research into the effectiveness of the DIMFT needs to be
conducted at greater scale before we can lay claim to robust and generalisable
findings.
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