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ABSTRACT 

Purpose: To assess the generalisability of previously established hamstring strain injury (HSI) 

risk factors, including demographic data, injury history and biceps femoris long head (BFlh) 

architecture; to predict HSI in a cohort of elite Australian footballers. 

Methods: Demographic, injury history and BFlh architectural data were collected from elite 

Australian soccer (n=152) and Australian football players (n=169) at the beginning of 

preseason for their respective competitions. Any prospectively occurring HSIs were reported 

to the research team. Optimal cut points for continuous variables used to determine association 

with HSI risk were established from the previously published data in soccer and subsequently 

applied to the Australian football cohort in order derive the relative risk (RR) for these 

variables. Logistic regression models were built using data from the soccer cohort and used to 

estimate the probability of injury in the Australian football cohort. Area under the curve (AUC) 

and Brier scores were the primary outcome measures to assess the performance of the logistic 

regression models. 

Results: Twenty-seven and 30 prospective HSIs occurred in the soccer and Australian football 

cohorts, respectively. When using cut points derived from the soccer cohort and applying these 

to the Australian football cohort, only older athletes (≥ 25.4 years, RR = 2.7, 95% confidence 

intervals [95% CIs] = 1.4 to 5.2) and those with a prior HSI (RR = 2.5, 95% CIs = 1.3 to 4.8) 

were at an increased risk of HSI. Using the same approach stature, mass, BFlh fascicle length, 

muscle thickness, pennation angle and relative fascicle length were not significantly associated 

with an increased risk of HSI in Australian footballers. The logistic regression model 

constructed using age and prior HSI performed the best (AUC = 0.67, Brier score = 0.14), with 

the worst performing model being that which was constructed using pennation angle (AUC = 

0.53, Brier score = 0.18). 
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Conclusions: Using HSI risk factor cut points derived from previously published data in soccer 

on a dataset from Australian football identified older age and prior HSI, but none of the 

modifiable factors, to be associated with injury. The transference of HSI risk factor data 

between different cohorts appears limited and suggests that cohort specific cut points must be 

established.  

Key Words: risk, injury prediction, hamstring injury, muscle injury, fascicle length  
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INTRODUCTION 1 

Hamstring strain injuries (HSIs) are the most common injury in team sports such as soccer 5, 6, 2 

10 and Australian football 15, lead to a reduced performance following return to play 27 and pose 3 

a significant financial burden for athletes and their sporting organisations 11. As such, 4 

identifying factors that increase the risk of HSI have been the focus of ongoing research. Two 5 

of the most consistently identified risk factors are older age and a prior HSI, both of which are 6 

non-modifiable 8. Recent work has focused on identifying modifiable factors that could be 7 

targeted via intervention to, potentially, mitigate the risk of future HSI. Amongst this work, a 8 

study conducted in elite soccer players reported that athletes with biceps femoris long head 9 

(BFlh) fascicles shorter than 10.56 cm were approximately 4 times more likely to sustain a 10 

prospective HSI than their ‘longer’ counterparts 24. However, this cut point was determined 11 

retrospectively from the data it was ultimately applied to. Whilst such an approach is commonly 12 

used to establish associations between factors and the risk of injury, their use to identify the 13 

risk of injury at an individual level requires further validation. 14 

In order to determine the predictive ability of injury risk factors, Bahr 1 proposes a three-step 15 

process. Firstly, a risk factor and its associated cut point must be established in a specific 16 

cohort. Subsequently, the generalisability of risk factors and their cut points must be validated 17 

in separate cohorts (whose data were not used to determine the cut point). The final step is to 18 

implement randomised control trials to test the effectiveness of a combination of risk factor 19 

screening (based on data generated from the first two steps) and interventions targeted at those 20 

deemed “at-risk”. It should be noted that the framework outlined by Bahr 1 specifically relates 21 

to the application of dichotomised risk factor data (a cut point used to assign a high and low 22 

risk group) and whilst this is an appropriate series of steps to determine the utility and 23 

generalisability of risk factors it does not directly assess the predictive performance of 24 

continuous variables. Bahr1 further states that the eventual goal of injury prediction is the 25 
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successful development of a screening tool. As an extension of the Bahr framework 1, 26 

techniques such as logistic regression, which establish univariate and multivariate models to 27 

estimate the probability of future (hamstring strain) injury, can be used to assess the 28 

performance of factors associated with future HSI to predict injury occurrence at the individual 29 

level. Whilst logistic regression is a commonly employed statistical approach, there is a dearth 30 

of work in sports injury which has developed logistic regression models in one cohort and then 31 

applied these models to a separate cohort in a different sport. The addition of a separate cohort 32 

is necessary for the theoretical screening tool that is suggested by Bahr1, who further suggests 33 

that such tools need to be validated in all cohorts that could use the tool. Such an approach 34 

would allow for a more thorough understand of the generalisability of factors, potentially 35 

associated with future HSI, across cohorts23.  36 

Despite architectural characteristics of the BFlh being associated with future risk of HSI in elite 37 

soccer players, no research has investigated the generalisability of these risk factor cut points 38 

when applied to a separate cohort nor has the predictive ability of these data in another cohort 39 

of athletes, from a different sport, been determined. Accordingly, this study aimed to assess the 40 

ability of BFlh architecture, in conjunction with age and prior injury data, that has had 41 

previously established cut-points determined in elite soccer players, to identify the risk of HSI 42 

in elite Australian footballers, at both a group and an individual level. We hypothesise that 43 

previously established risk factor cut points for HSI derived from BFlh architecture, age and 44 

prior HSI data in soccer players will be associated with HSI in Australian footballers. 45 

 46 

METHODS 47 

Study design 48 
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Data for this prospective cohort study were collected during the 2014-15 A-League season and 49 

the 2018 Australian Football League (AFL) season. The A-League and the AFL are the premier 50 

competitions in Australia for soccer and Australian football, respectively. For both cohorts, 51 

demographic (age, height, weight), injury history and BFlh architecture data were collected at 52 

the beginning of the pre-season periods (soccer cohort: June 2014; Australian football cohort: 53 

November 2017). Any prospectively occurring HSIs throughout the pre- and in-season periods 54 

(excluding finals) of both leagues (soccer cohort: June 2014 – May 2015; Australian football 55 

cohort: November 2017 – August 2018) were reported to the research team, this includes 56 

injuries incurred in training or in match play. Data collected during the 2014-15 A-League 57 

season has been previously published 24. Ethical approval for the collection of both datasets 58 

was granted by the University Human Research Ethics Committee (approval numbers: 2014-59 

26V [soccer dataset] and 2017-208H [Australian football dataset]). 60 

 61 

Participants 62 

A total of 321 athletes (152 soccer players from nine teams; 169 Australian footballers from 63 

four teams) provided informed consent to participate prior to data collection. The age (years), 64 

stature (cm) and mass (kg) of each athlete was provided at the beginning of the pre-season 65 

period for both cohorts. Additionally, team medical staff completed a retrospective injury 66 

questionnaire that reported in a binary manner (Y/N) each athlete’s history of hamstring in the 67 

past 12 months, as well as the history of ACL injury at any stage throughout the athlete’s career. 68 

 69 

 Biceps femoris long head architectural assessment 70 

Collection of the BFlh architectural characteristics of both cohorts was undertaken as 71 

previously reported 12, 16-18, 24. Muscle thickness, pennation angle and fascicle length of the 72 
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BFlh were determined from ultrasound images taken along the longitudinal axis of the muscle 73 

belly utilising a two dimensional, B-mode ultrasound (frequency, 12 MHz; depth, 8 cm; field 74 

of view, 14×47 mm) (GE Healthcare Vivid-i, Wauwatosa, USA). The scanning site was 75 

determined as the halfway point between the ischial tuberosity and the knee joint fold, along 76 

the BFlh. All architectural assessments were performed with participants in a relaxed, prone 77 

position with the hips in neutral and knees fully extended. To gather ultrasound images, the 78 

linear array ultrasound probe, with a layer of conductive gel was placed on the skin over the 79 

scanning site, aligned longitudinally and perpendicular to the posterior thigh with the hips in 80 

normal, unrestrained rotation. Care was taken to ensure minimal pressure was placed on the 81 

skin by the probe and the operator. Finally, the orientation of the probe was manipulated 82 

slightly by the operator in order to optimise fascicle identification. Ultrasound image analysis 83 

was undertaken off-line (MicroDicom, V.0.7.8, Bulgaria). For each image, six points were 84 

identified as described by Kellis et al. 13. Muscle thickness was defined as the distance between 85 

the superficial and intermediate aponeuroses of BFlh. A fascicle of interest, which was the 86 

clearest and could be seen across the entire field of view, was outlined and marked on the 87 

image. The angle between this fascicle and the intermediate aponeurosis was defined as the 88 

pennation angle. The angle of both the superficial and intermediate aponeuroses was 89 

determined as the angle between the line marked as the aponeurosis and an intersecting 90 

horizontal reference line input across the captured image. Fascicle length was determined as 91 

the length of the outlined fascicle between aponeuroses. As the entire fascicle was not visible 92 

in the probe’s field of view it was estimated via the following validated equation 25: 93 

FL = sin (AA + 90°) × MT/sin (180° − (AA + 180° − PA)) 94 

where FL, fascicle length; AA, aponeurosis angle; MT, muscle thickness; PA, pennation angle. 95 

Fascicle length was reported in absolute terms (cm) and relative to muscle thickness (the 96 

quotient of FL and MT). All BFlh architecture assessments and analyses were completed by 97 
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the same operator (RGT) with published reliability (Intraclass correlation coefficient range = 98 

0.95 – 0.99; % typical error range = 2.1 to 3.4%)  25. The extrapolation technique and equation 99 

have been validated against cadaveric tissues 13.  100 

 101 

 Prospective hamstring strain injury data 102 

A prospective HSI was defined as acute pain in the posterior thigh that resulted in the cessation 103 

of activity. Each injury was confirmed by clinical examination conducted by the medical 104 

officials (i.e. physiotherapist, doctor) of each club. Club medical officials subsequently 105 

provided the research team with a medical report detailing the injured limb, the location and 106 

the mechanism of the injury, as well as number of days taken to return to full match availability.  107 

 108 

 Statistical analysis 109 

Differences between the two cohorts were assessed using independent t-tests. Following this, 110 

using the soccer cohort dataset, receiver operator characteristic (ROC) curves were used to 111 

determine optimal cut points for continuous variables. These cut points were established as the 112 

value that maximised the difference between sensitivity and 1-specificity, as described in the 113 

original work 24. All cut points derived from the soccer cohort were then applied to the 114 

Australian football cohort to determine relative risks (RRs), the associated 95% confidence 115 

intervals (95% CIs) as well as sensitivity and specificity. As prior HSI is a dichotomous 116 

variable, the cut point used to determine RR of future HSI in the Australian football cohort was 117 

determined by comparing those with and without a history of HSI. All variables included in 118 

the RR analyses can be found in Table 1. A RR was deemed to be significant when the 95% 119 

CIs did not cross 1.0. Following the determination of RR, univariable and multivariable logistic 120 

regression models were built using the soccer dataset and then subsequently applied to the 121 
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Australian football data to assess the generalisability and predictive performance of these 122 

models. The variables included in these models and the process by which they are built can be 123 

found in Table 1 and Figure 1, respectively. 124 

 125 

 126 

Table 1. The variables used to determine relative risks (RRs) and to build univariable and 127 
multivariable logistic regression models. All architectural variables (fascicle length, muscle 128 
thickness, pennation angle, relative fascicle length) were derived from the biceps femoris long 129 
head. No interaction terms were included in any of the models. 130 

RR was  
calculated for 

Univariable logistic  
regression models 

Multivariable logistic  
regression models 

Age (years) Age Age and prior HSI 

Prior HSI Prior HSI Age, prior HSI and fascicle length 

Stature (cm) Fascicle length Age, prior HSI and pennation angle 

Mass (kg) Pennation angle Age, prior HSI and relative fascicle 
length^ 

Fascicle length (cm) Relative fascicle 
length^ All variables# 

Muscle thickness (cm)   

Pennation angle 
(degrees)   

Relative fascicle 
length^   

 131 
^Relative fascicle length refers to fascicle length relative to muscle thickness. #All variables 132 
(age, prior HSI, stature, mass, fascicle length, muscle thickness, pennation angle and relative 133 
fascicle length) were included in a stepwise regression model. The final model was built 134 
using the subset of variables that minimised the model’s Akaike information criterion 135 

 136 
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Figure 1. The logistic regression modelling approach implemented in this study. 138 

To assess the performance of each logistic regression model to predict future HSI in the 139 

Australian football cohort, the area under the curve (AUC) and the Brier score was determined. 140 

Area under the curve, determined from a ROC curve, measures the ability of a model to 141 

distinguish between prospectively injured and uninjured observations. An AUC of 1.0 indicates 142 

that the predicted injury probabilities for the prospectively injured athletes are all greater than 143 

the predicted injury probabilities for the uninjured athletes. An AUC of 0.5 indicates 144 

classification no better than random chance. The AUC could also be considered as analogous 145 

to a percentage, where an AUC of 0.5 equates to successful prediction 50% of the time and an 146 

AUC of 1.0 is a successful prediction 100% of the time. Brier scores, measured on a scale of 0 147 
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to 1, are a measure of the precision of probabilistic predictions, with a Brier score closer to 0 148 

indicating better precision. Calibration plots for all logistic regression models were constructed 149 

to provide a visual representation of how well a model can estimate the probability of an event 150 

(i.e. prospective HSI) across the spectrum of predicted probabilities. 151 

All statistical analyses were performed using the R statistical programming language 19 and the 152 

following packages: caTools, dplyr, ggplot2, DescTools, scoring, OptimalCutpoints and 153 

ggpubr. 154 

 155 

RESULTS 156 

Participant characteristics 157 

Complete prospective follow up was obtained for all participants. A total of 152 soccer players 158 
(age, 24.7 ± 5.0 years; stature, 179 ± 6 cm; mass, 75.6 ± 6.6 kg) and 169 Australian footballers 159 
(age, 23.6 ± 3.5 years; stature, 188 ± 8 cm; mass, 86.4 ± 8.7 kg) were included in the analyses. 160 
All descriptive data and differences between the two cohorts can be observed in Supplementary 161 
Material 1. Of the athletes that were included in this study, 27 soccer players and 30 Australian 162 
footballers sustained a prospective HSI during their respective seasons. For both cohorts more 163 
HSIs were sustained in matches (soccer, 20; Australian football, 17) compared to training 164 
(soccer, 6; Australian football, 13), although not all injuries had this information available 165 
(soccer, 1; Australian football, 0). For soccer players, the  number of HSIs sustained per 166 
position: midfielder, 11; forwards, 9; and defenders, 7. For Australian football: midfielder, 6; 167 
forwards, 11; backs, 11; and rucks, 2. Descriptive statistics for both the prospectively injured 168 
and uninjured athletes of both cohorts can be found in Table 2.169 
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Table 2.  Descriptive statistics for athletes that sustained a prospective hamstring strain injury (HSI) and uninjured athletes from the 170 
soccer and Australian football cohorts. Data are presented as mean ± standard deviation for continuous variables or as total number 171 
for dichotomous variables. All architectural variables (fascicle length, muscle thickness, pennation angle, relative fascicle length) 172 
were derived from the biceps femoris long head. 173 

 Australian football cohort Soccer cohort 
 Injured  

(n = 30) 
Uninjured  
(n = 139) p Injured 

(n = 27) 
Uninjured 
(n = 125) p 

Age (years) 24.9 ± 3.5 23.3 ± 3.5 0.029 27.0 ± 3.8 24.2 ± 5.1 0.002 

Prior HSI 10 18 <0.001 9 21 0.063 

Stature (cm) 186 ± 7 188 ± 8 0.850 180 ± 7 179 ± 6 0.395 

Mass (kg) 84.8 ± 8.5 86.8 ± 8.7 0.253 76.4 ± 6.7 75.4 ± 6.6 0.463 

Fascicle length (cm) 10.10 ± 0.89 10.20 ± 0.60 0.581 10.30 ± 1.48 11.10 ± 1.49 0.018 

Muscle thickness (cm) 2.60 ± 0.22 2.61 ± 0.26 0.862 2.52 ± 0.31 2.51 ± 0.32 0.918 

Pennation angle (degrees) 15.6 ± 1.0 15.4 ± 1.2 0.561 14.2 ± 1.4 13.2 ± 1.5 0.002 

Relative fascicle length^ 3.88 ± 0.31 3.94 ± 0.26 0.217 4.11 ± 0.45 4.44 ± 0.50 0.001 

 174 
^Relative fascicle length refers to fascicle length relative to muscle thickness  175 
NA; comparisons for binary data are not applicable176 
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Relative risk, sensitivity and specificity 177 

The RR of Australian footballers sustaining a prospective HSI, as well as sensitivity and 178 

specificity values, based on the cut points derived from the soccer cohort, can be found in 179 

Figure 2. Older athletes (≥ 25.4 years, RR = 2.7, 95% CIs = 1.4 to 5.2) and those with a prior 180 

HSI (RR = 2.5, 95% CIs = 1.3 to 4.8) were at an increased risk of HSI. Stature, mass, BFlh 181 

fascicle length, muscle thickness, pennation angle and relative fascicle length were not 182 

associated with an increased risk of HSI in Australian footballers when using cut points derived 183 

from the soccer cohort (Figure 2). All RR, sensitivity and specificity data can be found in 184 

Supplementary Material 2. 185 

Figure 2. The relative risk (RR) of the Australian football athletes sustaining a prospective 187 

hamstring strain injury (HSI), as well as sensitivity and specificity values, based on the cut 188 

points derived from a previously collected dataset in soccer. If the 95% confidence intervals 189 

(represented by the black horizontal lines) cross the grey vertical line (RR = 1.0), this indicates 190 
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a non-significant RR. All architectural variables (fascicle length, muscle thickness, pennation 191 

angle, relative fascicle length) are derived from the biceps femoris long head (BFlh). *RR and 192 

95% confidence intervals for pennation angle could not be calculated due to a sensitivity value 193 

of 1.00, which indicates that there were no HSIs in the low-risk group. ^Relative fascicle length 194 

refers to BFlh fascicle length relative to muscle thickness. 195 

 196 

Logistic regression models 197 

The AUC and Brier score of each logistic regression model that was built using the soccer 198 

dataset and subsequently applied to the Australian football dataset can be found in Table 3 199 

(model coefficients are provided in Supplementary Material 3 and variable importance for each 200 

individual model is provided in Supplementary Material 4). The model constructed using age 201 

and prior HSI performed best (AUC = 0.67, Brier score = 0.14) with the worst performing 202 

model a univariable model containing pennation angle (AUC = 0.53, Brier score = 0.18). The 203 

calibration of each univariable and multivariable model is illustrated in Figure 3 and Figure 4 204 

respectively.  205 

 206 

 207 

 208 

 209 

Table 3. The area under the curve (AUC) and Brier scoreof each logistic regression model. 210 
Models were built using data from the soccer cohort and used to estimate the probability of 211 
prospective hamstring strain injury (HSI) in the Australian football cohort. Estimated injury 212 
probabilities were compared to the actual outcomes to determine the predictive performance of 213 
each model. All architectural variables (fascicle length, muscle thickness, pennation angle, 214 
relative fascicle length) are derived from the biceps femoris long head. 215 

 216 
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Model Composition AUC Brier score 

Univariable 

Age 0.64 0.14 

Prior HSI 0.60 0.14 

Fascicle length 0.54 0.15 

Pennation angle 0.53 0.18 

Relative fascicle length^ 0.56 0.16 

Multivariable 

Age and prior HSI 0.67 0.14 

Age, prior HSI and fascicle length 0.65 0.14 

Age, prior HSI and pennation angle 0.62 0.17 

Age, prior HSI and relative fascicle 
length^ 0.65 0.15 

Stepwise regression# 0.65 0.15 

^Relative fascicle length refers to fascicle length relative to muscle thickness. #All variables 217 
(age, prior HSI, stature, mass, fascicle length, muscle thickness, pennation angle and relative 218 
fascicle length) were included in the stepwise regression model. The final model was built 219 
using the subset of variables that minimised the model’s Akaike information criterion. The 220 
final variables included were: age, prior HSI and relative fascicle length. Note that these are 221 
the same variables that were included in one of the a-priori determined models. 222 

 223 
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Figure 3. Calibration plots for all univariable logistic regression models with actual and 225 

predicted rates of hamstring strain injury (HSI). Calibration is a measure of how well a model 226 

can estimate the probability of an event. For example, if we were to take every observation 227 

with a predicted injury probability of 25%, a perfectly calibrated model would suggest that the 228 

actual rate of injury for these observations was equal to 25%. The 45-degree diagonal line 229 

represents perfect calibration and the grey shaded areas indicate the 95% confidence intervals. 230 

All architectural variables (fascicle length, muscle thickness, pennation angle, relative fascicle 231 

length) were derived from the biceps femoris long head. Relative fascicle length refers to 232 

fascicle length relative to muscle thickness. Points at 100 on the y-axis represent predicted 233 

injury probabilities of subsequently injured athletes (with predicted probabilities shown on the 234 

x-axis) while points at 0 on the y-axis represent predicted injury probabilities of athletes who 235 

avoid subsequent injury. Excluding Plot B (prior HSI), all points are separated by height for 236 

visual clarity. A) age; B) prior HSI; C) biceps femoris long head (BFlh) pennation angle; D) 237 

BFlh fascicle length; E) BFlh fascicle length relative to muscle thickness. 238 

 239 
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Figure 4. Calibration plots for all multivariable logistic regression models with actual and 241 

predicted rates of hamstring strain injury (HSI). Calibration is a measure of how well a model 242 

can estimate the probability of an event. For example, if we were to take every observation 243 

with a predicted injury probability of 25%, a perfectly calibrated model would suggest that the 244 

actual rate of injury for these observations was equal to 25%. The 45-degree diagonal line 245 

represents perfect calibration and the grey shaded areas indicate the 95% confidence intervals. 246 

All architectural variables (fascicle length, muscle thickness, pennation angle, relative fascicle 247 

length) were derived from the biceps femoris long head. Relative fascicle length refers to 248 

fascicle length relative to muscle thickness. Points at 100 on the y-axis represent predicted 249 

injury probabilities of subsequently injured athletes (with predicted probabilities shown on the 250 

x-axis) while points at 0 on the y-axis represent predicted injury probabilities of athletes who 251 

avoid subsequent injury. A) age and prior HSI; B) age, prior HSI and biceps femoris long head 252 

(BFlh) fascicle length; C) age, prior HSI and BFlh pennation angle; D) age, prior HSI and BFlh 253 

fascicle length relative to muscle thickness; E) stepwise regression including all variables as 254 

inputs (final model included age, prior HSI and BFlh fascicle length relative to muscle 255 

thickness). 256 
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 257 

DISCUSSION 258 

The key finding of this study was that previously reported risk factors associated with cut points 259 

derived from BFlh architectural variables in soccer players were not associated with future risk 260 

of HSI in Australian footballers. However, risk of future HSI in Australian footballers was 261 

associated with older age (≥25.4 years) and prior HSI, with the age cut point generated from a 262 

previously collected dataset in soccer. This study is the first to apply statistical cut points 263 

derived in one sporting cohort to determine the risk of HSI in another sporting cohort, which 264 

is recommended as a critical step in establishing the predictive ability of risk factor data 1, 20.  265 

In contrast to the findings of the original investigation of the soccer cohort24, cut points derived 266 

from BFlh architectural variables in soccer players were not associated with risk of HSI when 267 

applied to an Australian football cohort. Prior research has reported that soccer players with 268 

BFlh fascicles shorter than 10.56 cm were at a 4-fold increased risk of HSI compared to their 269 

longer counterparts 24. In the current study, however, BFlh fascicle length was not associated 270 

the risk of HSI, with Australian football athletes possessing fascicles less than 10.56 cm being 271 

at similar level or risk (RR = 1.1) compared to the athletes with longer BFlh fascicles. This 272 

suggests that whilst BFlh architecture may play an important role in identifying elite soccer 273 

players’ risk of future HSI, injury risk cut points derived from this cohort are not generalisable 274 

to Australian football. There are a number of potential reasons as to why data from soccer may 275 

not readily transfer to Australian football, not least differences in anthropometric and 276 

architectural characteristics between cohorts (Supplementary Material 1). Whilst it might be 277 

expected that risk factor cut point data from one sport, subsequently applied to another, is 278 

unlikely to have transference, in reality, practitioners from various sports rely on literature not 279 

specific to their sport to guide their HSI prevention and/or risk mitigation strategies. The 280 

present work provides evidence that an assumption of transference between sports cannot be 281 
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guaranteed for modifiable risk factor cut points and highlights the importance of replication 282 

work, across different cohorts, for variables found to be associated with future HSI. However, 283 

age and prior HSI were associated with an increased risk of HSI in the soccer cohort 24 and, 284 

when these same cut points were applied to Australian footballers, an association was still 285 

present. These findings add to the existing body of evidence reporting age and prior HSI as 286 

strong, albeit non-modifiable, risk factors for future HSI 9.     287 

When identifying the risk of HSI at an individual level, via logistic regression, the model built 288 

using age and prior HSI was superior to all other models. In prior research, models built using 289 

BFlh tended to outperform other models 24, however, in the current study, including BFlh 290 

architectural variables in the models typically reduced their predictive performance. The results 291 

of the logistic regression models are in line with the RR (association) data, suggesting that age 292 

and prior HSI offered the best predictive ability within the Australian football cohort. Despite 293 

this, the model built using age and prior HSI only had an AUC of 0.66. This value suggests 294 

that if we were to randomly select a prospectively injured athlete and an uninjured athlete, the 295 

likelihood that the best performing model would have allocated the prospectively injured 296 

athlete with a higher predicted injury probability (compared to the uninjured athlete) is only 297 

equal to 66%. Whilst there is no consensus on how to subjectively describe and/or interpret 298 

AUC data, an AUC of above 0.75 indicates that model performance was closer to perfect 299 

prediction than random chance. Given that all AUC of the logistic regression models reported 300 

in the current work were ≤ 0.67, this suggests their ability to correctly classify the prospectively 301 

injured and uninjured athletes was closer to random chance than it was to perfect predictive 302 

performance, as illustrated by the multivariable calibration curves (Figure 4), the models 303 

tended to overestimate the probability of future HSI. This is likely a function of the models 304 

being built using data from the soccer cohort, in which BFlh architecture influenced the risk of 305 
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HSI and highlights the fragility of the transference of logistic regression models between 306 

different sports. 307 

Prior research has attempted to investigate the ability of other variables to identify the risk of 308 

HSI in elite Australian footballers. For example, an association between high-speed running 309 

distances and the risk of HSI at a group level in elite Australian footballers has been reported 310 

previously 22. At an individual level, one study 4 has investigated the ability of internal and 311 

external training load data to predict lower limb non-contact injuries in elite Australian 312 

footballers. In this study, data from two seasons were used to predict injury occurrences in a 313 

third season. The best performing model was able to classify the athletes that sustained a 314 

prospective hamstring injury and the uninjured athletes with an AUC of 0.72. Whilst this study 315 

utilised an independent training and testing dataset (as per the current methods), it is important 316 

to note that the cohorts were not entirely independent. Whether the ability of internal and 317 

external training load to predict the occurrence of HSI is generalisable across cohorts from 318 

different sports remains to be seen. These results do, however, suggest that the addition of 319 

internal and external training load data may contribute to the improvement of multivariable 320 

HSI prediction models in Australian footballers. 321 

Another study of a similar design to the current investigation has reported on the predictive 322 

performance of HSI risk factors in elite Australian footballers 23. Low levels of eccentric knee 323 

flexor strength, in addition to older age and a history of HSI, have previously been associated 324 

with an increased risk of HSI in a cohort of elite Australian footballers 14. A follow-up to the 325 

original investigation used these data to build predictive models and identify the risk of injury 326 

in another cohort of elite Australian footballers two years later 23. Despite age, prior HSI and 327 

eccentric knee flexor strength being strongly associated with the risk of HSI in the original 328 

dataset 14, the predictive models built using these variables were only able to classify the 329 

prospectively injured and uninjured athletes in the follow-up cohort with a mean AUC of 0.52 330 
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23. In comparison, the worst performing multivariable model in the current study was that which 331 

was built using age, prior HSI and pennation angle (AUC = 0.62). The current findings suggest 332 

that the architectural variables included in this study, whilst not displaying a significant 333 

association with the risk of HSI, may facilitate better predictive performance than eccentric 334 

knee flexor strength. However, as aforementioned, prior research used independent training 335 

and testing datasets from the same sport 4, 23. Accordingly, the results may be difficult to 336 

compare to current study, which is the first to use testing and training datasets from two 337 

different sporting cohorts. 338 

Recent recommendations 3, have suggested using Brier scores as a predictive performance 339 

metric, which has been rarely, if ever, reported in the sports injury literature. Whilst the Brier 340 

scores did not offer a different interpretation of the current results in comparison to the AUC, 341 

it is important for researchers and practitioners alike to understand how to interpret Brier scores 342 

as a means to facilitate comparisons between future work. Measured on a scale of 0 to 1, Brier 343 

scores are a measure of the precision of probabilistic predictions, with a lower Brier score 344 

indicating better precision. When building predictive models, it is important to assess not only 345 

the ability of a model to distinguish between the prospectively injured and uninjured athletes 346 

(for which AUC is a metric well suited to do so), but also how precise the predicted injury 347 

probabilities are. Brier scores reflect the ability of a model to correctly predict the actual rates 348 

of injury observed. In the current study, the multivariable model with the lowest Brier score 349 

was built using age and prior HSI (Brier score = 0.14). The addition of fascicle length to this 350 

model did not negatively impact the Brier score, although it did reduce the AUC from 0.67 to 351 

0.65. The addition of all other architectural variables, however, negatively impacted the Brier 352 

score (Table 3). The calibration curves illustrated in Figure 3 and Figure 4 provide a visual 353 

representation of each model’s ability to correctly predict the actual observed injury rates. The 354 

use of calibration curves, whilst requiring a subjective interpretation, can provide a more 355 
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granular understanding of model error, when considered in conjunction with AUC and Brier 356 

score data. These curves suggest that the addition of the architectural variables to the 357 

multivariable models tends to result in overestimation of injury rates (Figure 4) and this would 358 

have been indeterminant based on the objective performance measures only.  359 

From a practical perspective, the results of this study suggest that practitioners must proceed 360 

cautiously when interpreting and translating the findings of an investigation in one sporting 361 

cohort to another sporting cohort, as it relates to HSI risk factors. It may be tempting, based on 362 

the seminal work 24, to conclude that 10.56 cm is an appropriate cut point for classifying 363 

athletes as having either short or long BFlh fascicles. However, this cut point was determined 364 

retrospectively from the data it was applied to and as a result, is closely fit to the original soccer 365 

cohort. Whilst this cut point displays some level of predictive ability in the soccer cohort 24, it 366 

was not appropriate for identifying Australian footballers at an increased risk of HSI. The best 367 

performing model in the current study achieved an AUC of 0.67. This indicates that if we were 368 

to randomly observe a prospectively injured and uninjured athlete, the likelihood that the model 369 

will have allocated the prospectively injured athlete with a higher predicted injury probably is 370 

equal to 67%. These results suggest a poor ability to correctly identify the risk of HSI at an 371 

individual level, even using previously reported risk factors. Accordingly, practitioners should 372 

be cautious when using risk factor data from a different sport to make inferences regarding 373 

their athletes’ risk of future HSI. 374 

There are limitations in this study that must be acknowledged. Firstly, the measure of BFlh 375 

fascicle length is an estimation made from the validated equation reported in the methods 2, 13. 376 

This estimation is necessary due to the small transducer field of view utilised in this study. The 377 

methodology and equation employed for this estimation has been compared against cadaveric 378 

hamstring samples and has been reported as valid and reliable 13, 25 and has also been associated 379 

with the risk of injury 24. However, the utilisation of other methods for determining BFlh 380 
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architecture 7 may have provided different results. This notwithstanding, the validity of the 381 

current work is strengthened as the same method of BFlh architectural assessment and analysis 382 

was consistent across both cohorts. Secondly, the data used to build the predictive models in 383 

this study were only collected at the beginning of pre-season training for each study period. It 384 

is unknown whether more frequent measures of the architectural variables included in this 385 

study would have impacted predictive performance. Additionally, although prior HSI was 386 

significantly associated with the risk of injury in this study, prior research has suggested that 387 

more frequent measures of the impact of prior injury (such as measures of session availability) 388 

may provide more insight 21. Thirdly, BFlh architectural data was used to predict all HSI While 389 

the exclusive prediction of BFlh injuries may have resulted in alternate findings, it would also 390 

negatively impacted statistical power. Finally, the current study does not report running 391 

exposure data from either cohort. Previous literature has shown that Australian footballers 392 

cover significantly higher distances during high-velocity running and sprinting as well as 393 

significantly more sprint efforts 26Differences in running exposure between the two cohorts 394 

may have influenced our findings, however, we were unable to account for this.  395 

In conclusion, modifiable HSI risk factors and their cut points, previously established in a 396 

cohort of elite soccer players, were not able to identify the risk of HSI in a cohort of elite 397 

Australian footballers, at both a group and an individual level. Currently, the ability of 398 

predictive models to correctly identify athletes at an increased risk of HSI is sub-optimal. 399 

Whilst the efficacy of the current methods to identify risk and predict the occurrence of HSI 400 

may warrant further investigation, practitioners should proceed with caution when interpreting 401 

and implementing the findings of previous research that is not specific to their cohort of 402 

interest. 403 

 404 
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Figure captions: 405 

Figure 1. The logistic regression modelling approach implemented in this study. 406 

Figure 2. The relative risk (RR) of the Australian football athletes sustaining a prospective 407 

hamstring strain injury (HSI), as well as sensitivity and specificity values, based on the cut 408 

points derived from a previously collected dataset in soccer. If the 95% confidence intervals 409 

(represented by the black horizontal lines) cross the grey vertical line (RR = 1.0), this indicates 410 

a non-significant RR. All architectural variables (fascicle length, muscle thickness, pennation 411 

angle, relative fascicle length) are derived from the biceps femoris long head (BFlh). *RR and 412 

95% confidence intervals for pennation angle could not be calculated due to a sensitivity value 413 

of 1.00, which indicates that there were no HSIs in the low-risk group. ^Relative fascicle length 414 

refers to BFlh fascicle length relative to muscle thickness. 415 

Figure 3. Calibration plots for all univariable logistic regression models with actual and 416 

predicted rates of hamstring strain injury (HSI). Calibration is a measure of how well a model 417 

can estimate the probability of an event. For example, if we were to take every observation 418 

with a predicted injury probability of 25%, a perfectly calibrated model would suggest that the 419 

actual rate of injury for these observations was equal to 25%. The 45-degree diagonal line 420 

represents perfect calibration and the grey shaded areas indicate the 95% confidence intervals. 421 

All architectural variables (fascicle length, muscle thickness, pennation angle, relative fascicle 422 

length) were derived from the biceps femoris long head. Relative fascicle length refers to 423 

fascicle length relative to muscle thickness. Points at 100 on the y-axis represent predicted 424 

injury probabilities of subsequently injured athletes (with predicted probabilities shown on the 425 

x-axis) while points at 0 on the y-axis represent predicted injury probabilities of athletes who 426 

avoid subsequent injury. Excluding Plot B (prior HSI), all points are separated by height for 427 
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visual clarity. A) age; B) prior HSI; C) biceps femoris long head (BFlh) pennation angle; D) 428 

BFlh fascicle length; E) BFlh fascicle length relative to muscle thickness. 429 

Figure 4. Calibration plots for all multivariable logistic regression models with actual and 430 

predicted rates of hamstring strain injury (HSI). Calibration is a measure of how well a model 431 

can estimate the probability of an event. For example, if we were to take every observation 432 

with a predicted injury probability of 25%, a perfectly calibrated model would suggest that the 433 

actual rate of injury for these observations was equal to 25%. The 45-degree diagonal line 434 

represents perfect calibration and the grey shaded areas indicate the 95% confidence intervals. 435 

All architectural variables (fascicle length, muscle thickness, pennation angle, relative fascicle 436 

length) were derived from the biceps femoris long head. Relative fascicle length refers to 437 

fascicle length relative to muscle thickness. Points at 100 on the y-axis represent predicted 438 

injury probabilities of subsequently injured athletes (with predicted probabilities shown on the 439 

x-axis) while points at 0 on the y-axis represent predicted injury probabilities of athletes who 440 

avoid subsequent injury. A) age and prior HSI; B) age, prior HSI and biceps femoris long head 441 

(BFlh) fascicle length; C) age, prior HSI and BFlh pennation angle; D) age, prior HSI and BFlh 442 

fascicle length relative to muscle thickness; E) stepwise regression including all variables as 443 

inputs (final model included age, prior HSI and BFlh fascicle length relative to muscle 444 

thickness). 445 

 446 

Supplementary materials: 447 

Supplementary Material 1. Descriptive statistics comparing demographic and biceps femoris 448 

long head (BFlh) architectural data from Australian football and soccer cohorts. Data are 449 

presented as mean ± standard deviation for continuous variables or as total number for 450 

dichotomous variables. 451 
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Supplementary Material 2. The relative risk (RR) of Australian footballers sustaining a 452 

prospective HSI, as well as area under the curve (AUC), sensitivity and specificity values, 453 

based on the cut points derived from the soccer cohort. All architectural variables (fascicle 454 

length, muscle thickness, pennation angle, relative fascicle length) are derived from the biceps 455 

femoris long head (BFlh). 456 

Supplementary Material 3. Model coefficients results for all constructed models. All 457 

architectural variables (fascicle length, muscle thickness, pennation angle, relative fascicle 458 

length) are derived from the biceps femoris long head (BFlh). 459 

Supplementary Material 4. Variable importance plot of each variable within each model. All 460 

architectural variables (fascicle length, muscle thickness, pennation angle, relative fascicle 461 

length) are derived from the biceps femoris long head (BFlh). Variable importance was 462 

determined as the absolute value of the z-test value (the absolute coefficient divided by the 463 

standard error). For Model 10 all variables (age, prior HSI, stature, mass, fascicle length, 464 

muscle thickness, pennation angle and relative fascicle length) were included in a stepwise 465 

regression model. The stepwise regression model (Model 10 was built using the subset of 466 

variables that minimised the model’s Akaike information criterion. The final variables included 467 

were: age, prior HSI and relative fascicle length. These variables were identical to those 468 

included in Model 9, hence the coefficients for both Models 9 and 10 are presented together. 469 

 470 
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