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A B S T R A C T

The conduction velocity (CV) of action potentials along axons is a key neurophysiological property central to
neural communication. The ability to estimate CV in humans in vivo from non-invasive MRI methods would
therefore represent a significant advance in neuroscience. However, there are two major challenges that this
paper aims to address: (1) Much of the complexity of the neurophysiology of action potentials cannot be captured
with currently available MRI techniques. Therefore, we seek to establish the variability in CV that can be captured
when predicting CV purely from parameters that have been reported to be estimatable from MRI: inner axon
diameter (AD) and g-ratio. (2) errors inherent in existing MRI-based biophysical models of tissue will propagate
through to estimates of CV, the extent to which is currently unknown. Issue (1) is investigated by performing a
sensitivity analysis on a comprehensive model of axon electrophysiology and determining the relative sensitivity
to various morphological and electrical parameters. The investigations suggest that 85% of the variance in CV is
accounted for by variation in AD and g-ratio. The observed dependency of CV on AD and g-ratio is well char-
acterised by the previously reported model by Rushton. Issue (2) is investigated through simulation of diffusion
and relaxometry MRI data for a range of axon morphologies, applying models of restricted diffusion and relax-
ation processes to derive estimates of axon volume fraction (AVF), AD and g-ratio and estimating CV from the
derived parameters. The results show that errors in the AVF have the biggest detrimental impact on estimates of
CV, particularly for sparse fibre populations (AVF< 0:3). For our equipment set-up and acquisition protocol, CV
estimates are most accurate (below 5% error) where AVF is above 0.3, g-ratio is between 0.6 and 0.85 and AD is
high (above 4 μm). CV estimates are robust to errors in g-ratio estimation but are highly sensitive to errors in AD
estimation, particularly where ADs are small. We additionally show CV estimates in human corpus callosum in a
small number of subjects. In conclusion, we demonstrate accurate CV estimates are possible in regions of the brain
where AD is sufficiently large. Problems with estimating ADs for smaller axons presents a problem for estimating
CV across the whole CNS and should be the focus of further study.
1. Introduction

The conduction velocity (CV) of action potentials along axons is a key
neurophysiological property upon which neural communication de-
pends. While in vivo CV measurements in peripheral nerves are
comparatively trivial, it is currently not possible to obtain in vivo esti-
mates of CV in the central nervous system (CNS). The ability to make
such estimates, however, would yield a great deal of insight into how the
brain encodes and integrates information and how such mechanisms are
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optimised in the human brain (Pumphrey and Young, 1938; Omi and
Shinomoto, 2008; Carr and Konishi, 1988; Sugihara et al., 1993; Budd
et al., 2010; Schüz and Preil, 1996; Ford et al., 2015; Innocenti, 2017).
Furthermore, being able to image CV in CNS axons in vivowould allow us
to identify individual differences in CV, and examine how and why CV is
altered in healthy development, ageing and disease states.

Previously, simple relationships between axon morphology and CV
have been derived from early electrophysiological and theoretical liter-
ature (Gasser and Grundfest, 1939; Hursh, 1939; Huxley and St€ampeli,
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Table 1
Baseline and range values for each parameter tested for parameters of interest
and values for fixed parameters of the Richardson model. All baseline values
were those used in Arancibia-C�arcamo et al. (2017). values for ranges were ob-
tained from [1] Arancibia-C�arcamo et al. (2017) or [2] Brinkmann et al. (2008)
otherwise 20% of the baseline value was used.

Varied parameters

Parameter Units Baseline value (ϕi)
[1]

� Limits
(jΔϕij)

Axon diameter μm 0.82 0.31 [1]
Node diameter μm 0.73 0.19 [2]
Node length μm 1.02 0.15 [1]
Internode length μm 139.26 31.53 [1]
Peri-axonal width nm 15 3
Myelin periodicity nm 15.6 3.12
g-ratio – 0.78 0.057 [2]
Internode leakage conductance mScm�2 0.1 0.02
Intra-axonal resistivity Ωm 0.7 0.14
Peri-axonal resistivity Ωm 0.7 0.14
Myelin conductance mScm�2 1 0.2
Fast Na þ conductance mScm�2 30 6
Persistent Na þ conductance mScm�2 0.05 0.01
Slow Kþ conductance mScm�2 0.8 0.16
Parameters dependent on varied parameters
Parameter Units Baseline value
Myelin width μm 0.101
Myelin periodicity nm 15.6
# of myelin wraps – 7
Node diameter μm 0.73
Internode diameter μm 1.05
Paranode diameter μm 1.02
Paranode length μm 2.11
Periaxonal width at internode nm 15
Effective periaxonal width at
paranode

nm 0.0077

Fixed parameters
Temperature C 37
Number of nodes – 50
Stimulus amplitude (baseline
condition)

nA 2.73

Stimulus duration ms 10
Axon capacitance μFcm�2 0.9
Node capacitance μFcm�2 0.9
Myelin membrane capacitance μFcm�2 0.9
Node Resting potential mV �82
Node Reversal potential mV �83.4
Na þ reversal potential mV 50
Kþ reversal potential mV �84
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1949; Rushton, 1951; Smith and Koles, 1970; Waxman and Bennett,
1972; Moore et al., 1978; Tolhurst and Lewis, 1992) (seeWaxman (1980)
for a review). In particular, Rushton (1951) derived a very simple rela-
tionship: v∝Dg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�lnðgÞp
∝d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�lnðgÞp
, where d is the inner axon diameter,

D is the outer fibre (axon plus myelin sheath) diameter and g is the ratio
between the two, g ¼ d=D. An alternative model derived byWaxman and
Bennett (1972) models CV as a simple linear function of outer fibre
diameter: v∝D∝d=g. The constant of proportionality of this relationship
usually falls in the range of 5.5–6.0 m s�1=μm and is often used as a
simple way of predicting CV from fibre diameter (Caminiti et al., 2013;
Tomasi et al., 2012; Innocenti et al., 2014).

Recent developments in MRI acquisition technology and modelling
claim to provide non-invasive estimates of microstructural attributes
relevant to CV, including axon diameter (AD) (Assaf et al., 2008; Alex-
ander et al., 2010), axonal volume fractions (AVF) (Assaf and Basser,
2005; Zhang et al., 2012), myelin volume fractions (MVF) (Deoni et al.,
2008; West et al., 2016; Duval et al., 2017; Campbell et al., 2018) and
g-ratios (Stikov et al., 2015; Dean et al., 2016). It is tempting, therefore,
to speculate that one might use this information to obtain
individual-specific estimates of CV in vivo. The literature is currently
sparse regarding attempts to do this. Horowitz et al. (2015), showed a
correlation between MRI-based estimates of AD and inter-hemispheric
transfer delay measured with electroencephalography, implying
MRI-derived estimates of AD correlate with CV. A more recent study is
that of Berman et al. (2019). Here, g-ratios were estimated in human
corpus callosum from macromolecular tissue volume (MTV) estimates of
myelin and diffusion based-estimates of axonal volume fraction. AD was
not derived from the same subjects but extrapolated from existing his-
tology data (Aboitiz et al., 1992). This approach showed slightly slower
CVs in older subjects compared to slower subjects. However, the authors
conclude that individual-specific estimates of AD would be essential for
modelling individual-specific CV.

These studies assume simple relationships between axonal micro-
structural parameters and CV. However, beyond these parameters, CV
depends, to a greater or lesser extent, on a number of parameters that are
not currently accessible in vivo, and yet contribute considerable vari-
ability across fibre populations and across individuals. These include the
distance between the nodes of Ranvier, inter-nodal spacing, and elec-
trical properties of the axonal and myelin membranes. We address these
issues through simulation and then present some CV estimates in human
corpus callosum obtained from in vivo MRI data.

2. Sensitivity of CV to axonal parameters

This section addresses the first issue: How sensitive is CV to axonal
parameters and are the simplified models of CV sufficient to capture
variance in CV when many other relevant parameters are inaccessible to
in vivo MRI?

The physiological mechanisms of an axon's action potential propa-
gation have a complex dependency on many parameters that cannot be
quantified in vivo. In particular, microstructural properties of the nodes of
Ranvier, including their length and diameter, contribute to the surface
area on which permeable ion channels can reside, impacting on the
electrical properties of the axon. Moreover, the inter-nodal distance is
important in determining how many instances of depolarisation are
required for an action potential to traverse a unit length of axon. Given
these various factors, it is important to establish whether it is feasible to
obtain accurate estimates of CV from a simplified model using only pa-
rameters that have previously been reported as being quantifiable using
MRI.

A sensitivity analysis on parameters affecting CV has previously been
performed (Moore et al., 1978). However, this utilised a simple
one-at-a-time (OAAT) analysis (where each parameter is varied one at a
time) which does not consider combinations of parameters, and how in-
teractions between parameter changes affect CV. Moreover, a number of
2

important properties that affect the excitation of the axonal membrane,
such as the peri-axonal space, were omitted in that previous analysis.
Here, we perform a more comprehensive analysis. We perform extensive
simulations of axon physiology using the model of Richardson et al.
(2000) and perform sensitivity analysis to determine the sensitivity of CV
across a wide region of the parameter space, and to quantify the variance
in CV accounted for by each parameter.

2.1. Method

2.1.1. Core electrophysiological simulations
The ‘Model C’ axon model of Richardson et al. (2000), as imple-

mented by Arancibia-C�arcamo et al. (2017) (code obtained from https://
github.com/AttwellLab/MyelinatedAxonModel) was used to analyse the
sensitivity of CV to variance in each of the 14 parameters listed in the
upper part of Table 1. Model parameters derived from optic nerve
(Arancibia-C�arcamo et al., 2017; Brinkmann et al., 2008) were used as a
proxy for CNS axons. Some parameters were assumed to be
well-constrained across individuals and fibre populations and thus not
tested (fixed parameters listed in Table 1). Others, such as the number of
myelin wraps and myelin thickness, are dependent on g-ratio, AD and
myelin periodicity, and so were not directly manipulated. The simulated
axon was comprised of 50 laminated internodal regions. All parameters

https://github.com/AttwellLab/MyelinatedAxonModel
https://github.com/AttwellLab/MyelinatedAxonModel


Table 2
Goodness of fit statistics for candidate simplified models to data generated from
the Richardson model.

Model SSE R2 Adj.
R2

RMSE k AIC BIC

Rushton model 2:25�
103

0.993 0.993 4.35 1 1.99 4.78

Linear outer
diameter
model

1:07�
104

0.965 0.965 9.48 1 1.96 4.75

Polynomial
expansion
(full)

29.8 0.9999 0.9998 0.52 10 20.00 47.87

Polynomial
expansion
(cross-terms
only)

1:43�
103

0.995 0.995 3.49 3 6.00 14.36

Table 3
Acquisition parameters used for simulations of diffusion and relaxometry MRI
data and for in vivo data acquisition.

Parameter Value

Diffusion acquisitions
Flip angle 90o

Slice thickness 2mm
Field of View 220� 220 mm
Matrix size 110� 110
Voxel size 2� 2� 2 mm
CHARMED
b [500,1200,2400,4000,6000] smm�2

# directions [30,60,60,60,60]
δ 7ms
Δ 23.3ms
Echo time 48ms
Repetition time 2600ms
AxCaliber
Gmax 290 mT m�1

b optimised to achieve 100% and 50% of Gmax

# directions [30,60]
δ 7ms
Δ [17.3,30,42,55] ms
Echo time 80ms
Repetition time 3900ms
Relaxometry acquisitions
Slice thickness 1.72mm
Field of View 220� 220 mm
Matrix size 128� 128
Voxel size 1:72� 1:72� 1:72
SPGR
Flip angles [3,4,5,6,7.5,9,12,15,18] o

Echo time 1.9ms
Repetition time 4.2ms
IR-SPGR
Flip angle 5�

Echo time 1.9ms
Repetition time 4.2ms
Inversion Time 450ms
SSFP
Flip angles [10,10,15,15,20,20,30,30,40,40,50,50,60,60] o

Phase cycle angles [0,180,90,270,0,180,90,270,0,180,90,270,0,180,90,270] o

Echo time 2.27ms
Repetition time 4.54ms
Slice thickness 1.72mm
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were kept constant across all nodes and internodes along the length of the
axon. Some internode parameters, such as periaxonal width, were varied
at the paranode to accommodate unique morphological characteristics in
these regions (see Mierzwa et al. (2010) for further details).

With the exception of geometric interdependencies, all parameters
were assumed to be independent, with two exceptions (1) the relation-
ship between the node diameter and inter-node axon diameter. and (2)
the relationship between axon diameter and the inter-nodal length (INL)
3

Hursh (1939); Vizoso and Young (1948); Murray and Blakemore (1980);
Friede and Bischhausen (1980); Smith et al. (1982); Ibrahim et al.
(1995). Since these relationships are well established in the literature,
reproducing these relationships in the simulations will ensure greater
ecological validity.

The nodal axon diameter was modelled as a linear function of the
(inter-nodal) axon diameter:

ϕND ¼ αNDd þ βND (1)

The INL was modelled as a log relationship with the outer fibre
diameter.

ϕINL ¼ αINL log
�
d
g
þ γINL

�
þ βINL (2)

The coefficients αi, βi γi were optimised to fit a simulated joint dis-
tribution of ADs and g-ratios (n ¼ 1000, mean and s.d. matched those
listed in Table 1) such that the mean and s.d. of the node diameter and
INL also match those listed in Table 1. The coefficients obtained for node
diameter were αND ¼ 0:63; βND ¼ 0:21 and for INL were αINL ¼ 159:16;
βINL ¼ 153:74;γINL ¼ � 0:227. In the simulations, each model axon was
subjected to a current stimulation applied for 10 s to the first node. The
amount of current was calibrated such that it produced a peak membrane
depolarisation ofþ50 mV in the first node (in the baseline condition, this
results in a stimulus amplitude of 2.73 nA). The resultant CV was then
obtained over a 10-node interval between the 30th and 40th node, except
in cases where the CV was too slow for action potentials to reach the 40th
node in the simulation duration, in which case the recording interval was
moved to earlier segments so that CVs could be obtained. To establish
that action potentials propagated consistently along the length of the
axon, simulations were checked to ensure membrane potential peaks of
at least �40 mV were achieved on a minimum of 10 consecutive nodes.

2.1.2. Sensitivity analysis
Sensitivity was assessed by sampling the corners of a 14-dimensional

hypercube in the parameter space, i.e., for every possible combination of
positive and negatives changes in each parameter, the CV was simulated
and the difference computed, along that dimension of the hypercube. The
dimensions of the hypercube were set to 1 s.d. around the baseline
condition (with baseline being the same conditions used for the simu-
lations in Arancibia-C�arcamo et al. (2017), given in Table 1), where s.d.
was determined from experimental observations in optic nerve (Aranci-
bia-C�arcamo et al., 2017; Brinkmann et al., 2008), or 20% where no such
data were available. An exhaustive analysis of 214 ¼ 16;384 comparisons
were made. All simulations ran generated action potentials that propa-
gated along the length of the axon.

An OAAT sensitivity analysis was performed for each parameter at 10
equally-spaced intervals within a 20% range around the baseline condi-
tion (see Appendix B). This shows that relative changes in CV are
approximately linear with change in parameter so we can assume that
sampling only the corners of the hypercube is sufficient to capture the
variability in CV within this region of the parameter space. The change in
CV, ΔvðΦÞ ¼ vðΦÞþ � vðΦÞ�, for a given set of parameters Φ, due to a
change in each individual parameterΔϕi ¼ ϕþ

i � ϕ�
i , relative to the CV of

the baseline condition vðΦ'Þ was calculated. This resulted in 214�1 ¼
8;162 relative changes. The proportional variance was computed by
taking the sum of these changes and normalising to the total variance.
The corresponding sensitivity was calculated by normalising the relative
change in CV to the relative change in the parameter.

SðϕiÞ¼
ΔvðΦÞ=vðΦ'Þ

Δϕi=ϕ'i
(3)

2.1.3. Testing simplified models of CV
We aimed to derive a simple model to predict CV (and associated

variance) from the two parameters that have previously been reported as
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accessible from in vivoMRI: g-ratio, and AD. We tested the model across a
grid comprising 10 approximately equally-spaced AD values (0.5–12.5
μm) and 12 equally-spaced values of g (0.4–0.95). For each grid-point, we
repeated the hypercube sensitivity analysis by running the Model C
(Richardson et al., 2000) simulation across all possible combinations of
the remaining non-MRI accessible parameters, to generate a distribution
of CVs for each point on the grid. This resulted in 10� 12� 212 ¼
491;520 model runs. The mean and s.d. of CV at each point was
Fig. 1. (a) Distributions of relative change in CV for a stepwise change in each para
points tested in the parameter space (8,162). (b) The total variance for each param
parameters indicated by green bars.

4

calculated. We then fitted simplified models based on the Rushton for-
mula (Rushton, 1951) and the linear relationship with outer diameter
(Waxman and Bennett, 1972) to the mean CV values. We also explored
some more complex polynomial models that could potentially provide
better fits to the data. In all cases, metrics of the model fit performance
and parsimony, including Akaike (1973) and Bayesian (Schwarz and
Schwarz, 1978) information criteria (AIC and BIC) were computed, using

the likelihood values computed from lnbL ¼ ð1 � R2Þ=2.
meter (parameter step size determined by limits indicated in Table 1) across all
eter step change as proportion of variance across all simulations. MRI-visible
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2.2. Results

The conduction velocity obtained in the baseline condition was
2.95ms�1, in agreement with the original simulations in Aranci-
bia-C�arcamo et al. (2017) (see also Appendix A for further validation).
Action potential propagation was successful in all simulations. The dis-
tribution of relative changes in CV, due to change in each parameter, is
shown in Fig. 1(a), while Fig. 1(b) shows the total variances in CV due to
change in each parameter relative to the total variance. The majority of
Fig. 2. (a) Distributions of relative sensitivities of CV to unit change in each paramet
sensitivity for each parameter step change as proportion of the total sum-squared se

5

the variance is explained by AD, followed by myelin periodicity, g-ratio
and internodal length. A key finding of this analysis is that combined
together, AD and g-ratio explain 85.1% of the model variance in CV. The
distribution of relative sensitivities of CV to unit changes in each
parameter are shown in Fig. 2(a) while Fig. 2(b) shows the sum-squared
sensitivity for each parameter, proportional to the sum-squared sensi-
tivity across all parameters. CV is most sensitive to a unit change in
g-ratio by a considerable margin. AD has the second highest sensitivity.
Combined together, AD and g-ratio account for 94.6% of the total
er across all points in the parameter space (8,162). (b) The sum-squared relative
nsitivity across all simulations. MRI-visible parameters indicated by green bars.
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sensitivity of CV.
The distribution of CVs across AD and g-ratio are shown in Fig. 3. The

mapping of CV to AD appears approximately linear, while the mapping to
g follows an inverse log square root function. This is similar to the form
given in the Rushton formula. (Rushton, 1951).

v¼ pd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�logðgÞ

p
(4)

where p is some constant of proportionality, which we estimated in our
data to be p ¼ 16:99 (confidence bounds: ½16:8;17:2�). The 2D fitting to
the original Rushton model yielded a good fit (sum squared error
(SSE)¼ 2:247� 103, R2 ¼ 0:993), but the fit was poor where AD is large
and g-ratio is small (Fig. 4).

We also tested whether CV could be predicted from a linear function
of outer diameter (Waxman and Bennett, 1972). This is simpler to
calculate since it uses only one parameter but implicitly assumes a con-
stant g-ratio.

v¼ p
d
g

(5)

where p was estimated from our data to be p ¼ 6:67 (confidence bounds:
½6:50;6:85�Þ. Note, the goodness of fit was slightly poorer for this model
compared to the Rushton model (SSE¼ 1:07� 104, R2 ¼ 0:964). The
AIC and BIC were comparable to the Rushton model.

Further comparison was made between the two models by computing
the SSE for each AD-g pair and plotting the difference in SSE (Fig. 5). This
shows that where AD is high (above 8 μm), there is a better fit (lower
SSE) for the Rushton model where g-ratio lies between 0.5 and 0.75. The
outer diameter model shows better fit where g-ratio lies between 0.75
and 0.95. Below ADs of 8 μm, there is little difference between the two
models.

Two more complex models were tested to compare with the Rushton
and linear outer diameter models. A 3rd order 2D polynomial expression
in d and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�logðgÞp
yielded a better fit (SSE¼ 29.8R2 ¼ 0:9999) but

required fitting of 10 coefficients. A good fit was also achieved when
considering only cross-terms in the same polynomial, (SSE¼ 1:43�
103R2 ¼ 0:995) which only requires 3 coefficients.

v¼ p11d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�logðgÞ

p
þ p21d2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�logðgÞ

p
� p12d logðgÞ (6)

However, the AIC and BIC are lowest for the Rushton model. There-
fore, this remains the preferred model for predicting CV (Fig. 4). The s.d.
of the modelled CVs scaled linearly with the mean CV (coeffi-
cient¼ 0.350, SSE¼ 945.9, R2 ¼ 0:977).
Fig. 3. Distribution of CV estimates for each fixed values of AD and g-ratio,
across the remaining 12 parameter ranges. Surface plot indicates the mean
value. Black dots show the distribution of CV estimates at each point.
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3. Estimating CV from MRI-derived parameters

The second part of this study focuses on the second issue highlighted
in the introduction: Is it possible to obtain accurate CV estimates from
parameters derived from existing microstructural MRI techniques?

From diffusion MRI, there exist several models for estimating axonal
density (e.g. CHARMED (Assaf and Basser, 2005) or NODDI (Zhang et al.,
2012)) and axon diameter (AxCaliber (Assaf et al., 2008) and ActiveAx
(Alexander et al., 2010)). Similarly, myelination can be estimated from
relaxometry (Deoni et al., 2008) and magnetisation transfer imaging
(Sled and Pike, 2001; West et al., 2016). Combining estimates of axonal
and myelin volume fraction allows the generation of in vivo maps of
g-ratio, for example, by combining, NODDI and qMT (Stikov et al., 2015),
NODDI and mcDESPOT (Dean et al., 2016) or CHARMED and MTV
(Duval et al., 2017). A recent review of MRI based g-ratio estimation is
provided by Campbell et al. (2018).

All these techniques work by fitting microstructural parameters to
biophysical models of the MRI signal using some numerical optimisation
routine. This approach has some inherent issues. MRI signals are subject
to noise from a range of sources. There are problems with fitting model
parameters to MRI signals, including degeneracy of solutions in the
optimisation process, and the likelihood of fitting the model to noise
contributions. As a result, there can be considerable bias in MRI-derived
microstructural metrics (Jones, 2010). We note, in particular, that
quantification of inner AD is challenging, if not impossible, at gradient
strengths found on typical clinical MRI system (up to 80mT/m) (Burcaw
et al., 2015; Lee et al., 2017; Nilsson et al., 2017; Veraart et al., 2019).
This was a criticism levied at the study of Horowitz et al. (Innocenti et al.,
2015; Lee et al., 2017). However, the advent of ultra strong gradient
systems (300mT/m) provides sensitivity to AD, at least over a limited but
relevant range (i.e. above 3 μm) (Nilsson et al., 2017). In this work we
therefore focus on simulation (and real data) on an ultra strong gradient
system. Although this is a special case, it does allow us to evaluate the
feasibility of estimating CV in vivo.

This issue of model bias can become even more pernicious if some
models take as input the output of other models, leading to propagation
of noise and bias through different models. It is imperative, therefore,
that MRI-derived estimates of CV are robust to such errors, which is the
subject of investigation in the present study.

3.1. Method

To model the effects of MRI noise, MRI data were simulated using
analytical expressions for three biophysical models, the Composite Hin-
dered and Restricted Model of Diffusion (CHARMED) (Assaf and Basser,
2005), the AxCaliber model (Assaf et al., 2008) and multicomponent
driven equilibrium single pulse observation of T1/T2 (mcDESPOT)
relaxometry (Deoni et al., 2008).

3.2. Core biophysical simulations

A single population of axons whos AD distribution is parametrised by
a continuous Poisson distribution (mean and s.d. of ADs is parameterised
by λ) was simulated. The simulations assume no orientational dispersion
or crossing fibre configuration. The biophysical parameters of the system
are listed in Table 4. Systems with this configuration were simulated for a
range of AVFs, axon diameters and g-ratios. The g-ratio value is treated as
an aggregate estimate of g-ratio across the volume. 6 AVF values were
tested from 0.1 to 0.7; 12 approximately evenly-spaced mean AD values
from 0.5 to 12.5 μm and 11 evenly-spaced g-ratio values of 0.4–0.9.

3.2.1. Diffusion MRI simulation
Diffusion MRI data were simulated using the AxCaliber model, uti-

lising a population of van Geldren cylinder models (Van Gelderen et al.,
1994) with a continuous Poisson distribution of ADs. The extracellular
space was modelled as a zeppelin-shaped (cylindrically-symmetric)



Fig. 4. Plots of simplified models fitted to simulated data points across AD and g-ratio values (mean for each AD-g pair indicated by red circles). (a) Rushton model as
fitted across values of AD and g; (b) Rushton model as a linear fit to d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�logðgÞp
; (c) outer diameter model as fitted across values of d and g; (d) outer diameter model as

a linear fit to outer diameter (d=g); (e) Full 3rd order polynomial expansion in d and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�logðgÞp

; (f) the same polynomial expansion only considering the cross-terms.
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tensor. CHARMED and AxCaliber MRI data were simulated using the
Microstructural Diffusion Toolbox (MDT) (Harms et al., 2017) using
parameters that matched a standard protocol used on a Siemens
300mT/s Connectom system (Jones et al., 2018) where a range of
b-values and diffusion times were sampled (Table 3). The CHARMED and
AxCaliber model were then fitted to the simulated data using the Powell
optimisation routine (Powell, 1964) using the MDT toolbox.

3.2.2. Relaxometry MRI simulation
mcDESPOT MRI data were simulated using the Quantitative Imaging

Toolbox (QUIT) (Wood, 2018). The protocol comprised 8 spoiled
gradient recalled (SPGR) images with varying flip angles and 16
steady-state free precession (SSFP) (Table 3) images distributed across 8
flip angles and 4 phase cycle angles. To account for the influence of radio
frequency field strength (B1) and off-resonance frequency (F0) in the
7

fitting, a range of B1 and F0 values were simulated for each noise mea-
surement. To replicate the noise profile obtained from SNR measure-
ments across flip angles, noiseless data were simulated and Rician noise
with flip-angle-specific s.d. was added to the simulated data (see Ap-
pendix C). A 3-pool model (modelling contributions from myelin,
extra-cellular and CSF water) was then fitted to the simulated data using
the ‘qimcdespot’ function in the QUIT toolbox.

Since mcDESPOT gives a myelin water fraction (MWF) map, as
opposed to a true MVF, we estimated the true MVF from the formula:

MVF¼MWFð1þ ωÞ
1þ ωMWF

(7)

where ω ¼ 0:72 is the ratio of lipid to water in the myelin (Agrawal et al.,
2009) (see Appendix D for derivation). Similarly the axonal water



Fig. 5. Difference in SSE between the Rushton and linear outer-diameter models. Positive values (green) show higher SSE for The Rushton model, negative values
(red) show higher SSE for the outer diameter model.

Table 4
Fixed biophysical parameters used for the MRI simulations.

Fixed biophysical parameters

Parameter Units Value

Intracellular axial diffusivity cm2 s�1 2.0
Extracellular axial diffusivity cm2 s�1 1.3
Extracellular radial diffusivity cm2 s�1 0.15
Orientation (θ) rad π=2
Orientation (ϕ) rad 0
Myelin T1 ms 0465
Myelin T2 ms 26
Myelin residence time ms 180
Extracellular T1 ms 1070
Extracellular T2 ms 50
CSF T1 ms 4000
CSF T2 ms 2500
CSF volume fraction 0.05
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fraction (AWF) obtained from the CHARMED model is not a true AVF.
This can be obtained from:

AVF¼ð1�MVFÞ � AWF (8)

3.2.3. g-ratio and CV estimation
g-ratios were computed using the approach of Stikov et al. (2015):

g¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ MVF

AVF

q (9)

This approach has been shown to give a valid aggregate measure of g-
ratio for a distribution of ADs. Using the Rushton model (Eq. (4)), with
p ¼ 16:99 as fitted previously using simulations, CV was estimated for
each combination of mean AD and g-ratio.

3.2.4. Noise
Noise was simulated by adding Rician noise to each simulated MRI

acquisition. The s.d. for each acquisition was modified to replicate the
SNR profiles observed in real data (see Appendix C). Additionally, to test
sensitivity to noise, data simulations were repeated with noise s.d. at 50%
8

and 200% of the original noise s.d. This was done for all permutations
across the 3 MRI parameters. For all simulated acquisition and permu-
tations of noise levels, 100 iterations were performed. This resulted in a
total of 100� 3� 6� 10� 11 ¼ 198;000 diffusionMRI simulations and
100� 3� 6� 11 ¼ 19;800 relaxometry MRI simulations.

3.2.5. Error measurements
Errors in CV estimates were quantified in the following ways:

1. Bias was quantified by the mean relative error in CV. The same was
also done for the derived biophysical parameters required to compute
CV (AVF, MVF, g and AD).

2. Variance was quantified by the variance of the CV estimates nor-
malised to the original CV estimate.

3. Relative sensitivity to errors in parameter estimates was derived
analytically, since the expression for CV is agnostic to the method
used to estimate MWF and AWF and is easy to differentiate with
respect to the initial fitted parameters (AD, MWF and AWF) by
substituting equation (8) 7 9 into equation (4). The calculation of
relative sensitivity is adapted from eq. (3) for analytical derivatives:

SðϕiÞ¼
∂v
∂ϕi

ðΦ'Þ
���� ϕ'i
vðΦ'Þ

���� (10)

4. Sensitivity to noise was estimated using eq. (3) by taking the differ-
ence in CV estimates from simulations performedwith 50% and 200%
of the original noise level and normalising to the difference in noise
s.d.
3.3. Results

3.3.1. Errors in modelled parameters
Errors in relevant fitted parameters are shown in Fig. 6 and distri-

butions of errors across parameters are shown in Fig. 7. Overall, of the
initially derived variables, the lowest errors are in the derived AWF
(mean � s.e.: 0:073� 0:0003) with highest errors for AD
(0:84� 0:0029). MWF errors are 0:21� 0:0009. Interestingly, errors in
the derived g-ratios are lower than for its dependencies



Fig. 6. (a) Log relative errors in AWF, AVF, MWF, MVF and g-ratio across ranges of g-ratio and AVF. (b) log relative errors in AD, across ranges of AD, g-ratio and AVF.
(c) true vs estimated values for all estimated variables.
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(0:054� 0:0001). AWF and AVF have highest errors where g-ratio ap-
proaches infeasible values. AD values show the greatest errors where AD
is low and AVF is low (i.e. where there is small contribution from
intracellular diffusivity). There is a consistent positive bias in AD esti-
mates, of up to 4 μm across all values of AD tested. Errors in g-ratio es-
timates are mostly uniformly low, but slightly higher errors where g-ratio
is high and AVF is low. This corresponds to higher errors in the MWF/
MVF estimates for these parameter values (where signal contributions
from myelin water will be very small). g-ratio estimates are shown to
have an increasing negative bias as g-ratio increases.
9

3.3.2. Errors in CV estimates
Relative errors in CV across the parameter space tested are shown in

Fig. 8. The CV estimates show a less than 5% bias across a region of
parameter space where AVF is 0.3 or above and AD is above 4 μm. This
boundary decreases slightly for AVF values of 0.4–0.6. There is little
dependency on g-ratio except for very low AVF. Bias is greatest (over
50%) in regions where AVF is low (below 0.3) and AD is below 4μm.
Examining the true vs estimated values show that there is generally a
positive bias to CV estimates, of up to 50 ms�1, with some negative es-
timates where true CV is between 0 and 150 ms�1.



Fig. 7. Distributions of log relative errors in derived parameters AWF (dark blue), AVF (light blue), MWF (dark green), MVF (light green), g-ratio (orange) and AD
(red) across all parameters.
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3.3.3. Variance in CV estimates
Variance in CV estimates is shown in Fig. 9. The normalised variance

is mostly below 0.5 where AVF is above 0.1 and AD is higher than 4 μm.

3.3.4. Sensitivity to parameter errors
The relative sensitivity to AD is easy to derive, since the Rushton

expression is a linear function of AD, so relative sensitivity is 1 across the
whole parameter space.

SðdÞ¼ 1 (11)

The relative sensitivities to AWF and MWF are more complex as CV
are is not a simple linear function of AWF or MWF. Both sensitivities have
dependencies on MWF and AWF, but not AD.

SðAWFÞ¼ � MVF

2AVF
�

MVF
AVF þ 1

�
log

�
MVF
AVF þ 1

� (12)

SðMWFÞ¼
MVF

�
MVF�ωMVF2

AVF � ωMWF
ωMWFþ1 þ 1

�

2AVF2

�
MVF
AVF þ 1

�
log

�
MVF
AVF þ 1

� (13)

The relative sensitivities evaluated for the AVF and g-ratio values
used in simulations are shown in Fig. 10. Relative sensitivity to AD errors
is the highest with a uniform value of 1. Errors in AWF have the smallest
effect giving a small negative bias in CV (� 0:14� 0:030). Errors in MWF
give a moderate positive bias (0:38� 0:088).

3.3.5. Sensitivity to noise
Distributions of relative sensitivities to noise across the tested

parameter space are shown in Fig. 11. Proportional variances are quite
uniform across the parameter space. The proportional variance in CV
estimates explained by noise across three MRI parameters are shown in
Fig. 12, which is also mostly uniform across the parameter space tested.
CV has the highest relative sensitivity to noise in AD estimates (0:87�
0:097). CV has the lowest relative sensitivity to MWF estimates (0:0031�
0:0043). Relative senstivity of CV to noise in AWF estimates was also low
(0:13� 0:095).
3.4. In vivo CV estimates from human MRI data

As a proof of principle we apply the proposed approach to in vivo
human data, subject to the caveats regarding the sensitivity to AD. Data
were acquired on a high gradient MRI system. The analysis focuses on the
corpus callosum as the axons here have a relatively uniform orientation
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and minimal dispersion.

3.5. Method

3.5.1. MRI acquisition
CHARMED, AxCaliber and mcDESPOT data were all acquired from 21

healthy human participants (2M, 19F; 25:7� 9:9 years of age) on a
Siemens 3T 300mT/m Connectom system (Siemens Healthcare, Erlan-
gen, Germany). The acquisition parameters used were identical to those
used in the simulations (see Table 3).

3.5.2. Diffusion MRI processing
Motion, eddy current and EPI distortions were corrected using FSL

TOPUP and EDDY tools (Andersson and Sotiropoulos, 2016). Correction
for gradient non-linearities, (Glasser et al., 2013; Rudrapatna et al.,
2018), signal drift (Vos et al., 2017) and Gibbs ringing artefacts (Kellner
et al., 2016) was also performed. All diffusion data were then registered
to a skull-stripped (Smith, 2002) structural T1-weighted image using
EPIREG (Andersson and Sotiropoulos, 2016). AVF and AD parameters
were fitted to the CHARMED and AxCaliber models using the MDT
toolbox (Harms et al., 2017) using the same optimisation routine used in
the simulations.

3.5.3. Relaxometry MRI processing
Motion correction was applied to the SPGR and SSFP data using FSL

mcFLIRT and then the brain was skull-stripped (Smith, 2002). All sub-
sequent fitting steps were performed using the QUIT toolbox (Wood,
2018). A B1 map was estimated by fitting the data to the DESPOT1-HIFI
model (Deoni, 2007) and then fitting to a 8th order 3D polynomial. An F0
map was estimated by fitting to the DESPOT2-FM model (Deoni, 2009).
These were then used for the final fitting to the mcDESPOT model, as
described for theMRI simulations. The final MVFmaps were registered to
the T1-weighted image using FLIRT (Andersson and Sotiropoulos, 2016)
so that all parameter maps were in the same image space.

3.5.4. Corpus callosum ROI
The corpus callosum was automatically segmented from the mid-

sagital slice and divided into splenium, body and genu segments. The
corpus callosum mask was eroded slightly with a disk kernel of radius
1.5 mm to minimise contributions from partial volume effects on the
edge of the corpus callosum.

3.5.5. CV mapping
AVF, MVF, g-ratio and CV parameters were computed from the

modelled AWF, MWF and AD parameters, in the same way used in the
simulations. In an attempt to overcome the bias of AD estimation, we



Fig. 8. (a) Log relative error in CV estimates across values of AVF, AD and g-ratio. (b) Regions of parameter space where relative variance is less than 5% (blue),
5–10% (green), 10–20% (yellow), 20–50% (orange) and greater than 50% (red) error in CV estimates. Black regions are where axon AVF/g-ratio combinations gives
an infeasible MVF values.
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Fig. 9. (a) Log normalised variance in CV estimates across values of AVF, AD and g-ratio. (b) Regions of parameter space where normalised variance is less than 0.5
(coloured in blue) or greater than 0.5 (coloured in red).
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used the simulation results to generate a spline-interpolated mapping
between the biased and unbiased AD estimates, and used this to make a
bias-corrected AD map and a subsequent bias-corrected CV map.

3.6. Results

In vivoMRI data in the corpus callosum are shown in Fig. 13. CVmean
� s.e estimates across all subjects are 21:6� 3:1 m s�1 in the genu, 22:4�
2:5 m s�1 in the body and 22:6� 2:8 m s�1 in the splenium. The bias
corrected CV estimates are 8:3� 2:7 m s�1 in the splenium, 9:9�
2:2 m s�1 in the body and 9:4� 2:1 m s�1 in the splenium.

There is a distinct profile of highest CV estimates in the body
compared to the genu, which is consistent across most subjects. There are
slightly higher mean values in the splenium compared to the genu. The
bias-corrected CV estimates are overall lower than the uncorrected esti-
mates, but still are slightly high compared those measured in electro-
physiology in primates (median value of 7:4 m s�1) (Swadlow et al.,
1978) or estimated from primate histology (5:4� 8:9 m s�1) (Caminiti
et al., 2013).

4. Discussion

This work has explored the feasibility of obtaining conduction ve-
locity (CV) maps from in vivo human MRI, using a simplified model of
12
axonal CV. Results from the axon simulations demonstrate that 85.1% of
the variance in CV, and 94.6% of the sum-squared sensitivity of CV, can
be attributed to variance in AD and g-ratio. Examining the proportional
variances (using ecologically valid variances and covariances in param-
eters where possible), implicate AD as the most important parameter,
while looking at sensitivity to a unit change in parameter, g-ratio is
implicated as the most important. Therefore, considering the fact that AD
varies much more in axon populations than g-ratio, capturing accurate
estimates of AD is clearly more important than g-ratio for CV estimation.

The Rushton (1951) and outer diameter (Waxman and Bennett, 1972)
models for CV both provide a reliable estimate of CV from MRI-derived
estimates of g-ratio and AD. In addition, we show that it is possible to
account for uncertainty in CV estimates due to parameters not accessible
in vivo. Thus, when reliable estimates of AD and g-ratio can be made, it is
feasible to obtain estimates of axonal CVs in vivo. The match in the
parsimony measures (AIC/BIC) for the Rushton model and
outer-diameter model (Table 2) were comparable, with a slight
improvement in SSE for the Rushton model. Indeed, Caminiti et al.
(2013) used the outer-diameter model to good effect (see also Lee et al.
(2017) for a discussion of the merits of the outer diameter model).
Examining the regional difference in the SSE (Fig. 5) it is shown that for
g-ratios in the range 0.5–0.75 the Rushton model performs slightly bet-
ter. Performance is better for the outer diameter model for large g-ratios.
Given that most axons conform to the former range of g-ratio (Stikov



Fig. 10. (a) Relative sensitivity (derived analytically) of CV estimate to errors in AWF, MWF and AD. (b) Distribution of relative sensitivities across the parameter
space tested.

Fig. 11. Distributions of log relative sensitivity of CV to noise in AWF (blue), AD (red) and MWF (green) acquisitions across all parameters.
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et al., 2015), the Rushton model is the preferred approach, and thus an
estimate of both inner diameter and g-ratio is valuable for mapping CV. It
should be noted this primarily affects larger axons. With smaller axons,
the two models are comparable in performance.

More complex models of CV derived using a polynomial expansion
gave better fits than the two simpler models, but the parsimony measures
indicate that, due to the increased number of coefficients, these models
could be over-fitting the data. Fig. 4, shows that the main improvement in
the polynomial models is in regions where AD is high and g-ratio is low.
However, such axon configurations are uncommon: large diameter axons
are unlikely to have very thick myelin sheaths. Therefore, in practice,
there is little value gained by employing these more complex models to
estimate CV in vivo.

In terms of sensitivity to errors in parameter estimation, we investi-
gated the effects of bias in MRI-derived parameters, the sensitivity of CV
estimates to these errors, and the sensitivity to noise. Overall we show
that in regions where mean AD is high, the errors in CV estimates are
13
typically below 10% over a large region of the parameter space. The
threshold below which AD causes large errors in CV (above 50%) varies
with AVF: about 5 μm for AVF of 0.1, about 3 μm for AVF of 0.3–0.6. For
human CNS, this is problematic since ADs in human CNS are typically
below 1 μm (Aboitiz et al., 1992; Liewald et al., 2014; Caminiti et al.,
2013; Sepehrband et al., 2016a). This limits the potential relevancy of CV
estimates to human in vivo data (see section below for further discussion).
Interestingly, the range of g-ratios at which CV estimates are optimal
shifts upward as AVF increases. The same effect can be seen for g-ratio
errors in Fig. 6. CV estimates were least accurate when the AVF is very
small (0.1 or below). This is to be expected as more sparse axon pop-
ulations will generate less signal and reduce performance of model
fitting. Sensitivity to errors in AVF and MWF are comparatively low.
However, CV is most sensitive to errors in AD. This is as expected, since
the Rushton model has the highest sensitivity to AD. This, emphasise
further the challenge CV estimation faces from poor AD estimation. This
sensitivity is uniform across the parameter space, indicating that accurate



Fig. 12. Proportional variance explained by noise in MRI acquisition, across the parameter space tested.

Fig. 13. (a) Fitted in vivo MRI data (n¼ 21) to microstructural parameters in
segments of the corpus callosum. Error bars show mean and s.e. in three main
segments of the corpus callosum. Green show data for individual subjects, blue
shows the group averaged data. (b) Fitted parameters in the corpus callosum in
an individual subject.
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AD estimation is critical for CV estimates, regardless of specific axon
configurations.
4.1. Challenges faced by AD estimation

The most problematic aspect of estimation of CV, highlighted here, is
the estimation of AD from dMRI. Since AD accounts for the most vari-
ability in CV, this presents a challenge to estimating CV from in vivoMRI.
This was a major issue with the study of Horowitz et al. (2015). In the
study of Berman et al. (2019), the issue was circumvented by using ADs
sampled from distributions derived from existing histology (Aboitiz et al.,
1992). Given that our electrophysiological simulations show AD account
for the most variance in CV, one would need to be able to capture
individual-specific estimates of AD, to properly estimate
individual-specific CV. Although they observed a small difference in CV
between older and younger subjects, the authors conclude that in vivo AD
estimates are necessary since this effects howmuch g-ratio contributed to
CV. Using external population-level histological estimates of AD in the
CV calculations, neglects any possible individual differences in AD.
Methodological issues around the estimation of axon diameters must
therefore be addressed to ensure accurate CV estimation across the whole
CNS. Our attempts to estimate CV in corpus callosum, although showing
a similar profile observed in the literature (Caminiti et al., 2013), still
result in a small positive bias compared to literature values, even after
attempts to correct this bias. AD estimates are higher than expected while
g-ratio estimates are in the expected range, consistent with the findings
from our simulations.

The apparent inter-axonal diffusion perpendicular to the axon (which
is used to estimate AD) is orders of magnitude smaller than the apparent
extra-axonal diffusion (Burcaw et al., 2015; Lee et al., 2017; Veraart
et al., 2019). This is the main challenge to estimating smaller ADs, and
requiring acquisitions at high b values to ensure a non-negligible
contribution from the intra-axonal space (Veraart et al., 2019). On clin-
ical MRI systems with gradients of up to 70mT/m, this is problematic. On
such systems, ADs below 6 μmwill not be detectable. However, on a high
gradient system (300mT/m), where high b values are achievable, this
can be reduced to 2–3 μm (Drobnjak et al., 2016; Sepehrband et al.,
2016b; Nilsson et al., 2017). This is still not good enough given that the
majority of axons in the brain are lower than 1 μm (Aboitiz et al., 1992;
Liewald et al., 2014; Caminiti et al., 2013; Sepehrband et al., 2016a) and
so obtaining accurate estimates of axon diameter across the whole brain
is not currently possible. In our in-vivo data we attempted to correct for
this positive bias, by creating a simple mapping between the biased and
unbiased ADs from our simulations. Although AD estimates were closer
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to expected values, they were still high. Furthermore, this mapping is
ill-conditioned as any true sub-resolution ADs will be estimated at the
limit (about 2:5 μm in our in vivo data). Fortunately, some recent pre-
liminary evidence suggests that, even if the majority of axons are below
the resolution limit, there is still sufficient signal from the larger axons at
the tail of the distribution to allow us to extrapolate the shape of the
distribution below this limit, and hence derive a more accurate mean AD
(Drakesmith et al., 2018; Chiappiniello et al., 2018; Dell’Acqua et al.,
2019). If proven to be reliable, this would represent significant progress
to improving AD, and hence CV estimation in vivo and warrants further
exploration. Furthermore, development of MRI hardware with even
stronger gradients of 500mT/m (Basser et al., 2018) lends hope to the
AD resolution limit can be pushed even further down. Nevertheless, we

stress that currently measuring AD remains challenging and we are not
suggesting that it is possible to estimate CV everywhere within the brain
(Lee et al., 2017).

An alternative to estimating internal AD is the framework of Novikov
et al. (2014, 2018); Fieremans et al. (2016); Burcaw et al. (2015); Lee
et al. (2017) which allows characterisation of diffusion in the
extra-axonal space in terms of the packing geometry of axons, which is
dependent on the outer fibre diameter. This is appealing as this is closely
correlated to CV, and only requires estimation of one microstructural
parameter, instead of two, as used by the Rushton model. Lee et al.
(2017) suggest that the apparent correlation between AD and CV
observed by Horowitz et al. (2015) is due to contributions from the
extra-axonal diffusion to the signal not being modelled correctly. How-
ever, it is still unclear how outer fibre diameter can be disentangled from
other geometric properties of the extra-cellular space (e.g. packing den-
sity and packing randomness) within this framework. Also, as high-
lighted in the present study, the Rushton model is more accurate than the
outer diameter model for estimating CV over a more common range of
g-ratios. However, the merits of this modelling framework deserve to be
explored further.
4.2. Other considerations for MRI methods

The estimated CV is assumed to be a valid aggregate measure of CV
for a population of axons. The mean AD is parameterised by λ of the
Poisson distribution and the g-ratio calculation has been shown to be
valid for a distribution of ADs (West et al., 2016). However, it is unclear if
the CV value obtained from aggregated AD and g-ratio values is a valid
aggregate representation of a distribution of CVs. What represents the
most optimal parameterisation of the AD distribution also remains an
open question. A continuous Poisson distribution was chosen in this work
as it has only one parameter that characterises both the mean and stan-
dard deviation, thereby reducing model complexity and improve opti-
misation. However, other distributions may offer better approximations
of distributions observed in histology (Sepehrband et al., 2016a).

An additional challenge that remains unexplored is the estimation of
AD in other white matter pathways, where there are multiple regions of
fibre crossing and dispersion. In the present study, these configurations
were not considered. However, such configurations can be challenging
for models that assume a single fibre geometry, such as AxCaliber. It is
possible to model multiple fibre populations (Barazany et al., 2011), but
this substantially increases the number of parameters to estimate. The
issue of dispersion can potentially be resolved by including a dispersion
term into the AxCaliber model as done in the NODDI model. The Convex
optimisation modelling for microstructure informed tractography
(COMMIT) framework (Daducci et al., 2015) can estimate microstruc-
tural properties along a tractogrpahy streamline, assuming the parameter
does not vary along the length of the tract. This will allow estimation of
distinct axon diameters for distinct fibre populations.

We also note that different combinations of methods can yield
different levels of accuracy in CV estimates. There numerous combina-
tions of methods for estimating AWF and MWF that could be used to
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generate g-ratio maps, all with different advantages and limitations
(Ellerbrock and Mohammadi, 2018; Campbell et al., 2018). In addition,
different methods for estimating AD such as ActiveAx (Alexander et al.,
2010) and time-dependent AxCaliber (De Santis et al., 2016) expands the
number of permutations of methods even further. Further work is
necessary to assess which combination produces the best estimates,
similar to that of Ellerbrock and Mohammadi (2018). Previous work has
shown there is an inherent bias in mcDESPOT (Lankford and Does, 2013;
West et al., 2019). Our simulations also show (Fig. 8(c)) a negative bias in
MWF estimates for higher MWF values. However, our sensitivity analysis
also shows that CV estimates have low sensitivity to MWF errors. While
this study explored the impact of MRI noise on CV estimates, there is a
number of other sources of confounding variance, such as motion, eddy
currents, field inhomogeneities and gradient non-linearities that could
impact on CV estimates to differing degrees.
4.3. Considerations for electrophysiological simulations

While efforts have been made to incorporate true biological vari-
ability in the sensitivity analysis by taking parameter ranges from the
literature, where available, the simulations are currently restricted to a
single axon population. Variability should be considered across axon
populations, where, for example, it is known that AD varies considerably
throughout the CNS (Perge et al., 2012) as well as along single axons
(Tomassy et al., 2014). Similarly within-axon variation in g-ratio, inter-
nodal length and nodal diameter also exist (Ford et al., 2015). However,
it is important to keep in mind that at the spatial resolution of MRI, (e.g.
2� 2� 2mm3), we effectively average the axonal properties over thou-
sands of axons and, as such, such variations will be averaged out to a
certain extent. Cross-correlations between axon parameters should also
be considered. In our simulations, we forced such correlations between
internode and nodal AD, and between AD and internodal length, since
such relationships are well documented in the literature (Waxman,
1980). However, other cross-correlations are likely to exist in nature but
not simulated here.

Despite these possibilities for future improvements, our simulations
produced a constant of proportionality between fibre diameter and CV of
6.67 m s�1=μm, which is only slightly above the range of 5.5–6.0 m s�1=

μm commonly reported in the literature (Gasser and Grundfest, 1939;
Hursh, 1939; Rushton, 1951; Smith and Koles, 1970; Waxman and
Bennett, 1972; Tolhurst and Lewis, 1992). Looking further at Fig. 4(d), it
looks like fitting only axons with diameters less than 5 μmwould result in
a smaller constant of proportionality. We are therefore confident we have
captured the inter-relationships between parameters reasonably well. We
also note that the strong contribution of INL to CV would mean
neglecting the AD-INL correlation would result in a significant underes-
timation of this constant.

A key assumption made here is that the results of the axon simula-
tions, whose baseline parameters are based on rat optic nerve (Aranci-
bia-C�arcamo et al., 2017), are generalisable to other white matter axons,
and to other species. an entirely valid assumption. For example, mem-
brane capacitance has recently been shown to be lower in human neurons
compared to rat neurons (Eyal et al., 2016). Moreover, there is a theo-
retical optimal g-ratio for a given fibre diameter (Smith and Koles, 1970).
In the present sensitivity analysis, the range of g-ratios tested is in an
interval where the relationship between CV and g-ratio is monotonic and
approximately linear. However, for other fibre populations with different
ranges of g-ratios where the relationship is non-monotonic, the sensi-
tivities may differ substantially. A potential future research avenue is to
repeat the sensitivity analysis on a range of axon populations to see which
populations better lend themselves to modelling with MRI. However,
obtaining all the morphological and electrophysiological parameters for
multiple populations presents significant practical challenges.

It has been demonstrated that the relative thickness of the water and
lipid layers in myelin vary with age (Agrawal et al., 2009), and
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consequently the assumed constancy of ω used in Eq. (7) may not be
valid. This issue can potentially be resolved by combining multiple
myelin-sensitive contrasts, e.g. by adding in quantitative magnetisation
transfer (qMT) (Sled and Pike, 2001). While qMT does not provide
unique sensitivity to lipids, it does have sensitivity to protons bound to
lipids and macromolecules. It may therefore be possible to exploit qMT
and relaxometry methods together to better characterise the water-lipid
ratio in myelin.

4.4. Conclusion

We have demonstrated the feasibility of estimating CV for ensembles
of axons from their diameter and g-ratio, estimated from in vivo micro-
structural MRI, provided axon diameters are sufficiently large to be
modelled accurately. Difficulties associated with estimating smaller axon
diameters present the largest challenge to CV estimation across the whole
16
CNS. However, potential solutions are in development which will greatly
improve the accuracy of MRI-based CV estimation.
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Appendix A. Validation of axon model

To ensure the implementation of the “Model C” axon model (Richardson et al., 2000) produces results consistent with Arancibia-C�arcamo et al.
(2017), simulations were carried out with the baseline condition and some parameters varied as described in this paper. All other model parameters
were the same as used in the main simulations except that the stimulus current was fixed at 3 nA, as done in Arancibia-C�arcamo et al. (2017). The
baseline condition produced a CV of 2.95 m s�1, consistent with the results of Arancibia-C�arcamo et al. (2017). The results for other parameter var-
iations are shown in Table A1 which are also consistent with those reported in Arancibia-C�arcamo et al. (2017).
Table A.1

Changes in CV due to changes of parameters previously reported in (Arancibia-C�arcamo et al., 2017).

Parameter changed Value Relative change from baseline CV ( m s�1) Relative change from baseline
Node length (nm)
 0.5
 �0.51
 2.53
 �0.14

2.2
 1.16
 3.02
 0.02
Fast Na þ conductance (mScm�2)
 21
 �0.30
 2.64
 �0.11

Number of wrapsy
 6
 �0.14
 2.66
 �0.10
y, Number of wraps, AD and g-ratio were fixed for this simulation. This is equivalent to setting myelin periodicity to 18.5 nm (a relative change from baseline of 0.19).

Appendix B. OAAT sensitivity analyses

A one-at-a-time (OAAT) sensitivity analysis was performed for each parameter at 10 equally-spaced intervals within a �20% range around the
baseline condition. Results are shown in Figure B1, which shows all sensitivity to all parameters is approximately linear over the interval tested. In the
main analysis, three of a set of six interdependent geometric parameters were manipulated: axon diameter, g-ratio and myelin periodicity. Three other
parameters depend directly on these parameters: number of myelin wraps, myelin width and outer fibre diameter. As the impact of variance in these
parameters will vary depending on which combinations of these parameters are fixed, we repeated the OAAT analyses for different combinations of
fixings. The results are shown in Figure B2. For most combinations, the sensitivity to each parameter shows a trend in the same direction regardless of
which combination of other parameters are fixed. Notable exceptions are for the g-ratio where the direction of the sensitivity varies depending on which
parameters are fixed. Sensitivity to g-ratio shows a negative trend when axon diameter and myelin periodicity or axon diameter and number of wraps
are fixed. Sensitivity to g-ratio shows a positive non-linear trend when myelin periodicity and myelin width are fixed.

Figure B.1. Results of OAAT analysis of sensitivity of CV to each of the free parameters tested.
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Figure B.2. Results of OAAT analysis for the 6 interdependent geometric parameters with different combinations of parameter fixings.2

Appendix C. SNR measurements

SNR for the diffusion sequences used for the AxCaliber and CHARMED acquisitions and the SPGR and SSFP acquisition used for mcDESPOT were
measured by acquiring two image volumes: (1) a standard image volume (for diffusion sequences, only a b ¼ 0 smm�2 image was used as the noise
distribution is not expected to be affected by the level of diffusion weighting) with the standard flip angle (see Table 3); and (2) a noise image volume
acquired with exactly the same parameters but with the flip angle set to 0, such that there is effectively no echo received by the receiver coil. The noise
s.d. was computed from the signal magnitude of the noise volume. The results are shown in Table C1.
Table C.1

In vivo measurements of SNR and corresponding s.d. values for acquisition sequences used for
estimating CV. S.D. values quoted for mcDESPOT scans are the effective noise added to recreate
SNR measured in vivo.

Sequence Flip angle (o) SNR noise s.d.
17
CHARMED
 90
 2690
 0.019

AxCaliber
 90
 1776
 0.024

mcDESPOT - SPGR
3
 2246
 0.134

4.5
 2701
 0.087

6
 2805
 0.069

7.5
 2670
 0.064

9
 2394
 0.062

12
 1873
 0.056

15
 1044
 0.068

18
 495
 0.098
mcDESPOT - SSFP

10
 10,136
 0.010

15
 14,256
 0.008

20
 17,666
 0.008

25
 19,090
 0.007

30
 19,659
 0.007

40
 18,269
 0.007

50
 14,272
 0.008

60
 9776
 0.010
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Appendix D. Estimating volume fractions from water fractions

mcDESPOT gives a myelin volume fraction (MWF) that is the proportion of the total water volume that resides in the myelin layers.

MWF¼MWV
W

(D.1)

whereas calculation of g-ratios requires the myelin volume fraction (MVF), which is the proportion of the total volume that is myelin (both water and
lipid components):

MVF¼MWVþMLV
V

(D.2)

where MWV is the myelin water volume, MLV is the myelin lipid volume,W is the total volume of water and V is the total volume. If we assume that the
ratio of water and lipid in the myelin compartment, ω, is constant, we can also express the MLV as:

MLV¼ωMWV (D.3)

the total volume is given by:

V ¼MWVþMLVþ AWVþ EWV (D.4)

where AWV and EWV are the volumes of axonal and extracellular water, respectively. The total water is given by:

W ¼MWVþ AWVþ EWV (D.5)

Assuming the only non-water compartment is the myelin phospho-lipid layers and that the contribution of phospho-lipid membranes from other cell
types is negligible, this can be expressed as:

W ¼V �MLV (D.6)

Substituting this into the expression for the MWF gives:

MWF¼ MWV
V �MLV

¼ MWV
V � ωMWV

(D.7)

Collecting terms of MWV and rearranging gives:

MWV¼ VMWF
1þ ωMWF

(D.8)

We can get an equivalent expression for the MLV by multiplying through by ω

MLV¼ VMWF
1
ω þMWF

(D.9)

Substituting these into the expression for MVF gives:

MVF¼ MWF
1þ ωMWF

þ MWF
1
ω þMWF

¼MWFð1þ ωÞ
1þ ωMWF

(D.10)

The value of ω was taken from Agrawal et al. (2009) where the width of the lipid bilayers was about 4.6 nm and the intra- and extracellular water
layers were each 3.2 nm, giving a lipid-water ratio of ω ¼ 4:6=ð3:2 þ 3:2Þ ¼ 0:72. The relationship between MWF and MVF is show in Figure D1. This
approach is similar to that used by Jung et al. (2018) although ω is parameterised slightly differently. The relationship between MWF and MVF derived
here is in close agreement with that study. One difference to note is we assume ω to have no dependence on the number of myelin wraps. We note, for
cases where the inner diameter is orders of magnitude greater than the width of the laminae (e.g. 0:82 μm vs 15.6 nm in our axon model) and there are
sufficient number of wraps (above 5), which is the case for the vast majority of white-matter axons, this dependence can be assumed to be negligible.

The axonal volume fraction (AVF) can then be obtained from the axon water fraction (AWF) given by the CHARMED model (denoted here AWFd).
The AWF obtained from CHARMED excludes contributions from myelin water due to the short T2 of this compartment and excludes contribution from
myelin lipid due to insensitivity to contributions frommyelin macromolecules. We therefore used the estimatedMVF computed previously to obtain the
AVF.

AWFd ¼ AWV
AWVþ EWV

¼ AWV
V �MWV�MLV

¼ AVF
1�MVF

(D.11)

The AVF can therefore be obtained from the MVF estimated from mcDESPOT and the AWF given by CHARMED:

AVF¼ð1�MVFÞ � AWFd (D.12)
18
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Figure D.1. Theoretical relationships between MWF and MVF according to Eq. (7) (left). and between AWF and AVF according to Eq. (8) (right).3
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