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Key points 58 

 Meta-analysis of six studies (156 prospective HSIs and 944 uninjured participants) 59 

found no difference in pre-season eccentric knee flexor strength quantified during 60 

performance of the Nordic hamstring exercise (NHE)between prospectively injured 61 

and uninjured participants.  62 

 Irrespective of whether pre-season eccentric knee flexor strength quantified during 63 

performance of the NHE was expressed in absolute (N) or relative (N.kg-1) terms or as 64 

a between-limb asymmetry (%) there was no difference between prospectively injured 65 

and uninjured participants.  66 

 Accounting for potential effect modifiers (sport played, age, height, mass, average 67 

cohort NHE strength) did not alter the findings.     68 
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Abstract 81 

Background: interventions utilising the Nordic hamstring exercise (NHE) have resulted in 82 

reductions in the incidence of hamstring strain injury (HSI). Subsequently, quantifying 83 

eccentric knee flexor strength during performance of the NHE to identify an association with 84 

the occurrence of future HSI has become increasingly common, however, the data to date is 85 

equivocal.  86 

Objective: to systematically review the association between pre-season eccentric knee flexor 87 

strength quantified during performance of the NHE and the occurrence of future HSI.  88 

Design: Systematic review and meta-analysis 89 

Data sources: CINAHL, Cochrane Library, Medline Complete, Embase, Web of Science and 90 

SportsDiscus databases was conducted from January 2013 to January 10, 2020. 91 

Eligibility criteria for selecting studies: prospective cohort studies which assessed the 92 

association between pre-season eccentric knee flexor strength quantified during performance 93 

of the NHE and the occurrence of future HSI.  94 

Method: Following database search, article retrieval and title and abstract screening, articles 95 

were assessed for eligibility against pre-defined criteria then assessed for risk of bias. Meta-96 

analysis was used to pool data across studies, with meta-regression utilised where possible. 97 

Results: A total of six articles were included in the meta-analysis, encompassing 1,100 98 

participants. Comparison of eccentric knee flexor strength during performance of the NHE in 99 

156 injured participants and the 944 uninjured participants revealed no significant 100 

differences, regardless of whether strength was expressed as absolute (N), relative to body 101 

mass (N.kg-1) or between-limb asymmetry (%). Meta-regression analysis revealed that the 102 

observed effect sizes were generally not moderated by age, mass, height, strength, or sport 103 

played.  104 

Conclusion: Eccentric knee flexor strength quantified during performance of the NHE during 105 

pre-season provides limited information about the occurrence of a future HSI.  106 

 107 

 108 

 109 
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1. Introduction 110 

Hamstring strain injury (HSI) is the most common injury in a number of running-based sports 111 

[1-3] and has a high recurrence rate compared to other lower limb muscles[2, 4].  Previous 112 

injury (which leads to subsequent unavailability for training and/or matches) influences 113 

subsequent injury risk [5]  and impacts team’s success [6]. Furthermore prior HSI adversely 114 

effects individual performance [7] and physical output [8] upon return from injury. As a 115 

result, strategies to mitigate the risk of HSI occurrence have received significant attention in 116 

the literature.  117 

A central component of injury prevention models [9, 10] is the identification of factors that 118 

can provide an indication of an individual’s risk of future injury and research on risk factors 119 

for HSI has increased in recent times [11]. Whilst these risk factors can be extrinsic or 120 

intrinsic variables [12] those which are modifiable are of most interest as they can be altered 121 

via intervention.  Of the modifiable factors examined, the magnitude of hamstring strength, 122 

and various associated ratios (i.e. hamstring to quadriceps strength ratio, between limb 123 

asymmetry) are commonly reported in the literature [11], however, the findings are often 124 

conflicting across studies. Factors contributing to inconsistent findings include different 125 

strength testing methodologies, the range of variables reported (e.g. peak force, limb 126 

symmetry, hamstring to quadriceps ratio) and the different cohorts examined. Subsequently, 127 

drawing inferences from the existing literature is difficult. 128 

The Nordic hamstring exercise (NHE), a common partner-assisted eccentric strength training 129 

exercise for the knee flexors, has been shown to reduce the likelihood of sustaining a HSI 130 

across a number of cohorts [13, 14].  Recently a device which quantifies eccentric knee flexor 131 

strength during the performance of the NHE in the field[15] has become prominent.   It has 132 

been hypothesised that quantifying eccentric knee flexor strength during the NHE may 133 

provide information about an individual’s risk of HSI as high force lengthening contractions 134 

of the hamstrings during high speed running are presumed to be implicated in the aetiology of 135 

HSI. An initial prospective cohort study to test this hypothesis, conducted in elite Australian 136 

Football, identified a greater risk of future HSI in those who had lower levels of eccentric 137 

knee flexor strength during the NHE, compared to stronger athletes [16]. Whilst this initial 138 

finding was subsequently confirmed in a cohort of Australian soccer players [17], further 139 

studies in Qatari soccer [18], Australian rugby union [19], Australian Football [20], and 140 

Gaelic Football [21] have been conflicting. Similarly, whilst greater between-limb asymmetry 141 
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in eccentric strength during NHE has been reported to increase HSI risk previously [19], this 142 

is not a consistent finding [16-18, 20, 21]. 143 

Therefore, the aim of this study was to systematically review the association between pre-144 

season eccentric knee flexor strength quantified during the performance of the NHE and the 145 

occurrence of future HSI. A secondary aim is to determine whether larger between-limb 146 

asymmetry in eccentric knee flexor strength is associated with future HSI.      147 

 148 

 149 
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 152 

 153 

 154 

 155 

 156 

 157 

 158 

 159 

 160 

 161 

 162 

 163 

 164 

 165 

 166 



 
 

7 
 

2. Methods 167 

2.1 Trial registration 168 

This review was submitted for registration with the International Prospective Register of 169 

Systematic Reviews  on December 12, 2019 and was registered on April 28, 2020 170 

(PROSPERO ID registration number: CRD42020158618). 171 

2.2 Literature search strategy 172 

The literature search and study selection process were conducted in accordance with the 173 

Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. 174 

A comprehensive search of CINAHL, Cochrane Library, Medline Complete, Embase, Web 175 

of Science and SportsDiscus databases was conducted from January 2013 to January 10, 176 

2020. The search was restricted to articles published from 2013 onwards as the first report of 177 

the device used to measure eccentric hamstring strength during the NHE was published in 178 

2013 [15]. The search strategy, including key terms and controlled vocabulary (i.e. Medical 179 

Subject Headings [MESH] terms) can be found in Supplementary Table S1. The search terms 180 

were determined to align with the research question and aims of the review. Following 181 

retrieval all citations were imported into EndNote X9 (Thomson Reuters, New York City, 182 

NY, USA) where duplicated removal was performed. 183 

2.3 Study selection 184 

The title and abstract of retrieved articles were screen for inclusion by two authors 185 

(RGT, JTH) using Rayyan [22]. Following the title and abstract screening, a full-186 

text review was completed to determine eligibility by two authors (FPB, JTH). 187 

Included in the current review were prospective cohort studies that quantified 188 

eccentric knee flexor strength during performance of the NHE and reported 189 

appropriate summary statistics (i.e. measures of central tendency and variation). 190 

The population investigated was those participating in sport of any level. Studies 191 

were included if they reported data separately for participants who did and did not 192 

sustain a subsequent HSI during a defined follow-up period. Only peer reviewed 193 

publications in English were considered. Hand-searching of the reference list was 194 

performed on all included studies to identify any other potential articles for 195 

inclusion (only articles published form 2013 onwards were considered for inclusion 196 

in line with the search strategy).  197 
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 198 

2.4 Risk of bias assessment 199 

The Quality in Prognosis Studies (QUIPS) tools [23] was used to assess risk of bias 200 

of all included studies, per previous similar systematic reviews [11]. Two authors 201 

(RGT, NvD) applied the QUIPS to each individual study, with any discrepancy 202 

between scoring discussed between these authors to reach a consensus. If a 203 

consensus could not be reached in this manner a third author (FPB) was used to 204 

resolve the dispute.  205 

An individual study was considered to have a low risk of bias if five of the six 206 

domains defined in the QUIPS tool (study participation, study attrition, prognostic 207 

factor measurement, outcome measurement, study confounding, statistical analysis 208 

and reporting) were assessed as having a low risk of bias (defined as a score of 209 

≥75% for individual criteria under each domain). Any study that was determined to 210 

have a high risk of bias in the outcome measurement domain was automatically 211 

assigned a high risk of bias. 212 

 213 

2.5 Data extraction 214 

Data pertaining to participant characteristics, including age, height, mass, sport, 215 

history of HSI and level of competition were extracted. Additional methodological 216 

details were also extracted, including the definition used to determine the 217 

occurrence of a HSI, the NHE strength testing protocol, time of testing, and the 218 

length of participant follow-up. Measures of sample size, central tendency 219 

(typically a mean value) and variance (typically standard deviation) related to NHE 220 

strength in groups of individuals who did and did not sustain a HSI was also 221 

extracted.  Specifically, the following knee flexor strength data, quantified during 222 

performance of the NHE were obtained: absolute knee flexor strength (N), knee 223 

flexor strength normalised to body mass (N.kg-1), and between-limb asymmetry in 224 

knee flexor strength (%). Since between-limb asymmetry was computed differently 225 

between studies, we sought data from the corresponding authors in order to 226 

compute between-limb asymmetry (%) according to the following equation: 227 

𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦௜ ൌ 100 ൈ
𝐿𝑖𝑚𝑏௠௔௫ െ  𝐿𝑖𝑚𝑏௠௜௡

𝐿𝑖𝑚𝑏௠௔௫
 228 
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Where Asymmetryi was the ith participant’s between-limb asymmetry (%), Limbmax 229 

was maximum force value generated by either limb, and Limbmin was the maximum 230 

force value generated by the weaker limb. Due to the positively skewed nature of 231 

asymmetry data, a log transformation was applied to the raw data to create a 232 

normally distributed variable: 233 

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑௜ ൌ  lnሺ𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦௜ ൅ 1ሻ 234 

Where Transformedi is the ith participant’s log transformed asymmetry score and ln 235 

is the natural logarithm. Note that this log-transformed data was used for all 236 

subsequent analysis involving between-limb asymmetry.  237 

2.6 Data analysis 238 

Meta-analysis and meta-regression were conducted using the “meta” [24] and 239 

“metafor” [25] packages in R [26]. Data pertaining to the primary outcome (i.e. 240 

eccentric knee flexor strength or limb-asymmetry data) were converted to 241 

standardised mean differences (SMD) and 95% confidence intervals (CI). These 242 

data were pooled across studies using a random effects model, with a restricted 243 

maximum likelihood method used to estimate variance. Each pooled effect size was 244 

interpreted as trivial (<0.20), small (0.20-0.49), moderate (0.50-0.79) or large 245 

(≥0.80) [27]. For each meta-analysis, visual inspection of funnel plots was used to 246 

assess publication bias and heterogeneity was evaluated using the I2 statistic. Meta-247 

analyses were conducted for prospectively injured limbs compared to the uninjured 248 

control group limbs for all outcomes (i.e. absolute knee flexor strength, body mass 249 

normalised knee flexor strength and between-limb asymmetry).  250 

In addition, contact with corresponding authors enabled the determination of which 251 

injured participants had suffered a HSI in the 12 months prior to testing, which was 252 

subsequently used to perform subgroup analysis on “recurrent” and “non-recurrent” 253 

injuries for each of the aforementioned outcome variables. Athletes were classified 254 

as “recurrent” if they had suffered a HSI (in the 12 months prior to testing) in the 255 

same leg that was injured within the study follow-up period. 256 

Where possible, a meta-regression was performed to assess the impact of other 257 

potential effect modifiers, including the sport played, mean age, height and mass of 258 

each cohort as reported within each study. Meta-regression was also performed for 259 
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the average strength of each cohort, which was determined by computing the mean 260 

(weighted by sample size) of the injured limbs, contralateral uninjured limb and 261 

control group absolute knee flexor strength.   262 

 263 

 264 

 265 
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 270 

 271 

 272 
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3 Results 290 

3.1 Search strategy 291 

The search results are presented in figure 1. The initial search yielded 3,585 items from all 292 

databases. After duplicate removal and title and abstract screening, 12 articles underwent 293 

independent application of the selection criteria, resulting in six articles in the systematic 294 

review and meta-analysis.  295 

3.2 Risk of bias assessment 296 

Only one [21] of the six included studies presented with a high risk of bias, with all others 297 

presenting a low risk. Full details of the scoring for the QUIPS tool for all included studies 298 

are provided in Supplementary Table S2.  299 

3.3 Description of studies 300 

3.3.1 Participants 301 

Across the six included studies, a total of 1,100 male participants were included in the meta-302 

analysis (weighted mean ± pooled SD; age = 25 ± 4 years; height = 1.83 ± 0.07m; mass = 84 303 

± 9kg). Of the included participants, 156 participants suffered a prospective unilateral HSI, 304 

and 944 participants remained uninjured during the follow up periods. Two studies [17, 18] 305 

investigated elite soccer players (n=376 participants, n=55 injured) and another two studies 306 

[16, 20] investigated elite Australian Football players (n=362 participants, n=53 injured). The 307 

two remaining studies investigated elite Gaelic Football players [21] (n=184 participants, 308 

n=28 injured) or elite and sub-elite Rugby Union players [19] (n=178 participants, n=20 309 

injured). Participant characteristics are summarised in Supplementary Table S3. 310 

3.3.2 Testing protocol 311 

All studies conducted testing during the pre-season period, with three studies conducting 312 

knee flexor strength testing at the start of pre-season [16, 17, 20] and the remaining three 313 

studies conducting testing within pre-season [18, 19, 21]. All studies used the same protocol, 314 

involving one set of three maximal effort repetitions of the NHE on a Nordic testing device. 315 

3.3.3 Injury monitoring 316 

Athletes were monitored for HSI occurrences after pre-season testing for periods of ~3 317 

months [21], ~6 months [19] or 10 months [16-18, 20]. Two studies included only magnetic 318 

resonance imaging (MRI) confirmed HSIs [16, 20], two studies included a mix of HSIs 319 

diagnosed via either imaging (MRI or ultrasound) confirmation or physical/clinical 320 

examination [18, 19], one study included injuries confirmed by clinical examination [17], 321 
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whilst the remaining study [21] reported only that injuries were diagnosed by the club 322 

physiotherapists or medical doctor. For all included studies, the occurrence of HSIs in the 12 323 

months prior to testing was also recorded. Note that details of the testing protocol and injury 324 

surveillance of each study are provided in Supplementary Table S4. 325 

3.3.4 Outcome variables 326 

Five [16-18, 20, 21] of the included studies calculated the average peak force (across the 327 

three repetitions), whilst one study [19] only reported the peak force (i.e. the highest force 328 

value recorded across the entire set of three repetitions). All studies reported absolute knee 329 

flexor strength (N) and knee flexor strength normalised to body mass (N.kg-1). Between-limb 330 

asymmetry was reported by all studies albeit computed via different equations. Two studies 331 

[18, 20] reported between-limb imbalance in N, whilst the remaining studies expressed 332 

asymmetry as a percentage [16, 17, 19, 21]. As described in Section 2.5, original data was 333 

obtained from authors to recompute limb-asymmetry (in accordance with equation 1 for 334 

subsequent meta-analysis). One study [17] also reported knee flexor strength as torque (Nm) 335 

by accounting for the shank length. Since none of the other included studies had such data 336 

available, torque was not included in further analysis.  337 

3.4 Strength outcomes quantified during the performance of the NHE 338 

3.4.1 Absolute knee flexor strength 339 

No significant differences in absolute knee flexor strength were observed between the 340 

prospectively injured legs and the uninjured control group (SMD = -0.22, 95%CI = -0.50 to 341 

0.05; figure 2a) or the recurrent injured legs compared to the uninjured group (SMD = -0.32, 342 

95%CI = -0.77 to 0.13; figure 2b).  343 

3.4.2 Normalised knee flexor strength 344 

Normalising knee flexor strength to body mass had no effect on any outcome, and the pooled 345 

effect sizes were almost identical to the absolute knee flexor strength. Specifically, effect size 346 

remained small for all injured legs (SMD = -0.23, 95%CI = -0.55 to 0.10; figure 3a) or 347 

recurrently injured legs (SMD = -0.32, 95%CI = -0.90 to 0.26; figure 3b) when compared to 348 

the uninjured group. 349 

3.4.3 Limb asymmetry in NHE strength 350 

No significant differences in between-limb knee flexor strength asymmetry were found 351 

between all injured participants (SMD = 0.01, 95%CI = -0.24 to 0.25; figure 4a) or 352 



 
 

13 
 

recurrently injured participants (SMD = 0.28, 95%CI = -0.14 to 0.70; figure 4b) compared to 353 

the uninjured group.  354 

3.4.4 Meta-regression 355 

No significant relationships between absolute knee flexor strength and any covariate 356 

investigated (sport played, athlete age, height and mass or average absolute NHE strength of 357 

cohort) were found (p ≥ 0.26). For between-limb asymmetry, a significant effect was found 358 

for average age (p = 0.007), but not any other variable (p ≥ 0.24). Visualisation of regression 359 

relationships for continuous variables are provided in Figure 5, whilst a full summary of 360 

meta-regression statistical results is provided in Supplementary Table S5. 361 

 362 

 363 

 364 
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 367 

 368 

 369 

 370 
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4 Discussion 384 

This systematic review and meta-analysis is the first to comprehensively synthesise the 385 

available data pertaining to eccentric knee flexor strength quantified during performance of 386 

the NHE and  the occurrence of future HSI. Overall, our analysis of 1,100 participants 387 

revealed that preseason knee flexor strength quantified during performance of the NHE was 388 

not associated with HSI. This finding was consistent regardless of whether strength was 389 

expressed as absolute, body mass normalised, or as a limb-asymmetry percentage. 390 

Additionally, our meta-regression analysis found that these findings were generally not 391 

moderated by the sports played, or the average height, mass or strength of each cohort. 392 

The importance of eccentric knee flexor strength in HSI has been investigated extensively in 393 

the literature. Specifically, the NHE has received significant attention recently, as its 394 

implementation as a training intervention has been consistently shown to reduce the incidence 395 

of HSI, relative to groups that do not perform the exercise [13, 14]. It is therefore conceivable 396 

that the measurement of knee flexor strength during the NHE may offer insight into the risk 397 

of subsequent HSI. The first study in this area of research found that lower eccentric knee 398 

flexor strength during the NHE at the start of pre-season was associated with increased HSI 399 

risk in the subsequent season in a cohort of Australian Football players [16]. Further work 400 

across a number of different football codes [17-21], however, has been conflicting. Our meta-401 

analysis combined these data and revealed, overall, no significant differences in eccentric 402 

knee flexor strength quantified during performance of the NHE between the prospectively 403 

injured limbs and either the contralateral uninjured limbs or the uninjured control group. 404 

Whilst this suggests there is no relationship between eccentric knee flexor strength quantified 405 

during performance of the NHE and future HSI, it is important to put these findings into 406 

context. 407 

Our a-priori power analysis suggested the six studies would achieve adequate power (>90%) 408 

to detect a moderate effect size (0.50), even with a conservative within-study sample size 409 

estimate, and assuming the presence of high between-study heterogeneity (Supplementary 410 

Figure S1). The results from the current meta-analysis therefore  indicate that if there is any 411 

effect of eccentric knee flexor strength, quantified during performance of the NHE, on future 412 

HSI risk, the effect is at most small. The current meta-analysis, however, was not sufficiently 413 

powered to detect smaller effect sizes (e.g. 0.20).  Since the pooled effect sizes observed in 414 

this analysis were small for all comparisons, we cannot definitively conclude that there are no 415 

differences in NHE strength between injured and uninjured legs, but rather that any 416 
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differences (if they do exist) are likely to be small or trivial, at most. Studies with larger 417 

sample sizes would be required to detect such small effects, however, the clinical utility of 418 

such data is limited. For context, the small effect sizes observed in the meta-analysis 419 

correspond to pooled mean differences of -18 N (95%CI = -40 to 4 N) or -0.22 N.kg-1 420 

(95%CI = -0.54 to 0.10 N.kg-1) between the injured limbs and the uninjured control groups. 421 

Importantly, the minimal detectable change of the Nordic hamstring device has been reported 422 

to be >60 N [15].  423 

Despite the well-documented benefit of performing eccentric knee flexor exercises for 424 

reducing HSI risk [28, 29], it is clear that measurement of eccentric knee flexor strength 425 

alone cannot predict HSI occurrence [20], and likely interacts with other factors such as age 426 

and previous history of HSI [16, 17, 19]. We attempted to account for these factors via meta-427 

regression or subgroup analysis, respectively, however, due to the multi-factorial nature of 428 

HSI, there are many other potentially influential factors that were unaccounted for in our 429 

analysis. For example, shorter biceps femoris long head fascicle lengths have been shown to 430 

be associated with greater risk of HSI [17]. Isokinetic eccentric hamstring training [30], as 431 

well as the NHE [31-36], have been shown to not only increase eccentric knee flexor 432 

strength, but also increase biceps femoris long head fascicle lengths. However, there are 433 

numerous other methods by which eccentric knee flexor strength can be improved, some of 434 

which are associated with shortening of biceps femoris long head fascicle lengths (thus 435 

conceivably increasing HSI risk), such as concentric isokinetic exercise [30]. Additionally, 436 

muscle fascicle lengths are rapidly adaptable to both training and de-training [30-32], and 437 

changes across a playing season, particularly in those with a prior HSI [37]. Subsequently, 438 

future work investigating HSI risk factors should aim to comprehensively assess as many 439 

prospective factors as possible (in addition to eccentric knee flexor strength), including 440 

muscle architecture and accounting for exposure [38, 39].  441 

One important result of our analysis is the consistency of our findings across various methods 442 

of expressing eccentric knee flexor strength quantified during performance of the NHE. 443 

Debate around the normalisation of NHE knee flexor strength data has been presented in the 444 

literature, with some authors arguing that the most commonly expressed metric of absolute 445 

strength is fundamentally flawed due to failure to account for differing body mass and/or 446 

lever arms between individuals [40]. However, all studies included in our analysis also 447 

reported body mass normalised knee flexor strength, and our meta-analysis showed a very 448 

similar relationship to HSI between absolute and normalised strength (Figure 2, Figure 3, 449 
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Figure 5, Supplementary Figure S5). Additionally, our meta-regression showed that body 450 

mass and height had no moderating effect on the results of our analysis. However, it is 451 

important to acknowledge that our meta-regression assessed the relationship between the 452 

average characteristics of each cohort (i.e. age, height, mass and strength) and the effect size 453 

between the injured and uninjured groups. Subsequently, a more detailed analysis 454 

incorporating individual data points may be needed to more comprehensively determine the 455 

value of normalisation of NHE knee flexor strength data to mass, height, lever length or an 456 

allometric scaling approach. 457 

Despite the key insights provided by this study, our meta-analysis is not without limitations. 458 

Firstly, the comprehensiveness of our search strategy cannot be guaranteed, thus it is possible 459 

that some relevant literature was not obtained. However, given that only six articles were 460 

obtained from our search, it is unlikely there is additional literature that would have not been 461 

identified via citation tracking and reference list searching. Of these six included articles, the 462 

risk of bias cannot be completely avoided. However, our quality assessment revealed a high 463 

risk of bias for only one study [21] which received this classification due to a lack of clear 464 

definition of the outcome (HSI) and a lack of consideration of potential important 465 

confounders within analysis. A meta-analysis and meta-regression of only six studies presents 466 

some additional limitations which must be acknowledged, including sparse-data bias [41, 42] 467 

and publication bias. Evaluation of publication bias was done via visual inspection of funnel 468 

plots, yet such an approach can offer only limited insight with a low number of studies. 469 

However, our power analysis suggested that five studies were sufficient to detect a moderate 470 

(≥0.50) effect size with >80% power for our control group comparisons (Figures 2-4) and 471 

contralateral limb comparisons (Supplementary Figure S2), even in the presence of high 472 

between-study heterogeneity (Supplementary Figure S1). Further to this, our analysis 473 

suggests that an estimated 19 studies would be needed to obtain adequate statistical power to 474 

detect small (0.20) effect sizes for control group comparisons (Supplementary Figure S3). It 475 

should also be noted that the analysis pertaining to recurrent injuries is particularly impacted 476 

by the small number of recurrent injuries (n=37), and thus an even greater number of studies 477 

would be needed to substantiate these findings. Furthermore, additional studies would also 478 

increase the veracity of the findings from our meta-regression, which is commonly 479 

recommended to include at least 10 studies [43]. Subsequently, our meta-analysis and meta-480 

regression provides a much-needed synthesis of the presently available data for clinicians, 481 

until such a time that these additional studies would be completed. Based on our findings, 482 
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clinicians should be aware that such future studies, if they are conducted, are expected to 483 

demonstrate substantial heterogeneity (Supplementary Figure S4). Finally, it is important to 484 

recognise that our meta-analysis pertains specifically to pre-season knee flexor strength 485 

measures with follow-up periods of between ~3 to 10 months. It is possible that more 486 

frequent strengths tests (e.g. in-season) over longer periods may yield different findings. 487 

Additionally, other methods of eccentric knee flexor strength assessment [44, 45] may 488 

provide alternative conclusions if prospective data were available.  489 

5 Conclusions 490 

Based on the available evidence, this systematic review and meta-analysis showed that pre-491 

season eccentric knee flexor strength quantified during performance of the NHE is not 492 

associated with future HSI. This finding was consistent regardless of whether knee flexor 493 

strength was expressed in absolute terms, normalised to body mass, or expressed as a 494 

between-limb asymmetry. Despite the promising early work in the area, our pooled analysis 495 

of 1,100 participants suggests that knee flexor strength quantified during performance of the 496 

NHE alone provides limited insight about future HSI.  497 
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Figure captions 645 

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 646 

flow chart. 647 

Figure 2. Standardised mean differences (SMD) of absolute eccentric knee flexor strength 648 

(N) quantified during performance of the Nordic hamstring exercise for hamstring strain 649 

injured limbs compared to the uninjured control group. Data is sub-grouped for a) all injuries, 650 

b) recurrent injuries, c) non-recurrent injuries. Recurrent injury classification was achieved 651 

through author contact and was defined as athletes that suffered a hamstring strain injury 652 

(HSI) in the 12 months prior to test, and then suffered a subsequent HSI in the same leg 653 

during the follow-up period. All injuries (panel a) were sub-grouped into recurrent (panel b) 654 

and non-recurrent (panel c) injuries through author contact. Note that for one study [18], the 655 

recurrent and non-recurrent injured-group limbs could only be identified on a player-season 656 

level, not an individual participant level (due to participant de-identification). Due to 3 657 

players in this study suffering injuries across both assessed seasons, the sum of recurrent and 658 

non-recurrent injuries exceeds the total amount of injuries reported in panel a.  659 

Figure 3. Standardised mean differences (SMD) of body mass normalised eccentric knee 660 

flexor strength (N.kg-1) quantified during performance of the Nordic hamstring exercise for 661 

hamstring strain injured limbs compared to the uninjured control group. Data is sub-grouped 662 

for a) all injuries, b) recurrent injuries, c) non-recurrent injuries. Recurrent injury 663 

classification was achieved through author contact and was defined as athletes that suffered a 664 

hamstring strain injury (HSI) in the 12 months prior to test, and then suffered a subsequent 665 

HSI in the same leg during the follow-up period. Note that for one study [18], the recurrent 666 

and non-recurrent injured-group limbs could only be identified on a player-season level, not 667 

an individual participant level (due to participant de-identification). Due to 3 players in this 668 

study suffering injuries across both assessed seasons, the sum of recurrent and non-recurrent 669 

injuries exceeds the total amount of injuries reported in panel a. 670 

Figure 4. Standardised mean differences (SMD) of log-transformed between-limb asymmetry 671 

(%) of eccentric knee flexor strength quantified during performance of the Nordic hamstring 672 

exercise for hamstring strain injured limbs compared to the uninjured control group. Data is 673 

sub-grouped for a) all injuries, b) recurrent injuries, c) non-recurrent injuries. Recurrent 674 

injury classification was achieved through author contact and was defined as athletes that 675 

suffered a hamstring strain injury (HSI) in the 12 months prior to test, and then suffered a 676 
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subsequent HSI in the same leg during the follow-up period. Note that for one study [18], the 677 

recurrent and non-recurrent injured-group limbs could only be identified on a player-season 678 

level, not an individual participant level (due to participant de-identification). Due to 3 679 

players in this study suffering injuries across both assessed seasons, the sum of recurrent and 680 

non-recurrent injuries exceeds the total amount of injuries reported in panel a. 681 

Figure 5. Meta-regression of eccentric knee flexor strength quantified during performance of 682 

the Nordic hamstring exercise (NHE) standardised mean difference (SMD), between 683 

prospectively hamstring strain injured and uninjured limbs and continuous covariates. 684 

Regression analysis was conducted for eccentric knee flexor strength presented in absolute 685 

terms (N, top row) or between-limb asymmetry (%, bottom row). Bubbles, data points 686 

representing each study (size of each bubble is inversely proportional to the standard error of 687 

the study); black line, regression line of best fit; grey shaded area, 95% confidence interval of 688 

regression line. 689 
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