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Abstract 

Introduction: Movement variability can be defined as the variance in human movement 

from one trial or cycle to the next, often when attempting to maintain dynamic equilibrium (in the 

case of continuous skills) or achieve consistent movement outcome (for discrete skills). Some 

theoretical perspectives of motor control consider movement variability to be deleterious. 

However, the dynamical systems perspective proposes beneficial and functional roles for 

movement variability. Within this view variability has developed as an independent theme of 

research that has gained momentum over the past 25 years, attracting focus from various sub-

disciplines within the field with a major contribution from sports biomechanics. The previous 

research within the field of movement variability has proposed that these functional roles include 

reducing the risk of injury, enabling coordination change and facilitating adaptation to varying task 

or environmental constraints. This thesis is primarily constituted of four sequential studies 

designed to further the method-related approach to, and theoretical understanding of, the 

interaction between variability in discrete movement and adaptation. 

Study 1: The first aim of this thesis was to review the previous work investigating 

variability in discrete sporting or sports derived movements. A systematic review was conducted 

which initially surveyed more than 19,000 articles before submitting 66 to final analyses. Data 

extracted identified participant age and gender, study design, sample size, population and 

movements studied in the included literature. Furthermore, the trial size, data collection 

equipment/methods, kinematic measures, filtering and variability quantification methods were 

reported. Results led to the suggestion that future discrete movement variability research should 

endeavour to do the following: implement longitudinal research designs; report justification for 

trial sizes using a valid means; consider using higher capture frequencies where possible; 
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descriptively report any data manipulation and selection of critical values; consider the use of 

surrogate methods; and make use of emerging variability quantification techniques which 

adequately account for the deterministic nature of human movement time series. Furthermore, 

three levels of variability were proposed to seek a fuller understanding of its functional role: 1) 

variability in discrete and continuous measures of variables such as joints and segments, 

release/impact parameters and implement kinematics; 2) coordination variability; and 3) whole 

system variability. It was considered that assessment of variability at all three levels holds the best 

chance of further understanding the phenomenon of discrete movement variability.   

Study 2: Based on the findings of Study 1, it was determined to utilise a longitudinal 

research design employing contextual interference to investigate discrete movement variability 

during the learning of a novel task. However, to address some of the method-related 

considerations raised in Study 1, Studies 2 and 3 focussed on trial size and surrogate methods of 

data collection. Study 2 addressed the recommendation that a valid determination of trial size be 

made a priori. This was conducted using sequential analysis. Considerable testing followed to 

ensure the valid application of this technique and to determine the number of throws required to 

achieve a stable mean. It was determined that a sample of at least 20 trials was required to make 

a determination of trial size using sequential analysis. Results suggest that a trial size between 13 

and 17 provides stable means for overarm throwing kinematics. 

Study 3: Another directive of Study 1 was that surrogate methods be considered, 

particularly when employing entropy measures, to highlight the presence of deterministic 

dynamics. Entropy measures quantify the regularity of both stochastic and deterministic signals. 

As such, a means of ensuring that collected data is deterministic in nature is required. This can be 

achieved using surrogate methods. However, no such surrogate method presently existed for use 
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with discrete human movement data. Study 3 outlines the development, validation and 

determination of reliability for a novel surrogate technique for this purpose. The proposed 

technique validly and reliably generated surrogates for discrete joint angle time series, destroying 

fine-scale dynamics of the observed signal, while maintaining macro structural characteristics.  

Study 4: The final study addresses the overarching focus of the thesis - to investigate the 

interaction of discrete movement variability, adaptation and learning. Twenty participants were 

recruited into this study which employed a longitudinal design and contextual interference. Each 

participant was randomised into one of two experimental groups and attended nine training 

sessions where they practiced overarm throwing with their non-dominant hand. Surrogate 

methods and sample entropy were used to assess changes in movement variability at the first 

(joint) level while learning this novel discrete task. It was hypothesised that the contextual 

interference effect would be observed, such that those exposed to high contextual interference 

during skill acquisition would outperform those exposed to low contextual interference. The 

results indicated the presence of the contextual interference effect which enhanced adaptability in 

the high contextual interference group. Surrogate techniques effectively demonstrated the 

presence of deterministic dynamics. Movement variability (sample entropy) was not significantly 

different between the high and low contextual interference groups though several trends 

corroborated those reported by previous research. Combining longitudinal design, contextual 

interference and measurement of variability allowed several hypotheses to be formed which could 

enhance our understanding of the functional role of variability in motor learning and adaptation. 

Conclusion: The four studies of this thesis provide a valuable contribution to movement 

variability research. Furthermore, the results offer useful guidance for future work. This includes, 

but is not limited to the following aspects: applying sequential analysis to other movements and 
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validating its use with time series data; applying the novel surrogate technique to other 

movements; and providing further exploration of emerging variability quantification methods and 

assessment of variability at all three levels across the entire span of motor learning. Potential 

applications of this and future work lay in the ability to effectively track and service athletes as 

well as to inform coaching techniques, particularly relative to task variability in training.  
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CRP Continuous relative phase   
CV Coefficient of variation    
DyCoN Dynamically controlled network     
F Female    
FDA Functional data analysis    
fPCA Functional principal component analysis    
FIR Finite impulse response    
High CI High contextual interference group    
ICC Intraclass correlation    
IQR Inter-quartile range    
Low CI Low contextual interference group    
M Male    
MSE Mean squared error    
NoRMS Normalised root mean squared    
NR Not reported    
P Performed    
PCAw Principal component analysis of waveforms    
RMS Root mean squared    
RMSD Root mean squared difference    
SampEn Sample entropy    
SD Standard deviation    
SEM Standard error of the mean    
TE Technical error    
vs. Versus    
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Chapter 1. Introduction 

1.1 General Introduction 

Movement variability, the variance in movement patterns from trial to trial or cycle to 

cycle, has garnered increasing interest over the past half century or more and has elicited several 

contrasting viewpoints. While the conflicting theoretical perspectives on movement variability are 

not the focus of this thesis, and some excellent resources already exist to cover it (c.f. Newell and 

Corcos [1993b]; Davids, Bennett, and Newell [2006]), they are nonetheless worth mentioning 

briefly. 

Many early motor control theories modelled the human motor system in a computational 

manner where commands, or motor programs, were stored in memory, loaded when required and 

produced a desired output. Within these approaches, such as control theory, movement variability 

was seen as evidence of noise and error, arising in the neuromotor system between input and 

output, affecting the optimal execution of the motor program (Button, Davids, & Schollhorn, 

2006). That is, movement variability was considered deleterious and to be avoided or eradicated 

where possible for optimal movement control and outcome.  

For more than 20 years now though, adoption of different theoretical perspectives on 

motor control has seen a shift in thinking on the reason movement variability exists. These 

theoretical approaches, such as dynamical systems theory, regard variability as an omnipresent 

element of human movement. It arises, not due to error in transmission of a motor program, but 

rather because human movement is the outcome of all systems, from micro (e.g. cellular) to 

macro (e.g. segment, joint or whole body) levels, constantly evolving and re-organising under the 

pressure of external and internal constraints, to achieve desired motion outcomes (Newell & 
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Corcos, 1993a). That is, variability is an entirely natural and expected consequence of movement 

which may even have a functional role.  

As acceptance of the newer theoretical perspectives grew and attitudes towards 

movement variability changed within the human movement sciences, it became an independent 

field of research. More authors began to include variability measures amongst dependent 

variables, more studies began to focus on variability exclusively and individual analysis designs, as 

opposed to traditional group-wise analyses, began to increase. This was no more apparent than in 

sports research. Sport provides an ideal context in which to investigate movement variability. At 

the least, sporting populations are proficient in the movements being studied, and at best are 

among the highest skilled in the world at their given task. Sports biomechanists became aware 

that even the most skilled athletes were unable to produce invariant movements (Bartlett, Wheat, 

& Robins, 2007). Individual analyses revealed even more, that movement patterns were often 

highly individualised. As such the following questions arise: (1) do the new theoretical approaches 

and evidence suggesting an optimal, invariant technique was no longer worth striving for change 

the way movement variability should be perceived?; and (2) Does movement variability have a 

role to play in facilitating movement and is it functional in any way? 

Indeed, there have been several potential functional roles proffered for variability in 

movement. Two of these are well aligned with the primary goals of sports biomechanics – injury 

prevention and performance optimisation. Movement variability is thought to reduce repeated 

stresses on the same tissues, perhaps becoming a protective factor for injury. The potential for 

variability to optimise performance lies in another hypothesised function, the ability to facilitate 

adaptation, which may help achieve successful movement under dynamic task and environmental 
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constraints, such as those found in game situations. Furthermore, adaptation may be important to 

motor learning and skill acquisition. 

This thesis has at its core four studies which document the process to further understand 

any functional role of variability in discrete movement and, in particular, its interaction with 

adaptation and motor learning. The first study establishes and justifies the use of the sporting 

context and focus on discrete (as opposed to continuous) skills as well as providing a systematic 

review of the current consensus. There is a particular focus on the collation and efficacy 

assessment of methodologies used to investigate this phenomenon. Furthermore, a synthesis of 

key findings and conclusions provides interpretation of the current theoretical understanding of 

variability, its potential function or role within discrete human movement and directs later 

research questions.  

Studies 2 and 3 address method-related factors uncovered during the systematic review. 

Specifically, Study 2 documents the selection of appropriate trial size from pilot study data. This 

guides the method of the final two studies. Similarly, Study 3 outlines the development of a valid 

and reliable surrogate technique for discrete human movement. The potential effectiveness of 

surrogate analyses was raised within Study 1 but further investigation revealed no valid technique 

existed for the intended application. Hence the aim of Study 3 was to develop such a technique. 

Finally, Study 4 describes the application of knowledge gained from Study 1 along with 

adoption of methodologies from Studies 2 and 3 to attempt to answer questions about the 

functional role of movement variability and its interaction with adaptation and learning. This 

experimental study details the use of emerging innovative analyses of variability coupled with 

effective research design and attempts to provide direction for further exposition of the question 

at hand. Combined, these studies provide new knowledge and perspective on what has been done 
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before as well as contributing new methods to variability research and imparting initial 

understanding on the interaction of discrete movement variability, adaptation and learning while 

detailing future research directions.  

1.2 Aims and Hypotheses 

Each study of this thesis builds on or adds to those before it to achieve the overarching 

aim of the thesis – to investigate the interaction of discrete movement variability, adaptation and 

learning. Yet, each study had its own hypotheses and/or aims related to the purpose of that 

specific investigation. Those aims and hypotheses are stated here.  

1.2.1 Discrete Movement Variability in Sports and Sports Derived Tasks: A 

Systematic Review (Study 1) 

Aims: To provide a systematic review of the design, methods and analyses of research into 

discrete movement variability and its role in sport or sports derived tasks. To collate any evidence 

for a functional role of variability in discrete movement and to provide guidance for further 

research in this field. 

1.2.2 Determining Optimal Trial Size Using Sequential Analysis (Study 2) 

Aims: To investigate the effect of using different trial numbers on the results of sequential 

analysis. To employ sequential analysis to establish the number of trials required for mean stability 

in discrete and time series kinematic data from an overarm throwing task. 
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1.2.3 A Surrogate Technique for Investigating Deterministic Dynamics in Discrete 

Human Movement (Study 3) 

Aims: To propose a generalisation of the pseudo-periodic surrogate method, without time 

delay embedding, which can be applied to discrete movement data. To demonstrate the 

implementation of the surrogate technique including determination of critical values and the 

testing of surrogate output using sample entropy as a discriminating statistic. 

Hypothesis: That this novel surrogate technique will produce outcomes similar to those of 

the Small shuffled surrogate method, whereby the sequence of data is shuffled on a fine scale, 

destroying the micro structure of the original data (relationship between each datum and those 

immediately surrounding it), while the macro structural elements of the data (mean, variance, 

length) are maintained. 

1.2.4 Changes in Variability and Adaptability during the Learning of a Novel 

Discrete Task (Study 4) 

Aims: To investigate the changes in movement variability during the learning of a novel 

discrete task under high and low contextual interference conditions using a surrogate method and 

sample entropy measures. To determine variability at the first (joint) level of the chosen activity as 

to begin understanding any relationship amongst variability, adaptability and learning. 

Hypotheses: Those exposed to high contextual interference (task variability) during skill 

acquisition will outperform those exposed to low contextual interference in both retention and 

transfer tasks. Superior performance in the transfer task will provide evidence of adaptability in 

the high contextual interference group which will also display reduced movement variability at the 

first (joint) level.  
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Chapter 2. Discrete Movement Variability in Sports and Sports Derived 

Tasks: A Systematic Review (Study 1) 

2.1 Abstract 

This review of literature sought to provide a systematic appraisal of the design, methods 

and analyses of research into discrete movement variability in sport or sports derived tasks. Four 

primary academic databases (Academic Search Complete, SPORTDiscus, Medline and CINAHL) 

were searched yielding 19,007 abstracts (duplicates removed). Following application of inclusion 

criteria 66 articles qualified for full analysis. Data extracted identifies participant age and gender, 

study design, sample size, population and, movements studied in the included literature. 

Furthermore, the trial size, data collection equipment/methods, kinematic measures, filtering and, 

variability quantification methods are reported. Results led to the suggestion for future discrete 

movement variability research: it should endeavour to implement longitudinal research designs; 

report justification for trial sizes using valid means; consider using higher capture frequencies 

where possible; descriptively report any data manipulation and selection of critical values; 

consider the use of surrogate methods; and make use of emerging variability quantification 

techniques which adequately account for the deterministic nature of human movement time 

series. Furthermore, three levels of variability are proposed to seek a fuller understanding of its 

functional role: 1) variability in discrete and continuous measures of variables such as joints and 

segments, release/impact parameters and implement kinematics; 2) coordination variability; and 

3) whole system variability. It is proffered that assessment of all three variability levels holds the 

best chance of further understanding the phenomenon of discrete movement variability. 
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2.2 Introduction 

Movement variability can be defined as the variance in motion from one trial or cycle to 

the next, often when attempting to maintain dynamic equilibrium (in the case of continuous skills) 

or achieve consistent movement outcome (for discrete skills). There have been two major 

theoretical perspectives on this phenomenon over the years. One view, for example, suggests that 

variability within biological systems is indicative of random “noise” within those systems (Newell, 

Deutsch, Sosnoff, & Mayer-Kress, 2006) and that minimisation of variability within movement is 

aspirational (Newell & Corcos, 1993a). A contrary opinion is proffered by the dynamical 

systems/ecological theory which models the human organism as a complex system whose 

interdependent components show nonlinear, self-organising behaviour (Glazier, Davids, & 

Bartlett, 2004). That is movement synergies and coordination can arise in human movement from 

the controlled and uncontrolled interaction of the various components (from the sub-cellular level 

up to larger components such as muscle) that make up the individual. This theory proposes a 

functional, rather than deleterious, role for variability in movement including the ability to adapt 

to perturbations in task and environmental constraints as well as to reduce injury by dispersing 

stresses over more soft tissue during repeated movements (Bartlett et al., 2007; Davids, Glazier, 

Araujo, & Bartlett, 2003). 

Under the dynamical systems perspective, movement variability has developed as an 

independent theme of research that has gained momentum over the past 25 years, attracting 

focus from various sub-disciplines within the movement. Of these, sports biomechanists have 

taken a keen interest in movement variability due to its potential to enhance understanding of 

injury mechanics and to provide insight into questions around coordination, adaptability and 

performance (Bartlett, 2008). The focus of these investigations has been on the variability of 
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continuous and discrete movement classes. Research into continuous movement variability in 

sports biomechanics has been dominated by gait (Dufek, Mercer, Teramoto, Mangus, & Freedman, 

2008; Hamill, Haddad, & van Emmerick, 2006; Preatoni, Ferrario, Dona, Hamill, & Rodano, 2010), 

whereas discrete movement variability has covered a broad spectrum of sports and sports derived 

movements with manipulative or ballistic tasks featuring prominently (Bootsma & van Wieringen, 

1990; Button, MacLeod, Sanders, & Coleman, 2003; Chow, Davids, Button, & Rein, 2008; Fleisig, 

Chu, Weber, & Andrews, 2009; Langdown, Bridge, & Li, 2013; Taylor, Landeo, & Coogan, 2014; 

Whiteside, Elliott, Lay, & Reid, 2015).  

Some reviews have been published on movement variability in sports biomechanics 

(Bartlett, 2008; Bartlett et al., 2007; Davids et al., 2006; Davids et al., 2003; Preatoni et al., 2013). 

However, variability in continuous and discrete movements has not been differentiated. There 

may be benefit in reviewing the previous work on each movement type separately, since 

differences in control, goal and outcome of the two movement classes require different research 

questions and methods. For example, it is often easier to ascertain movement success in discrete 

movements (e.g., shot accuracy or distance), compared to that in continuous tasks where variables 

such as economy of gait may be confounded by physiological factors.  

The increased focus on movement variability has coincided with technological advances of 

the last two or three decades providing new and improved tools for data collection, notably 

increased camera speeds and three dimensional, multi camera, motion analysis systems. Similarly, 

novel methods of variability quantification have been employed (Davids et al., 2006; Deluzio, 

Harrison, Coffey, & Caldwell, 2013; Hamill, Haddad, & McDermott, 2000; Stergiou, Buzzi, Kurz, & 

Heidel, 2004; van Emmerick, Miller, & Hamill, 2013). Combined together, these elements are 

continually expanding the scope, importance and understanding of the link between movement 
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variability and performance measures in sports biomechanics. As such, the aim of this study is to 

provide a systematic review of the design, methods and analyses of research into discrete 

movement variability and its role in sport or sports derived tasks. In particular, we hope to collate 

any evidence for a functional role of variability in discrete movement and to provide guidance for 

further research in this field.  

2.3 Method 

2.3.1 Inclusion and exclusion criteria 

Inclusion, and corresponding exclusion, criteria can be seen in Table 2.1. To be included in 

this review literature must be in the form of peer reviewed journal articles, written in English, 

detailing experimental or descriptive study designs, within discrete sport or sport derived 

movements, quantifying intra-individual variability of kinematic or coordination variables. In order 

to control the number of elements affecting reported variability, included studies must assess a 

post-adolescent human population free of injury, illness or incapacity.  
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Table 2.1. 
Inclusion and exclusion criteria for systematic review. 

Inclusion Criteria Corresponding Exclusion Criteria 

1. Human Studies Animal Studies 

2. Variability in gross, discrete 

sporting or sports derived 

movements (jumping, throwing, 

catching etc.) 

Physiological response variability (e.g., heart rate or blood 

pressure), kinetic or myographic variability, rhythmic or cyclical 

skills such as tapping and gait 

3. Experimental and descriptive 

studies 

Reviews, methodological, positional papers etc. 

4. Intra-individual variability Inter-individual variability including group analysis and 

reliability studies 

5. Voluntary, goal directed 

movements  

Involuntary, passive, assisted or constrained movements such 

as manipulation, spasms and tremors, orthoses, support 

mechanisms and data collection methods which constrain 

degrees of freedom 

6. Healthy populations Non-healthy populations including injured, ill and neurological 

or neuromuscular pathology  

7. Healthy Adult/Fully developed/Non 

impeded 

Children, aged, impeded or temporarily disabled (e.g., sight 

occlusion) 

Where a paper has both elements that would and would not be included, the paper will be included 

and treated appropriately in analysis 
 

2.3.2 Search strategy 

Four primary research databases (Academic Search Complete, SPORTDiscus, Medline and 

CINAHL) were searched for the purposes of this review. Databases were accessed through EBSCO 

and searched using the following string with Boolean operators where the asterisk (*) symbol 

indicated the use of a wildcard: 

“VARIABILITY AND (KINEM* OR BIOMECH* OR COORD* OR MOVEMENT* OR 

SPORT* OR SKILL* OR MOTOR*)” 
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2.3.3 Search results, study inclusion and exclusion 

The searching was concluded 23 December 2015 and results were exported to reference 

management software (EndNote; Thomson Reuters, New York, NY). The following processes were 

then employed: (1) the first author, working independently, removed all articles where ineligibility 

was clear from the title. (2) The first author, working independently, removed all articles where 

ineligibility was clear from the abstract. (3) Full text versions of the remaining studies were then 

sourced and the first and second authors, working independently, reviewed these articles against 

all inclusion criteria (Table 2.1). (4) The first author manually searched the reference lists of all 

included articles to identify any further studies which may meet inclusion criteria. These titles 

were then exported to EndNote and steps (2) and (3) were repeated. Using a standardised data 

extraction sheet, Microsoft Access (Microsoft Corporation, Redmond, WA), the first author 

reviewed all full text articles and extracted all desired data. 

2.4 Results 

The initial search yielded 19,007 results after the removal of duplicates. Following the 

processes outlined in section 2.3.3 a total of 66 studies were included in the review. A flow chart 

documenting the inclusions and exclusions at each step can be seen in Figure 2.1. The included 

articles spanned the year range 1986 – 2015.  
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Figure 2.1. Study inclusion flowchart. 

The key data extracted from the included articles are summarised in Table 2.2 and Table 

2.3. The included articles were predominantly cross-sectional in their design (n = 38). Of these 25 

were observational in nature, while the remainder included some form of comparison (e.g., across 

task conditions). Seventeen studies used a causal comparative design to investigate differences 

between groups. Repeated measures designs comprised 11 studies of which 7 were a pre-post 

intervention design, 3 were longitudinal interventions and there was 1 test re-test design. 

Reported aims directly referred to variability in some form in 47 studies. The primary aim 

of these studies was quantification of variability (n = 34), either to form part of the knowledge 

base of the chosen movement, or, to compare variability between groups and/or conditions. 

Nineteen studies did not have variability as their focal point of the investigation with the majority 

using variability as a dependent variable to aid in the answering of their research question and/or 

testing of their hypotheses. 
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Reported sample sizes had a median value of 21.8 with an interquartile range (IQR) of 6 

years. Sub groups were included in 22 studies where average group size was 9.9 ± 5.0 participants. 

The majority of research samples were combined genders (n = 26) or male (n = 25), with nine 

female only studies. Average age of adult participants was 23.4 ± 5.4 years, calculated from the 

studies where data was available and appropriate. Population samples were comprised of 

sport/skill specific groups (n = 55), general population (n = 9) or a combination of both (n = 2). 

Tools for capturing kinematic data predominantly consisted of video (n = 22) or 

optoelectronic systems (n = 35). Other methods included active marker systems and goniometry (n 

= 9). Mean capture frequency for the video and optoelectronic studies was 211 ± 168 Hz, with a 

trend of increasing capture frequency with each subsequent year. There was also an increasing 

trend over the years in the adoption of optoelectronic data capture systems over traditional video. 

Data smoothing/filtering methods were reported in 40 studies in which some form of 

Butterworth filter was most common (n = 24). Of those using smoothing, 32 reported the cut-off 

frequency or similar critical value. Two studies reported a cut-off frequency but not the type of 

filter implemented. Of the studies that reported critical values, 11 cited the method whereby 

those values were decided upon (e.g., residual analysis).  

From 56 studies the median number of trials collected for each testing condition/time 

point was 10 (IQR 14). Five studies did not report the number of trials collected. Not all studies 

analysed all trials collected. The median number of trials analysed was nine (IQR 5). From the 48 

investigations for which a determination could be made from the reported information, 14 studies 

reported analysing fewer trials than collected, while 34 studies reported analysing all collected 

trials. 
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The main kinematic variable types derived from collected data were relative joint angular 

displacements (n = 41), release/impact variables (n = 18), relative joint angular velocity (n = 16), 

marker linear displacement (n = 13) and implement (e.g., bat) kinematics (n = 13). Thirty studies 

reported some form of first derivative/velocity variable while four reported some form of second 

derivative/acceleration. Nineteen studies reported quantifying coordination of variables in some 

way. While these were the variables reported as being calculated or described, not all were 

submitted to variability analysis. 

The most common method (n = 41) for quantification of variability was standard deviation 

(SD).  Coefficient of variation (CV) was employed in 17 studies. Six studies used one or more of 

approximate entropy, sample entropy, principal component and cluster analyses. Other methods 

were reported in 14 studies. Investigation of variability in coordination was achieved using phase-

plane plots (n = 2) and angle-angle plots (n = 9). Angle-angle plots were interpreted visually as well 

as often being further assessed using a quantitative measure, most commonly Normalised Root 

Mean Square (NoRMS; n = 7). Studies which quantified coordination using a vector coding 

technique (n = 9), assessed variability via methods such as circular SD or coefficient of 

correspondence. Variability of whole body or whole system output was assessed by methods such 

as variability ellipses, hierarchical cluster analysis and neural networks (n = 7). 
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Table 2.2. 
Participant characteristics and movement investigated. 

Article Study Design Sample Size Population Gender Participant Age  Movement 

Anderson et 
al. 1986 

Observational 
case study 

N = 1 General population M 27 Dart throw 

Armour 
Smith et al. 
2012 

Cross-sectional 
observational 

N = 7 Experienced dancers M (n = 2) 
F (n = 5) 

19.4 ± 1.8 Sauté jumps 

Barris et al. 
2013 

Cross-sectional 
observational 

N = 5 Elite divers M (n = 1) 
F (n = 4) 

17.2 ± 1.6 Springboard dives 

Barris et al. 
2014 

Longitudinal 
quasi-
experimental 

N = 4 Elite divers F 20 ± 2.9 Springboard dives 

Betzler et al. 
2012 

Causal 
comparative 

N = 285 Intermediate golfers M (n = 246) 
F (n = 39) 

M: 46 ± 18 
F: 50 ± 16 

Golf drive 

Bootsma et 
al. 1990 

Cross-sectional 
observational 

N = 5 Experienced table 
tennis players 

M 18 - 24 Table tennis forehand 

Bootsma et 
al. 1991 

Longitudinal 
experimental 

N = 20 General population M (n = 12) 
F (n = 8) 

21.9 (18 - 26) Table tennis forehand 

Bradshaw et 
al. 2007 

Cross-sectional 
observational 

N = 10 Experienced sprinters M 20 ± 3 Sprint start 

Bradshaw et 
al. 2009 

Causal 
comparative 

N = 20 High and low handicap 
golfers 

M 25.4 ± 6.4 Golf iron shot 

Button et al. 
2003 

Cross-sectional 
observational 

N = 6 Basketballers of 
varying skill 

F 19.8 ± 1.5 Basketball free throw 
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Article Study Design Sample Size Population Gender Participant Age  Movement 

Carson et al. 
2014a 

Cross-sectional 
observational 

N = 3 Professional golfers M 26.7 ± 2.9 Golf iron shot 

Carson et al. 
2014b 

Cross-sectional 
observational 

N = 9 Low handicap golfers M 26.1 ± 8 Real and practice golf 
swings 

Chow et al. 
2005 

Cross-sectional 
observational 

N = 5 Skilled soccer players M 20.0 ± 1.58 Soccer chip 

Chow et al. 
2007 

Causal 
comparative 

N = 15 Soccer players of 
varying skill 

M Skilled: 20.0 ± 1.58 
Intermediate: 25.0 ± 2.65 
Novice: 27.0 ± 3.54 

Soccer chip 

Chow et al. 
2008a 

Longitudinal N = 4 NR (no soccer 
experience) 

M 27.3 ± 4.03 Soccer chip 

Chow et al. 
2008b 

Longitudinal 
quasi-
experimental 

N = 4 NR (no soccer 
experience) 

M 27.3 ± 4.03 Soccer chip 

Cicchella 
2009 

Observational 
case study 

N = 1 National level gymnast F 16 Gymnastic jumps 

Cortes et al. 
2014 

Longitudinal 
quasi-
experimental 

N = 11 General population NR 20.0 ± 0.9 Sidestep cutting task 

Dai et al. 
2013 

Cross-sectional 
observational 

N = 33 National level discus 
throwers 

M (n = 18) 
F (n = 15) 

NR Discus throw 

Dias et al. 
2014a 

Cross-sectional 
observational 

N = 10 Low and intermediate 
handicap golfers 

M 33.8 ± 11.89 Golf putting 

Dias et al. 
2014b 

Cross-sectional 
observational 

N = 10 Low and intermediate 
handicap golfers 

M 33.8 ± 11.89 Golf putting 
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Article Study Design Sample Size Population Gender Participant Age  Movement 

Farana et al. 
2015 

Cross-sectional 
observational 

N = 6 International gymnasts F 21.0 ± 1.9 Gymnastic round off 

Fleisig et al. 
2009 

Causal 
comparative 

N = 93 Baseball pitchers M Youth: 13.6 ± 1.1 
High school: 16.8 ± 1.1 
College: 20.5 ± 1.1 
Minor league: 20.8 ± 1.6 
Major league: 27.6 ± 3.4 

Baseball pitching 

Gittoes et al. 
2011 

Cross-sectional 
observational 

N = 4 National level 
gymnasts 

F 20 ± 0.8 Gymnastic beam dismounts 

Grassi et al. 
2005 

Cross-sectional 
observational 

N = 9 Experienced gymnasts M (n = 6) 
F (n = 3) 

M: 20.3 ± 2.3 
F: 18.7 ± 1.5 

Gymnastic flic-flac 

Gutiérrez-
Dávila et al. 
2013 

Cross-sectional 
observational 

N = 5 Handballers M 22 - 27 Handball shooting 

Hiley et al. 
2013 

Cross-sectional 
observational 

N = 4 National level 
gymnasts 

M 21 ± 4 Gymnastic high bar skills 

Hodges et 
al. 2005 

Longitudinal 
case study 

N = 1 General population M 26 Soccer chip 

Horan et al. 
2011 

Causal 
comparative 

N = 38 Low handicap golfers M (n = 19) 
F (n = 19) 

M: 26 ± 7 
F: 25 ± 7 

Golf drive 

Irwin et al. 
2005 

Cross-sectional 
observational 

N = 4 International gymnasts M 22 ± 4 Gymnastic high bar skills 

Irwin et al. 
2007 

Cross-sectional 
observational 

N = 4 International gymnasts M 22.5 ± 4.1 Gymnastic high bar skills 

Jarvis et al. 
2014 

Causal 
comparative 

N = 20 Professional dancers 
and general population 

F Dancers: 27.1 ± 3.5 
Non-dancers: 24.8 ± 2.2 

Sauté jumps 
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Article Study Design Sample Size Population Gender Participant Age  Movement 

Karlsen et 
al. 2008 

Cross-sectional 
observational 

N = 71 Low handicap golfers NR 21.7 ± 7.1 Golf putting 

Knudson 
1990 

Cross-sectional 
observational 

N = 2 Collegiate tennis 
players 

M NR Tennis forehand 

Knudson et 
al. 2005 

Cross-sectional 
observational 

N = 7 Experienced tennis 
players 

M (n = 6) 
F (n = 1) 

NR Tennis forehand 

Kudo et al. 
2000 

Cross-sectional 
quasi-
experimental 

N = 8 General population M (n = 4) 
F (n = 4) 

20 - 24 Underarm throw 

Langdown 
et al. 2013 

Causal 
comparative 

N = 20 High and low handicap 
golfers 

M (n = 17) 
F (n = 3) 

18 - 27 Golf iron shot 

Lees et al. 
2013 

Cohort test re-
test. 

N = 10 Experienced soccer 
players 

NR 23.4 ± 2.5 Soccer instep kick 

Mackenzie 
et al. 2011 

Longitudinal 
quasi-
experimental 

N = 31 Intermediate to high 
handicap golfers 

M 22.3 ± 4.1 Golf putting 

McDonald 
et al. 1989 

Longitudinal N = 5 Proficient darts players M 19 - 30 Dart throw 

McLean et 
al. 1999 

Causal 
comparative 

N = 30 Proficient sidestep 
cutters 

M (n = 16) 
F (n = 14) 

M: 19.4 ± 2.2 
F: 19.1 ± 1.8 

Sidestep cutting task 

McLean et 
al. 2004 

Causal 
comparative 

N = 16 Proficient sidestep 
cutters 

M (n = 8) 
F (n = 8) 

M: 21.4 ± 3.2 
F: 23.2 ± 3.8 

Sidestep cutting task 

McLean et 
al. 2005 

Causal 
comparative 

N = 20 Collegiate basketballers M (n = 10) 
F (n = 10) 

M: 20.2 ± 1.9 
F: 21.3 ± 3.0 

Agility tasks 
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Article Study Design Sample Size Population Gender Participant Age  Movement 

Meylan et 
al. 2010 

Cross-sectional 
observational 

N = 30 Recreational athletes NR 21.9 ± 3.8 Jumping 

Muller et al. 
1999 

Cross-Sectional 
observational 

N = 6 Club and novice dart 
players 

NR NR Dart throw 

Mullineaux 
et al. 2010 

Cross-sectional 
observational 

N = 15 Collegiate basketballers M (n = 9) 
F (n = 6) 

M: 19.1 ± 0.8 
F: 19.3 ± 1.4 

Basketball free throw 

O'Connor et 
al. 2009 

Causal 
comparative 

N = 33 Recreational athletes M (n = 16) 
F (n = 17) 

M: 22.7 ± 2.7 
F: 20.9 ± 1.5 

Sidestep cutting task 

Pollard et al. 
2005 

Causal 
comparative 

N = 24 Collegiate soccer 
players 

M (n = 12)  
F (n = 12) 

M: 19.7 ± 1.5 
F: 19.3 ± 1.1 

Sidestep cutting task 

Pollard et al. 
2015 

Causal 
comparative 

N = 20 Soccer players F Injured: 23.2 ± 3.4 
Uninjured: 21.0 ± 1.2 

Sidestep cutting task 

Reeve et al. 
2013 

Cross sectional 
observational 

N = 12 Experienced dancers M (n = 5) 
F (n = 7) 

19.5 ± 2.9 Drop landing 

Robins et al. 
2006 

Cross sectional 
observational 

N = 6 Experienced 
basketballers 

M 21.83 ± 0.98 Basketball shooting 

Salo et al. 
1998 

Cross-sectional 
observational 

N = 7 National level hurdlers M (n = 3)  
F (n = 4) 

M: 26.9  ± 1.7 
F: 20.1  ± 2.1 

Sprint hurdling 

Schmidt 
2012 

Cross-sectional 
observational 

N = 21 Basketballers of 
varying skill 

M (n = 16) 
F (n = 5) 

17 - 38 Basketball free throw 

Schorer et 
al. 2007 

Cross-sectional 
observational 

N = 5 Handballers of varying 
skill, general 
population and rugby 
players 

M (n = 3) 
F (n = 2) 

24.2 ± 6.5 Handball shooting 
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Article Study Design Sample Size Population Gender Participant Age  Movement 

Sevrez et al. 
2014 

Cross-sectional 
case study 

N = 1 Experienced tennis 
player 

M 33 Tennis serve 

Sforza et al. 
2000 

Cross sectional 
observational 

N = 7 Karateka M (n = 3) 
F (n = 4) 

M: 19.7 ± 0.6 
F: 27.5 ± 10.4 

Karate punches 

Sforza et al. 
2001 

Cross sectional 
observational 

N = 13 Expert Karateka M (n = 8) 
F (n = 5) 

M: 26.2 ± 5.5 
F: 25.3 ± 5.9 

Karate punches 

Sforza et al. 
2002 

Cross sectional 
observational 

N = 13 Experienced karateka M (n = 8) 
F (n = 5) 

M: 26.3 ± 5.5 
F: 27.6 ± 6.4 

Karate kick 

Sheppard et 
al. 2007 

Causal 
comparative 

N = 24 Experienced table 
tennis players and 
general population 

NR Experienced: 21.7 ± 2.9 
Gen. Population: 22.2 ± 5.6 

Table tennis forehand 

Slobounov 
et al. 1997 

Cross-sectional 
observational 

N = 6 Elite divers M (n = 3) 
F (n = 3) 

18 - 21 Springboard dives 

Taylor et al. 
2014 

Cross-sectional 
observational 

N = 7 Amateur water polo 
players 

F 21.1 ± 2.7 Water polo penalty shot 

Tucker et al. 
2013 

Cross-sectional 
observational 

N = 16 Low handicap golfers M (n = 6) 
F (n = 10) 

26.3 ± 5.6 Golf drive 

Urbán et al. 
2015 

Cross sectional N = 25 Handballers M 17.9 ± 3.7 Handball shooting 

Wagner et 
al. 2012 

Causal 
comparative 

N = 24 Low, moderate and 
high skilled handballers 

M Low: 19.0 ± 5.2 
Moderate: 19.1 ± 3.1 
High: 25.3 ± 3.2 

Handball shooting 

Whiteside et 
al. 2015 

Causal 
comparative 

N = 31 Expert tennis players F Pre-pubescent: 10.5 ± 0.5 
Pubescent: 14.6 ± 4.7 
Adult: 21.3 ± 3.8 

Tennis serve 
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Article Study Design Sample Size Population Gender Participant Age  Movement 

Wilson et al. 
2008 

Cross-sectional 
observational 

N = 5 Experienced triple 
jumpers 

M (n = 3) 
F (n = 2) 

20.6 ± 1.5 years Triple jump 

Note: F = Female, M = Male, NR = Not Reported. 
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Table 2.3. 
Trial size, methods and measures. 

Article  Trial Size  Kinematic data collection Kinematic Measures  Filtering Variability Quantification  

Anderson et 
al. 1986 

P = 114 - 
122 
A = 10 

One (1) active marker camera 
system (312.5 Hz) 
 

Marker linear displacement 
Marker linear velocity 
Relative joint angular 
displacement 

Gaussian (19.2 
msec window) 

F-ratio 
SD 

Armour 
Smith et al. 
2012 

P ≥ 20 
A = 10 

Passive marker optoelectronic 
system (250 Hz; # cameras NR) 

Coordination 
Segment angular displacement 

Butterworth (12 Hz) Circular SD of coupling 
angle (vector coding) 

Barris et al. 
2013 

P = NR 
A = 5 

One (1) video camera (60 Hz) - 
manual digitisation (reliability 
reported) 

Coordination 
Relative joint angular 
displacement 
Segment angular displacement  
Step/stride kinematics 

Butterworth (NR) Angle-angle plots 
NoRMS 

Barris et al. 
2014 

P = NR 
A = 5 

One (1) video camera (60 Hz) - 
manual digitisation (reliability 
reported) 

Coordination 
Relative joint angular 
displacement 
Segment angular displacement  
Step/stride kinematics 

NR Angle-angle plots 
NoRMS 
SD 

Betzler et al. 
2012 

P = 15 
A = 10 

Five (5) passive marker 
optoelectronic camera system 
(1000 Hz). 

Implement kinematics 
Release variables 

NR CV  
Median absolute deviation 
 

Bootsma et 
al. 1990 

P = 40 
A = 7 

One (1) video camera (125 Hz) 
- manual digitisation 

Implement kinematics Butterworth (8 Hz - 
Frequency analysis) 

CV  
SD 

Bootsma et 
al. 1991 

P = 40 
A = 10 

One (1) video camera (125 Hz) 
- manual digitisation 

Implement kinematics Butterworth (8 Hz) SD 
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Article  Trial Size  Kinematic data collection Kinematic Measures  Filtering Variability Quantification  

Bradshaw et 
al. 2007 

P = 4 
A = 4 

Two (2) synchronised video 
cameras (250 Hz) - manual 
digitisation (reliability 
reported) 

Relative joint angular 
displacement 
Relative joint angular velocity 
Segment angular displacement  
Step/stride kinematics 

Digital (8 Hz) Biological CV 

Bradshaw et 
al. 2009 

P = 10 
A = 10 

Three (3) independent video 
cameras (50 Hz) 
 
Radar gun 
 

Implement kinematics  
Segment angular displacement 
Stance kinematics 
Relative joint angular 
displacement 

NR Biological CV 

Button et al. 
2003 

P = 30 
A = 30 

One (1) video camera (60 Hz) - 
manual digitisation (reliability 
reported) 

Coordination 
Marker linear displacement 
Marker linear velocity 
Relative joint angular 
displacement 
Relative joint angular velocity 
Release variables 

Filter type NR (9 Hz 
- Frequency 
analysis) 

Angle-angle plots  
Phase-plane plots 
SD 

Carson et al. 
2014a 

P = 10 
A = 10 

Inertial sensor motion capture 
suit (120 Hz) 

Relative joint angular 
displacement 

NR SD 

Carson et al. 
2014b 

P = 10 
A = 10 

Inertial sensor motion capture 
suit (120 Hz) 

Marker linear displacement NR SD 
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Article  Trial Size  Kinematic data collection Kinematic Measures  Filtering Variability Quantification  

Chow et al. 
2005 

P = 5 or 10 
A = 5 or 10 

Six (6) passive marker 
optoelectronic camera system 
(240 Hz) 

Ball backspin 
Centre of mass 
Coordination 
Relative joint angular 
displacement 
Relative joint angular velocity 
Release variables 
Segment linear acceleration 
Segment linear velocity 
Stance kinematics 

Butterworth (7 Hz) Angle-angle plots 
CV 
NoRMS 
SD 

Chow et al. 
2007 

P = 5 or 10 
A = 5 or 10 

Six (6) passive marker 
optoelectronic camera system 
(240 Hz) 

Ball backspin 
Centre of mass 
Coordination 
Relative joint angular 
displacement 
Relative joint angular velocity 
Release variables 
Segment linear acceleration 
Segment linear velocity 
Stance kinematics 

Butterworth (7 Hz) Angle-angle plots 
CV 
NoRMS 
SD 

Chow et al. 
2008a 

P = 5 or 10 
A = 5 or 10 

Six (6) passive marker 
optoelectronic camera system 
(240 Hz) 

Ball backspin 
Centre of mass 
Coordination 
Relative joint angular 
displacement 
Relative joint angular velocity 
Release variables 
Segment linear acceleration 
Segment linear velocity 
Stance kinematics 

Butterworth (7 Hz) Angle-angle plots 
NoRMS 
SD 
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Article  Trial Size  Kinematic data collection Kinematic Measures  Filtering Variability Quantification  

Chow et al. 
2008b 

P = 5 or 10 
A = 5 or 10 

Six (6) passive marker 
optoelectronic camera system 
(240 Hz) 

Relative joint angular 
displacement 
Segment angular displacement 

Butterworth (7 Hz) Switch ratio (cluster 
analysis) 

Cicchella 
2009 

P = 10 
A = 10 

Six (6) passive marker 
optoelectronic camera system 
(100 Hz) 

Relative joint angular 
displacement 
Step/stride kinematics 

NR CV 

Cortes et al. 
2014 

P = 5 
A = 5 

Eight (8) passive marker 
optoelectronic camera system 
(270 Hz) 

Relative joint angular 
displacement 

Butterworth (7 Hz) Sample entropy 
SD 
 

Dai et al. 
2013 

P = 3 
A = 3 

Two (2) synchronised video 
cameras (60 Hz) - manual 
digitisation - 3D analysis 

Relative joint angular 
displacement 
Segment angular displacement 

Butterworth (7.14 
Hz) 

SD 

Dias et al. 
2014a 

P = 30 
A = 30 

One (1) video camera (210 Hz) Implement kinematics NR SD 

Dias et al. 
2014b 

P = 30 
A = 30 

One (1) video camera (210 Hz) Implement kinematics Sinusoidal 
smoothing function 

Approximate entropy 
Lyapunov exponent 

Farana et al. 
2015 

P = 10 
A = 10 

Eight (8) passive marker 
optoelectronic camera system 
(247 Hz) 

Relative joint angular 
displacement 

Butterworth (12 Hz) Biological CV 
CMC 

Fleisig et al. 
2009 

P = 10 – 15 
A = 5 

Six (6) to eight (8) passive 
marker optoelectronic camera 
system (240 Hz) 

Relative joint angular 
displacement 
Release variables  
Segment angular displacement 
Segment angular velocity 
Step/Stride kinematics 

Butterworth (13.4 
Hz) 

SD 
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Article  Trial Size  Kinematic data collection Kinematic Measures  Filtering Variability Quantification  

Gittoes et al. 
2011 

P = 10 
A = 10 

Two (2) co-aligned Cartesian 
optoelectronic dynamic 
anthropometers (200 Hz) 

Centre of mass displacement 
Centre of mass velocity 
Relative joint angular 
displacement 
Relative joint angular velocity 

Filter type NR (10 
Hz - Residual 
analysis) 

SD 

Grassi et al. 
2005 

P = 15 
A = 10 

Eight (8) passive marker 
optoelectronic camera system 
(100 Hz) 

Marker linear displacement NR 3D SD 
SD 

Gutiérrez-
Dávila et al. 
2013 

P = 35 
A = 35 

Two (2) synchronised video 
cameras (500 Hz) - manual 
digitisation - 3D analysis 

Marker linear displacement 
Release variables 

Quintic spline SD 

Hiley et al. 
2013 

P = 10 
A = 10 

Fifteen (15) passive marker 
optoelectronic camera system 
(300 Hz) 

Relative joint angular 
displacement 
Circle angle 

Butterworth (20 Hz) SD 

Hodges et al. 
2005 

P = 25 
A = 6 

Three (3) passive marker 
optoelectronic camera system 
(240 Hz) 

Coordination 
Relative joint angular 
displacement 

NR NoRMS 
SD 
 

Horan et al. 
2011 

P = 5 
A = 5 

Passive marker optoelectronic 
system (500 Hz; # cameras NR) 

Coordination 
Implement kinematics 
Segment angular displacement 
Segment linear displacement 

Butterworth (6 to 
10 Hz - Residual 
analysis)  

Angle-angle plots 
Coefficient of 
correspondence (vector 
coding) 
SD 
Spanning set 

Irwin et al. 
2005 

P = 15 
A = 3 

One (1) video camera (50 Hz) - 
manual digitisation (reliability 
reported) 

Centre of mass 
Circle angle 
Relative joint angular 
displacement 
Relative joint angular velocity 

Digital (6 Hz - 
Residual analysis) 

SD of RMSD 
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Article  Trial Size  Kinematic data collection Kinematic Measures  Filtering Variability Quantification  

Irwin et al. 
2007 

NR One (1) video camera (50 Hz) - 
manual digitisation (reliability 
reported) 

Centre of mass 
Circle angle 
Coordination 
Relative joint angular 
displacement 
Relative joint angular velocity 

Digital Gaussian 
kernel (bandwidth 
0.15 - residual 
analysis) 

RMS of CRP variance 

Jarvis et al. 
2014 

P = 20 
A = 10 

Eleven (11) passive marker 
optoelectronic camera system 
(100 Hz) 

Coordination 
Relative joint angular 
displacement  
Segment angular displacement 

Butterworth (12 Hz) Circular SD of coupling 
angle (vector coding) 
SD 

Karlsen et al. 
2008 

P = 18.3 ± 
5.1 
A = NR 

Active marker ultrasound 
system (70 Hz) - reliability 
reported 

Implement kinematics NR Own algorithm 
SD 

Knudson 
1990 

P = NR 
A = 8 

Two (2) synchronised video 
cameras (100 Hz & 200 Hz) - 
manual digitisation (error 
reported) - 3D analysis 

Relative joint angular acceleration 
Relative joint angular 
displacement 
Relative joint angular velocity 

Butterworth (8 to 
45 Hz) 

Curve CV 
CV 
SD 
 

Knudson et 
al. 2005 

P = 40 
A = 4 or 5 

One (1) video camera (180 Hz) 
- manual digitisation (error 
reported) 

Implement kinematics 
Release variables 

Cubic spline CV  
SD 

Kudo et al. 
2000 

P = 30 
A = 30 

One (1) video camera (60 Hz) - 
manual digitisation (reliability 
reported) 

Release variables Linear square fitting SD 

Langdown et 
al. 2013 

P = 10 – 15 
A = NR 

Thirteen (13) passive marker 
optoelectronic camera system 
(250 Hz) 

Marker linear displacement 
Segment angular displacement  
Stance kinematics 

NR Variable error 

Lees et al. 
2013 

P ≥ 20 
A = NR 

Eight (8) passive marker 
optoelectronic camera system 
(240 Hz) 

Relative joint angular velocity 
Segment linear velocity 

Butterworth (12 Hz) CV  
SD 
SEM 
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Article  Trial Size  Kinematic data collection Kinematic Measures  Filtering Variability Quantification  

Mackenzie 
et al. 2011 

P = 50 
A = 50 

One (1) active marker camera 
system 

Implement kinematics Butterworth (8 Hz) SD 

McDonald et 
al. 1989 

P = 10 
A = 10 

Two (2) active marker camera 
system (100 Hz) 

Relative joint angular 
displacement 
Relative joint angular velocity 
Release variables 
Segment linear displacement 
Segment linear velocity 

Kalman recursive (5 
Hz - Frequency 
analysis) 

SD 
CV 

McLean et 
al. 1999 

P = 8 
A = 5 

Four (4) synchronised video 
cameras (500 Hz) - 3D analysis 

Relative joint angular 
displacement 

NR CV 

McLean et 
al. 2004 

P = 10 
A = 10 

Six (6) passive marker 
optoelectronic camera system 
(240 Hz) 

Relative joint angular 
displacement 

Cubic spline (30 Hz) SD 

McLean et 
al. 2005 

P ≥ 10 
A ≥ 10 

Six (6) passive marker 
optoelectronic camera system 
(240 Hz) 

Relative joint angular 
displacement 

Cubic spline (20 Hz) SD 

Meylan et 
al. 2010 

P = 3 
A = 3 

Force plate (1000 Hz) Centre of mass displacement 
Centre of mass velocity 

NR TE (as CV) 

Muller et al. 
1999 

P = 17 - 46 
(24 ± 10) 
A = 17 - 46 
(24 ± 10) 

Two (2) photographic cameras Release variables NR SD 

Mullineaux 
et al. 2010 

P = 20 
A = 3 

Twelve (12) passive marker 
optoelectronic camera system 
(60 Hz) 

Coordination 
Flight variables 
Marker linear velocity 
Relative joint angular 
displacement 
Relative joint angular velocity 
Release variables 

Butterworth (8 Hz - 
Residual analysis) 

Circular SD of coupling 
angle (vector coding) 
SD 
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Article  Trial Size  Kinematic data collection Kinematic Measures  Filtering Variability Quantification  

O'Connor et 
al. 2009 

P = 25 – 30 
A = 4 or 5 

Seven (7) passive marker 
optoelectronic camera system 
(200 Hz) 

Relative joint angular 
displacement 

Butterworth (12 Hz 
- Previous 
literature) 

PCAw 

Pollard et al. 
2005 

P = 7 
A = 7 

Seven (7) passive marker 
optoelectronic camera system 
(240 Hz) 

Coordination 
Relative joint angular 
displacement 
Segment angular displacement 

Butterworth (8 Hz) SD of coupling angle 
(vector coding; presented 
as an angle) 

Pollard et al. 
2015 

P ≥ 4 
A = 4 

Eight (8) passive marker 
optoelectronic camera system 
(250 Hz) 

Coordination 
Relative joint angular 
displacement 

Butterworth (12 Hz) SD of coupling angle 
(vector coding; presented 
as an angle) 

Reeve et al. 
2013 

P = 6 
A = 6 

Twelve (12) passive marker 
optoelectronic camera system 
(250 Hz) 

Coordination 
Relative joint angular 
displacement 

NR h-value (vector coding) 

Robins et al. 
2006 

P > 5 
A = 5 

Two (2) synchronised video 
cameras (25 Hz) - manually 
digitised - 3D analysis 

Coordination 
Relative joint angular 
displacement 
Relative joint angular velocity 
Release variables 

Quintic spline Angle-angle plots 
CV 
NoRMS 
SD 
SD of CRP 

Salo et al. 
1998 

P = 8 
A = 8 

Two (2) synchronised video 
cameras (50 Hz) - manually 
digitised (reliability reported) - 
3D analysis 

Centre of mass displacement 
Centre of mass velocity 
Relative joint angular 
displacement 
Relative joint angular velocity 
Segment linear displacement 

Quintic spline CV 

Schmidt 
2012 

P = 20 
A = 5 

Four (4) video cameras (Hz 
NR) - manually digitised 

Relative joint angular 
displacement 
Relative joint angular velocity 

NR DyCoN trajectories 
(artificial neural network) 
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Article  Trial Size  Kinematic data collection Kinematic Measures  Filtering Variability Quantification  

Schorer et 
al. 2007 

P ≥ 80 
A ~ 45 

Three (3) synchronised video 
cameras (50 Hz) - auto tracked 
(reliability reported) - 3D 
analysis 

Marker linear displacement Butterworth (NR) Euclidean distance 
matrices and cluster 
analysis  
Trajectory traces 

Sevrez et al. 
2014 

P = 10 
A = NR 

Eight (8) passive marker 
optoelectronic camera system 
(500 Hz) 

Implement kinematics  
Relative joint angular 
displacement 

Moving average CMC  
CV 

Sforza et al. 
2000 

P = 10 
A = 10 

Eight (8) passive marker 
optoelectronic camera system 
(100 Hz) 

Marker linear displacement NR 3D SD 

Sforza et al. 
2001 

P = 10 
A = 10 

Eight (8) passive marker 
optoelectronic camera system 
(100 Hz) 

Marker linear displacement NR 3D SD 

Sforza et al. 
2002 

P = 10 
A = 10 

Eight (8) passive marker 
optoelectronic camera system 
(100 Hz) 

Marker linear displacement NR 3D SD 

Sheppard et 
al. 2007 

P = 75 
A = 20 

Thirteen (13) passive marker 
optoelectronic camera system 
(100 Hz) 

Implement kinematics 
Release variables 

Digital FIR (6 Hz) SD 

Slobounov 
et al. 1997 

P = 5 
A = 5 

One (1) video camera (60 Hz) - 
manual digitisation 

Marker linear displacement  
Relative joint angular 
displacement 
Step/stride kinematics 

Fourier CV  
SD 
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Article  Trial Size  Kinematic data collection Kinematic Measures  Filtering Variability Quantification  

Taylor et al. 
2014 

P = 10 
A = 4 - 10 

Six (6) passive marker 
optoelectronic camera system 
(250 Hz) 
 
One (1) video camera (250 Hz) 
- manual digitisation 
(reliability reported) 

Coordination 
Relative joint angular 
displacement 
Release variables 

NR CV 

Tucker et al. 
2013 

P = 10 
A = 10 

Six (6) passive marker 
optoelectronic camera system 
(400 Hz) 
 
Vector Pro launch monitor 

Marker linear displacement 
Release variables 

Butterworth (12 Hz 
- Residual analysis 
and previous 
literature) 

CV  
Variability ellipsoids 

Urbán et al. 
2015 

P = 16 
A = 16 

Three dimensional 
electromagnetic tracking 
system (240 Hz) 
 
Radar gun (50 Hz) 

Marker linear displacement  
Release variables 
Segment linear velocity 

NR SD 

Wagner et 
al. 2012 

P = 12 ± 1 
A = 10 

Eight (8) passive marker 
optoelectronic camera system 
(250 Hz) 

Relative joint angular 
displacement 
Relative joint angular velocity 
Release variables  
Segment angular displacement 
Segment angular velocity 

Quintic spline (MSE 
= 10) 

Phase-plane plots 
SD 

Whiteside et 
al. 2015 

P = 40 
A = 5 

Twenty two (22) passive 
marker optoelectronic camera 
system (500 Hz) 

Coordination 
Relative joint angular 
displacement 
Segment angular displacement 

Woltring (MSE = 2 - 
Residual analysis 

Angle-angle plots 
Coefficient of 
correspondence (vector 
coding) 
Variability ellipsoids 
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Wilson et al. 
2008 

P = 10 
A = 10 

Twelve (12) passive marker 
optoelectronic camera system 
(100 Hz) 

Coordination 
Relative joint angular 
displacement 

Quintic spline Circular SD of coupling 
angle (vector coding) 

Note: P = performed, A = analysed, NR = Not reported ~ = ‘approximately’ (as reported by author); 3D = Three dimensional, CMC = Coefficient of multiple 
correlations, CRP = Continuous relative phase, CV = Coefficient of variation, DyCoN  = Dynamically Controlled Network (a form of artificial neural 
network), FIR = Finite impulse response, MSE = Mean squared error, NoRMS = Normalised root mean squared, PCAw = Principal component analysis of 
waveforms, RMS = Root mean squared, RMSD = Root mean squared difference, SD = standard deviation, SEM = Standard error of the mean, TE = 
Technical error.
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2.5 Discussion 

Key method-related considerations surrounding the investigation and quantification of 

variability in discrete, sports-related movements will be addressed in the first part of this 

discussion. A summary of the key concepts and findings which have emanated from this field of 

research will be covered in the second part of this discussion. 

2.5.1 Method 

This section will discuss the main method-related issues within the sampled literature 

covering both what has been done, and, what may be beneficial future approaches. Starting with 

study design the section will cover sample and trial size selection, choice of capture frequency, 

filtering and normalisation and, variables for which variability was quantified. Finally, a discussion 

will cover the strengths and weaknesses of several common and emerging variability 

quantification techniques. 

2.5.1.1 Study design 

There were two general approaches to movement variability identified in this review. The 

first saw variability as the primary element of interest, documenting how it interacted with factors 

such as skill, gender, practice, etc. The second used variability simply as a dependent variable 

which was then analysed along with other variables to attempt to answer research questions and 

test hypotheses. Underlying the latter approach is an assumption that variability is an inherent 

outcome of movement and therefore may be affected by independent variables of interest. With 

this approach research design is governed by the overall aim of the study. When variability is the 

main focus of an investigation the predominant research designs resulted in a single contact with 

the participant(s) such as cross sectional descriptive and causal comparative studies. The 
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snapshots provided in these studies offered important information on the target populations and 

allowed further hypotheses to be developed. However, they lacked the ability to monitor change 

in variability, a strength of the longitudinal designs which were surveyed. Questions about the role 

of variability, particularly how it changes during motor learning/skill acquisition, and links to 

factors such as adaptability and injury are key current theoretical themes wherein a longitudinal 

design would facilitate greater insight and understanding.  

2.5.1.2 Sample and trial size 

The results indicate that differences exist in the number of participants recruited into each 

study as well as the amount of trials participants were asked to complete. Although large groups 

may not always be recruited in the sporting populations targeted by many of the surveyed studies, 

power analyses may be considered to determine sample size to ensure correct acceptance or 

rejection of null hypotheses (Cohen, 1992). Perhaps of more importance is trial size (i.e., the 

number of task repetitions analysed per subject) which also has implications for statistical power. 

Relative to trial size, in order to achieve power values upwards of 90% it has been suggested that 

researchers should consider employing 10, 5 and 3 trials for samples of 5, 10 and 20, respectively 

(Bates, Dufek, & Davis, 1992). However, determining trial size for variability analysis is not a simple 

task (Mullineaux, Bartlett, & Bennett, 2001) and ensuring statistical power for interaction analysis 

would require consideration of several characteristics of the task selected. The effects of elements 

such as fatigue and skill learning/familiarity on the dependent variable also need to be taken into 

consideration.  

As movement variability can be expressed, at its simplest, as the amount of variance of 

individual performances around a mean performance, the number of trials required for this mean 

to stabilise may be an important factor to determine. Too few trials may result in an 
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unrepresentative mean and therefore, by association, result in unrepresentative variance. There 

are methods to quantify the number of trials required to achieve mean stability such as intra-class 

correlation and sequential analysis techniques (James, Herman, Dufek, & Bates, 2007; Racic, Pavic, 

& Brownjohn, 2009; Rodano & Squadrone, 2002; Taylor, Lee, Landeo, O'Meara, & Millett, 2015). 

Only a few of the studies in this review reported their method of selecting participant and trial 

numbers. We suggest investigators may report justification for their selection and address the 

issues raised herein when planning and conducting research on movement variability. 

2.5.1.3 Capture frequency 

Within the included studies a broad range of frequencies were used for motion capture 

methods. Selecting an appropriate capture frequency for variability investigations is an important 

consideration which has not been extensively addressed in the literature. Although a full 

discussion is beyond the scope of this review some considerations are presented here. One 

approach is to be guided by sampling theorem and selecting a sample frequency which is double 

that expected to be present in the signal (Winter, 2005). For slower, cyclical movements, such as 

human gait there has been general agreement that capture frequencies in the range of 25 – 60 Hz 

are adequate (Ferber, Sheerin, & Kendall, 2009; Polk, Psutka, & Demes, 2005; Winter, 2005). 

However, determining an appropriate frame rate for many discrete movements may prove 

challenging due to the high frequency content arising from elements such as the movement of 

implements and their projectiles. In addition, capture frequency needs to be sufficient to 

accurately identify temporal elements. For instance, when attempting to determine elements of 

timing, it has been shown that higher capture frequencies introduce less error than lower 

frequencies (Ferber et al., 2009; Polk et al., 2005). Furthermore, the use of lower sampling rates 

has been shown to result in misrepresentations of time series and peak values in derivatives of 
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displacement data (Harper & Blake, 1989). This may be reflected in the higher variability of 

displacement derivatives reported in the variability literature (Knudson, 1990). Based on these 

considerations, researchers may choose to adopt higher capture frequencies where constraints, 

such as location or cost, allow. Data from this review suggest that higher capture frequencies are 

gaining popularity with increasing adoption of optoelectronic systems, as they can operate at 

higher frame rates than many older video systems and remove the need for manual digitisation. 

Further investigation of the error introduced by both high and low capture frequencies may 

enable a more informed selection for research into variability. 

2.5.1.4 Filtering 

The results of this review suggest that the majority of research into human variability 

adopted some type of data transformation method and provided detailed information related to 

the processes. It is good practice for researchers to ensure they report methods of data 

manipulation used (e.g., filter type), any critical values and the processes for determining these 

values so that readers may understand how data may have been transformed. Filtering/smoothing 

of data is a very common convention within biomechanics which aims to remove noise and/or 

error from an observed signal to allow analysis of the true signal. Appropriate selection of cut-off 

frequency or similar critical value is important otherwise data distortion and loss of deterministic 

biological variability information may occur. Several techniques exist for the purpose of selecting 

an appropriate cut-off frequency (c.f. Derrick [2013] and Winter [2005]). Furthermore, 

implementing surrogate methods can confirm whether a processed signal has had deterministic 

elements removed after filtering (Small, Nakamura, & Luo, 2007; Theiler & Eubank, 1993). 

Surrogate methods produce a signal which mimics the macro characteristics of an observed signal 

such as mean, variance and amplitude (Stergiou et al., 2004). However, the micro structure of the 
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surrogate – the relationship between neighbouring data points – is destroyed, removing the 

deterministic nature of the signal. If differences between the observed (normally filtered) signal 

and surrogate can be confirmed, then we can be confident that the observed signal is 

representative of deliberate biological output and that any variability observed in collected signals 

can be stated to be a result of deterministic, not stochastic, processes (Taylor et al., in press). The 

comparison can be achieved using a discriminating statistics on the variables such as sample 

entropy estimate or Lyapunov exponent (Preatoni et al., 2010; Stergiou et al., 2004).  

2.5.1.5 Analysed variables  

The results revealed a broad spectrum of biomechanical variables for which variability was 

quantified. It was common to investigate factors such as release variables and other kinematic 

descriptors of sporting implements/objects (e.g., racquet/club face angles), often reported at or 

around points of impact or projection. Human kinematic variables included individual marker, 

segment or joint linear/angular displacement and derivatives, as well as measures of coordination. 

There were also studies which measured ‘whole system’ movement variability, describing 

variability within a group of coordinated structures (e.g., the striking and non-striking leg during a 

kick) or the whole body. 

From the findings of this review, it is possible to divide these factors into three levels at 

which kinematic variability can be investigated. The first level consists of discrete or time series 

measures of individual segments and joint kinematic, release/impact parameters and 

implement/projectile kinematics. The second level sees two or more of these variables combined 

to form a coordinated unit. Finally, the combination of several coordinated structures allows 

examination of whole system movement. Specific research questions may direct investigators to 

one or the other of these levels according to an understanding of where changes in variability may 
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manifest. However, it is less clear at which level there should be a focus when attempting to 

answer broader theoretical questions about movement variability, such as its interaction with 

motor learning or links to factors such as adaptation. For example, a coupling of movement 

between two joints may display little coordinative variability over a series of trials, yet certain 

joints may be highly variable across the same period. Similarly, there may be increased variability 

across several coordinated segments whereas whole body movement variability could show 

decreased variability. This is potentially related to the concept of controlled and uncontrolled 

variables within the uncontrolled manifold hypothesis (Latash, Levin, Scholz, & Schöner, 2010; 

Schorer et al., 2007). Therefore when attempting to answer broader questions about movement 

variability, it may be beneficial to consider all levels in order to see how and where variability 

changes manifest across time. Of course, if results from a less complex analysis are suffice to 

answer a question at hand, then there is lesser need to consider other levels of variability in the 

investigation (Hamill et al., 2006). 

2.5.1.6 Quantification method 

Perhaps the major decision to make when studying movement variability is the selection 

of the method used for quantification. Table 2.3 outlines the myriad measures available to 

investigators that have been used previously. The most commonly employed methods were SD 

and its derivative, CV, which is most commonly calculated by dividing the SD by the mean 

(Atkinson & Nevill, 1998). One of the strengths of SD is that the variance is presented in the same 

unit as the original measure, but as a result, it lacks the capacity to compare variation across 

values of differing units or scale (Hopkins, 2000; Hopkins, Schabort, & Hawley, 2001). CV can 

overcome this drawback through standardisation of variance across different units. Nevertheless, 

CV is not without its limitation, as it has difficulty in validating variance in values which are not 
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bound by a true zero (Atkinson & Nevill, 1998). Both SD and CV have been employed primarily to 

quantify variability of discrete points extracted from time series. It can be questioned whether 

their use in this manner is an optimal measure of the variability as they only provide the 

magnitude of the variability without any consideration of its structure (Slifkin & Newell, 1999). 

Perhaps their best use is quantification of elements which only occur discretely, such as throw 

release parameters (height, angle, etc.), rather than discrete extraction of single values from time 

series data.  

Another valid application of SD and/or CV is to describe the variance in measures of 

coordination. This review identified several methods employed to describe coordination, which 

covered both qualitative (e.g., angle-angle plots) and quantitative means. Although the methods 

chosen to quantify coordination variability within the included studies are documented (Table 

2.3), and the close relationship between coordination and variability studies acknowledged, it is 

not the intention of this review to provide a discussion on the selection of an appropriate method 

for quantifying coordination. There is no doubt that a valid means of quantifying coordination is 

required to determine variability of coordination and several excellent resources provide ample 

guidance on this matter (c.f. Deluzio et al. [2013]; Hamill et al. [2000]; Sidaway, Heise, and 

Schoenfelder-Zohdi [1995]; van Emmerick et al. [2013]). In other studies, SD was used either in 

standard or circular form to determine variability of coordination measures using vector coding 

and relative phase analyses. Other methods for quantifying variability of coordination included 

normalised root mean square (NoRMS) for use with angle-angle analyses and coefficient of 

correspondence for vector coding techniques. 

Current advances in data collection technology within biomechanics often results in large 

amounts of high dimensional data being obtained. One of the issues with the use of SD and CV is 
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the reduction of high dimensional data to a single value based on a discrete extraction from time 

series. This can result in the loss of structural information, treating the extraction as an 

independent datum and neglecting the deterministic nature of biological time series. To allow for 

data reduction without loss of information, there is an emerging trend to adopt statistical 

techniques which consider entire time series. One such approach is the Lyapunov exponent which 

is a nonlinear measure that determines system stability by assessing the rate of divergence of 

elements within a state space (Stergiou et al., 2004). Greater instability results in an increased rate 

of divergence which yields a larger exponent.  

Other nonlinear methods include approximate entropy (ApEn) and sample entropy 

(SampEn) which quantify regularity across a time series or family of time series. Those methods 

assess the probability that two sequences of points extracted from a time series of length N, which 

have similar values for a period of m points within a tolerance r, will remain similar for a period of 

m + 1 points (Richman & Moorman, 2000). The tolerance r is generally a fraction of SD in the time 

series. Both ApEn and SampEn return a value of 0 for those that are totally regular (e.g. sine 

waves) and higher values for those which are less regular (Richman & Moorman, 2000). Since they 

provide a single value measure of variability that is derived by assessing an entire time series or 

set of time series (when applied to discrete movement data, all time series from a set of trials are 

usually concatenated), this ensures that all data points are assessed and no information is 

discarded in the quantification of movement variability. Both entropy estimates and Lyapunov 

exponent can then be submitted to inferential statistics. However, similar to SD and CV, they only 

provide a measure of magnitude, and thus no information is offered on the structure of variability. 

Where an exposition of the structure as well as magnitude of variance is desired, a 

different data reduction technique is required. Principal component analysis of waveforms (PCAw) 
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is one technique which can achieve these aims, reducing data dimensionality by determining the 

number of unique components which contribute to the total waveform. These components are 

themselves waveforms and exist across the same time domain as the sampled waveform which 

can allow meaningful qualitative analysis of the structure of variance (Deluzio et al., 2013). The 

percentage of total variation attributed to each component is also identified. Generally, only a few 

components are required to account for the vast majority of variation in the original waveform, 

allowing the remainder to be discarded. Subsequently, a relatively accurate reconstruction of the 

original waveform can be estimated from the few retained principal components. In addition the 

process produces principal component scores (the coefficients of the individual principal 

components) which may be submitted to inferential statistics to facilitate hypothesis testing 

within or between individuals, groups or interventions (Deluzio et al., 2013). However, a potential 

source of data distortion might arise from this technique as it works pointwise across a time 

normalised waveform thereby operating on the assumption that each time point is independent 

(Harrison, 2014). Yet, biological time series are deterministic in nature, which can be confirmed 

using surrogate analysis mentioned in a previous section (2.5.1.4), meaning there is a direct 

relationship between each point and its neighbours (Taylor et al., in press). A method which 

addresses these concerns and maintains the benefits of PCAw in quantifying the variability of total 

waveform is functional principal component analysis (fPCA). As a component of functional data 

analysis (FDA), fPCA transforms each time series into a single, functional entity through the use of 

groups of basis functions (Ramsay, Hooker, & Graves, 2009; Ramsay & Silvermann, 1997). 

Moreover, FDA and fPCA can assess coordination variability using a bivariate form of the analysis. 

While both PCAw and fPCA provide ample opportunity to produce informative analyses, they 

require careful progression through several steps to produce valid results, which can be quite 
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complex. Researchers should ensure they are fully acquainted with these processes before 

implementing such analyses.  

Finally, some authors sought to assess what may be termed as ‘whole system’ variability, 

describing variability within a group of coordinated structures during movement, such as the 

striking and non-striking leg or even the whole body during a kick. One method used calculated 

variance volume, where an ellipsoid is created with the lengths of its three axes derived from the 

variance (SD) of the linear displacement of markers in x, y and z axes (Sforza et al., 2002; Tucker et 

al., 2013). The volume of the ellipsoid is therefore a measure of total variance at that site which 

can be normalised by dividing by the total distance travelled by each marker in each axis to allow 

comparison across sites (Tucker et al., 2013). While these markers are often placed on bony 

landmarks at joints, they represent whole system variability since their position in space at any 

time is reliant on the organisation of all intra-individual structures. As such, a mean or sum of all 

scaled volumes may provide a single value measure of whole system variability.  

Other approaches of note to assess whole system variability involve the reduction of the 

dimensionality of data. The first of these is hierarchical cluster analysis where many biomechanical 

variables can be entered and a criterion, such as Euclidean distance, used to determine whether 

individual trials are similar and therefore sit within the same cluster. The hierarchy can be 

represented using a dendogram at the top of which all trials form one cluster. Based on the 

criterion, this cluster and subsequent clusters split until all trials sit in their own cluster (Chow, 

Davids, Button, & Rein, 2008). The key decision to be made is at which level to cut the dendogram, 

yielding n clusters (c.f. Everitt [1979]; Romesburg [2004]) which may represent the number of 

individualised movement patterns of the whole system presented during any set of trials. In a way, 

this number can denote the variability present. A further determination of variability can be 
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attained by calculating the switch ratio, the frequency of change in the classification of the current 

trial from one cluster to another across a series of trials (Chow, Davids, Button, & Rein, 2008). 

Artificial neural networks are another, somewhat underutilised, computational tool that 

can quantify whole system (Schmidt, 2012). These techniques use unsupervised machine learning 

to take many variables from a high dimensional space and project them onto a low dimensional 

(often 2D) network (Davids et al., 2006). This projection forms a trajectory that moves across the 

nodes of the network over the time course of the movement. Across trials, the trajectories can 

then be compared as a quantitative assessment of whole system variability. A second, lower level 

network, can then be derived from these trajectories to provide even further information on 

individual variability (Schmidt, 2012). However, these computations often require sophisticated 

statistical packages, perhaps resulting in their underutilisation (see Table 2.3). Furthermore, the 

usefulness of these techniques in an applied setting may be limited by the at times complex nature 

of result interpretation, further reducing their utilisation. By addressing these issues and through 

further development of the techniques though they provide a potentially fruitful tool for future 

research and application.  

Making a selection from the presented methods to assess variability depends on many 

factors including research question, data format and application. In terms of their application, the 

methods are capable of producing large amounts of information. However, a less-is-more 

approach often prevails in the applied settings which characterised many of the studies in this 

review. For example, athletes and coaches will often want simplified and intuitive, as opposed to 

complex and theoretical, values particularly for tracking elements over time. In this sense, the role 

of the researcher is to balance these needs and make the appropriate selections of tools when 

analysing variability. 
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2.6 General Discussion 

The inclusion criteria for this review required that studies had implemented a design 

wherein variability was quantified within subject across multiple same session trials, even if 

subsequently these measures were collapsed across groups for comparative purposes. The 

included studies (n = 66) represent a body of literature which reflects the potential importance 

and implications of intra-individual discrete movement variability. Within the applied focus of this 

review, it also seemed to accept the notion that it is impossible to have a single invariant 

representative, optimal or normal pattern for any movement (Bartlett et al., 2007; Preatoni et al., 

2013). Unlike cyclical movements, where the movement pattern itself often determines the 

success of the movement, within many applied discrete tasks, and in many sports not assessed in 

this review, it is the outcome (goals scored, distances jumped, etc.) which ultimately determines 

the success of a movement. As such it is not consistency in movement patterns, but rather 

movement outcome, which is desirable. 

The ability to consistently produce successful movement outcomes is indicative of skilled 

performance. Movement variability was consistently reported to be present in the movement 

profiles of such skilled performers within the sampled literature. For example, the phenomena of 

successful outcome and movement variability coexisting was identified in diving (Barris et al., 

2013, 2014; Slobounov et al., 1997), table tennis (Bootsma & van Wieringen, 1990), basketball 

(Button et al., 2003; Mullineaux & Uhl, 2010), soccer (Chow et al., 2005), baseball (Fleisig et al., 

2009) and water polo (Taylor et al., 2014). However, it was not only in the final determinant of 

success (e.g., accuracy scores, shots made) that increased consistency was noted. There is 

considerable evidence that constraint of variability in technical elements could be key to 

successful movement outcome (Armour Smith et al., 2012; Bradshaw et al., 2009; Farana et al., 
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2015; Hiley et al., 2013; Whiteside et al., 2015). For example, skilled performers have lower 

variability at key points (address and top of backswing) of the golf swing (Bradshaw et al., 2009), 

gymnasts show more consistent movement in mechanically important facets of skills such as high 

bar swings and round offs (Farana et al., 2015; Hiley et al., 2013) and tennis players constrain 

postural stability at the point of take-off during the serve (Whiteside et al., 2015). This behaviour 

was more commonly observed in golf (Horan et al., 2011; Langdown et al., 2013), basketball 

(Mullineaux & Uhl, 2010) and water polo (Taylor et al., 2014) as movement progressed to the 

point of release or impact for ballistic skills. Similarly Bootsma and van Wieringen (1990) have 

identified the phenomena of ‘funnelling’ in table tennis which show the constraining of variability 

toward the point of impact. Moreover, as may be expected, some of the lowest values of 

variability are reported in factors such as release/impact height, velocity and angle (Bradshaw et 

al., 2009; Button et al., 2003; Chow et al., 2005; Knudson & Blackwell, 2005; Sheppard & Li, 2007; 

Taylor et al., 2014), which are the final determinants of projectile trajectory and end point 

location. It may be pertinent to consider release variables or similar to be movement outcomes in 

such discrete ballistic skills due to their highly consistent nature in skilled performance. There 

were exceptions to decreases in variability at critical points, which are often seen in those 

elements that could act as a highly sensitive final effector to the release variables such as 

orientation of club and bat face (Betzler et al., 2012; Sheppard & Li, 2007) and kinematic variables 

of the wrist (McDonald et al., 1989; Robins et al., 2006; Taylor et al., 2014; Tucker et al., 2013; 

Whiteside et al., 2015). The question remains as to what the role of variability is which exists up to 

and including these points within successful movement. 

A third of studies included in this review supported the idea that variability has a 

functional role in movement, which concurs with other reviews (Bartlett et al., 2007; Preatoni et 

al., 2013). Bartlett (2008) provided a helpful summary on what could be considered the three 
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functional roles of movement variability: 1) reducing the risk of injury; 2) enabling coordination 

change; and 3) facilitating adaptation to varying task or environmental constraints. These three 

elements also find considerable support in the literature sampled in this review which is worth 

summarising herein, starting with a discussion of injury prevention. 

Variability in movement may be a protective factor for injury since variable patterns of 

movement can spread loads over a greater area of tissue, whereas lack of variance in movement 

patterns can continually stress the same area in biological structures (Bartlett et al., 2007). Much 

of the support for this hypothesis comes from the investigation of continuous skill such as running 

or walking (Heiderscheit, Hamill, & van Emmerik, 2002; James, Dufek, & Bates, 2000) where the 

repetition of loading can be many more times higher than in a discrete task of the same duration. 

In discrete tasks, Farana et al. (2015) reported decreased hand position variability is prone to 

greater injury risk when coupled with increased ground reaction force values in a gymnastics 

round off technique. However, other evidence is less conclusive and there is weaker support for 

the role of discrete movement variability in injury prevention within the sampled research of this 

review. Depending on the variable, for example, both increased and decreased variability during 

sidestep cutting in a fatigued state is thought to increase the risk of injury (Cortes et al., 2014). 

McLean et al. (1999) found that females, a population more susceptible to non-contact ACL injury, 

had higher variability in axial rotation of the knee than males during sidestep cutting yet 

concluded that this is unlikely to be the root of higher injury incidence. Females have also 

displayed increased varus-valgus variability in the same task (McLean et al., 2004). Yet again, 

reasons of higher incidence of ACL injury in this population were thought more likely to stem from 

experience or conditioning levels and not from gender differences in variability for these joint 

rotations (McLean et al., 2004). When coordination is assessed in sidestep cutting, females display 

reduced variability in coupling of lower limb segments compared to males (Pollard et al., 2005) 
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while populations with knee reconstruction surgery exhibit increased variability in lower limb 

coordination (Pollard et al., 2015). This suggests different neuromuscular strategies may be 

employed across genders and injury status, changing the stress on tissues and altering the 

adaptability to potentially injurious conditions. While a sidestep is a discrete skill, it is heavily 

related to gait, and thus the evidence provides a far from clear picture about the role of variability 

in injury in discrete tasks. As such, there remains much work to be done to understand the 

interaction between discrete movement variability and injury. This question will begin to be 

answered perhaps through adoption of longitudinal prospective research designs that examine 

variability across several different tasks. 

Another functional role of variability suggested in the literature is to facilitate changes in 

coordination. An example often supplied for this hypothesis is during transition phases, such as 

walk-to-run, which are less common in discrete skills. As such the role of variability in transitioning 

phases may be of less importance for discrete tasks. Nevertheless, there were a few studies to 

support this hypothesis, isolated to discrete skills which had distinct phases. For example, 

increased variability was observed for segments responsible for the transition from backswing to 

downswing in golf (Langdown et al., 2013), and peaks in variability were noted at the transition 

from flight to landing phase during sauté jumps in dancers (Armour Smith et al., 2012). However, 

as both of the studies measured variability in coordination, results might not be directly relevant 

to the hypothesis where joint/segment angular variability is assumed. Perhaps, as suggested by 

Bartlett (2008), a more pertinent role of variability in discrete skills is to facilitate coordination 

changes during motor learning, increasing adaptability. As mentioned in section 2.5.1.5, variability 

in the first layer of variables (joint and segment angles, etc.) could enable variability in functional 

coordination. An increase in the number of variably coordinated couplings may subsequently 

result in greater variability across a whole system. Whole system variability in turn could influence 
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adaptability - i.e., many movement patterns are able to produce the same, successful outcome 

within changing task and environmental constraints.  

When variability is associated with adaptability, the mechanism which produces this 

variability may be compensatory coordination, which can be manifested by perturbations in one 

variable being compensated by fluctuations in another, facilitating the adaptation to the original 

perturbation. Evidence of compensatory coordination was reported in table tennis (Bootsma et al., 

1991; Bootsma & van Wieringen, 1990; Sheppard & Li, 2007), basketball (Button et al., 2003; 

Mullineaux & Uhl, 2010; Robins et al., 2006; Schmidt, 2012), throwing (Kudo et al., 2000), darts 

(McDonald et al., 1989), handball (Wagner et al., 2012) and triple jump (Wilson et al., 2008), 

providing good support for the link between functional variability and adaptability. Perhaps the 

strongest evidence came from studies which implemented a longitudinal design. Barris et al. 

(2014) trained experienced springboard divers to avoid baulking (i.e., aborting dive take off) over a 

12-week period. They found that while overall coordination patterns did not change over time, as 

evidenced by consistent topography of angle-angle plots, normalised root mean square (NoRMS) 

indices rose indicating coordination variability increased across training. By the end of training, 

athletes were able to successfully complete dives and maintain pre-intervention scores in 

instances where they previously would have baulked. This result indicates that the athletes were 

able to adapt to conditions that had formerly caused them to abort. In a similarly longitudinal 

study, participants were trained to perform the soccer chip kick over a barrier to several target 

locations (Chow, Davids, Button, & Rein, 2008). As evidenced by number of retained clusters from 

cluster analysis of hip, knee ankle and trunk angles, the participant who explored the least 

movement patterns during the 4-week program scored the lowest during post training testing. 

Conversely, the participants who explored the most patterns had the highest post training scores. 

As the post-test task conditions had barrier heights which were different to those experienced 
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during practice, this result indicates that those who had the largest coordination variability, as 

expressed by greater number of movement patterns/clusters, had the better ability to adapt to 

the changed task constraints. These two studies highlight the following important factors: 1) 

movement variability appears to be linked to our ability to adapt to changing task and 

environmental constraints; 2) the phenomenon can be well explored by longitudinal study designs; 

and 3) functional variability, which facilitates adaptability and is more effective amongst the better 

skilled, may emerge during motor learning. 

Wilson et al. (2008) presented the ‘U-shaped’ curve hypothesis which models the 

variability in coordination across learning as U-shaped such that both novice and advanced movers 

display higher levels of variability while those in the intermediate stages display reduced levels. 

This may explain, as originally posited by Bernstein (1967), how patterns of variability relate to the 

changes in degrees of freedom across different skill levels. He proposed that early motor learners 

have high initial variability in movement patterns as they search for an optimal movement solution 

for the task at hand. This is quickly followed by constraining of degrees of freedom as they settle 

on a movement pattern and look to attain effective coordination and outcome consistency. Once 

the individual moves towards mastery of a task, they begin to release degrees of freedom and 

display increased variability, this time in the presence of improved outcome success and 

consistency. The U-shaped curve may also characterise the relationship of variability to the 

‘coordination, control and skill’ model of motor learning proposed by Newell (1985). According to 

Newell (1985) this model states that at the ‘coordination’ stage an individual attempts to develop 

rudimentary couplings between motor components with motion, which often appear stiff and 

stilted. The ‘control’ stage is relatively short in duration and sees attainment of control over 

derivatives of motion such as velocity and acceleration. In this stage dysfunctional variability will 

decline along with increased consistency in movement and performance outcome. In the ‘skill’ 



 

52 

 

stage the mover is able to optimise all elements responsible for motor output. Similarities 

between Newell and Bernstein’s models exist, yet, while Newell’s model did not receive much 

attention in the included literature, evidence corroborating the degrees of freedom problem was 

present. In learning a soccer chip, Chow, Davids, Button, and Koh (2008) reported early increased 

degrees of freedom, followed by constraint and subsequent re-release of lower limb movements 

among participants. Similar observations were reported in studies looking at soccer chipping 

(Hodges et al., 2005), dart throwing (McDonald et al., 1989), basketball (Schmidt, 2012) and tennis 

(Whiteside et al., 2015).  

 When considering whether any U-shaped relationship exists in the first layer of variability, 

such as kinematics of markers, joints, segments or implements, there was a dearth of studies 

which included three or more skill levels (e.g., Wilson et al. [2008]). In studies comparing only two 

groups of skill levels, the consistent trend was for the lower skilled participants to display greater 

variability than those who were more skilled (Betzler et al., 2012; Bradshaw et al., 2009; Hiley et 

al., 2013). Similarly, in studies with multiple skill levels, there was a trend of decreasing variability 

as skill level increased (Button et al., 2003; Fleisig et al., 2009). Evidence for a U-shaped curve at 

this first layer of variability was also available, though not conclusive. As the original U-shaped 

hypothesis was founded on coordination variability, it may not effectively describe variability of 

individual variables such as joints, segments, release/impact parameters or implement measures. 

For example, results across three skill levels (beginner, intermediate and skilled) in soccer chipping 

identified a U-shaped relationship for foot velocity when kicking to two of three targets (Chow et 

al., 2007). Yet, the profile for the same variable to one particular target showed an inverted U-

shape. 
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Chow et al. (2007) evaluated coordination variability of hip/knee and knee/ankle couplings 

using NoRMS indices in soccer chipping. The knee/ankle coupling displayed a U-shaped profile 

although degree of variability in skilled movers was not as high as that of the novice. For the 

hip/knee coupling, however, NoRMS indices showed a more linear increase from low to high 

skilled participants. In another study on soccer chipping, the NoRMS indices of the hip/knee 

coupling displayed a U-shaped pattern across skill levels which were ranked based on outcome 

score after following a 12-week training program (Chow, Davids, Button, & Koh, 2008). The 

knee/ankle coupling showed an increase in NoRMS index from the lowest to the next lowest 

scorer before displaying a U-shape pattern across the remaining participants. However, the 

investigations discussed herein had a small number of participants (4-5), and thus it may be 

difficult to take much support for the U-shape hypothesis from these studies. Furthermore, other 

research has reported a decreasing trend of coordination variability with increased skill in dancers 

and controls (Jarvis et al., 2014) and in handballers (Wagner et al., 2012). In tennis, there were 

several mixed patterns - U-shaped, inverted U, linear increase and decrease - for coordination 

variability using the coefficient of correspondence from vector coding (Whiteside et al., 2015). 

Perhaps the U-shaped curve is task-dependent, in which case a broad range of studies assessing 

different skills might be necessary to depict a variety of relationships between functional 

variability, adaptability and motor learning. How task dependence relates to or reflects the 

learning theories of Bernstein, Newell etc. would then also need to be investigated. Perhaps the 

changes in variability hypothesised by these theories present across different time frames 

depending on the task which could have resulted in some of the differences in curve shape 

reported. Furthermore, as the U-shaped hypothesis seems to have its explanatory power limited 

to coordination variability, it might be beneficial to model motor learning with other layers of 

variability. 
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In the context of motor learning, it appears that variability in the early stage of learning is 

non-functional in so much as it does not facilitate effective coordination of movement. In line with 

the U-shaped curve hypothesis, coordination variability may also be high at this stage of motor 

learning, with its level being associated with reduced performance outcomes. As such, the 

variability associated with early learning stages may be indicative of the search for effective 

movement patterns without acquiring better performance. On the other hand, variability of 

individual elements (e.g., segments, joints, implements, etc.) is shown to decrease with increased 

skill. Moreover, it appears that effective coordination, which compensates for the variability of 

individual elements, emerges as evidence by increased consistency in outcome measures. 

Coordination variability may also be constrained at this point in line with the U-shaped curve 

hypothesis. In later stages, as compensatory coordination continues to be attained, coordination 

variability may again rise along with an increase in consistency and performance in outcome 

measures. It is not clear what individual first level variability profiles will resemble at this stage, 

but it is possible that there is an optimal level which facilitates the compensatory coordination. 

Whole system variability is hypothesised to increase at this stage as movers should now have 

acquired multiple global movement patterns capable of producing the desired movement 

outcome within a given set of task and environmental constraints. 

2.7 Conclusion 

This review sampled a considerable body of work on discrete movement variability in 

sports-derived tasks. Regarding the role of variability in injury prevention, the evidence for 

discrete movement is not as strong as it is for continuous movements. Yet, there still remains a 

large scope for investigation into the functional role of variability in motor learning and 

adaptation, which in itself is still developing. The keys for effective investigation of variability are 
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described, especially with an emphasis on longitudinal studies capable of tracking changes in 

variability and injury incidence, learning and adaptation. Longitudinal studies provide better scope 

for assessing performance pre, post or throughout intervention, including a transfer test, wherein 

contextual interference designs may be useful. Selection of a sensitive measure for movement 

outcome/performance is recommended to ensure effective detection of meaningful changes that 

occur with practice. Three levels of variability have been proposed to seek a fuller understanding 

of its functional role: 1) variability in discrete and continuous measures of variables such as joints 

and segments, release/impact parameters and implement kinematics; 2) coordination variability; 

and 3) whole system variability. For future investigations, application of the recommended 

methods along with the assessment of all three levels holds the best chance of further 

understanding the phenomenon of discrete movement variability.  
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Chapter 3. Determining Optimal Trial Size Using Sequential Analysis (Study 2) 

3.1 Preface 

A methodological consideration raised by the preceding systematic review concerned the 

selection of appropriate trial size. The review identified that justification of trial size, i.e., the 

number of trials from which variability was assessed, was rarely reported in the literature. 

Considering that variability emerges as a family of trials are collected, it was considered important 

to ascertain empirically the optimum number of trials required to provide a true representation of 

this variance. The literature was searched and sequential estimation was identified as a potentially 

useful tool to address this need.  

Sequential analysis provides a systematic way of determining how many trials are required 

to establish mean stability. The thought was that if a mean is stable, then the variance of scores 

around it are no longer affecting it. Therefore, as well as ensuring a representative mean, 

representative variability may also be assumed. While the application of this technique to human 

kinematic data had been limited, its use with kinetic data indicated the process could be similarly 

and easily employed with kinematic data. However, initial use of the process with pilot data 

indicated that results were affected by the number of trials to which it was applied. Yet, the 

technique still held potential as a viable means of determining trial size. Hence an experimental 

study was conducted with the aims of 1) determining the number of trials required for use with 

sequential analysis to yield valid variable stability results; and 2) determining the trial size for the 

further experimental studies of this thesis. 

This chapter details the experimental study designed to address these aims. Preliminary 

data from this investigation was presented as an oral report at the 31st International Conference 
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on Biomechanics in Sports, Taipei, Taiwan in 2013. It was submitted to the Journal of Sports 

Science on the 24th of June 2013. The manuscript was returned on the 12th of October and 

following further revision and review was accepted for publication on the 30th of June 2014. 

Publication occurred online on the 1st of August 2014 and in print January 2015. This manuscript is 

presented in author accepted form, with minor proof edits, formatted to be consistent with the 

remainder of the thesis. 

3.2 Abstract 

When characterising typical human movement profiles, the optimal number of trials 

analysed for each participant should ensure a stable mean. Sequential analysis is one method able 

to establish the number of trials to stability by assessing a moving point mean against a set 

bandwidth. As the total trial number determining this bandwidth is selected arbitrarily, the effect 

of applying different total trial numbers on the results of sequential analysis was investigated. 

Twenty participants performed 30 trials of overarm throwing and sequential analyses were 

applied to three dimensional (3D) kinematic data over 10, 20, and 30 trial numbers. We found a 

total of 20 to be the preferred trial number for sequential analyses. Erroneous results were 

produced consistently by 10 trial number groups, while moving point means were statistically 

unchanged after the 10th trial. Subsequently, sequential analyses were applied to 20 trials to 

establish trials to stability in discrete and time series elements of the 3D kinematic data. The 

results suggest that a trial size between 13 and 17 provides stable means for overarm throwing 

kinematics. 

KEY WORDS: Sequential analysis; Mean stability; Trial size; Overarm throw; Kinematic 

profile 
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3.3 Introduction 

In human movement research, reported values of movement profiles should be as 

representative as possible. As Mullineaux and colleagues (2001) noted, values from the single best 

trial are often reported. However, when the typical performance is investigated, values obtained 

from a single trial may be considered inadequate. As a result, the number of trials from which a 

representative mean is calculated must be determined involving several considerations including 

power and reliability (Mullineaux et al., 2001). It has been suggested that for sample sizes of 20, 10 

and 5, trial sizes of 3, 5 and 10 respectively provide sufficient statistical power (Bates et al., 1992). 

Similarly, increases in trial size enhance reliability (Salo, Grimshaw, & Viitasalo, 1997). Yet, even 

after these factors have been addressed, an insufficient trial size may result in unstable means, 

compromising the reliable representation of the true performance. Perhaps due to this reason, 

justification of trial size is rarely reported in human movement literature. 

One approach to resolve this issue is to implement sequential analysis which can 

determine the minimum number of samples required from an individual to provide an acceptable 

estimate of stability in the mean. The sequential analysis technique uses a moving point mean 

coupled with a criterion against which trials to stability is determined (Wald, 1947). This criterion 

is a bandwidth, established by the mean and standard deviation (SD) of total trials (commonly 

mean ± 0.25 SD). Due to the arbitrary selection of the number of trials used to determine the 

criterion for sequential analysis, it is important to understand the effect of using different trial 

numbers when employing this technique. As such, the first aim of this study was to investigate the 

effect of using different trial numbers on the results of sequential analysis. 

The sequential analysis  technique has been used to determine trials to stability in a 

number of biomechanical measures including ground reaction forces during running (Bates, 
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Osternig, Sawhill, & James, 1983), walking (Hamill & McNiven, 1990), landing (James et al., 2007), 

jumping (Racic et al., 2009), cricket bowling (Stuelcken & Sinclair, 2009), joint power and moment 

during vertical jumping (Rodano & Squadrone, 2002) and time to postural stability (Colby, 

Hintermeister, Torry, & Steadman, 1999). Most research has concentrated on discrete kinetic 

variables from lower limb movements, while kinematic variable stability has only been addressed 

in one study (Amiri-Khorasani, Osman, & Yusof, 2010). Use of sequential analysis for upper limb 

kinematics is under-reported and stability in complete time series kinematic data has not been 

quantified. Yet, the technique provides an easily applied method for determining trial size within 

these data. Hence, the second aim of this study was to employ sequential analysis to establish the 

number of trials to stability in discrete and time series kinematic data from an overarm throwing 

task.  

3.4 Method 

3.4.1 Participants 

Ten male [20.7 (2.1) years; 175.9 (9.2) cm; 72.2 (10.2) kg] and ten female [22.2 (3.0) years; 

165.7 (7.8) cm; 62.8 (10.2) kg] participants provided informed consent and had their data included 

in this study. Throwing experience ranged from novice to semi-experienced. All methods and 

procedures were approved by the Human Research Ethics Committee of the University. 

3.4.2 Equipment 

Three dimensional (3D) motion capture, sampling at 400 Hz, was performed using 10 

Vicon cameras (6 MX and 4 T-Series), Vicon Nexus software and the unilateral Vicon Upper Limb 

Model plug-in (Oxford Metrics, Oxford, UK). Two dimensional (2D) data of the ball trajectory in the 

sagittal plane were captured using a Basler A602fc camera (Basler AG, Germany), synchronised 
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with the 3D motion capture, sampling at 100Hz. Participant preparation, including marker 

placement (13 markers across trunk and throwing arm), was performed as outlined in the Vicon 

Upper Limb Model product guide (Taylor et al., 2014; Vicon Motion Systems, 2007). 

3.4.3 Laboratory configuration 

An image of a round target consisting of 5 equally spaced concentric circles (radius 

increasing by 7 cm per circle to a maximum of 70 cm) was displayed via a beam projector (Dell Inc., 

Round Rock, Texas) on a cloth screen (5 m x 3 m) suspended from the ceiling. The vertical position 

of the projected target centre was located 2 m from the ground. An adjustable piano stool was 

placed square to the cloth screen at a distance of 7 m in line with the target centre. 

3.4.4 Procedure 

Participants performed 30 overarm throws seated on the piano stool. They maintained 90° 

flexion at the hip, knee and ankle joints and began each throw with their frontal plane aligned 

parallel to the projection screen. Participants were instructed to throw a regulation tennis ball as 

accurately as possible toward the centre of the target using the hand of their choice. The chosen 

hand was used for all trials. Participants were asked to begin each throw with their hands placed 

on their knees. No other directions regarding throwing technique were provided though all 

participants performed the throw with one of two general techniques. These included a more 

developed technique where the humerus was held in the frontal plane, and ball velocity was 

produced primarily by both elbow extension and internal rotation of the shoulder, equivalent with 

stage 3 throwing development or higher (Gallahue, Ozmun, & Goodway, 2012). The second 

technique was “front on” where degrees of freedom were more constrained. The humerus was 

held in the sagittal plane, and elbow extension was the primary joint rotation contributing to ball 

velocity. This technique was equivalent to a stage 1 throwing development (Gallahue et al., 2012). 
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Most participants maintained their chosen technique throughout testing with little 

deviation/experimentation noted.  Participants familiarised themselves with the task until they 

were ready to proceed (2–3 minutes). Time between throws was self-determined. Once the ball 

was returned, participants were notified when data collection had begun and were instructed that 

they were free to throw at any point following this cue. Most participants performed three or four 

throws per minute during testing. All participant trials were included in analyses regardless of 

movement outcome and accuracy. 

3.4.5 Data analysis 

To represent 3D displacement values in three axes (X, Y, and Z) across proximal, distal, 

bony and fleshy locations and where large and small movement was expected, four anatomical 

markers were chosen for analyses: T10 (10th thoracic vertebra), Upper Arm (over the muscle belly 

of triceps), Elbow (lateral epicondyle) and Finger (distal end of the 3rd metacarpal bone) of the 

throwing arm. Three joint angles - shoulder internal/external rotation and flexion/extension at the 

elbow and wrist - from the kinematic model (Vicon Motion Systems, 2007) were chosen for their 

role in producing ball velocity (van den Tillaar & Ettema, 2004). Discrete values of the final 

determinants of ball trajectory (ball release angle, height and velocity) were also included from 2D 

data.  

Following analyses of the frequency content and residuals of the power spectra (Winter, 

2005) of the displacements of two distal markers (Finger and radial styloid process) of all 

participants, a cut-off frequency of 12 Hz was employed in a low pass, 4th order, dual Butterworth 

filter on the kinematic time series data. The start of the movement was determined as the 

beginning of elbow flexion during wind up. The end of the movement was ball release. Filtered 

data were trimmed to these instants and time-normalised to 101 data points. 
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3.4.6 Sequential analysis 

The sequential analysis technique was employed to determine the point of mean stability 

(i.e., trial size). This technique is illustrated in Figure 3.1 using mock data. The dashed grey line 

represents the Nth trial mean taken from all (1 to N) trials and two solid grey lines labelled +0.25 

SD and -0.25 SD represent a ‘bandwidth’ based on SD calculated from all trials. These elements 

form the criterion against which stability is assessed. For example, for a 20 trial condition the Nth 

trial mean is the mean of all trials up to and including the 20th. The value of one SD about this 

mean is then multiplied by +0.25 and -0.25 to create the upper and lower bounds of the 

bandwidth. Once the bandwidth is established, the technique requires the calculation of a moving 

point mean (solid black line), starting with the mean of the first two values and moving through 

the first three, first four etc., until reaching the Nth trial. Stability is determined when the moving 

point mean rests within the SD bandwidth and stays within for all remaining trials as indicated by 

A in Figure 3.1. It is worth noting that while points B and C also rest within the bandwidth in this 

example, they do not represent the point of stability as there are excursions of the moving point 

mean outside of the SD bandwidth between B and A or C and A. 
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Figure 3.1. Example of sequential analysis technique applied to a trial size of N. Illustrated are the criterion 
elements of the total (trials 1 to N) mean (dashed grey line) and the ±0.25 SD bandwidth (two solid grey 
lines). Assessed against this criterion is the moving point mean, starting at trial two (black line). The point of 
stability is represented by the letter A. Points B and C do not represent stability as the mean deviates outside 
the bandwidth between these points and point A. 

The sequential analysis technique was employed on both discrete and time series 

kinematic data (Table 3.1). To perform sequential analysis on 3D marker displacement and joint 

angle time series data, each of the 101 sample points were treated as a discrete point, providing 

trials to stability for each sample point along the entire time series. To determine the effect of 

using different trial numbers on sequential analysis score, three main conditions - first 10 (1st to 

10th trial), first 20 (1st to 20th trial) and first 30 (1st to 30th trial) trials - were assessed with the 

criterion mean and 0.25 SD bandwidth calculated using all trials included in each condition. 

Similarly, mid 10 (11th to 20th trial), last 10 (21st to 30th trial) and mid 20 (6th to 25th trial) conditions 

were compared to establish if results were dependent on where in the sequence of throws a 

sample was extracted.  
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Table 3.1. 

Discrete and time series variables included in sequential analysis. 

Marker Variables  Joint Angle Variables  Ball Release Variables 

Maximum value 

Minimum value 

Value at release 

Normalised time series 

Peak angle value 

Time of peak angle value 

Value at release 

Normalised time series 

Release height 

Release velocity 

Release angle 

Note: Peak angle value represents relevant maximum or minimum value, occurring near wind up completion. 
Joint angles were shoulder external/internal rotation, elbow and wrist flexion/extension. Marker data was 
analysed in X, Y and Z axes. 

3.4.7 Comparing trial number conditions 

To qualitatively assess the behaviour of the sequential analysis elements, the moving point 

mean for all discrete variables from the 30 trial condition was plotted against the criterion 

bandwidth from that condition and viewed for each participant (see Figure 3.3). While this 

bandwidth was specific to the 30 trial condition, the moving point mean is the same for each 

condition, up to the total trial number of that condition (for first 10, 20 and 30 conditions only).  

For further determination of the condition from which to report sequential analysis 

values, two scores were submitted to statistical analyses, the sequential analysis score (trials to 

stability) and a relative sequential analysis score. The relative sequential analysis score is novel to 

this investigation and is calculated by dividing the sequential analysis score by the total trial 

number of the condition from which it was taken. This relative score can highlight differences in 

the behaviour of the sequential analysis technique between conditions in respect to the 

percentage of maximum possible trials taken to achieve mean stability.  



 

65 

 

The sequential analysis score for all time series variables were compared using a 4 x 101 

(first 10, first and mid 20 and first 30 conditions x 101 time series samples) two way repeated 

measures analysis of variance (ANOVA) and a 3 x 101 (first, mid and last 10 x 101 time series 

samples) two way repeated measures ANOVA with Fisher’s least significant difference post hoc 

tests. The time series ANOVA outcomes were considered as the primary results from which a 

determination would be made as all discrete variables were contained within the time series. To 

confirm any patterns observed within time series, group mean sequential analysis scores for the 

discrete marker variables taken from individual participant time series data were also compared 

across trial number conditions (first, mid and last 10, first and mid 20 and 30 trials) using a 6 x 1 

one way repeated measures ANOVA with Fisher’s least significant difference post hoc test. 

Discrete marker variables were analysed in this manner as they provided 12 cases (4 markers x 3 

axes) per condition (minimum, maximum and release), whereas joint angle and ball release 

variables only provided 3 cases per condition and thus were not included in the analyses. Relative 

sequential analysis scores were compared across conditions in the same manner as the sequential 

analysis score.  

To determine if any statistical differences existed between the 10th, 20th and 30th trial 

means of time series and discrete marker values, these elements were also compared in a similar 

manner to sequential analysis score and relative sequential analysis score. This comparison 

consisted of a 3 x 101 two way repeated measures ANOVA for time series variables and a 3 x 1 one 

way repeated measures ANOVA for group mean discrete marker values. 

For repeated measures ANOVA testing an alpha level of 0.05 was taken to indicate 

significance. Fisher’s least significant difference post hoc test significance was assessed against the 

relevant Bonferroni adjusted p-value in each instance. Discrete variable testing was conducted 
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using IBM SPSS Statistics, version 19 (SPSS Inc, Chicago, Illinois). Due to the need to analyse 101 

data points per participant, time series analyses were conducted using Statistica 7 (StatSoft Inc, 

Tulsa, Oklahoma). 

3.4.8 Reporting sequential analysis results 

To guide trial size selection, discrete variable sequential analysis results were reported 

from the chosen condition - first 20 (see results and discussion for reasoning) - as group mean and 

95% confidence interval (95% CI) values. A 101 x 1 one way repeated measures ANOVA was 

conducted on all time series sequential analysis results. Fisher’s least significant difference post 

hoc test was used to determine whether differences existed across the 101 points. Where upon no 

differences were found, the point (out of the 101 time normalised points) displaying the greatest 

group mean sequential analysis result (95% CI) was extracted and reported to guide trial size 

selection for time series analyses.  

3.5 Results 

3.5.1 Comparing trial number conditions 

The sequential analysis scores were significantly different across all time series variables, 

F(3, 57) ≥ 48.51, p < 0.01, η2 ≥ 0.72. Pairwise comparisons displayed significant differences 

between all conditions of different sizes while same sized conditions formed homogenous groups.  

This result was mirrored within the discrete marker group mean variables F(1, 11) ≥ 2367.84, p < 

0.05, η2 ≥ 0.99 (Figure 3.2).  
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Figure 3.2. Comparison of the three main condition group mean sequential analysis scores for marker 
maximum, minimum and release values. All conditions were significantly different (p < 0.05) from other 
conditions within their marker variable. 

Figure 3.3 shows a sample plot of the sequential analysis (Finger marker in X axis) from 

one participant, illustrating the most frequent pattern observed amongst the discrete variables, 

across all participants, in the 30 trial condition (54%; 523 out of 960 plots viewed). It can be seen 

that the moving point mean (solid black line) undergoes a ‘transition phase’, most commonly 

occurring during the first 10 trials, moving up or down toward the criterion bandwidth (dashed 

grey line). While this was the most frequent pattern, other transition patterns within the first ten 

trials were also common. These included the moving point mean lines that began on one side of 

the bandwidth prior to transitioning across to the other side before stabilising as well as those that 

began within the bandwidth before moving to either side then stabilising. While the patterns did 

vary, the consistent element was that the magnitude of the transition (slope of the curve) was 

greatest in the early trials and around the 10th trial fluctuations in the moving point mean 

generally became less severe. After the point of stability (trial 15 in this example), and even slightly 
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before, the mean tended to be robust to fluctuations in raw data (dash-dot grey line), illustrating 

the concept of sequential analysis score and mean stability. 

 

Figure 3.3. Example of sequential analysis of a finger marker (X axis) minimum value in 30 trial condition 
from one participant showing the relationship between raw kinematic data (dash-dot grey), moving point 
mean (solid black) and 0.25 standard deviation (SD) bandwidth (dash grey). Stability point (sequential 
analysis score = trial 15) is indicated by an arrow. 

Of the 15 relative sequential analysis scores of time series variable ANOVAs, 12 (excluding 

T10 in X and Y axes, Finger in Y axis) displayed significance, F(3, 57) ≥ 4.78, p < 0.05, η2 ≥ 0.20. In 11 

of 12 significant time series variables, the first 10 condition was significantly greater than the other 

main conditions. Same sized conditions formed homogenous groups based on sample size. Results 

for discrete relative sequential analysis score group mean marker variables displayed significance, 

F(1, 11) ≥ 3304.52, p < 0.05, η2 ≥ 0.99. Group mean discrete variable relative sequential analysis 

scores between the three main conditions can be seen in Figure 3.4. 
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Figure 3.4. Comparison of the three main condition group mean relative sequential analysis scores for 
marker maximum, minimum and release values. Asterisk (*) indicates significant difference (p < 0.05) from 
the first 20 and first 30 conditions. 

Comparisons of the criterion mean values showed no significant difference in 12 of the 15 

variables, F(2, 38) ≤ 2.35, p > 0.05, η2 ≤ 0.11. Of the three significant time series comparisons (T10 

in Z axis, Upper Arm in X axis and Finger in Y axis), F(2, 38) ≥ 3.56, p < 0.05, η2 ≥ 0.16 post hoc tests 

showed the first 10 condition to be different from the first 20 and 30 conditions for Upper Arm in 

X axis and different to the first 30 condition for T10 in Z axis and Finger in Y axis. Discrete group 

mean marker results reflected the time series results with non-significant ANOVA results for 

marker minimum and release values, F(1, 11) ≤ 2.94, p > 0.05, η2 ≤ 0.21. While the ANOVA for 

marker maximum displayed significance, F(1, 11) = 15.55, p < 0.05, η2 = 0.59 post hoc analyses 

showed no difference between conditions.   

3.5.2 Sequential analysis results 

Group mean sequential analysis scores (95% CI), of the first 20 condition, for discrete 

marker variables and for maximum group mean (95% CI) time series marker variables are reported 

in Tables 2 and 3 respectively. Repeated measures ANOVA results on first 20 time series were 
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significant for Upper Arm, Elbow and Finger markers (in Z axes), F(100, 1900) ≥ 1.33 p ≤ 0.02, η2 = 

0.07. However, post hoc analyses revealed no recurring pattern of results across time series and a 

consistent trend of all 101 points forming one homogenous group. As a result, it was determined 

that a single group mean value and associated confidence interval should be reported for all time 

series results. The maximum group mean value was therefore selected for this purpose as a 

decision based on this value would ensure that all points along the time series were accounted for. 

Group mean (95% CI) data for discrete joint angle variables and maximum group mean (95% CI) 

data for time series joint angle variables are reported in Table 3.4. Group mean (95% CI) results for 

release height, velocity and angle were 11.5 (1.8), 12.7 (1.9) and 10.5 (2.0) respectively. 

Table 3.2. 
Group mean (95% CI) sequential analysis results for marker maximum, minimum and release values. 

  Maxima   Minima   Release  
 X Y Z X Y Z X Y Z 
T10 13.9 (1.7) 13.2 (1.8) 10.0 (1.8) 13.4 (1.6) 13.5 (1.2) 12.7 (1.5) 13.1 (2.0) 13.1 (1.4) 11.5 (1.7) 
UPA 13.2 (1.8) 12.9 (1.6) 9.3 (2.0) 12.6 (1.5) 11.7 (1.8) 11.2 (2.0) 12.0 (1.7) 12.2 (1.3) 9.9 (1.9) 
ELB 12.6 (1.6) 11.8 (2.1) 12.2 (1.7) 13.3 (1.6) 12.0 (1.5) 10.8 (1.6) 11.4 (1.7) 12.0 (1.5) 11.9 (1.8) 
FIN 12.1 (1.9) 11.3 (1.9) 12.2 (1.8) 12.6 (1.7) 11.1 (2.3) 11.8 (1.7) 11.0 (2.0) 10.6 (1.9) 12.3 (1.8) 

 

Note: Markers were T10 (10th thoracic vertebra), Upper Arm (UPA), Elbow (ELB) and Finger (FIN). 

Table 3.3. 
Group mean (95% CI) sequential analysis results for marker time series. 

 X Y Z 
T10 14.5 (1.6) 14.0 (1.4) 13.1 (2.1) 
UPA 14.1 (1.3) 12.9 (1.2) 14.3 (1.5) 
ELB 13.4 (1.5) 13.6 (1.3) 13.8 (1.7) 
FIN 13.7 (1.5) 13.0 (1.5) 13.3 (1.4) 

 

Note: Markers were T10 (10th thoracic vertebra), Upper Arm (UPA), Elbow (ELB) and Finger (FIN). 

Table 3.4. 
Group mean (95% CI) sequential analysis results for discrete and time series (maximum group mean) 
joint angle variables. 
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 Peak Release Time of Peak 
Shoulder 12.1 (2.2) 10.1 (2.2) 9.6 (2.1) 
Elbow 12.2 (1.6) 11.3 (1.9) 11.3 (2.0) 
Wrist 12.1 (1.5) 10.2 (1.8) 10.2 (1.7) 

 

Time Series 
13.0 (1.9) 
12.4 (1.6) 
12.5 (2.1) 

 

 

Note: Joint angles were shoulder internal/external rotation, elbow and wrist flexion/extension. 

3.6 Discussion  

Sequential analysis score results showed that the outcome of this technique is affected by 

the total trial number from which criterion mean and SD values are drawn (Figure 3.2 and Figure 

3.4). Yet, results were not dependent on the position in the total sample where the subsample was 

drawn (e.g., first, mid or last 10). Qualitative assessment of the sequential analysis plots suggests 

that the results from the first 10 condition are affected by the ‘transition’ phase of the moving 

point mean (Figure 3.3). This transition appeared most commonly due to the mean of the first two 

trials lying above or below the criterion bandwidth as in the most regular pattern illustrated in 

Figure 3.3. There were of course instances where the transition phase did not exist and these data 

generally resulted in low sequential analysis scores. That the transition phase still existed in data 

from the mid 10 and last 10 conditions indicate it is not related to any warm up decrement or 

familiarisation with the task. Results of relative sequential analysis scores support the qualitative 

assessment (Figure 3.4), showing that the first 10 condition often produces a relative score higher 

(65.6%) than the first 20 and 30 conditions (59.0% and 56.9% respectively). Similar differences in 

relative sequential analysis scores can be calculated from the data reported by James et al. (2007) 

when comparing their 10 (72%) and 20 (58%) trial conditions. These results are sufficient to 

exclude the first 10 condition as a supply of valid sequential analysis results to determine the 

number of trials to stable means.  

With the first 10 condition excluded, it must also be considered whether to accept 

sequential analysis values from either the first 20 or 30 trial number conditions. Despite the 
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evidence showing the different behaviour of the first 10 trials (mean ‘transition’ and higher 

relative sequential analysis score) analyses showed that there were few differences (5 of 36 

pairwise time series comparisons) between the criterion mean values derived at the 10th, 20th and 

30th trial. As the kinematic mean does not vary statistically from the 10th trial to 20th and 30th, nor 

are relative sequential analysis scores consistently different between the 20th to 30th trial 

conditions, collecting 20 trials appears sufficient to estimate stable means. This will ensure that 

the mean has passed the ‘transition’ phase illustrated in Figure 3.3 and avoided the different 

relative sequential analysis score behaviour of the first 10 condition. It is worth noting that this is 

the recommendation for the current population and task based on the process determining the 

optimal condition from which to report sequential analysis results described previously and 

summarised in Figure 3.5. Limitations such as time, budget or technological factors, learning 

and/or fatigue may stipulate modification of this process within other research projects or applied 

settings. Qualitatively, change in some participants’ throwing technique was noted, perhaps 

attributable to fatigue or learning, within the final ten throws of this study. These perceived 

changes included decreased ball velocity, wrist and humerus height at release and changes in the 

release angle, altering the path of the ball in flight. In the present investigation this provided 

further justification for the use of the 20 trials condition, however, it is possible that the 30 trials 

condition may be more appropriate for estimating stable mean values in other tasks and 

populations.  
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Figure 3.5. Flowchart of the aim, evidence and subsequent decisions/conclusion on which condition to report 
sequential analysis results from.  

The reported sequential analysis results of marker displacement, joint angle data (Tables 

3–4 and ball release data allow guidance in the determination of trial size for other studies of the 

same or similar design. While ball release and joint angle results may be of more impact in an 

applied setting than that of marker displacement , these data have been included as they are the 

direct measure of body movement, and all joint angle data are derived from these. When applying 

these results readers may choose to employ either the mean or the upper bound of the 

confidence interval, depending on how conservative they wish to be with this decision. While 

values are reported to one decimal place in order to provide a degree of precision, it is 

recommended that these values be rounded up when determining trials sizes from them. If 

discrete marker displacement data were to be analysed alone the reported results suggest that a 

trial size of 14–16 throws should provide mean stability in the selected variables. If discrete joint 

angle or ball release data are the only consideration then a trial size in the range of 13–15 is 

advised. From the results, the recommended trials sizes for analysing only complete marker or 
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joint angle time series are 15–17 and 13–15 throws respectively. However, as these values were 

derived from the maximum group mean across all 101 time series data points, there is an element 

of conservativeness about the results which researchers and practitioners may wish to consider 

when utilising them.  

This study has attempted to address the selection of trial number condition size by 

comparing results across different conditions. The selection of an arbitrary size for the SD 

bandwidth (0.25 SD) allows for the creation of a conservative test which is a strength of the 

sequential analysis technique. Yet the inherent subjectivity makes it less objective than other tests 

such as intraclass correlation (ICC) which has also been used for the same purpose (James et al., 

2007; Racic et al., 2009). Stability results from ICC analysis from these studies, admittedly 

addressing different variables, are however lower (4 trials). Results from this study show that a 

trial size of four risks reporting mean values from within the ‘transition’ phase which have not yet 

achieved stability as determined using the sequential analysis technique. As such, ICC may risk 

underestimation of a trial size which approximates stability in the mean compared to sequential 

analysis applied conservatively as in the current study, despite its objectivity. However, as James 

et al. (2007) reported, widening the SD bandwidth used in sequential analysis can yield similar 

results to ICC analyses.  Researchers and practitioners should be aware of the strengths and 

weaknesses of the two techniques when choosing to use one over the other.  

While differences exist between results from this study and from ICC analysis in other 

research, the current trial size recommendations are closer to those reported elsewhere based on 

sequential analysis. This includes 11 trials for continuous jumping (Racic et al., 2009) and 12 trials 

for drop landing, vertical jumps and cricket bowling  (James et al., 2007; Rodano & Squadrone, 

2002; Stuelcken & Sinclair, 2009). The higher results from this current study may be due to the 
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different task, different data types (kinematic versus kinetic) or associated differences in data 

collection; it may also be related to the practice of using a range between the (rounded up) group 

mean and 95% confidence interval employed in the current study.  

3.7 Conclusion 

The aims of this research were to investigate the effect of applying different trial numbers 

on the results of sequential analysis applied to kinematic data of an overarm throwing task, in 

order to determine the optimal trial number for conducting sequential analysis, and to report trial 

size recomendations from this sample for future research. Based on the results, performing 

sequential analysis on a sample of 20 trials or more to ascertain an acceptable estimate of mean 

stability in kinematic data from an overarm throwing task is recommended. Furthermore, the use 

of similar methods presented here to determine the required trial number for sequential analysis 

in other populations and tasks are suggested. Researchers may choose to implement this method 

on pilot samples of the target population to guide data collection and trial size decisions in studies 

with larger samples. Practitioners may be able to use the technique to justify the number of trials 

collected during regular testing and/or servicing of athletes. Depending on the data type, the 

sequential analysis results suggest that collecting between 13 and 17 trials will provide stability in 

the mean of the targeted variables from the overarm throwing task. 
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Chapter 4. A Surrogate Technique for Investigating Deterministic Dynamics 

in Discrete Human Movement (Study 3) 

4.1 Preface 

The results and conclusions taken from Study 2 allowed finalisation of the research design 

for the main intervention experiment of this thesis (see Study 4). Once data collection was 

complete the battery of statistical techniques to be used to assess variability was determined. 

Based on findings from Study 1 and further reading sample entropy was chosen as the technique 

to quantify changes in movement regularity. However, as entropy measures can quantify 

complexity in signals which are either stochastic or deterministic, a method which could show that 

the collected data were deterministic in nature was required. Surrogate methods were identified 

as a technique capable of fulfilling this requirement.  

Investigation of the available methods identified that many surrogate techniques exist for 

different applications. The pseudo-periodic Surrogate method had previously been used similarly 

to the intended use in the present data. However, after gaining further insight into the time delay 

embedding method used by this technique, it was realised it was not valid for the intended use. 

Further searching revealed no surrogate method existed to adequately address the discontinuities 

existing between the end of one discrete movement time series and the beginning of the next. 

Hence, it was decided to develop such a method making use of a valid and effective embedding 

technique and to test its reliability within the intended application.  

Study 3 documents the development of this novel surrogate technique. Preliminary data 

from this investigation was presented as a poster at the 33rd International Conference on 

Biomechanics in Sports, Poitiers, France in 2015. It was submitted to Motor Control on the 5th of 
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June 2015. The manuscript was returned for revision on the 10th of September and following 

further revision and review it was accepted for publication on the 7th of October 2015. This 

manuscript is presented in author accepted form formatted to be consistent with the remainder of 

the thesis. 

4.2 Abstract 

Entropy is an effective tool for investigation of human movement variability. However, 

before applying entropy, it can be beneficial to employ analyses to confirm that observed data is 

not solely the result of stochastic processes. This can be achieved by contrasting observed data 

with that produced using surrogate methods. Unlike continuous movement, no appropriate 

method has been applied to discrete human movement. This article proposes a novel surrogate 

method for discrete movement data, outlining the processes for determining its critical values. 

The proposed technique reliably generated surrogates for discrete joint angle time series, 

destroying fine-scale dynamics of the observed signal, while maintaining macro structural 

characteristics. Comparison of entropy estimates indicated observed signals had greater regularity 

than surrogates and were not only the result of stochastic but also deterministic processes. The 

proposed surrogate method is both a valid and reliable technique to investigate determinism in 

other discrete human movement time series. 

4.3 Introduction 

Human movement variability has received increasing attention over the last 30 years and 

has historically been attributed to noisiness within the neuromuscular system (Newell et al., 2006). 

Contemporary investigations hypothesise that variability is not representative of purely stochastic 

processes but rather manifestation of intrinsic, deterministic, dynamical systems (Newell & 

Corcos, 1993a), which can facilitate motor learning, improve performance and prevent injury 
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(Bartlett et al., 2007; Davids et al., 2003; Preatoni et al., 2013). Sample entropy is an effective tool 

for investigating movement variability (Preatoni et al., 2010). Sample entropy can quantify the 

regularity of a signal allowing inference to the complexity of the organism or system producing the 

signal (Lake, Richman, Griffin, & Moorman, 2002; Preatoni et al., 2010; Richman & Moorman, 

2000). However, as entropy quantifies the regularity of signals that are stochastic, deterministic or 

a combination of both, a method which can demonstrate that a biological signal is not solely 

stochastic in nature is beneficial. If a signal can be shown to contain deterministic dynamics then it 

may provide evidence against the null, variability as noise, hypothesis. Furthermore, it provides 

confidence that inferences made about observed changes or differences in regularity are the 

result of purposeful rather than random processes. This outcome can be achieved by contrasting 

observed data with data generated from surrogate methods (Small et al., 2007; Theiler, Eubank, 

Longtin, Galdrikian, & Doyne Farmer, 1992). Surrogate methods can produce time series which 

resemble observed data yet present properties consistent with a non-deterministic signal.  

Various surrogate techniques exist for different applications (Small et al., 2007). Many of 

these techniques deal with intrinsically stochastic signals. These methods may be applied to 

deterministic data by pre-filtering the observed signal to remove the deterministic component. 

However, segmentation of data into noise and deterministic components can result in spurious 

effects (Theiler & Eubank, 1993). When dealing with human movement data, surrogate methods 

designed for use with deterministic signals need to be considered. Due to its cyclical nature, 

human gait has previously been investigated using a pseudo-periodic surrogate method (Miller, 

Stergiou, & Kurz, 2006; Preatoni et al., 2010). This method derives a noise contaminated signal 

from a reconstruction of the underlying deterministic dynamic (a phase space created via time 

delay embedding consistent with Takens (1981) theorem). However, this method is inappropriate 

for discrete movements. This is due to the data consisting of N short time series rather than the 
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type of continuous and repetitive time series which facilitate time delay embedding. That is, 

despite resembling a continuous and periodic variable when concatenated together, the final 

value of one trial/cycle is not a neighbour to the initial value of the next, excluding the pseudo-

periodic surrogate and other surrogate methods which employ time delay embedding. Therefore, 

the purpose of this article is to propose a generalisation of the pseudo-periodic surrogate method, 

without time delay embedding, which can be applied to discrete movement data. It is expected 

that this technique will produce outcomes similar to those of the Small shuffled surrogate method 

(Nakamura & Small, 2005, 2006), whereby the sequence of data is shuffled on a fine scale, 

destroying the micro structure of the original data (relationship between each datum and those 

immediately surrounding it), while the macro structural elements of the data (mean, variance, 

length) are maintained. The use of the proposed technique, quantification of critical values and 

the implementation of sample entropy to test for deterministic dynamics within discrete human 

movement will then be outlined.  

4.4 Method 

4.4.1 Participants 

This project was approved by the Australian Catholic University Human Research Ethics 

Committee. Ten male participants [24.1 (3.3) years; 176.6 (5.9) cm; 76.4 (7.8) kg] provided 

informed consent and had their data included in this study. The task chosen to demonstrate 

surrogate generation was an overarm throw toward a target. Participants were seated on an 

adjustable piano stool with knee and ankle angles approximating 90° and anatomical orientation 

respectively. The piano stool was placed 7 m from a projection screen (5 m x 3 m) upon which a 70 

cm round target consisting of 5 concentric circles was projected with the target centre being at a 

height of 2 m. Participants were seated such that their frontal plane was oriented perpendicular to 
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a line projected from the centre of the target to the piano stool. Participants attended two 

sessions where they performed two blocks of trials with 16 throws per block. The choice of 16 

throws per block was based on previous work (Taylor et al., 2015). Kinematic data were collected 

using a 10 camera (6 MX and 4 T-series) Vicon (Oxford Metrics, Oxford, UK) motion capture 

system, operating at 400 Hz. A Basler A602fc camera (Basler AG, Germany) recording at 100 Hz 

was used to capture ball release for later data cropping. Following data collection, three-

dimensional joint angles – shoulder internal/external rotation and flexion/extension at the elbow 

and wrist – were calculated. All angle data were cropped from the first target-directed motion of 

the finger marker through to ball release. Following investigation of the residuals (Winter, 2005) 

and frequency content of the data, all time series were filtered at 12 Hz using a 4th order 

Butterworth filter.  

4.4.2 Surrogate technique 

The following details the surrogate generation method. 

1. Let xij and yij be the jth scalar time point from the ith trial of observed joint angle time series 

(e.g., where xij is elbow angular displacement and yij is the same for the shoulder). Let the 

concatenated time series X and Y be;  

𝑋 = (𝑥𝑖𝑖) 𝑖=1,…,𝑁
𝑗=1,…,𝑇𝑖

 

𝑌 = (𝑦𝑖𝑖) 𝑖=1,…,𝑁
𝑗=1,…,𝑇𝑖

 

where N is the total number of trials collected, Ti is the total number of data 

points in the ith trial and X and Y are matrices with dimensions ∑ 𝑇𝑖𝑁
𝑖=1 .  
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2. Then the concatenated time series X and Y are combined to form a phase space, P, where 

P is a matrix with dimensions 2 ∗ ∑ 𝑇𝑖𝑁
𝑖=1 ; 

𝑃 = (𝑋𝑖𝑖 ,𝑌𝑖𝑖) 𝑖=1,…,𝑁
𝑗=1,…,𝑇𝑖

 

3. Initial (A) and final (B) conditions of individual trials within P are extracted where A and B 

are both 2 x N matrices; 

𝐴 = (𝑥𝑖1,𝑦𝑖1)𝑖=1,…,𝑁 

𝐵 = (𝑥𝑖𝑇𝑖 ,𝑦𝑖𝑇𝑖)𝑖=1,…,𝑁 

4. Elements of P are then shuffled, with no new entries (randomly resampled with 

replacement), to form the surrogate Ps. First an initial current state Ps(i,t) is selected at 

random from A. Set t = 1. 

5. To select the next state of Ps first noise is added to the current state creating C; 

𝐶 =  𝑃𝑠(𝑖,𝑡) + 𝜌𝜌𝑃𝑠(𝑖,𝑡)  

where ρ is a constant and g is Gaussian noise; 

𝑔 ~ 𝑁(0,1) 

6. The state in P which is closest to the noisy current state C created above is identified as 

km,n using the least root mean square difference between C and each column of the matrix 

P. Then the next state of Ps is defined as the successor; 

𝑃𝑠(𝑖,1+𝑡) =  𝑘𝑚+1,𝑛+1 
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7. The state Ps(i,1+t) is now the current state of Ps. Increment t. The next state of Ps is selected 

by repeating steps 5–6. The process of incrementing t and selecting the next state 

continues until the current state of Ps is equal to one of the sets in B.  

8. The value i can then be incremented and steps 4–7 repeated to obtain the next surrogate. 

This method is documented here using two concatenated input variables (X and Y in step 

1). Researchers should use the knowledge of their own data to ensure there is a suitable level of 

appropriateness when selecting these input variables, avoiding the use of unrelated or irrelevant 

combinations. However, as long as this level of appropriateness is maintained there is no 

theoretical limit to the number of input variables that are used to form the phase space P at step 

2. As such the matrix P could be defined such that its dimensions are  𝑉 ∗ ∑ 𝑇𝑖𝑁
𝑖=1   where V is equal 

to the number of input variables. Matrices A and B would then be V x N in dimension.  

4.4.3 Determining ρ 

An optimal value for ρ elicits the greatest number of small segments within the surrogated 

time series (Small, Yu, & Harrison, 2001), providing an optimal balance between effectively 

destroying the fine-scale dynamics of the signal and maintaining its macro structure. A small 

segment is defined as any run of surrogate data of length between 2 and the total length of the 

surrogate, identical to one existing at any point within the original data set. The segment is 

created when a switch in the sequence of data in P, currently being sampled to provide the next 

state of Ps, occurs. When ρ is very small (at or approaching zero) the number of small segments 

will be zero as original data and surrogate will be identical. As ρ increases, so too will the number 

of small segments, towards a maximum, before returning toward zero (as ρ → ∞). A large range of 

values for ρ (0–5; increments of 0.1) were tested 100 times using a block of data of one participant 
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(Figure 4.1a). This identified the probable range (0.1 – 0.9 and 0.1 – 2.0 for two and three 

dimensional phase spaces respectively) over which to test for individual peaks in small segments 

(Figure 4.1b). Each participant’s data were then tested over this range five times, and the ρ value 

associated with the highest mean number of small segments was selected (e.g., Figure 4.1c). This 

resulted in an individualised value for ρ to be used for surrogate generation for each block of 16 

throws for each participant.  

 

Figure 4.1. Results of testing over a large range of ρ values (a), probable range for individual values of ρ (b) 
and results of testing over this range for a single participant (c). 

4.4.4 Discrete data surrogate generation 

To demonstrate the use of the technique with different multiples of input variables, two 

different surrogate generations were conducted. First, elbow and shoulder time series were 

concatenated and combined to form a two dimensional phase space from which the respective 

surrogates were drawn. Next, wrist time series were included to form a three dimensional phase 

space and the process was repeated. The number of surrogates generated matched the number of 
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throws in the observed data for each block. Surrogates with similar length (± 1SD) as the mean 

length in the original data were accepted to maintain comparability. If this criterion was not met, 

the surrogate was rejected and the process repeated. This process resulted in two elbow and two 

shoulder surrogate time series, from the two and three dimensional phase space generation, 

being produced for each observed throw included in the study. In addition, one wrist surrogate 

was produced via the three dimensional phase space for each observed throw.  

4.4.5 Validity and reliability 

The biomechanical data used in this investigation was filtered, as is convention, to remove 

any systematic noise introduced by the data collection equipment. However, since surrogate data 

can appear similar to unfiltered/raw data, the surrogate generation process was also carried out 

on the raw movement data in addition to the filtered data. This analysis ensured that any 

observed differences in regularity between the data and its surrogate was the result of the 

methodology and not due to increased regularity introduced to the signal via the post collection 

smoothing. That is, if the raw data and its surrogate, as well as the filtered data and its surrogate, 

are both significantly different in regularity, this can be attributed to the surrogate method and 

not to any other conditioning of the observed data.  

To demonstrate the ability of the technique to produce surrogates which approximate the 

macro structure of the original data, surrogate mean, SD and data length were compared to that 

of observed signals using Mann-Whitney U tests. Furthermore, the ability for these values to be 

produced reliably was tested by repeating the surrogate generation process 6 times for each 

included block of throws. The mean, SD and length of the resultant data were assessed for 

reliability using intraclass correlation and standardised typical error tests (Hopkins, 2000, 2011). 

This was performed for surrogates produced both via two and three dimensional phase space.  
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4.4.6 Comparing real and surrogate data 

Sample entropy values quantify the regularity of a signal by assessing the probability that 

two sequences of points extracted from a time series of length N, which are similar for a period of 

m points within a tolerance r, will remain similar for a period of m + 1 points excluding self 

matches (Lake et al., 2002; Richman & Moorman, 2000). The sample entropy estimates of the 

observed and surrogate data were used for statistical inference. It was hypothesised that the 

observed time series would return lower sample entropy estimates than surrogates as they are 

not solely the result of noisy, random processes, but contain some element of deterministic 

dynamics. The lower entropy estimate of the observed data would reflect the increased regularity 

of a signal under the control of the neuromuscular system as opposed to the random, stochastic 

process producing the surrogate.  

The choice of values for the parameters m and r will affect the outcome of the entropy 

estimate, and consistency between parameters used for real and surrogate data comparison is the 

key concern. Still, values of m = 2 and m = 3 as well as a range of r values (0.1 – 0.3) were tested as 

recommended (Yentes et al., 2013) to determine these values. As a result, the parameters of m = 2 

and r = 0.1 were employed. Sample entropy estimated for the concatenated real and surrogate 

time series of the three joint angles for all blocks of throws. These estimates were compared using 

the Mann-Whitney U test. Non parametric statistics were employed as data did not display 

normality (Peat & Barton, 2005). 
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4.5 Results 

Surrogate generation was successfully conducted via the documented algorithm using 

both two and three dimensional phase spaces. An example of concatenated real and surrogate 

data as well as a single real and surrogate throw can be seen in Figure 4.2 (two dimensional phase 

space).  

 

Figure 4.2. All throws concatenated and a single throw for observed (a & b) and surrogate (c & d) data. 

The comparison of macro characteristics (mean, SD and length) showed no significant 

differences between the real and surrogate throws (p ≥ 0.68). There were also no significant 

differences between the mean, length and SD of elbow and shoulder surrogates produced via two 

and three dimensional phase space (p ≥ 0.61). The group mean value of ρ was significantly higher 

for the three dimensional phase space surrogate generation (p < 0.01). However, the number of 

short segments produced by this increased ρ value was no different (p = 0.55) between two and 

three dimensional applications. Reliability analysis indicated that the surrogate generation 
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algorithm was able to consistently produce this output as indicated by an ICC ≥ 0.99 and a small 

standardised typical error of ≤ 0.1 (Hopkins, 2000, 2011).  

Comparison between the sample entropy estimate of real and surrogated data for elbow, 

shoulder and wrist angles can be seen in Figure 4.3. Results of the Mann Whitney U tests indicated 

that observed time series had significantly lower sample entropy (p ≤ 0.05) than their respective 

surrogate for all joint angles across both two and three dimensional phase space generation. This 

was observed for both the filtered and unfiltered/raw data. There was no significant difference 

between the entropy estimates of the elbow and shoulder surrogates produced via the two and 

three dimensional phase space (p ≥ 0.08).  

 

Figure 4.3. Median (± inter-quartile range) sample entropy estimate for observed and surrogate data across 
the three included joint rotations. All surrogate data sample entropy estimates were significantly greater 
than their respective observed data estimate (p < 0.05). 
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4.6 Discussion 

The purpose of this paper was to propose a surrogate generation method for discrete 

movement data and to illustrate its use - i.e., to demonstrate that these data were not solely the 

result of stochastic processes. Shoulder, elbow and wrist joint angle time series were taken from 

an overarm throwing task and appropriate surrogates generated.  Reliability analyses suggest that 

this method can be depended upon to consistently produce the expected outcomes. All surrogate 

time series effectively maintained the overall trends in the observed data (Figure 4.2), as 

confirmed by the Mann Whitney U results showing no significant difference in the mean, SD and 

length between real and surrogate data. While the macro characteristics of the observed data 

were maintained, comparison of the sample entropy estimate for both real and surrogate data 

(Figure 4.3) showed that the observed discrete human movement is not solely the product of non-

deterministic ‘noisy’ processes. Furthermore, repeating the process using unfiltered/raw data 

produced the same results indicating that the differences between observed and surrogate data is 

the result of the surrogate method and not from any post-processing (increased regularity due to 

filtering) of the data. 

The documented method is theoretically capable of producing surrogates using any 

number of input variables, greater than or equal to two, by creating an equally dimensioned phase 

space. To demonstrate this, two and three variables were used to form two and three dimensional 

phase spaces respectively. Results showed that surrogates were effectively created using both 

approaches. However, despite no significant differences in the macro characteristics, the entropy 

estimates or in the number of short segments created, the selected values for ρ were significantly 

higher for each participant in the three dimensional phase space approach. This can be attributed 

to the requirement of a greater noise radius to effectively select the nearest noisy neighbour due 
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to the increased distance between trajectories that exist in a higher dimensional phase space. 

Qualitatively, it did appear that the increased ρ resulted in ‘noisier’ surrogates being produced via 

the three dimensional phase space, supported by the p values of the compared surrogates 

appearing to approach significance (p ~ 0.08). In addition to determining whether the variables 

being combined to form the phase space in this method are appropriate for the task, researchers 

should also ensure that the dimensions employed have the desired effect on surrogate outcomes.  

This study is not the first to investigate the use of surrogate techniques with human 

movement data. Previous work using a pseudo-periodic surrogate with normal walking and race 

walking (Miller et al., 2006; Preatoni et al., 2010) successfully displayed the presence of 

deterministic dynamics within the time series taken from these tasks. While the discrete data used 

in this study can appear cyclical when concatenated (Figure 4.2a), discontinuities are present 

which do not exist in cyclical data. Hence, the discrete, separate trajectories of the current data 

required a new method capable of producing multiple surrogates with multiple random walks 

from a single phase space formed by embedding multiple observed time series as opposed to one 

created by time delay embedding (Takens, 1981) such as with pseudo-periodic surrogates. Hence, 

the concatenated data of two or more joint rotations (step 1 in Surrogate Technique) are brought 

together to form the phase space (step 2 in Surrogate Technique) which maintained the 

biomechanical relationship between variables.  

In conclusion, the proposed method effectively produced surrogates for comparison with 

collected discrete movement data. This comparison identified that the observed signal is not solely 

the result of stochastic processes suggesting the presence of deterministic dynamics. Coupled with 

the ability of the algorithm to consistently produce the expected outcome, the modified small 
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shuffle surrogate method is both a valid and reliable technique to investigate the stated 

hypotheses in other discrete human movement time series. 
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Chapter 5. Changes in Variability and Adaptability during the Learning of a 

Novel Discrete Task (Study 4) 

5.1 Preface 

Studies 1, 2 and 3 laid the theoretical and method-related foundation to begin answering 

questions regarding the possible functional role of discrete movement variability in facilitating 

adaptability and to understand any interaction with learning. Study 4 documents the 

implementation of a longitudinal research design and the use of the contextual interference affect 

to this end, both recommendations from Study 1. Results from Study 2 guided the selection of trial 

size in this study. The novel surrogate method developed in Study 3 was implemented to 

strengthen the use of sample entropy in quantifying movement complexity (variability) in the 

collected time series. Preliminary data from this investigation was presented as an oral report at 

the 33rd International Conference on Biomechanics in Sports, Poitiers, France in 2015. 

5.2 Abstract 

Variability is an ever present and functional element of human movement which may 

facilitate adaptation to changing constraints. Adaptability may emerge throughout motor learning 

and be related to the variability profiles of an individual during this process. This study aimed to 

employ a longitudinal design and contextual interference to investigate changes in movement 

variability while learning a novel discrete task. It was hypothesised that those exposed to high 

contextual interference (task variability) during skill acquisition would outperform those exposed 

to low contextual interference. Furthermore, that improved performance by the high contextual 

interference group in a transfer task would provide evidence of adaptability. Twenty participants 

were randomised into one of two experimental groups and attended nine training sessions where 
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they practiced overarm throwing with their non-dominant hand. Surrogate methods and sample 

entropy were used to assess changes in movement variability at the first (joint) level while learning 

this novel discrete task. The results indicated the presence of the contextual interference effect 

which enhanced adaptability in the high contextual interference group. Surrogate techniques 

effectively demonstrated the presence of deterministic dynamics. Movement variability was not 

significantly different between the high and low contextual interference groups though several 

trends corroborated evidence reported from previous research. While inconclusive, the 

combination of longitudinal design, contextual interference and measurement of variability 

allowed speculation on several hypotheses to guide work on furthering our understanding of the 

functional role of variability in motor learning and adaption. 

5.3 Introduction 

Variability is considered an ever present and functional element of human movement 

within a dynamical systems approach (Newell & Corcos, 1993a). One of the functions attributed to 

movement variability is facilitation of adaptability of an organism to changing environmental and 

task constraints (Bartlett et al., 2007). In discrete movements this variability is different to 

undesired variability in the endpoint or outcome of the movement (e.g., the number of targets 

hit). Functional movement variability is considered to be a characteristic of highly skilled movers 

(Button et al., 2003; Wilson et al., 2008) and an individual’s variability profile is thought to change 

during task learning. For example, a U-shaped curve has been hypothesised to characterise 

coordination variability across skills, where the highest and lowest skilled display increased 

variability while those in intermediate stages have their variance constrained (Wilson et al., 2008). 

This pattern correlates well with the changes in degrees of freedom proffered by Bernstein (1967) 

with supporting evidence to be found in practice of soccer chipping (Chow et al., 2007; Chow, 
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Davids, Button, & Koh, 2008). In this sense, the later variability is considered functional as it exists 

alongside successful movement outcome. It is therefore different to the high variability displayed 

in early stages of motor learning, associated with searching for effective movement patterns, and 

the more stereotyped movement of middle stages (Bernstein, 1967). 

However, variability does not just exist within coordination and can manifest at different 

levels within an individual’s kinematic profile. One level consists of fluctuations in individual 

elements such as joints and segments. Another perhaps is whole system variability, where several 

coordinated elements combine to produce an overall movement pattern. At the first level, there is 

consistent evidence that variability decreases when skill increases (Betzler et al., 2012; Bradshaw 

et al., 2009; Button et al., 2003; Fleisig et al., 2009; Hiley et al., 2013). It could be hypothesised 

that higher variability in the lower skilled at this level is reflective of searching for effective 

movement patterns in line with the degrees of freedom and U-shaped curve hypotheses. 

However, the consistent decrease in individual variability as skill rises may be evidence of the need 

to constrain variability to facilitate optimal coordination and allow functional coordination 

variability to emerge. Understanding the change in variability profile at each level, in particular 

during any interaction with motor learning and/or adaptation, could provide insight into how any 

functional role of variability emerges.  

Retention and transfer tests are key methodologies in evaluation of motor learning. 

Retention tests assess the level of performance retained or present at the cessation of practice. 

Transfer tests determine the level of proficiency in a task which is related, yet novel, to the 

acquisition task. Concerning adaptability in motor learning, contextual interference effect 

describes the relatively superior performance on retention and transfer tasks of individuals who 

practice within a randomised sequence (high contextual interference) in contrast to the poorer 
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performance of those who practice a single task under blocked conditions (Brady, 2004). In 

particular, the improved performance on transfer tasks of those who learn under high contextual 

interference is considered evidence of greater levels of adaptability to changed task constraints 

(Magill & Hall, 1990). Contextual interference effect, which is supported by a large body of 

literature (Brady, 2004), provides a tool to observe differentials in adaptability, and hence tracking 

the changes and differences in movement variability of those learning a task under high and low 

contextual interference may yield useful indications about any relationship between variability 

and adaptability. 

In order to detect changes effectively over a period of learning, it is important to select an 

appropriate measure to quantify variability. Despite the fact that human movement data is almost 

always obtained in the form of time series sampled at a reasonably high sampling rate, much of 

the variability literature has relied on temporally discrete values extracted from time series, such 

as minima and maxima, which are often quantified using standard deviation and/or coefficients of 

variation (Bartlett, 2008). These discrete measures may fail to reflect the patterns or irregularities 

of the time-domain information obtained during data collection. More recent investigations have 

advocated the use of sample entropy measures which analyse the pattern of regularity in entire 

time series or groups of time series (Preatoni et al., 2010; Preatoni et al., 2013; Richman & 

Moorman, 2000). However, as measures of entropy quantify the regularity in signals of both 

deterministic and stochastic origin, it is important to first indicate that any captured signal is 

deterministic in nature to confirm that any detected variability is the result of deliberate neuro-

motor control as opposed to that of stochastic noise. This validation can be achieved by comparing 

observed data to that of a known stochastic origin derived using surrogate methods (Small et al., 

2007; Taylor et al., in press).  
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The aim of this investigation therefore is to examine the changes in movement variability 

during the learning of a novel discrete task under high and low contextual interference conditions 

using a surrogate method and sample entropy measures. The study intends to determine 

variability at the first (joint) level of the chosen activity as an initial step to understanding any 

relationship amongst variability, adaptability and learning. It is expected that those exposed to 

high contextual interference (task variability) during skill acquisition will outperform those 

exposed to low contextual interference in both retention and transfer tasks. Furthermore, that 

superior performance in the transfer task will provide evidence of adaptability in the high 

contextual interference group which will also display reduced movement variability at the first 

(joint) level. However, it will be interesting to ascertain whether the use of sample entropy, 

thereby assessing the entire time series, produces any contrary results. 

5.4 Method 

5.4.1 Participants 

Twenty healthy adult males [22.2 (3.3) years; 179.4 (6.5) cm; 78.1 (9.1) kg] were recruited 

and provided informed consent to participate in this study which was approved by the University 

Human Research Ethics Committee. Each participant completed a questionnaire to determine 

their dominant and non-dominant arm (Oldfield, 1971). To avoid any bi-lateral skill transfer, 

participants were not currently, or in the previous 5 years, participating in any task requiring 

overarm throwing for accuracy (e.g., cricket).  

5.4.2 Intervention design 

Each participant was randomised into one of two groups to practice the novel task of 

overarm throwing with their non-dominant hand. All throwing tasks took place in a laboratory and 



 

97 

 

consisted of throwing a regulation tennis ball at a target projected on a cloth screen (5 m x 3 m). 

One target was projected at a time at one of the nine locations indicated in Figure 5.1. The 

projection volume was set up such that the centre of the central target (2B in Figure 5.1) was at a 

height of two metres above the ground. Participants were seated on an adjustable stool, with their 

frontal plane square to and seven metres from the projection screen, their sagittal plane 

perpendicular to a line intersecting the centres of targets 1B-2B-3B (Figure 5.1), their feet flat on 

the ground and ankle and knee joints each approximating 90° flexion. Participants were asked to 

start each throw with hands resting on their knee, to throw overarm, as accurately as possible 

toward the centre of the projected target. 

 

Figure 5.1. Layout and size of the nine targets used in this investigation (left panel) and separation 
measurements (right panel). Only one target was visible during each throw. 

A contextual interference design was implemented which would see one group (Low CI) 

practicing under low contextual interference conditions and another (High CI) practicing under 

high contextual interference conditions. Each participant attended nine sessions. There was a 

minimum of 24 hours and a maximum of 72 hours between sessions. Each session consisted of a 
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pre-test, four blocks of practice throws and a post-test. In addition session nine included a transfer 

test where participants performed throws to novel targets. The pre-test of session one and the 

post-test of session nine acted as the pre and post tests for the entire experiment. The task flow 

for each session for each group can be seen in Table 5.1. Kinematic data were collected for all pre- 

and post-tests while ball impact/accuracy data was collected for all pre-, post- and transfer-tests. 

The number of throws performed in pre- and post-tests was based on previous work (Taylor et al., 

2015). For this investigation the data of interest comes from the pre-test of session one and the 

post- and transfer-tests of session nine. 

Table 5.1. 
Task flow for each group for session one through nine. 

 Low CI High CI 

Warm up Self-selected number of throws ~2 mins Self-selected number of throws ~2 mins 

Pre-test 16 throws at target 2B 16 throws at target 2B 

Rest 3 minutes 3 minutes 

Practice 
blocks 

4 blocks of 10 throws at target 2B (1 min 
rest between blocks) 

4 blocks of 10 randomised throws at 
targets 1B, 2A, 2C, 3B (1 min rest between 

blocks) 
Rest 3 minutes 3 minutes 

Post-test 16 throws at target 2B 16 throws at target 2B 

Rest 5 minutes (session 9 only) 5 minutes (session 9 only) 

Transfer-Test 4 x 4 throws at randomised novel targets 
1A, 1C, 3A, and 3C (session 9 only) 

4 x 4 throws at randomised novel targets 
1A, 1C, 3A, and 3C (session 9 only) 

 

Note: Target locations (e.g., 2B) refer to grid positions in Figure 5.1. 

5.4.3 Equipment 

Three dimensional (3D) motion capture and analysis were carried out using a 10 camera (6 

MX and 4 T-series) Vicon system operating at 400 Hz paired with Vicon Nexus  software and the 

unilateral Vicon Upper Limb Model plug-in (Oxford Metrics, Oxford, UK). A Basler A602fc camera 

(Basler AG, Germany), synchronised with the Vicon system and recording at 100 Hz (every frame 

synchronised with every 4th frame of the 3D data) was mounted perpendicular to the sagittal plane 
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to capture ball release for later data cropping. All system set-up, including participant preparation 

and post processing, was performed as per the Vicon Upper Limb Model product guide (Vicon 

Motion Systems, 2007). Ball impact with the target screen was captured at 120 Hz using a Casio 

EX-ZR1000 digital camera (Casio Computer Co., Tokyo, Japan) mounted behind the participant at 

the height of the central target (2B in Figure 5.1) with the focal axis aligned perpendicular to the 

projection screen. 

5.4.4 Analysis 

Due to the similarity of the data, the justification for and filtering method came from a 

previous investigation (Taylor et al., in press). All kinematic data were filtered within Nexus using a 

4th order low pass Butterworth filter with a cut-off frequency of 12 Hz. Elbow flexion/extension, 

shoulder internal/external rotation and wrist flexion/extension were extracted from the model 

outputs. These variables were chosen because of their key contribution to ball release velocity 

(van den Tillaar & Ettema, 2004). Data were cropped such that the beginning of the movement 

was the first positive (toward the target) motion of the finger marker, coinciding with the 

completion of wind up. The point of ball release, ascertained from the Basler camera data, 

indicated the end of the movement.  

Throw accuracy was determined by manually digitising the centre of the target and the 

ball, one frame before impact. Pixel distance between these two points was calculated and divided 

by the radius of the target in pixels to create a radial error ‘score’ such that the lower the score, 

the more accurate the throw is. A custom MATLAB script (The MathWorks Inc., Natick, MA, USA) 

was used to digitise the image and calculate radial error score, and digitisation was performed by 

one investigator and intra-individual reliability was high as indicated by an ICC > 0.99 and a small 

standardised typical error (≤ 0.03) (Hopkins, 2000, 2011). 
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To test for the presence of deterministic dynamics in the observed signals, data were 

compared to those produced using surrogate methods. Surrogate methods produce a time series 

which mimics the observed signal in macro characteristics such as shape, length, mean and 

variance but have its micro structure altered. In particular the method changes the relationship 

between one data point and its neighbours where determinism is stored (Theiler et al., 1992). 

With the relationship between consecutive values destroyed, the resultant time series is stochastic 

in nature compare to observed time series. Surrogate data were produced by a generalisation of 

the pseudo-periodic time series (Small et al., 2001) which produces outcomes similar to the Small 

shuffled surrogate method (Nakamura & Small, 2005, 2006) and has been shown to be valid and 

reliable to be applied to discrete human movement data (Taylor et al., in press). The number of 

surrogates generated matched the number of collected throws (i.e., 16 pre-test throws/observed 

time series) for each joint angle per participant. To ascertain determinism of the observed time 

series, observed and surrogate time series of each participant were concatented and then 

compared using sample entropy(m,r,N) (Richman & Moorman, 2000). If the observed signals 

return a lower entropy estimate than the respective surrogate, then it can be stated that the 

observed signal contains information that is deterministic in nature (Taylor et al., in press). Sample 

entropy(m,r,N) was estimated for the observed pre-test time series, where N was the length of the 

concatenated time series and m = 2 and r = 0.1 as determined via testing advocated by Yentes et 

al. (2013). This process was repeated for the 16 throws of each participant for each joint angle 

from the post-test. Thus, each participant had two sample entropy values calculated as measures 

of intra-individual variability, one each for the pre- and post-test for each joint angle.  

Entropy content of observed data and their respective surrogates were screened for 

normality and changes in entropy content of included time series (pre- to post-test) within and 

between groups were analysed using Wilcoxon Signed Rank and Mann Whitney U tests 
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respectively. Significance level was set at p < 0.05 and appropriate effect size measures were 

calculated for the parametric and non-parametric statistics (Cohens d and r respectively 

where  𝑟 = 𝑍𝑠𝑠𝑠𝑠𝑠
√𝑁

). Radial error scores (pre-, post- and transfer-test) were screened for normality 

and changes in radial error score (pre- to post-test) within and between groups were analysed 

using dependent and independent t-tests, respectively. The relationship between individual pre- 

and post-test radial error score and entropy values as well as change in score and entropy across 

training was assessed using Spearman’s rho. All statistical analysis was completed using MATLAB 

(The MathWorks Inc., Natick, MA, USA) or IBM SPSS (IBM, Armonk, BY, USA). 

5.5 Results 

Both Low CI (p < 0.05, d = 0.73) and High CI (p < 0.01, d = 1.44; Figure 5.2) groups 

significantly improved their radial error score from pre- to post-test. Significant improvement from 

pre- to transfer-test was also noted for the High CI group (p < 0.01, d = 1.39) while Low CI (p = 

0.70, d = 0.20) showed no statistical difference for the same comparison. Throwing performance 

of High CI was significantly better than Low CI at post- (p = 0.03, d = 0.96) and transfer-tests (p < 

0.01, d = 1.36). No statistical differences existed between groups in their throwing performance at 

the pre-test (p = 0.51, d = 0.31; Figure 5.2). 
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Figure 5.2. Results of radial error score (± SD) for pre-, post- and transfer-tests. * Significantly different (p < 
0.05) from the pre-test score of the same group. + Significantly different (p < 0.05) from the corresponding 
Low CI score. 

Sample entropy estimates of observed data were all significantly lower than that of their 

respective surrogates (p < 0.01, r ≥ 0.63; Figure 5.3). There were no significant differences within 

or between groups for the sample entropy estimates of observed elbow, shoulder and wrist joint 

rotation data (p ≥ 0.06; Figure 5.4). There were several trends in the data which were associated 

with small, medium or large effects with practice. The increase in entropy estimate of the Low CI 

group, pre- to post-test, for elbow and shoulder returned medium (r = 0.40), large (r = 0.60) and 

small (r = 0.21) effects for elbow, shoulder and wrist respectively. The High CI group displayed a 

trend of decreasing entropy estimate with practice associated with a medium (r = 0.47) and large 

(r = 0.53) effect for the shoulder and wrist, respectively. The entropy estimate for the elbow of the 

High CI group had an insignificant increase with associated small effect size (r = 0.21). At post-test 

the High CI group displayed lower variability than Low CI at the shoulder and wrist showing small 

effects (r ≤ 0.24). There was very little difference between groups in elbow variability at post-test 

(r = 0.07). 
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Figure 5.3. Results of entropy content (± interquartile range) comparisons between observed and surrogate 
data. # significantly lower (p < 0.05) than the corresponding surrogate. 

 

 

Figure 5.4. Results of entropy content (± interquartile range) comparisons between groups for all joint 
rotations. 

There was significant moderate positive correlation between change in radial error score 

and change in entropy pre- to post-test for the shoulder (rho = 0.46, p = 0.04) while shoulder and 

wrist joint showed insignificant and small positive correlations for the same comparison (rho ≤ 

0.21, p ≥ 0.37; Figure 5.5). The relationships between pre-test radial error score and entropy 

estimates were insignificant (p ≥ 0.13) and negative (Figure 5.6) with small rho (- 0.06 and - 0.07) 

for shoulder and wrist and medium rho for elbow (- 0.35). Conversely, the relationships between 
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post-test radial error score and entropy estimates were (Figure 5.7). Again these correlations were 

weak (rho ≤ 0.18) and insignificant (p ≥ 0.45).   

 

Figure 5.5. Relationship between change in radial error score from pre- to post-test and change in entropy 
over the same period. Correlation between change in radial error and shoulder entropy estimate was 
significant (rho = 0.46, p = 0.04). 

 

Figure 5.6. Correlation between pre-test radial error score and elbow entropy estimate. 

 

Figure 5.7. Correlation between post-test radial error score and elbow entropy estimate. 
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5.6 Discussion 

The contextual interference hypothesis was confirmed as throwing accuracy was superior 

in the High CI compared to Low CI group for both the post-test and transfer-test, despite the 

significant improvement which occurred with practice for both groups. The results comply with a 

large body of research using analogous methods (Brady, 2004). The better performance of the 

High CI group at the post-test indicates that the mode of practice undertaken facilitated enhanced 

retention and progression of skill acquisition in this group. Furthermore, and of more importance 

to this investigation, the improved performance on the transfer-test suggests that High CI were 

better able to adapt movement patterns acquired during practice to changed task constraints.   

The entropy content of the surrogate data was significantly greater than that of the 

observed data. This signifies that deterministic dynamics in the observed data, as manifested in 

the relationship between consecutive data points, are destroyed during surrogate generation 

(Taylor et al., in press). This provides confidence that the variability in observed kinematic signals 

is the result of direct neuromuscular control, rather than from random noise, and any observed 

changes in variability can be considered the result of adjustment in the neuromuscular 

organisation or control of the individuals tested. Furthermore, the result allows inference to be 

made when changes in regularity are identified over time, such as the period of learning in this 

investigation. 

Despite the detected differences in throwing accuracy, within or between groups with 

practice, there were no significant differences found for the sample entropy estimates of joint 

rotations. However, associated effect sizes suggested there were trends in data which may 

warrant further consideration. Post practice the better skilled (High CI) group displayed a trend of 

having lower variability than lower skilled participants (Low CI) for shoulder and wrist joints. 
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Across training, the High CI group tended to decrease their variability, while Low CI showed the 

opposite. These patterns of results corroborate other research evidence which has shown lower 

variability at the joint/segment level for higher skilled compared to lower skilled participants 

(Betzler et al., 2012; Bradshaw et al., 2009; Button et al., 2003; Fleisig et al., 2009; Hiley et al., 

2013). The elbow behaved differently, displaying the lowest level of variability which increased for 

both groups over training. Although the results were non-significant and had small effect sizes, the 

lower variability at this joint may be explained by anatomical factors. The elbow has fewer degrees 

of freedom compared to the shoulder and wrist, and often travels across nearly its full range of 

motion (130° ± 15° - 43° ± 13°) in the sagittal plane during throwing. Thus, assessing the time 

series via entropy and not just a discrete extraction, such as value at release, may result in 

decreased variability as maxima, minima and acceleration at the extremes of range of motion may 

be mediated by anatomical constraints. Furthermore, the increase in variability at the elbow pre- 

to post-test for both groups could be indicative of an improvement in developmental level of 

throwing over training. It was noted from observation that some participants changed from a 

more front on technique where degrees of freedom were more constrained similar to stage 1 

development (Gallahue et al., 2012), to a more developed movement comparable to stage 3 

throwing development or higher (Gallahue et al., 2012) with greater contribution from the 

shoulder. 

Correlations between pre- and post-test scores and their relevant entropy estimate were 

not significant. Perhaps of most interest is the reversal of slopes describing the relationship with 

practice (as shown in Figure 5.6 and Figure 5.7) where better scores became mildly more related 

to lower variability at post-test. This is supported by the stronger and significant result for the 

shoulder joint, wherein a relationship between improvement in accuracy with practice and 

decrease in entropy were shown (Figure 5.5).   
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It is important to consider how these variability results relate to the demonstrated 

improved performance and adaptability of the High CI compared to Low CI group. Superior 

performance on the transfer task of the High CI group could indicate that this cohort made better 

use of compensatory coordination to enhance adaptability, whereby perturbations in one element 

of a coordinated system compensated for by the other element(s). This phenomenon has been 

identified in many discrete sporting tasks (Bootsma & van Wieringen, 1990; Button et al., 2003; 

Kudo et al., 2000; McDonald et al., 1989; Mullineaux & Uhl, 2010; Schmidt, 2012; Wilson et al., 

2008). Furthermore, one of the functional roles credited to variability is the ability to facilitate 

changes in coordination (Bartlett, 2008; Bartlett et al., 2007). Taken together, it appears the trend 

in reduced variability of High CI at the level measured in this investigation could be at a magnitude 

which allowed this compensatory coordination to occur. The increased variability levels in Low CI 

might indicate that either they do not allow compensatory coordination, or, that this ability has 

not yet been attained by this group. These observations are strengthened by the trend in 

individual correlation results which indicated a relationship between decreased variability and 

improved performance (Figure 5.5).  

In order to strengthen these hypotheses coordination variability will need to be quantified 

over a similar period of motor learning. Furthermore, a full description of how the variability 

profiles at this first level change over the course of skill acquisition, and not just their respective 

values at pre- and post-test, will also provide further insight into the interaction between 

variability, adaptation and learning. Another consideration is the structure of the variability 

present. While entropy offers many strengths, such as the ability to reduce data without losing 

information, it only quantifies the magnitude of variability. Adoption of other methodologies such 

as functional principal component analysis could reveal differences in the way variability is 

structured between more and less skilled groups which could further enhance our understanding. 
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5.7 Conclusion 

The contextual interference effect was observed in the current population for an applied 

discrete task, confirming enhanced adaptability in the group experiencing greater contextual 

interference. Results from the surrogate technique highlighted the deterministic nature of the 

collected time series, and subsequently the variability of three joint angles of the upper limb were 

quantified using sample entropy. Several trends in variability changes followed those reported in 

previous research that examined the interaction of variability, adaptability and learning. The 

combination of adopting a contextual interference design and measurement of variability allowed 

several hypotheses to be formed which could enhance our understanding of the functional role of 

variability in motor learning and adaption. 
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Chapter 6. Extended Method 

Throughout this extended method several computer software packages and applications 

are repeatedly referred to. For brevity in the ensuing paragraphs the relevant full name, 

description, version and manufacturer information for these items are outlined in the Table 6.1. 

Subsequently, reference to these elements will use simplified names/descriptions. 

Table 6.1. 
Software programs used. 

Item Description Manufacturer Versions Used 
Vicon Nexus Used for control of the Vicon 

motion capture system and post 
processing of collected data 

Oxford Metrics, 
Oxford, UK 

1.8.1 to 1.8.9 

Vicon Motus For manual digitisation purposes Oxford Metrics, 
Oxford, UK 

8 

Matlab Used for the majority of data 
analyses using included and custom 
scripts/functions 

The MathWorks, 
Natick MA, USA 

R2012b – 
R2015a 

Microsoft Excel Used for organisation and cross-
checking of data and for interfacing 
with the Matlab software 

Microsoft Corporation, 
Redmond, WA, USA 

2007 - 2013 

Microsoft 
PowerPoint 

Used for projection of the targets 
onto the projection screen. 

Microsoft Corporation, 
Redmond, WA, USA 

2007 - 2013 

SportsCode Used to identify, and export in 
image format, key frames from ball 
impact footage. 

Sportstec, Sydney, 
Australia 

Version 10 

IBM SPSS Statistical testing IBM, Armonk, NY, USA 19 - 21 

Statistica  Statistical testing Dell, Tound Rock, TX, 
USA 

7 

EndNote Bibliography management software 
used to manage the results of the 
systematic review search (Study 1) 

Thompson Reuters, 
New York, NY 

X3 – X7 
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6.1 Discrete Movement Variability in Sports and Sports Derived Tasks: A Systematic 

Review (Study 1) 

6.1.1 Search criteria development 

6.1.1.1 Early approaches 

Early approaches to develop the search criteria attempted to implement the ‘subject 

terms’, ‘headings’, ‘MeSH’ and ‘sports thesaurus’ of the Academic Search Complete, CINAHL, 

MEDLINE and SPORTDiscus academic databases respectively. Time was spent selecting all relevant 

terms from these database tools. This was attempted to achieve the dual goals of including all 

relevant articles whilst minimising the number of results returned to reduce the manual search 

time. However, several key articles were not included in the initial search results. As such this 

approach was abandoned in favour of the method reported in Study 1. 

6.1.2 Manual search method 

6.1.2.1 Use of EndNote 

Following the conducting of the search (sections 2.3.2 and 2.3.3), results were imported 

into the bibliographic management software EndNote for title and abstract inclusion/exclusion. 

Due to the large number of results several techniques were implemented to attempt to quickly 

identify articles which obviously were outside of the inclusion criteria. Firstly the EndNote search 

function was used to identify common terms associated with excluded content. These included 

physiological terms such as “heart rate” and “blood pressure” for which variability studies are 

common. Following the exhaustion of relevant search terms results were sorted by author name 

and a line-by-line consideration of title and/or abstract was implemented until the 66 articles 
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reported in the method of Chapter 2 remained and the second stage of inclusion/exclusion 

assessment commenced. 

6.2 Determining Optimal Trial Size Using Sequential Analysis (Study 2) 

6.2.1 Participants 

Participants for this study were drawn predominantly from a convenient sample consisting 

of staff and students of the University. The main methods of recruitment consisted of posting the 

appended flyer on campus (see section 9.6), emailing the same flyer to interested staff, and by 

calls for participant’s given by staff during lecture presentations. In accordance with ethical 

clearance, no students were directly recruited by the research team.   

A total of 10 female and 13 male participants were recruited for the study. Of the 13 

males recruited, 3 were removed due to their age (≥ 32) in order to provide a more homogenous 

sample. All participants were engaged in regular physical activity and throwing experience ranged 

from novice to semi-experienced. Preferred throwing arm was self-reported. Participant data can 

be seen in Table 6.2.  
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Table 6.2. 
Participant data for Study 2. 

Participant # Sex Age (yrs) Height (cm) Weight (kg) Preferred Arm 

001 F 23 174.9 70.95 R 
004 F 27 171.5 74.00 R 
006 M 20 178.6 62.55 R 
007 M 21 180.4 82.40 R 
008 M 20 160.1 69.55 R 
009 M 20 179.6 67.20 R 
010 M 20 160.6 60.40 R 
011 M 20 182.5 90.40 R 
012 F 20 160.9 55.30 R 
013 F 20 159.0 56.15 R 
014 M 26 182.1 72.05 R 
015 F 21 161.1 51.25 L 
016 F 20 171.8 58.35 L 
017 M 21 175.3 70.35 R 
018 F 18 178.3 77.25 L 
019 M 18 187.4 72.65 R 
020 F 23 156.1 75.35 L 
021 F 28 158.3 55.55 R 
022 F 23 165.1 54.25 R 
023 M 21 172.0 73.90 R 

 

6.2.2 Data collection equipment 

A Vicon (Oxford Metrics, Oxford, UK) motion capture system was used to acquire 

kinematic data. The system consisted of 10 cameras of which 6 were MX models and 4 were T-

series models, Vicon Ultranet and Giganet control modules and a compatible computer system. 

The cameras were configured to capture at 400 Hz, with exposure adjusted to maximise image 

clarity. 

Two dimensional (2D) data of the ball trajectory in the sagittal plane were captured using 

a Basler A602fc camera (Basler AG, Germany), synchronised with the 3D motion capture using a 

Vicon sync cable. This camera had a capture frequency of 100 Hz and as such each frame captured 
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was synchronised with every 4th frame collected by the Vicon system. The camera was placed 

perpendicular to the sagittal plane of the participant on the side of the throwing arm. 

6.2.3 Laboratory configuration 

Configuration of the laboratory, including participant position, location of Vicon Cameras, 

Basler Camera and configuration dimensions can be seen in Figure 6.1. 

 

KEY: 1 – 10 Vicon Cameras. 11 Stool (with capture volume origin and axes). 12 Projector. 13 Casio camera. 14 
Vicon Giganet and Ultranet. 12 PC. 16 Monitors. 17 Projection screen. 18 Basler camera. 
CAMERA LENS HEIGHTS: 1, 6, 7, 8 (~2 m). 2 & 3 (~ 2.2 m). 4, 9 & 10 (~1.8 m). 5 (~0.4 m). 13 (2 m – aligned 
with target centre). 18 (approximately ball release height). 

Figure 6.1. Laboratory configuration. 
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An image of a round target consisting of 5 equally spaced coloured concentric circles, 

radius increasing by 7 cm per circle to a maximum of 70 cm (Figure 6.2) was displayed via a beam 

projector (Dell Inc., Round Rock, Texas) on a cloth screen (5 m x 3 m) suspended from the ceiling. 

The vertical position of the projected target centre was located 2 m from the ground.   

 

Figure 6.2. Target for Study 2. 

An adjustable piano stool (to facilitate consistent ankle and knee posture across 

participants of different stature) was placed square to the cloth screen at a distance of 7 m in line 

with the target centre. A capture volume was created by aligning the cameras to the piano stool as 

illustrated in Figure 6.1). This arrangement of the cameras was settled on after extensive trial and 

error testing of many configurations and enabled the most consistent tracking of each of the 

passive markers by three or more cameras throughout the throwing motion. This capture volume 

was dynamically calibrated using a 5 marker Vicon T-shaped calibration wand in accordance with 

the manufacturers’ recommendations before each new participant. Volume system origin was 

then set such that the x-axis represented medial – lateral movement, y-axis represented anterior – 

posterior movement and the z-axis represented vertical movement with the central (0,0,0) point 

located at the centre of the piano stool at sitting height (Figure 6.1). 
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6.2.4 Participant preparation 

Upon arrival participants were asked to change into the attire they were requested to 

bring. Male participants undertook testing shirtless while female participants were asked to wear 

a crop top, sports bra or similar. Once attired, participant height and weight was recorded using a 

stadiometer (accurate to 0.1 cm) and scales (accurate to 0.05 kg) in accordance with ISAK 

guidelines. Participants then had 14 retro-reflective 14 mm markers attached to the torso and 

throwing arm at appropriate landmarks using double sided tape (3M, Maplewood, MN). Fixomull 

(BSN Medical, Luxembourg) hypoallergenic flexible cloth tape was then placed over the marker 

base to further secure the marker and avoid any unwanted movement. The marker locations were 

placed in accordance with the Vicon Upper Limb Model product guide (Vicon Motion Systems, 

2007). Marker locations can be seen in Figure 6.3. Definition of marker locations can be seen in 

Table 6.3. 

Table 6.3. 
Definition of marker locations. 

# Name Definition 
1. Clavicle Jugular notch at the meeting of the clavicles 
2. Sternum Xiphoid process 
3. C7 7th cervical vertebra 
4. T10 10th thoracic vertebra 
5. Shoulder Acromioclavicular joint 
6. Upper Arm A Lateral aspect of the upper (throwing) arm (forming a triangular cluster with upper 

arm B and C markers) 
7. Upper Arm B Lateral aspect of the upper (throwing) arm (forming a triangular cluster with upper 

arm A and C markers) 
8. Upper Arm C Lateral aspect of the upper (throwing) arm (forming a triangular cluster with upper 

arm A and B markers) 
9. Elbow Lateral epicondyle of the elbow 
10. MEP Medial epicondyle of the elbow (calibration only) 
11. Wrist A Thumb side of the wrist 
12. Wrist B 5th phalange side of the wrist 
13. Forearm Postero-lateral aspect of the forearm (forming a triangular cluster with the wrist 

markers) 
14. Finger Head of the 3rd metacarpal 
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Figure 6.3. Retro-reflective marker locations. 

6.2.5 Procedure 

Following placement of the markers, participants were seated on the piano stool within 

the capture volume. The stool was adjusted such that hip and knee angles approximated 90° 

flexion and the ankle joint was at anatomical position (0° plantar/dorsiflexion). Participants were 

then asked to orient the upper body into anatomical position and a static trial was collected. This 

trial was used to perform a static calibration where the model was fitted to the individuals’ 

anthropometry. Participants were then instructed of the task. They were asked to throw a 

regulation tennis ball, as accurately as possible, toward the centre of the target using their chosen 

dominant arm. Participants were asked to begin each throw with their hands placed on their knees 

and their frontal plane aligned parallel to the projection screen. Participants familiarised 

themselves with the task until they were ready to proceed (~2–3 minutes). Participants then 

performed 30 throws which were included in the analyses. Time between throws was self-

determined. Once the ball was returned, participants were notified when data collection had 

begun and were instructed that they were free to throw at any point following this cue. Most 
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participants performed three or four throws per minute during testing. All participant trials were 

included in analyses regardless of movement outcome and accuracy. 

6.2.6 Post processing 

Following data collection three dimensional data were post processed using Vicon Nexus 

software. Marker trajectories were reconstructed and labelled. The moment of ball release, the 

last frame where the finger(s) were in contact with the ball, was identified from the synchronised 

video data and served as the end point of the trial. Data after this point were cropped and 

discarded. Data were inspected for any discontinuities or erroneous data (marker drop outs, 

flipping etc.) and filled/corrected where necessary. Trajectories were then filtered using a 4th order 

Butterworth low pass filter implementing a cut-off frequency of 12 Hz (information on the 

selection of cut-off frequency can be found in section 0). Once filtered these trajectories were 

submitted to the Vicon Upper Limb Model which produced angular displacement histories detailed 

in Table 6.4. These model outputs were then filtered using a 4th order Butterworth low pass filter 

implementing a cut-off frequency of 12 Hz. Marker trajectory and model output data were then 

exported from the Vicon Nexus program in ASCII format for further analyses. 

Table 6.4. 
Angular displacement histories output by the Vicon Upper Limb Model. 

Location Rotation 
Shoulder Abduction – adduction 

Flexion – extension  
Horizontal abduction – adduction 
Internal – external rotation  
 

Elbow Flexion – extension 
 

Forearm Pronation – supination 
 

Wrist Flexion – extension 
Radial – ulnar deviation 
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6.2.7 Ball release variables 

Footage from the Basler camera was exported from the Vicon Nexus software and 

imported into Vicon Motus to determine ball release height, angle and velocity. This camera was 

calibrated prior to each participants capture using a calibration rod of known length (0.52 m). The 

ball centroid was digitised using a circular mask and data exported. All manual digitising was 

performed by one person who had previously demonstrated high intra-tester reliability in this task 

(Taylor et al., 2014). Ball release variables were calculated using a custom script in Matlab. Release 

height was the positive displacement in the y-axis of the ball centroid at the point of release. This 

was calculated by determining the difference in height (y-axis displacement) between the ball 

centroid and the wrist marker in millimetres from the ball release video and adding this value to 

the y-axis displacement of the wrist marker at release from the Vicon data. Release velocity was 

calculated at the point of release using the first central difference method. Release angle was 

calculated as the angle to the horizontal of a 2D segment defined by the ball centroid position at 

release and one frame after release.  

6.2.8 Data selection 

The following variables were chosen as they represent either commonly employed 

dependent variables in biomechanics research or the raw coordinates from which they are 

calculated. Furthermore, the landmarks chosen for these 3D displacement variables were selected 

to represent different anatomical locations (proximal/distal), sites more and less susceptible to 

skin artefact and where low and high frequency movement would occur. The four anatomical 

markers chosen for analyses: T10 (10th thoracic vertebra), Upper Arm (over the muscle belly of 

triceps), Elbow (lateral epicondyle) and Finger (distal end of the 3rd metacarpal bone) of the 

throwing arm. Three joint angles - shoulder internal/external rotation and flexion/extension at the 
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elbow and wrist - from the kinematic model were chosen for their role in producing ball velocity 

(van den Tillaar & Ettema, 2004). Selected time series data were time normalised to 101 points 

using cubic spline interpolation. Discrete values of the final determinants of ball trajectory (ball 

release angle, height and velocity) were also included from 2D data.  

6.2.9 Sequential analysis 

The aim of this study was to determine optimal trial size for overarm throwing and similar 

movements by determining the point at which the mean of target variables becomes stable. The 

sequential analysis technique was employed to determine the point of mean stability (i.e., trial 

size). This technique is illustrated in Figure 3.1 using mock data. The dashed grey line represents 

the Nth trial mean taken from all (1 to N) trials and two solid grey lines labelled +0.25 SD and -0.25 

SD represent a ‘bandwidth’ based on SD calculated from all trials. The selection of ±0.25 for the 

bandwidth was based on it being the most commonly reported value from the sampled sequential 

estimation literature (see Table 9.1 in section 9.7 for information on previous sequential 

estimation studies).  

The Nth trial mean and SD bandwidth form the criterion against which stability is assessed. 

For example, for a 20 trial condition the Nth trial mean is the mean of all trials up to and including 

the 20th. The value of one SD about this mean is then multiplied by +0.25 and -0.25 to create the 

upper and lower bounds of the bandwidth. Once the bandwidth is established, the technique 

requires the calculation of a moving point mean (solid black line), starting with the mean of the 

first two values and moving through the first three, first four etc., until reaching the Nth trial. 

Stability is determined when the moving point mean rests within the SD bandwidth and stays 

within for all remaining trials as indicated by A in Figure 6.4. It is worth noting that while points B 

and C also rest within the bandwidth in this example, they do not represent the point of stability 
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as there are excursions of the moving point mean outside of the SD bandwidth between B and A 

as well as between C and A. 

 

Figure 6.4. Example of sequential analysis technique applied to a trial size of N. The criterion bandwidth is 
illustrated by the solid grey lines indicating a distance of ±0.25 SD from the N trial mean (dashed grey line). 
Assessed against this criterion bandwidth is the moving point mean (black line), starting at trial two. The 
point of stability is represented by the letter A. Points B and C do not represent stability as the mean deviates 
outside the bandwidth between these points and point A. 

The sequential analysis technique was employed on both discrete and time series 

kinematic data (Table 6.5). To perform sequential analysis on 3D marker displacement and joint 

angle time series data, each of the 101 sample points were treated as a discrete point, providing 

trials to stability for each sample point along the entire time series. To determine the effect of 

using different trial numbers on sequential analysis score, three main conditions - first 10 (1st to 

10th trial), first 20 (1st to 20th trial) and first 30 (1st to 30th trial) trials - were assessed with the 

criterion mean and 0.25 SD bandwidth calculated using all trials included in each condition. 

Similarly, mid 10 (11th to 20th trial), last 10 (21st to 30th trial) and mid 20 (6th to 25th trial) 

conditions were compared to establish if results were dependent on where in the sequence of 

throws a sample was extracted.  
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Table 6.5. 
Discrete and time series variables included in sequential analysis. 

Marker Variables  Joint Angle Variables  Ball Release Variables 
Maximum value 
Minimum value 
Value at release 

Normalised time series 

Peak angle value 
Time of peak angle value 

Value at release 
Normalised time series 

Release height 
Release velocity 

Release angle 

Note: Peak angle value represents relevant maximum or minimum value, occurring near wind up 
completion. Joint angles were shoulder external/internal rotation, elbow and wrist flexion/extension. 
Marker data was analysed in X, Y and Z axes. 

 

6.2.10 Comparing trial number conditions 

To qualitatively assess the behaviour of the sequential analysis elements, the moving point 

mean for all discrete variables from the 30 trial condition was plotted against the criterion 

bandwidth from that condition and viewed for each participant (see Figure 6.5). While this 

bandwidth was specific to the 30 trial condition, the moving point mean is the same for each 

condition, up to the total trial number of that condition (for first 10, 20 and 30 conditions only).  
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Figure 6.5. Example of sequential analysis of a finger marker (X axis) minimum value in 30 trial condition 
from one participant showing the relationship between raw kinematic data (dash-dot grey), moving point 
mean (solid black) and 0.25 standard deviation (SD) bandwidth (dash grey). Stability point (sequential 
analysis score = trial 15) is indicated by an arrow. 

For further determination of the condition from which to report sequential analysis 

values, two scores were submitted to statistical analyses, the sequential analysis score (trials to 

stability) and a relative sequential analysis score. The relative sequential analysis score is novel to 

this investigation and is calculated by dividing the sequential analysis score by the total trial 

number of the condition from which it was taken. This relative score can highlight differences in 

the behaviour of the sequential analysis technique between conditions in respect to the 

percentage of maximum possible trials taken to achieve mean stability. Calculation of all 

sequential analysis results and generation of all relevant plots were performed using custom 

scripts in Matlab. 

The sequential analysis score for all time series variables were compared using a 4 x 101 

(first 10, first and mid 20 and first 30 conditions x 101 time series samples) two way repeated 

measures analysis of variance (ANOVA) and a 3 x 101 (first, mid and last 10 x 101 time series 

samples) two way repeated measures ANOVA with Fisher’s least significant difference post hoc 
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tests. The time series ANOVA outcomes were considered as the primary results from which a 

determination would be made as all discrete variables were contained within the time series. To 

confirm any patterns observed within time series, group mean sequential analysis scores for the 

discrete marker variables taken from individual participant time series data were also compared 

across trial number conditions (first, mid and last 10, first and mid 20 and 30 trials) using a 6 x 1 

one way repeated measures ANOVA with Fisher’s least significant difference post hoc test. 

Discrete marker variables were analysed in this manner as they provided 12 cases (4 markers x 3 

axes) per condition (minimum, maximum and release), whereas joint angle and ball release 

variables only provided 3 cases per condition and thus were not included in the analyses. Relative 

sequential analysis scores were compared across conditions in the same manner as the sequential 

analysis score.  

To determine if any statistical differences existed between the 10th, 20th and 30th trial 

means of time series and discrete marker values, these elements were also compared in a similar 

manner to sequential analysis score and relative sequential analysis score. This comparison 

consisted of a 3 x 101 two way repeated measures ANOVA for time series variables and a 3 x 1 one 

way repeated measures ANOVA for group mean discrete marker values. 

For repeated measures ANOVA testing an alpha level of 0.05 was taken to indicate 

significance. Fisher’s least significant difference post hoc test significance was assessed against the 

relevant Bonferroni adjusted p-value in each instance. Discrete variable testing was conducted 

using IBM SPSS. Due to the need to analyse 101 data points per participant, time series analyses 

were conducted using Statistica. 
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6.2.11 Reporting sequential analysis results 

To guide trial size selection, discrete variable sequential analysis results were reported 

from the chosen condition - first 20 (see results and discussion for reasoning) - as group mean and 

95% confidence interval (95% CI) values. A 101 x 1 one way repeated measures ANOVA was 

conducted on all time series sequential analysis results. Fisher’s least significant difference post 

hoc test was used to determine whether differences existed across the 101 points. Where upon no 

differences were found, the point (out of the 101 time normalised points) displaying the greatest 

group mean sequential analysis result (95% CI) was extracted and reported to guide trial size 

selection for time series analyses. 

6.3 A Surrogate Technique for Investigating Deterministic Dynamics in Discrete Human 

Movement (Study 3) 

6.3.1 Participants 

Participants were recruited for this study in the same manner as for Study 2. See section 

6.2.1 for further information. A total of 10 male participants [24.1 (3.3) years; 176.6 (5.9) cm; 76.4 

(7.8) kg] had their data included in this study. As this represented a sub-sample from the total 

group recruited for the overall project (see section 6.4.1), the group was counterbalanced to 

ensure equal representation from the two experimental groups. A sub-sample was used so as to 

begin work developing the surrogate method before the collection and post processing of all data 

had been completed. Pre- and Post-test data was used to ensure that the technique was effective 

on the range of data that was to be expected, i.e., that it could be used on time series from novice 

and more skilled throwers. Participant data for this sub sample can be seen in Table 6.6. 



 

126 

 

Table 6.6. 
Participant data for Study 3. 

Participant # Group Age (yrs) Height (cm) Weight (kg) Preferred Arm 

001 1 21 179.3 64.95 R 

002 2 23 177.2 83.30 R 

003 2 27 169.9 73.35 R 

004 2 27 169.9 63.85 R 

005 1 27 177.8 86.30 R 

006 1 23 180.4 83.75 R 

007 2 19 182.9 79.50 R 

009 1 27 184.3 81.05 R 

010 1 20 166.8 71.35 R 
 

6.3.2 Data collection equipment and laboratory configuration 

The data collection equipment and configuration of the laboratory are predominantly the 

same as those reported in sections 6.2.2 and 6.2.3 respectively. The only difference being the use 

of a different, greyscale, target which consisted of six equally spaced concentric circles (Figure 

6.6). This target provided better contrast for post processing analyses than the coloured target 

(Figure 6.2) and was projected as reported in section 6.2.3 such that it had a diameter of 70 cm. 

 

Figure 6.6. Target for Study 3. 
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6.3.3 Participant preparation 

Participant preparation was the same as that reported for the male participants in section 

6.2.4. 

6.3.4 Procedure 

Participants attended two sessions where they performed two blocks of trials with sixteen 

throws per block (total of 4 blocks; 64 throws). The choice of 16 throws per block was based on 

previous research (Taylor et al., 2015). Following being marked up, participants were seated on 

the piano stool within the capture volume. The stool was adjusted such that hip and knee angles 

approximated 90° flexion and the ankle joint was at anatomical position (0° plantar/dorsiflexion). 

Participants were then asked to orient the upper body into anatomical position and a static trial 

was collected. This trial was used to perform a static calibration where the model was fitted to the 

individuals’ anthropometry. Participants were then instructed of the task. They were asked to 

throw a regulation tennis ball, as accurately as possible, toward the centre of the target using their 

non-dominant hand. The non-dominant hand was used as data from this study were taken from 

the larger, overall project sample. Handedness was determined using an Edinburgh Handedness 

Scale (Oldfield, 1971) questionnaire (see section 9.9). Participants were asked to begin each throw 

with their hands placed on their knees and their frontal plane aligned parallel to the projection 

screen. No other directions regarding throwing technique were given.  Time between throws was 

self-determined. Once the ball was returned, participants were notified when data collection had 

begun for the next trial and were instructed that they were free to throw at any point following 

this cue. Most participants performed three or four throws per minute during testing. All 

participant trials were included in analyses regardless of movement outcome and accuracy (4 

blocks x 16 throws totalling 64 throws). 
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6.3.5 Post processing 

Post processing was performed as reported in section 6.2.6. 

6.3.6 Selection of variables 

All marker displacement and model output time series were exported in ASCII format. 

These files were then imported into Matlab. The start of the movement was defined as the first 

positive movement of the most distal (finger) marker in the anterior/posterior (y) axis (i.e., first 

movement towards the target). A custom script identified this point and cropped all data to this 

moment. Based on their contribution to throw velocity (van den Tillaar & Ettema, 2004), three 

joint rotations were extracted from the model outputs for the further use in this investigation. 

These were; shoulder internal/external rotation, elbow flexion/extension and wrist 

flexion/extension.  

6.3.7 Surrogate technique 

A surrogate technique for use with discrete human movement data was developed in line 

with the aims of the study. This technique is a generalisation of the pseudo-periodic surrogate 

method (Small et al., 2001) which was inappropriate for the intended application because of its us 

of time delay embedding. Time delay embedding creates a representation of a multi-dimensional 

state space formed by the interaction of multiple independent yet related variables using just one 

of those variables (Takens, 1981). This method employs a single variable as the first dimension and 

then all subsequent dimensions are time delayed versions of the original variable where the delays 

are multiples of tau. While very effective in creating surrogates this method requires data to be 

continuous in nature. As such the novel technique in this study was defined such as to effectively 

account for the discontinuities that exist between the end of one trial and the beginning of the 
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next when discrete movement data is concatenated. These discontinuities do not exist in periodic 

or pseudo-periodic data. The method is documented formulaically in Chapter 4.  To implement 

this algorithm a custom function was written in Matlab (section 0). This served as the key function 

in several subsequent scripts derived to implement the analyses and testing documented below.  

6.3.8 Determining rho (ρ) 

Rho (ρ) is a critical value in the novel technique due to its role in determining the distance 

between the current state of the surrogate and the next state. However, as it is arbitrarily set a 

method and rationale for optimising the value chosen is important. An optimal value for ρ elicits 

the greatest number of small segments within the surrogated time series (Small et al., 2001), 

providing an ideal balance between effectively destroying the fine-scale dynamics of the signal and 

maintaining its macro structure. A small segment is defined as any run of surrogate data of length 

between 2 and the total length of the surrogate, identical to one existing at any point within the 

original data set. The segment is created when a switch in the sequence of data in P, currently 

being sampled to provide the next state of Ps, occurs. When ρ is very small (at or approaching 

zero) the number of small segments will be zero as original data and surrogate will be identical. As 

ρ increases, so too will the number of small segments, towards a maximum, before returning 

toward zero (as ρ → ∞). A large range of values for ρ (0–5; increments of 0.1) were tested 100 

times using a block of data (16 throws) of one participant (Figure 6.7a). This identified the 

probable range (0.1 – 0.9 and 0.1 – 2.0 for 2D and 3D phase spaces respectively) over which to test 

for individual peaks in small segments (Figure 6.7b). Each participant’s data were then tested over 

this range five times, and the ρ value associated with the highest mean number of small segments 

was selected (e.g., Figure 6.7). This resulted in an individualised value for ρ to be used for 

surrogate generation for each block of 16 throws for each participant.  
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Figure 6.7. Results of testing over a large range of ρ values (a), probable range for individual values of ρ (b) 
and results of testing over this range for a single participant (c). 

6.3.9 Discrete data surrogate generation 

To demonstrate the use of the technique with different multiples of input variables, two 

different surrogate generations were conducted. First, elbow and shoulder time series were 

concatenated and combined to form a 2D phase space from which the respective surrogates were 

drawn. Next, wrist time series were included to form a three dimensional phase space and the 

process was repeated. The number of surrogates generated matched the number of throws in the 

observed data for each block. Surrogates with similar length (± 1 SD) as the mean length in the 

original data were accepted to maintain comparability. If this criterion was not met, the surrogate 

was rejected and the process repeated. This process resulted in two elbow and two shoulder 

surrogate time series, from the 2D and 3D phase space generation, being produced for each 

observed throw included in the study. In addition, one wrist surrogate was produced via the three 

dimensional phase space for each observed throw.  
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6.3.10 Validity and reliability 

The biomechanical data used in this investigation was filtered, as is convention, to remove 

any systematic noise introduced by the data collection equipment. However, since surrogate data 

can appear similar to unfiltered/raw data, the surrogate generation process was also carried out 

on the raw movement data in addition to the filtered data. This analysis ensured that any 

observed differences in regularity between the data and its surrogate was the result of the 

method and not due to increased regularity introduced to the signal via the post collection 

smoothing. That is, if the raw data and its surrogate, as well as the filtered data and its surrogate, 

are both significantly different in regularity, this can be attributed to the surrogate method and 

not to any other conditioning of the observed data. To achieve this, captured data was post 

processed as outlined in section 6.2.6, with the exception that neither the trajectories nor model 

outputs were filtered. Raw data were then exported and cropped as detailed in section 6.3.6. 

Surrogates were then generated as stated in section 6.3.9. 

To demonstrate the ability of the technique to produce surrogates which approximate the 

macro structure of the original data, surrogate mean, SD and data length were compared to that 

of observed signals using Mann-Whitney U tests.  

The ability for these macro characteristics to be produced reliably was tested by repeating 

the surrogate generation process six times for each included block of throws. The mean, SD and 

length of the resultant data were assessed for reliability using intraclass correlation and 

standardised typical error tests (Hopkins, 2000, 2011). This was performed for surrogates 

produced both via two and three dimensional phase space. The reliability calculations were carried 

out using Microsoft Excel spreadsheets (Hopkins, 2000, 2011).  
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6.3.11 Comparing real and surrogate data 

Sample entropy values quantify the regularity of a signal by assessing the probability that 

two sequences of points extracted from a time series of length N, which are similar for a period of 

m points within a tolerance r, will remain similar for a period of m + 1 points excluding self 

matches (Lake et al., 2002; Richman & Moorman, 2000). The sample entropy estimates of the 

observed and surrogate data were used for statistical inference. It was hypothesised that the 

observed time series would return lower sample entropy estimates than surrogates as they are 

not solely the result of noisy, random processes, but contain some element of deterministic 

dynamics. The lower entropy estimate of the observed data would reflect the increased regularity 

of a signal under the control of the neuromuscular system as opposed to the random, stochastic 

process producing the surrogate. Sample entropy was estimated for the concatenated real and 

surrogate time series of the three joint angles for all blocks of throws. These estimates were 

compared using the Mann-Whitney U test. Non parametric statistics were employed as data did 

not display normality (Peat & Barton, 2005).  

6.3.12 Selection of critical values for sample entropy 

The choice of values for the parameters m and r will affect the outcome of the entropy 

estimate. What is most important, when using entropy estimates for comparisons within or 

between condition, individuals etc., is consistency in the selection of these critical values. Of 

course, optimising validity as much as possible is still important. As such values of m = 2 and m = 3 

as well as a range of r values (0.1 – 0.3) were tested as recommended by Yentes et al. (2013) to 

determine these values. Minimal difference was noted between the use of m = 2 and m = 3 and as 

such a value of m = 2 was used in line with the recommendation of Yentes et al. (2013) for short 

data sets. All participant mean sample entropy estimate results for the range of r values (0.1 – 0.3) 
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indicated a consistent decrease in entropy as r values increased (Figure 6.8). This indicates that as 

the test becomes more liberal, through an increase in r which increases the threshold within which 

two segments of a time series can be considered similar, the signal is considered less variable. As 

such it was decided to employ r = 0.1 as this makes the test more conservative. Furthermore, this 

value has been employed previously in human movement (Preatoni et al., 2010). 

 

Figure 6.8 Mean sample entropy (SampEn) estimates for all participants when employing different values for 
r on elbow, shoulder and wrist time series. 
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6.4 Changes in Variability and Adaptability during the Learning of a Novel Discrete Task 

(Study 4) 

6.4.1 Participants  

Twenty adult males [22.2 (3.3) years; 179.4 (6.5) cm; 78.1 (9.1) kg] free of injury and illness 

had their data included in this study. In total 21 participants were recruited into the study. 

However, one participant received a back injury (not during testing) during their participation 

period. Due to concerns over altered biomechanics and the effect of that on variability measures 

they were excluded from further participation. Handedness was determined for each participant 

using an Edinburgh Handedness Scale (Oldfield, 1971) questionnaire (section 9.9). To avoid any bi-

lateral skill transfer, participants were not currently, or in the previous 5 years, participating in any 

task requiring overarm throwing for accuracy (e.g., cricket). Participant data for this study can be 

seen in Table 6.7. 
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Table 6.7. 
Participant data for Study 4. 

Participant # Group Age Height Weight Arm Sport? 

001 Low CI 21 179.3 64.95 R Soccer 

002 High CI 23 177.2 83.30 R Touch 
003 High CI 27 169.9 73.35 R Personal Fitness 

004 High CI 27 169.9 63.85 R Personal Fitness 

005 Low CI 27 177.8 86.30 R Crossfit  

006 Low CI 23 180.4 83.75 R Olympic Lifting 

007 High CI 19 182.9 79.50 R Oz Tag 

008 Low CI 27 184.3 81.05 R Personal Fitness 

009 Low CI 20 166.8 71.35 R Soccer 

010 Low CI 19 180.5 90.05 R Soccer 

011 Low CI 19 184.4 82.80 L Rugby Union 

012 Low CI 19 185.4 80.50 R Cycling 

013 High CI 27 177.2 76.10 R Personal Fitness 

014 High CI 19 183.0 75.60 R Soccer 

015 High CI 20 183.1 84.20 L Personal Fitness 

016 Low CI 20 189.1 70.35 R Endurance events 

017 Low CI 19 173.4 66.15 R Futsal 

018 High CI 26 188.3 100.80 R Thai Boxing 

019 High CI 21 179.3 81.15 R Swimming 

020 High CI 23 185.8 78.05 R Soccer 
 

High CI = High contextual interference; Low CI = Low contextual interference. 

6.4.2 Data collection equipment and laboratory configuration 

The data collection equipment and configuration of the laboratory are predominantly the 

same as those reported in sections 6.2.2 and 6.2.3 respectively. In addition to the data collection 

equipment outlined in these sections ball impact with the target screen was captured at 120 Hz 

using a Casio EX-ZR1000 digital camera (Casio Computer Co., Tokyo, Japan). Differences also 

existed in the projection of the target/s to facilitate the experimental design. The target used was 

the same as that reported in section 6.3.2. This target was projected, one at a time, at one of the 

nine locations indicated in Figure 6.9. The projection volume was set up such that the centre of the 
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central target (2B in Figure 6.9) was at a height of two metres above the ground and space 

between targets was as indicated in the right hand panel of Figure 6.9.  

 

Figure 6.9. Layout and size of the nine targets used in this investigation (left panel) and separation 
measurements (right panel). Only one target was visible during each throw. 

6.4.3 Experimental design 

Each participant was randomised into one of two groups to practice the novel task of 

overarm throwing with their non-dominant hand. Group assignment can be seen in Table 6.7. A 

contextual interference design was implemented which would see on group practicing under low 

contextual interference conditions (Low CI) and another practicing under high contextual 

interference conditions (High CI). Each participant attended nine sessions (see Table 6.8). There 

was a minimum of 24 hours and a maximum of 72 hours between sessions. Each session consisted 

of a pre-test, four blocks of practice throws and a post-test. In addition session nine included a 

transfer test where participants performed throws to novel targets. The pre-test of session one 

and the post-test of session nine acted as the pre and post tests for the entire experiment. The 

task flow for each session for each group can be seen in Table 6.8. Kinematic data were collected 
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for all pre- and post-tests while ball impact/accuracy data was collected for all pre-, post- and 

transfer-tests. The number of throws performed in pre- and post-tests was based on previous 

work (Taylor et al., 2015). For Study 4 the data of interest came from the pre-test of session one 

and the post- and transfer-tests of session nine. 

Table 6.8. 
Task flow for each group for session one through nine. 

 Low CI High CI 

Warm up Self-selected number of throws ~2 mins Self-selected number of throws ~2 mins 

Pre-test 16 throws at target 2B 16 throws at target 2B 

Rest 3 minutes 3 minutes 

Practice 
blocks 

4 blocks of 10 throws at target 2B (1 min 
rest between blocks) 

4 blocks of 10 randomised throws at 
targets 1B, 2A, 2C, 3B (1 min rest 

between blocks) 
Rest 3 minutes 3 minutes 

Post-test 16 throws at target 2B 16 throws at target 2B 

Rest 5 minutes (session 9 only) 5 minutes (session 9 only) 

Transfer-Test 4 x 4 throws at randomised novel targets 
1A, 1C, 3A, and 3C (session 9 only) 

4 x 4 throws at randomised novel targets 
1A, 1C, 3A, and 3C (session 9 only) 

 

Note: Target locations (e.g., 2B) refer to grid positions in Figure 6.9. 

6.4.4 Participant preparation 

Participant preparation for each session was the same as that reported for the male 

participants in section 6.2.4 with the exception that height and weight were only recorded before 

session one.  

6.4.5 Procedure 

Participants performed their throws seated on an adjustable stool, with their frontal plane 

square to and seven metres from the projection screen, their sagittal plane perpendicular to a line 

intersecting the centres of targets 1B-2B-3B (Figure 6.9). The stool was adjusted such that hip and 

knee angles approximated 90° flexion and the ankle joint was at anatomical position (0° 
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plantar/dorsiflexion).  Participants were asked to start each throw with hands resting on their 

knee, to throw overarm, as accurately as possible toward the centre of the projected target. The 

object thrown was a regulation tennis ball which had been dyed black in order to provide contrast 

against the projected target during digitisation.  

A session specific PowerPoint file was created for each participant containing the target 

images to be projected for that session. For participants in the Low CI group this consisted of just 

the central target image separated by slides indicating the current participant, session and 

test/practice block. Targets for the practice blocks of the High CI group included 10 instances of 

each of targets 1B, 2A, 2C, 3B (Figure 6.9). The order that these were presented across the 4 

training blocks per session was randomised so that each participant from the High CI group 

experienced a unique sequence of training throws across the 9 sessions.  Hence, the High CI group 

PowerPoints consisted of the central target for pre- and post-tests and the 10 instances of the 4 

practice targets, again separated by slides indicating the current participant, session and 

test/practice block. PowerPoints for each participants transfer task included 4 instances each of 

the novel targets 1A, 1C, 3A, and 3C (Figure 6.9). The order of these were again randomised. 

For the pre- and post-test, participants were notified when data collection had begun and 

instructed they could begin the throw any time after that. When each throw was completed they 

selected a new ball from those placed beside them, adopted the ready position and awaited 

notification that data collection had begun again. This process was repeated until all 16 balls had 

been thrown. Most participants completed three to four throws per minute during testing.  

For the training blocks and transfer-test, no movement data collection was captured, only 

ball impact data. For the training blocks 10 balls were provided. Participants were again instructed 

to throw as accurately toward the centre of the target as possible and to begin the throw with 
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hands on their knees. The timing of the throws was determined by the participant but each 

training block usually lasted 60 – 90 seconds. The only difference in training block procedure 

between groups was that the High CI participants had to wait until the new target was displayed 

before proceeding with their next throw. This did not alter the flow of the training blocks 

substantially compared to the Low CI group.  

During the rest periods between test and practice blocks, the tennis balls were collected 

and returned to the position beside the stool. During this time participants were free to move 

around the laboratory or remain seated as they preferred.  

6.4.6 Post processing 

Post processing of motion capture data from the pre- and post-tests was the same as 

reported in section 6.2.6. 

6.4.7 Selection of variables 

Movement trajectories and model outputs were exported, cropped and variables 

extracted as reported in section 6.3.6. 

6.4.8 Throw accuracy data 

Video files containing ball impact footage from each session’s pre-test and post-test as 

well as the transfer test were exported in .avi format. These files were imported into SportsCode 

where the frame before impact with the cloth screen for each throw was identified. This frame 

was then exported as a .jpeg image file. This image file was then imported into Matlab. Within 

Matlab, three points on the circumference of the target and the centre of the ball were manually 

digitised. Digitising was performed by one investigator and intra-individual reliability was high as 
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indicated by an ICC > 0.99 and a small standardised typical error (≤ 0.03) (Hopkins, 2000, 2011).  

This reliability was calculated using the same spreadsheet as reported in section 6.3.10. 

Using custom Matlab scripts coordinates of the centre of the target were identified and its 

radius and circumference calculated in pixels. The distance of the ball centre from the target 

centre, in pixels, was then calculated. This distance was then divided by the radius of the circle in 

pixels to produce a radial error score. This resulted in a score where the lower the value, the more 

accurate the throw. Further, scores ≤ 1 represent an instance where the ball struck within the 

circumference of the target while scored > 1 struck outside of the target circumference.  

6.4.9 Testing for determinism 

Joint rotation data (elbow, shoulder and wrist) were compared to surrogate data to test 

for the presence of determinism. This was conducted by using the methods outlined in section 6.3 

including surrogate generation and comparison to observed data using sample entropy.  

6.4.10 Analysis 

Once determinism of the observed time series was ascertained the 16 throws of each 

participant during the pre-test were concatenated and sample entropy(m,r,N) calculated where m 

= 2, r = 0.1 and N was the length of the concatenated time series. This was repeated for the 16 

throws of each participant from the post-test. Thus, each participant had two sample entropy 

values calculated as measures of intra-individual variability, one each for the pre- and post-test.  

The dependent variables, radial error score (pre-, post- and transfer-test) and entropy estimates of 

the included time series (pre- and post-test) were screened for normality and submitted to 

appropriate inferential tests. Changes in radial error score (pre- to post-test) within and between 

groups were analysed using dependent and independent t-tests, respectively. Changes in entropy 
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content of included time series (pre- to post-test) within and between groups were analysed using 

Wilcoxon Signed Rank and Mann Whitney U tests, respectively. Significance level was set at p < 

0.05 and appropriate effect size measures were calculated for the parametric and non-parametric 

statistics (Cohens d and r respectively where  𝑟 = 𝑍
√𝑁

). 
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Chapter 7. Summary 

7.1 Overview 

The aim of this thesis was to contribute new knowledge to the understanding of any 

functional role of variability in discrete movement and, in particular, its interaction with 

adaptation and motor learning. Four primary studies (Study 1 through 4) form the basis of this 

work and provide an account of the systematic approach to ensure this aim was achieved with due 

understanding of what had been done previously and via the use of valid methodologies. Study 1 

documented a systematic review of the literature and provided collation of the previously 

published evidence supporting the concept of a functional role for movement variability. It 

facilitated further development of hypotheses and provided guidance on research questions 

concerning the phenomenon of discrete movement variability. The review also documented the 

previous methods used to investigate movement variability and allowed discussion of the 

contemporary techniques which are, or may be, employed in the field. Furthermore, it highlighted 

areas of research design and method which need to be in place to enable effective and valid study 

of discrete movement variability.  

Two method-related factors raised in Study 1, regarding trial size and the use of surrogate 

techniques, resulted in Studies 2 and 3. Specifically, the review identified the need to adequately 

determine the number of trials required for variability quantification. To determine the optimal 

trials size, Study 2 presented the results of the work to ensure a valid employment of the 

sequential analysis technique. The review also outlined the potential benefits of adopting 

surrogate techniques within variability investigations. Unfortunately, no suitable surrogate 
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method existed for discrete movement. Study 3 outlined the development of such a technique and 

the testing of its validity and reliability for the role.  

With the completion of Studies 1, 2 and 3 the overarching aim of the thesis could be 

addressed. By coupling the developed methods with the knowledge and techniques drawn from 

the review an experimental study (Study 4) was designed to monitor and quantify variability 

during motor learning and to detect any evidence of adaptability. It is acknowledged that this 

study provides only the first step in beginning to better understand these relationships. However, 

coupled with theoretical understanding provided by Study 1 and the rigorous method provided by 

Studies 2 and 3, this thesis provides important knowledge to variability research and a solid 

platform for future work.  

7.2 Summary of Aims, Hypotheses and Findings 

7.2.1 Discrete Movement Variability in Sports and Sports Derived Tasks: A 

Systematic Review (Study 1) 

The aim of Study 1 was to provide a systematic review of the design, methods and 

analyses of research into discrete movement variability in sport or sports derived tasks. A second 

aim was to review the findings and conclusions of the systematically sourced studies to ascertain 

what was known and unknown about the role of variability in discrete sporting movements, 

particularly related to any functional role for variability in discrete movement. The assembled 

literature represented a considerable body of work within the field and provided valuable 

information on method-related and theoretical considerations, and understanding within this 

research area. 
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The number of studies included is indicative of an appreciation of the importance of intra-

individual studies of discrete movement variability. Predominantly driven by a dynamical systems 

perspective of human movement, these researchers saw value and importance in investigating 

discrete movement variability. There was an acceptance that variability is omnipresent and 

evidence that it can exist alongside consistent and successful movement outcomes. However, the 

key findings of this review relate to the hypothesised functional roles of variability in movement: 

1) reduction of injury risk; 2) enabling coordination change; and 3) facilitating adaptation to 

varying task or environmental constraints. 

Alongside facilitating adaptability, another functional role proffered for movement 

variability is injury prevention. However, a limitation of the review in relation to this is that studies 

documenting only injured participants were excluded. This was done so as to remove studies 

which may have methodologies governed by the capabilities of such a population rather than 

dictated by what was considered most rigorous, in particular relating to trials size. As such, the 

evidence in this review regarding injury and movement variability is far from comprehensive or 

convincing. That is not to say the evidence does not exist for this function in discrete movement as 

it does in continuous tasks, rather that it may have been excluded. Yet, this is a very important and 

potentially beneficial area for future work, one that aligns with a primary aim of sports 

biomechanics, injury prevention.  

Concerning the role of variability in coordination change and adaptability, the evidence 

suggested that by assessing the phenomenon across different kinematic levels, during a process of 

skill acquisition, a greater understanding may be achieved. Those levels include 1) single elements 

such as joint, segment or implement kinematics; 2) coordination; and 3) whole system movement. 

In line with the assembled evidence, it may be expected that at the first level, movement 
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variability would decrease as skill level increased. This reflects the possibility that variability at this 

level needs to be constrained to a certain extent to produce consistently successful movement 

outcomes, possibly to facilitate effective coordination. However, regarding coordination 

variability, the evidence was less conclusive. There was some support for the U-shaped curve 

hypothesis proffered by Wilson et al. (2008) while other studies showed different relationships 

between coordination variability and skill level leading to the consideration that it may be task 

dependent. It is also hypothesised that adaptability emerges in concert with coordination 

variability, perhaps as a function of compensatory coordination. This provides another avenue of 

investigation. 

The tools to effectively investigate these theories and hypotheses were highlighted by the 

work on the first aim of this review. It was recommended that investigators adopt longitudinal 

research designs. While much useful information was provided by studies which had a single 

contact with participants, some of the strongest evidence came from those with multiple 

longitudinal data points. In particular, those that implemented some form of training intervention 

showed the greatest link between variability and adaptability. It was also deemed important to 

ensure a valid justification of trials size for the purposes of variability quantification. The benefits 

of adopting surrogate methods was explained, both to ensure the maintenance of biological 

determinism post data smoothing and to indicate that any detected variability was the outcome of 

neuromuscular control and not of random noise. Finally, contemporary issues surrounding the 

quantification of variability were discussed. In particular the shortcomings of SD and CV were 

explained and the use of emerging techniques that can assess entire time series, potentially 

expose variability structure or allow informative data reduction were advocated. 
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7.2.2 Determining Optimal Trial Size Using Sequential Analysis (Study 2) 

One of the recommendations arising from the systematic review was the valid 

determination of trial size a priori. That is, to provide justification of the number of trials that an 

individual participant is asked to complete such that investigators or practitioners can be confident 

that the measured variability is reflective of the true variability. A statistical method, sequential 

analysis technique, was identified from the literature and deemed appropriate for this task. During 

pilot testing of the method however it was discovered that the technique responded differently 

depending on how many trials were used to calculate the criterion SD. As such, an exploratory 

study was designed with two main aims. The first aim was to determine the effect of using 

different numbers of trials from which to calculate the criterion SD on the result of the sequential 

analyses. The second aim was to determine the number of throws required to achieve mean 

stability in overarm throwing. The hypothesis behind the second aim was that, as variability is the 

fluctuation in scores around a mean, to obtain a true reflection of that variance requires the mean 

to be stable. While these aims are clearly relevant to the overall theme of this thesis, the 

technique and results of the article potentially have a broader impact beyond variability research 

and are reported as such. 

The results showed that the outcome of the technique was affected by the total trial 

number from which criterion mean and SD values were drawn. The moving average plotted 

against the number of trials underwent a ‘transition phase’ early on which was evident in the 

qualitative analysis of the plots of each iteration of the technique. Significant differences were 

seen between ‘relative’ sequential analysis scores taken from trials where the criterion SD was 

calculated from a total of 10, compared to 20 or 30 trials. The mean took relatively longer to 

stabilise in 10-trial conditions and as such it was concluded that 20 or more trials should be used 
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for the determination of the criterion SD. As there were few differences between results taken 

from 20- and 30-trial conditions, the decision was made to calculate trials to stability from the 20-

trial conditions. This resulted in a recommendation of between 13 and 17 trials to ensure a stable 

mean in overarm throwing studies.   

This study has several key strengths. It assessed multiple variables – e.g., marker 

trajectories, joint displacements and ball release variables – to ensure coverage of many relevant 

biomechanical factors. Furthermore, both discrete and time series variables were tested. The 

technique was assessed predominantly across the first 10, 20 and 30 trials from the 30 throws 

collected per individual. Furthermore, 10 throws from the middle of the 30, last 10 throws and the 

middle 20 throws were tested to ensure that the results achieved were determined by the number 

of trials and not by the position from wherein the sample they were taken. No differences were 

found between these sub samples and the first 10 or first 20 throws. To ensure that sufficient 

throws were suggested for future studies the testing carried out and the subsequent 

recommendations (mean trials to stability + 95% CI) were conservative yet results were still similar 

to previous kinetic studies.  

Despite these stated strengths there were some limitations. The inclusion of sequential 

analysis of time series was novel to this investigation and was done due to the understanding that 

variability information is contained across entire waveforms. However, some limitations can be 

acknowledged since the time series were normalised and each of the 101 data points were treated 

separately. This presumes that each point is independent, which is against the assumption of 

determinism within biological systems linking each datum and its neighbours. Despite this 

limitation it was still considered worthwhile applying the technique to the normalised time series 

to gain some guidance on the number of trials required for valid future analysis of time series 
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data. An avenue for future work might be to combine other analyses, such as functional data 

analysis, with the concepts of sequential analysis to provide a more valid determination of trials to 

stability in time series data. 

As the selection of number of trials and the criterion bandwidth (as a fraction of criterion 

SD) are arbitrarily determined, this technique is not as objective as others such as intra-class 

correlation, which is another limitation of sequential analysis. Other measures taken to mediate 

this limitation included the testing done on trial numbers as well as selecting the criterion 

bandwidth (± 0.25 SD) based on it being the most common application in the literature (Table 9.1 

in section 9.7). Still, sequential analysis is more conservative than intraclass correlation which can 

perhaps compensate for its subjectivity (see section 3.6). 

The sequential analysis technique was chosen to determine the number of trials required 

to be collected per session in the main data collection phase for this thesis. Due to potential 

limitations of the technique determined early, the method was subjected to rigorous testing, and 

interpreted conservatively, to ensure that the number of trials selected provided the opportunity 

to effectively quantify movement variability. Following the analyses, a trial size of 16 throws was 

determined to be used for the remaining investigations. 

7.2.3 A Surrogate Technique for Investigating Deterministic Dynamics in Discrete 

Human Movement (Study 3) 

As identified within Study 1, surrogate methods are potentially beneficial statistical 

techniques for use in human movement variability research. These methods have the ability to 

demonstrate that a collected biological signal is deterministic in nature and can provide evidence 

against the ‘variability as noise’ hypotheses of some motor control theories. Furthermore, they 
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may provide assurance that a filtered biological signal has retained its determinism post 

treatment. Another consideration relating to the use of surrogate methods lay in the application 

of entropy measures which was the intention in the final study of this thesis. As entropy quantifies 

variability in signals which are either deterministic or stochastic in nature, it is important to 

demonstrate the determinism present in observed data. 

Many surrogate techniques exist for a variety of different applications. Continuous human 

motion, in the form of gait, had previously been investigated using a pseudo-periodic surrogate 

method. However, the embedding method used in this surrogate technique was rendered 

inappropriate by the discontinuities that exist from one trial to the next in discrete human 

movement such as overarm throwing. Searches revealed no appropriate method currently existed 

for such an application. Hence, the first aim of this study was to develop a surrogate method for 

discrete human movement and determine its validity and reliability. The second aim was to 

demonstrate the implementation of the technique including determination of critical values and 

the testing of surrogate output using sample entropy as a discriminating statistic. 

The resultant technique made use of a phase space constituted by two or more 

biomechanically relevant variables from which the sampling occurred to create each surrogate. 

This phase space, when in 2D form, resembles an angle-angle plot and replaces that created by 

time delay embedding within the pseudo-periodic surrogate technique. In theory this space can 

contain as many dimensions as the investigator sees fit, as long as included variables remain 

relevant and related. In order to demonstrate as such, the technique was employed using both a 

2D and 3D space. The selection of the critical value rho (ρ) was thoroughly explained and 

subsequently surrogates were generated. The statistical analysis of the resultant output indicated 

that the technique was able to validly produce surrogates of discrete human movement. 
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Surrogates resembled time series produced from the collected throws with statistically indifferent 

length, mean and variance. Sample entropy estimates confirmed that the surrogates had been 

stripped of their deterministic dynamics while this had been maintained in the observed data.   

The strength of this study is that it has produced a surrogate technique, with evidenced 

validity, which has the potential for a broad range of applications. Furthermore, it serves the final 

aim of this thesis by providing a tool to support subsequent variability analyses. The method of 

this technique is comprehensively documented and all relevant information is provided to enable 

readers to implement it in their own investigation. A rigorous battery of reliability tests employed 

in this study ensures that researchers can be confident that the technique will consistently 

produce the expected output. A limitation of the study is that the technique has only been 

employed on kinematic data from overarm throwing. While care was taken to ensure wide 

applicability, it cannot be stated that the method would behave in the exact same manner across 

different discrete movements or for non-kinematic variables. As such, scope exists to further the 

testing of the technique by investigating other applications. 

7.2.4 Changes in Variability and Adaptability during the Learning of a Novel 

Discrete Task (Study 4) 

The final study of this thesis addressed the overarching focus of the entire work: to 

investigate the interaction of discrete movement variability, adaptation and learning. It sees the 

bringing together of factors suggested within Study 1, such as use of appropriate research design 

and quantification techniques, alongside the method-related elements determined or developed 

in Studies 2 and 3. The study employed a longitudinal design, contextual interference, surrogate 

methods and sample entropy to investigate changes in movement variability at the first (joint 

kinematic) level during learning of a novel discrete task. It was hypothesised that the contextual 
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interference effect would be observed in line with previous works and that improved performance 

by the high contextual interference group in a transfer task would provide evidence of 

adaptability. At the beginning and end of a series of nine practice sessions, movement variability 

would be quantified at the first, joint kinematic, level where it was expected those that perform 

better would display lower variability in line with previous research. Finally, the use of the trial size 

determined in Study 2 and the surrogate technique developed in Study 3 would lend validity to the 

final results.  

Results indicated the presence of the contextual interference. The group exposed to 

contextual interference, in the form of task variability during skill acquisition, outperformed those 

exposed to low contextual interference. Furthermore, the superior performance of this group in 

the transfer-test indicated their better ability to adapt to these novel task constraints. The use of 

the surrogate technique effectively demonstrated the presence of deterministic dynamics within 

the observed time series. This allowed further inference to be sought through the use of sample 

entropy. The entropy results were not statistically significant. However, several group and 

individual trends appeared to reflect previous works where variability at the first, joint kinematic, 

level was lower for those who performed better, and their superior adaptability was suggestive of 

effective compensatory coordination within these participants. Considered alongside their lower 

variability at the joint level, the result may indicate that a constraining of joint variance is required 

to facilitate functional coordination and coordination variability for enhancing adaptability. More 

work is required in quantifying coordination and coordination variability to enable further 

inference to be made on this hypothesis. 

The strengths of this study lie in the bringing together of the work proceeding it in this 

thesis, the recommendations from Study 1 and the methodologies of Studies 2 and 3. There were 
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several limitations present in this study though which warrant discussion. The lack of significant 

results in the entropy comparisons and correlations could be indicative of several factors. First, the 

sample size may have left the study underpowered for the non-parametric analyses. The study had 

significant power for individual comparisons through the large trial sizes but this is not reflected in 

the inferential statistics. Alternatively, sample entropy may not be sensitive enough to elicit 

differences at this level. Perhaps, the differences do not lie in the magnitude of the variance but 

rather in its structure. In this case, other methods such as functional data analysis or functional 

principal component analysis may need to be explored. The hypotheses proffered regarding the 

relationship between joint variability, coordination variability and adaptability need to be treated 

cautiously. They could be strengthened had there been coordination data, or data from each of 

the nine sessions, available. Yet, as this was not the aim of the study, it simply provides clear 

direction for the next steps in the investigation of this phenomenon. 

7.3 Future Research Directions 

7.3.1 Applicability of sequential analysis to other movements 

Study 2 documented the work carried out to validate and then apply the sequential 

analysis technique to determine the number of trials required for mean stability in overarm 

throwing. One of the key findings was a transition period for the moving point average that existed 

with the first 10 trials. It may be worthwhile to determine whether this exists within other discrete 

movements and to investigate whether the choice of using 20 trials from which to determine trials 

to stability has applicability beyond overarm throwing. 



 

153 

 

7.3.2 Application of sequential analysis to time series data 

An acknowledged limitation of Study 2 was the way in which sequential analysis was 

applied to time series data. Specifically that each time normalised point was considered 

independent rather than being related to the data before and after it. This was mediated by taking 

a conservative approach to the interpretation of sequential analysis results of the time series. 

However, the studies in this thesis all advocate for the consideration of whole waveforms within 

the dynamical systems perspective regarding the determinism that exists between each datum 

and its neighbour. As such, if there is an intention to apply sequential analyses to time series data, 

it may be required to investigate a way which considers each waveform as a single, whole entity. 

In such case, an approach of functional data analysis and other related techniques may provide 

acceptable tools.  

7.3.3 Applying surrogate methods to other discrete movement 

The development and validation of the novel surrogate technique in Study 3 was applied 

only to overarm throwing data. The technique would be expected to behave very similarly with 

other discrete movement data but there is no empirical evidence to support such a position. 

Hence, application to other discrete movements would further the validation effort and 

strengthen the rationale for the wider use of the surrogate method. 

7.3.4 Use of different quantification methods on first level data 

Study 4 employed sample entropy to quantify the variability of first, joint kinematic, level 

data in pre- and post-intervention. This was to ensure the method used was able to assess all 

collected data by measuring the variability in entire time series and to confirm that the 

relationship between an individual datum and its neighbours was maintained. However, a 



 

154 

 

limitation of entropy measures is that they only quantify the magnitude of variability without 

consideration of its structure. Other methods that are able to quantify both magnitude and 

variability include functional principal component analysis as indicated within Study 1. Applying 

these techniques to data similar to that collected in Study 4 may allow insight into whether the 

high and low contextual variability groups have a different structure to their variability. For 

example, the question might be answered whether they manifest the variability in their signals in 

the same order of magnitude yet at different points across the time domain. 

7.3.5 Assessment of coordination and whole system variability 

A natural progression of the analyses contained in Study 4 is to assess the remaining two 

levels of variability, coordination and whole system, as identified in Study 1. This will facilitate a 

clearer picture of the interaction of movement variability, adaptation, learning and skill level as 

well as the interplay between the three levels of variability within contextual interference groups. 

Preliminary work may need to be done first to determine the optimal means of quantifying 

variability at these levels. 

7.3.6 Assessment of variability across the entire span of learning 

Study 4 presented data related to the learning of a novel task isolated to pre- and post-

intervention testing. Much knowledge can be gained from assessing variability across all three 

levels - before, during and after motor learning. In this approach, we may understand whether 

expected phenomena, such as a U-shaped curve description of coordination variability, actually 

manifest. 
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7.4 Potential Application of Results 

7.4.1 Use of sequential analysis in athlete monitoring 

While sequential analysis was employed as a means to determine trial size for research 

applications in Study 2, the technique can be a potential tool for informing the data collection 

choices of those involved in athlete monitoring. Access to athletes can often be time-constrained 

and come with workload and injury concerns that need to be mediated. Sequential analysis may 

provide a means for justifying the number of trials a practitioner is requesting an athlete perform 

in order to provide valid feedback. Similarly, when the number of trials collected is reduced by 

external concerns, sequential analysis may allow the practitioner to understand any limitations 

regarding stability of the mean/variance of target variables when providing feedback and results of 

testing to coaches and athletes. 

7.4.2 Use of entropy measures for athlete tracking 

One of the major strengths of entropy measures is that they allow reduction of large 

amounts of data to a single variability value without loss of information by assessing all collected 

data points. Within the context of tracking and monitoring of athletes, the ability to share a single 

value can reduce the complexity of the interaction of practitioners with athletes and coaches. 

With further understanding from research, sample entropy may be employed as an easy means of 

tracking new skill acquisition or monitoring for any changes to variability profiles manifested by 

injury, illness, fatigue, etc. 

7.4.3 Increasing task variability in training 

Once well understood the relationship between contextual interference, variability and 

adaptability could provide reasoning for increasing variation of task constraints in athletic training. 
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In particular among team sports, where the movement of opposition players is constantly 

changing the task constraints, equipping athletes with the ability to vary movement patterns in 

order to maintain successful movement outcomes could be beneficial. However, any potential 

decrease in self-efficacy precipitated by the increased challenge and high probability of task failure 

often experienced during high contextual interference exposure, particularly in early phases, may 

need to be understood and managed.  

7.5 Conclusion 

This thesis details a body of work which adds important guidance, methods and results to 

movement variability research. The systematic review effectively collated evidence from previous 

work and in particular provided direction and hypotheses for future work related to the functional 

role of movement variability and its interaction with adaptation and learning. It also outlined some 

key method-related considerations for researchers within the field of movement variability. 

As a response to this method guidance, two studies were conducted. The first sought to 

validly determine the number of trials required for the experimental studies in this thesis. The 

sequential analysis technique was chosen for this task and analyses conducted to ensure that this 

method was employed in a valid way. The second method study developed a valid and reliable 

surrogate technique for use in discrete human movement. As a result, the research area is now 

equipped with a tool which can be employed across many different analyses and contexts in the 

future. 

Finally, all the previous work culminated in the resultant experimental study aiming to 

further investigate the functional role of movement variability and its interaction with adaptation 

and learning. The method-related and theoretical considerations from Study 1 and methods from 
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Studies 2 and 3 were employed to ensure this topic was rigorously assessed. However, much work 

remains to be done to further the methods employed and developed within this thesis and to fully 

understand roles and impact of movement variability in discrete movement. Several key areas for 

future research are proposed. When understood, these factors could provide many useful tools for 

the assessment of individuals during motor learning, a means for athlete tracking and a better 

understanding of the organisation of the human motor system.  
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9.7 Trials and criterion SD values for sequential estimation technique studies 

Table 9.1. 
Trials and criterion SD values used for sequential analysis in the literature. 

Study Sample Size Number of Trials SD Criterion 
Bates et al. (1983) N = 5 10 ±0.25 

Colby et al. (1999) N = 49 NR ±0.25 

Hamill and McNiven (1990) N = 20 NR ±0.25 

Rodano and Squadrone (2002) N = 9 25 ±0.30 

Wikstrom, Tillman, and Borsa (2005)  N = 58 NR ±0.25 

James et al. (2007) N = 10 20 ±0.25 

Racic et al. (2009) N = 12 20 ±0.25 

Stuelcken and Sinclair (2009) N = 15 20 ±0.25 
 

NR = Not reported.  

9.8 Determining the cut-off frequency for filtering 

9.8.1 Introduction 

Determining the cut-off frequency for low pass filtering is a common task for those dealing 

with biomechanical time series data. By selecting an appropriate cut-off frequency the researcher 

is attempting to have the filter of choice include all desirable signal content while excluding higher 

frequency systematic “noise” from the filtered signal. Two methods proposed for this are 

frequency spectrum analysis and residual analysis. Frequency spectrum presents the signal in the 

frequency domain through the use of a Fast Fourier transformation. This can give a visual 

indication of the frequency content of the signal and is particularly effective at highlighting any 

frequency concentrations outside of those expected. In terms of human movement this could be 

expected to occur above 50 Hz due to the general inability of the human body to produce 

voluntary high frequency movement. Residual analysis, as proposed by Winter (2005), sees the 

sum of the squared residuals between the raw signal and a signal filtered at several selected cut-

off frequencies, plotted against those cut-off frequencies. A visual representation of this can be 
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seen in Figure 9.1. A power curve is fitted to the cut-off frequency vs. residual curve (solid grey 

line). A straight line is then fitted to the linear portion of the power curve and extended until it 

intercepts the y axis (dashed grey line). From this intercept a horizontal line is drawn across to the 

previously created power curve then vertically to the x axis (dash-dot black line). This x axis value 

is the suggested cut-off frequency. While the process of residual analysis can be carried out 

visually as below, the formulae of the power and linear lines can be used to derive the y and x 

intercept values. The strength of spectral analysis is in identifying the frequency range in which the 

signal lies, and any noise which must be excluded, and can provide an estimate of the cut-off 

frequency. However, residual analysis provides a more sensitive and specific estimation of the 

appropriate cut-off frequency. The purpose of this investigation was to determine the appropriate 

cut-off frequency for use when filtering the data collected from throwers throughout this thesis. 

 

Figure 9.1. Residual analysis (fc = chosen cut-off frequency). 
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9.8.2 Method 

Wrist and finger marker trajectories in three planes of movement (9 variables per trial) 

were analysed to determine cut-off frequency. These markers were chosen as they achieve the 

greatest velocity during the tested movement and therefore exhibit the greatest frequency. All 

data from each trial of each participant (5400 individual variables) were plotted in the frequency 

domain. A line representing the average frequency trace was then plotted over the composite 

plot. Residual analyses were then conducted on the same set of data. These were carried out using 

different numbers of cut-off frequencies ranging from 6 to 30 (6, 12, 18, 24 and 30). Goodness of 

fit of the power curve was determined by calculating r2. For each variable a linear fit was applied 

to all plotted points (cut-off frequency vs. residual sum of squares) then consecutively to all points 

minus the first, second etc. (n, n-1, n-2…..n-(n-1)). The formulas of these lines were then used to 

determine the y intercept of that line. This y intercept was then inserted into the equation for the 

power curve to determine the corresponding x value which represented the estimated cut-off 

frequency. The estimated cut-off frequencies were then averaged across all trials of all 

participants. Testing n cut-off frequencies results in n-1 cut-off frequency estimates. The goodness 

of each linear fit (r2) was calculated to determine the point at which the values displayed 

acceptable linearity and aid in determining the correct cut-off frequency estimate to use. This was 

also averaged across all trials and participants. It was determined from the results of analyses 

conducted that including too many frequencies in a residual analysis falsely inflates the calculated 

cut-off frequencies with many frequencies exceeding the data capture frequency. As such it was 

decided to use cut-off frequencies estimated from an analysis that included 12 different cut-off 

frequencies.  
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9.8.3 Results 

The mean r2 (95% CI) value for all power curve fitments was 0.995 (± <0.001) suggesting 

acceptable goodness of fit across all participants and trials. Figure 9.2 shows the frequency 

spectrum trace of all trials for all participants. This figure illustrates the clustering of the frequency 

content close to zero. Figure 9.3 is an enlarged section of the traces with the mean trace overlaid. 

This clearly indicates that the vast majority of frequency content exists in the 0 – 20 Hz range. 

There was no evidence of any frequency clusters outside this range.  

 

Figure 9.2. Results of frequency spectrum analysis. 
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Figure 9.3. Enlarged results of frequency spectrum analysis with mean curve (solid black line). 

The residual analysis results supported that of the frequency spectrum analysis and 

provided a more specific estimation of an appropriate cut-off frequency. The mean estimated cut-

off frequencies and the corresponding r2 values of the linear regression line used to calculate that 

frequency can be seen in Table 9.2.  

Table 9.2. 
Points per line used to estimate linear portion of the power curve, goodness of fit and resulting 
estimated cut-off frequency. 

Points per Line Goodness of Fit (r2) Cut-off Frequency (Hz) 

12 0.291 1.654 

11 0.362 2.751 

10 0.407 4.091 

9 0.462 5.904 

8 0.511 8.307 

7 0.526 11.613 

6 0.719 19.221 

5 0.824 27.485 

4 0.903 36.409 

3 0.961 46.171 

2 1.000 56.758 
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While using a line derived from the last two points of the residual vs. cut-off frequency 

curve will obviously produce perfect linearity (r2 = 1.000), it also tends to overestimate the 

appropriate cut-off frequency. As such it is important to balance the desire for linearity with 

realistic resultant cut-off frequency values. For the purpose of this investigation an r2 value of 

greater than 0.5 was considered to represent acceptable linearity of the line used to estimate cut-

off frequency. This corresponds to a correlation coefficient of greater than 0.7 for the relationship 

between actual and calculated values from the linear regression which is considered a large effect 

(Cohen, 1992). This linearity is demonstrated in Figure 9.4. From the results of the current residual 

analysis there are three values, corresponding to eight, seven and six points per line,  that appear 

as possibly appropriate cut-off frequencies while being derived from lines displaying appropriate 

linearity (r2>0.5). Keeping in mind the results from the frequency spectrum analysis (Figure 9.3) it 

can be suggested that the value derived from a line taken from the final 7 points (Figure 9.4) of the 

curve provided the most appropriate estimate of cut-off frequency (11.613 Hz). As such it has 

been decided to employ a cut-off frequency of 12 Hz for all low pass filtering of kinematic data 

during the course of this investigation.  

 

Figure 9.4.Example of the residual analysis resulting in adoption of a 12 Hz cut-off frequency. The 
black represents the linear regression of the final 7 points in the residual analysis. The y-intercept 
of this line was used in the calculation of the cut-off frequency estimate (11.613 Hz). 
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9.9 Handedness questionnaire 

The Edinburgh Handedness Inventory (Oldfield, 1971) was formatted into an online form 

which each participant completed before attending their first training session for Study 4. Custom 

formulas in the results sheet automatically determined the handedness of the individual. 
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9.10 MATLAB code for surrogate technique 

function [z,breakcounts]=newbowlPT_ncc(x,n,rho) 
  
%Inputs: 
%x - an array of k d-dimensional time series (of variable length) 
%n - number of surrogate time series to be constructed 
%rho - a constant used to determine the number of short segments in the 
%created surrogates. For further infomration on the selection of rho see  
% Taylor, P. G., Small, M., Lee, K.-Y., Landeo, R., O'Meara, D. M., &  
% Millett, E. L. (in press). A surrogate technique for investigating  
% deterministic dynamics in discrete human movement. Motor Control.  
% doi:10.1123/mc.2015-0043  
% and 
% Small, M., Yu, D., & Harrison, R. G. (2001). Surrogate test for  
% pseudoperiodic time series data. Physical Review Letters, 87(18), 
188101.  
% doi:10.1103/physrevlett.87.188101  
  
%Outputs: 
%z - surrogate time series 
%breakcounts - number of small segments created during the generation of 
%each of the n surrogates 
  
  
% Given a cell array x of k d-dimensional time series (of variable 
length) 
% construct n surrogate time series by: 
% choosing one of the k initial conditions in x, iterating forward (with 
% random perturbations dictated by rho until reaching one of the final 
% conditions of x 
  
na=nargin; 
  
if na<3, 
    rho=[]; 
    if na<2, 
        n=1; 
    end; 
end; 
  
if isempty(rho), 
    rho=1; 
end; 
  
for i=1:length(x); %collate lengths of original data trials 
    lengths(i)=length(x{i}); 
end 
  
a=ceil(mean(lengths)+std(lengths)); %create max acceptable surrogate 
length 
b=floor(mean(lengths)-std(lengths)); %create min acceptable surrogate 
length 
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S1=[]; %list of current states 
S2=[]; %list of next states 
ic=[]; %iniitial conditions 
en=[]; %final states 
  
nx=length(x); 
for i=1:nx, %populate S2, S2, ic and en from cell array 
    xi=x{i}; 
    S1=[S1 xi(1:(end-1),:)'];   %concatenate 1st through 2nd last value 
of x{i} into a single column vector 
    S2=[S2 xi(2:end,:)'];       %concatenate 2nd through last value of 
x{i} into a single column vector 
    ic=[ic xi(1,:)'];           %results in a d by k row vector of 
initial values of each ith trial 
    en=[en length(S1)];         %results in a d by k row vector 
containing the index of the ith trial endpoints in S1 
end; 
  
[d,ns]=size(S1);    %number of rows (d) and columns (ns) in the S1 vector 
  
for i=1:n, % n surrogates 
    loopcount=0; 
    zi=[]; %ith surrogate created 
     
    while length(zi)>a || length(zi)<b 
        zi=ic(:,floor(rand*nx)+1); %choose a random initial condition 
value from ic 
        endpoint=0; 
        xt=zi; 
        breakcount=0; 
        ti0=0; ti1=ti0; ti2=ti1; 
         
        while ~endpoint, 
            xt=xt+randn(d,1)*rho;  %add noise to the initial condition 
            ti=findclosest(S1,xt); %find nearest neighbour to noisy state 
            xt=S2(:,ti); %next state of noisy neighbour 
            zi=[zi xt]; 
            endpoint=isendpoint(en,ti); %is the current time index (ti) 
one of the endpoints of the original data 
  
            ti0=ti1; 
            ti1=ti2; 
            ti2=ti; 
  
            if ti0==0 
               breakcount=breakcount+0; 
               elseif ti1==ti0+1 && ti2~=ti1+1 
               breakcount=breakcount+1; 
            end 
  
        loopcount=loopcount+1; 
        %disp(num2str(loopcount)) 
        %uncomment the above line if you want a display of the number of 
        %rejected surogates 
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        end 
         
        if length(zi)<=a || length(zi)>=b 
            breakcounts(i)=breakcount; 
        end 
    end 
     
    z{i}=zi; 
end; 
  
  
function ti=findclosest(S,x) 
  
[ds,ns]=size(S); %number of rows (d) and columns (ns) in the S1 vector 
d=rms(S-x*ones(1,ns)); %root mean square of difference beteen the initial 
value with noise added (xt) from every value of S1 
[~,ti]=min(d); %ti is the min rms value and the time index of the nearest 
noisy neighbour 
  
function b=isendpoint(en,ti) 
ti; 
b=any(ti==en); 
  
function d=rms(x) 
  
d=sqrt(mean(x.^2)); 
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