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A Plasma Biomarker Panel of Four 
MicroRNAs for the Diagnosis of 
Prostate Cancer
Farhana Matin1,2, Varinder Jeet1,2, Leire Moya1,2, Luke A. Selth3, Suzanne Chambers4,  
Australian Prostate Cancer BioResource*, Judith A. Clements1,2 & Jyotsna Batra   1,2

Prostate cancer is diagnosed in over 1 million men every year globally, yet current diagnostic modalities 
are inadequate for identification of significant cancer and more reliable early diagnostic biomarkers 
are necessary for improved clinical management of prostate cancer patients. MicroRNAs (miRNAs) 
modulate important cellular processes/pathways contributing to cancer and are stably present in 
body fluids. In this study we profiled 372 cancer-associated miRNAs in plasma collected before (~60% 
patients) and after/during commencement of treatment (~40% patients), from age-matched prostate 
cancer patients and healthy controls, and observed elevated levels of 4 miRNAs - miR-4289, miR-326, 
miR-152-3p and miR-98-5p, which were validated in an independent cohort. The miRNA panel was 
able to differentiate between prostate cancer patients and controls (AUC = 0.88). Analysis of published 
miRNA transcriptomic data from clinical samples demonstrated low expression of miR-152-3p in 
tumour compared to adjacent non-malignant tissues. Overexpression of miR-152-3p increased 
proliferation and migration of prostate cancer cells, suggesting a role for this miRNA in prostate cancer 
pathogenesis, a concept that was supported by pathway analysis of predicted miR-152-3p target genes. 
In summary, a four miRNA panel, including miR-152-3p which likely targets genes with key roles in 
prostate cancer pathogenesis, has the potential to improve early prostate cancer diagnosis.

Prostate cancer is one of the most commonly diagnosed cancers in men worldwide with a forecast of increased 
incidence over the following years based on current trends1. Measuring the levels of prostate specific antigen 
(PSA; also known as human kallikrein-3) in serum is the standard first line test to indicate risk of prostate cancer 
and the most widely used biomarker for prostate cancer diagnosis. The advent of the PSA test in the late 1990s 
as a tool for prostate cancer diagnosis has enormously benefited prostate cancer patients for more than two dec-
ades2,3. However, inadequacies continue to exist over its suitability for use as a diagnostic tool for early detection 
of prostate cancer due to lack of specificity and high rates of over-diagnosis and over-treatment associated with 
PSA testing4,5. Therefore, there is an urgent clinical need for better diagnostic tools for prostate cancer.

Although prostate biopsy is the gold standard prostate cancer diagnostic tool, it is bound by several limita-
tions6. Most prostate biopsies are routinely performed taking 12 cores under transrectal ultrasound guidance6, 
with an increase in the core number found to increase cancer detection rate by only 1.06 fold7. However, the major 
drawback lies in the possibility of generating false negatives, as the samples are often taken randomly due to the 
unknown location of the tumour, and patients may require repeated biopsies under MRI guidance or in combi-
nation with ultrasound for better sensitivity6. Over recent years, considerable research has led to the development 
of several molecular and genetic assays that have provided a prospective direction for the development of prostate 
cancer biomarkers5. Such assays utilise body fluid- or tissue-based biomarkers for the diagnosis, prognosis and 
risk stratification of prostate cancer5. Despite recent advances, it is still necessary to understand the role of these 
tests in the overall management of prostate cancer patients and the search for potential new biomarkers continues.
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MicroRNAs (miRNAs) are a class of endogenous non-coding RNA molecules that play a pivotal role in gene 
regulation by binding to complementary target messenger RNAs (mRNAs), resulting in target mRNA degra-
dation or translational blockade8. With the discovery that miRNAs exist in a stable form in clinical specimens 
such as plasma and serum9, urine10 and other body fluids11, miRNAs hold great promise as useful biomarkers. 
More recently, a number of studies have investigated the diagnostic, prognostic and risk stratification abilities of 
miRNAs in various diseases12–14, including prostate cancer15–19, which is summarised in our recently published 
review20.

In the present study, we investigated the differential expression of cancer-associated miRNAs in plasma sam-
ples collected from age-matched prostate cancer patients and healthy control individuals using miRNA PCR array 
profiling followed by quantitative real-time PCR (qRT-PCR). We evaluated the ability of the identified miRNAs to 
diagnose prostate cancer in an independent sample-set for validation of our results. Furthermore, we assessed the 
prostatic expression of these miRNAs in tumour versus adjacent non-malignant tissues in The Cancer Genome 
Atlas (TCGA) dataset, and explored the functional role of one putative miRNA biomarker in prostate cancer cell 
proliferation and migration using cell-based functional assays. Our study reveals disease-relevant miRNAs with 
potential to improve the diagnosis of prostate cancer.

Results
miRNA screening from pooled plasma samples.  Differential expression of miRNAs in pooled plasma 
samples from prostate cancer patients and healthy controls was measured by qRT-PCR using miScript miRNA 
PCR arrays, which contained pre-loaded miScript Primer Assays for 372 cancer-associated miRNAs plus 12 
internal controls. Most of the miRNAs were detectable in the plasma samples as indicated by their CT values 
(Supplementary Table S1), and only a small percentage of miRNAs were undetected in the patient group and 
control group, indicating the high sensitivity of the method (Supplementary Figure S1). Through extensive data 
analysis of our miRNA PCR array data, we shortlisted 11 deregulated miRNAs, of which 7 were up-regulated and 
4 were down-regulated in patient samples when compared to healthy controls (Fig. 1a; Supplementary Table S2).

Expression of selected plasma miRNAs in discovery cohort.  To validate the findings from the 
screening study, we quantitated the 11 candidate miRNAs by qRT-PCR in individual plasma samples in the dis-
covery cohort (N = 61) consisting of plasma samples collected from age-matched patients (N = 42) and con-
trols (N = 19). The clinical characteristics of the participants are summarised in Supplementary Table S3. The 7 
up-regulated miRNAs in the screening study were differentially expressed in the same direction. However, the 4 
down-regulated miRNAs were up-regulated in individual patient samples; due to this discrepancy between the 
analyses, these candidates were discarded. Of the remaining miRNAs, 4 miRNAs - miR-4289, miR-326, miR-
152-3p and miR-98-5p, had a mean fold-regulation value of >2 and were all significantly altered compared to 
controls as determined by the Unpaired Mann-Whitney U test followed by multiple testing using Bonferroni 
correction, p ≤ 0.05 (Fig. 1b/c).

Validation of plasma miR-4289, miR-326, miR-152-3p and miR-98-5p.  To further validate our 
results from the discovery cohort, we assessed an independent set of patient and control samples (N = 58). This 
validation cohort comprised of 40 patients and 18 controls. 19 out of 40 patients (i.e. 47.5%) in the validation 
cohort had a Gleason score of 7, in contrast to patients in the discovery cohort where the Gleason score was 9 in 
18 out of 42 patients (i.e. 42.9%). 9 out of 42 patients (i.e. 21.4%) in the discovery cohort had a Gleason score of 7, 
and 7 out of 40 patients (i.e. 17.5%) in the validation cohort had a Gleason score of 9. The mean age of patients in 
the two cohorts was similar (i.e. 65.4 ± 1.3 s.d. years and 63.3 ± 1.1 s.d. years) and the controls were age-matched 
accordingly (Supplementary Table S3).

Differential expression analysis in the validation cohort confirmed that the levels of miR-4289, miR-326, miR-
152-3p and miR-98-5p were significantly altered in patients compared to controls using Unpaired Mann-Whitney 
U test followed by multiple testing using Bonferroni correction, p ≤ 0.05 (Fig. 2).

Diagnostic miRNA signature for prostate cancer.  Given the association of miRNA expression with 
prostate cancer, we performed univariate logistic regression analysis on the discovery (N = 61) and validation 
(N = 58) cohorts for each of the four miRNAs (Table 1). The regression coefficient (B) indicates an estimated 
increase in the odds of the outcome (i.e. prostate cancer) with increase in the value of the exposure (i.e. plasma 
miRNA level). The 95% confidence interval (CI) was used as a measure of precision of the regression coefficient 
and to determine the presence of statistical significance which was confirmed by the p-value. miR-4289, miR-326 
and miR-152-3p were found to be significantly associated with disease occurrence in the discovery cohort, except 
for miR-98-5p which did not reach statistical significance in this cohort (Table 1). All four miRNAs were signif-
icant in the validation cohort (Table 1). Adjustments were made for each patient and control sample for varying 
starting concentration of RNA using off-set correction during binary logistic regression analysis.

We further evaluated, using multivariate binary logistic regression and ROC analyses, the diagnostic capac-
ity of the individual and combination of miR-4289, miR-326, miR-152-3p and miR-98-5p in the discovery and 
validation cohorts as well as in both cohorts combined. ROC analysis for each miRNA in the panel was also per-
formed for the discovery, validation and combined cohorts to allow comparison between the AUC of each miRNA 
and the AUC of all four miRNAs together as a measure of diagnostic accuracy (Supplementary Figure S2). The 
AUC for individual miRNAs ranged from 0.69–0.85 for miR-4289, 0.82–0.91 for miR-326, 0.72–0.80 for miR-
152-3p and 0.70–0.79 for miR-98-5p respectively (Supplementary Figure S2). The combined predictive probabil-
ity of all four miRNAs produced an Area under the curve (AUC) of 0.82 (p < 0.0001, 95% CI = 0.72–0.93) in the 
discovery cohort (Fig. 3a), AUC = 0.95 (p < 0.0001, 95% CI = 0.90–1.00) in the validation cohort (Fig. 3b) and 
AUC = 0.88 (p < 0.0001, 95% CI = 0.82–0.94) in the combined cohort (Fig. 3c) for the discrimination of prostate 
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Figure 1.  Screening of plasma miRNA markers in pooled patient and control samples and validation in the 
discovery cohort. (a) Scatter plot of 372 cancer-associated miRNAs in a screening cohort of pooled plasma samples 
from prostate cancer patients and healthy controls screened using a miScript miRNA PCR array. miRNAs found 
to be differentially expressed between the patient and control groups are shown in black, and unchanged miRNAs 
are shown in grey. A fold regulation cut-off of 2.5 was selected for the analysis. (b) Scatter plot showing the 11 
differentially regulated miRNAs re-analysed by qRT-PCR in patient samples in the discovery cohort (N = 61). The 
mean fold regulation of each miRNA across the patient and control samples was taken into account and those that 
were below the 2 fold regulation cut-off were excluded from further analysis. The selected miRNAs are shown in 
colour. (c) Relative levels of miR-4289, miR-326, miR-152-3p and miR-98-5p analysed by qRT-PCR as in (b) in 
patients vs healthy controls. Statistically significant differences were assessed using a Mann-Whitney U test; p values 
are shown after Bonferroni correction for multiple testing. Each data point represents a plasma sample, the horizontal 
middle line in each data set represents the mean, and the limits of the vertical lines represent the standard deviation.

Figure 2.  Relative expression of miR-4289, miR-326, miR-152-3p and miR-98-5p in the validation cohort 
(N = 58). Statistically significant differences in miRNA expression levels between the patients and control 
groups were assessed using a Mann-Whitney U test; p values are shown after Bonferroni correction for multiple 
testing. Each data point represents a plasma sample, the horizontal middle line in each data set represents the 
mean, and the limits of the vertical lines represent the standard deviation.
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cancer patients from healthy controls. Despite some differences in the Gleason score between the two cohorts, 
the diagnostic accuracy of the miRNA signature was similar in the discovery, validation and combined cohorts.

miRNA expression in transcriptomic data from clinical samples.  Since there may be differences 
between the expression of miRNAs in the circulation and in tumour tissues, we next determined whether the 
plasma levels of the identified miRNAs reflected similar changes in tumour tissues. Analysis of published miRNA 
transcriptomic data from clinical samples in the TCGA dataset demonstrated low expression of miR-152-3p in 
tumour compared to adjacent non-malignant tissues (p = 0.001) (Wilcoxon test, p ≤ 0.05) (Fig. 4) (Supplementary 
Table S4). No substantial expression changes were observed for miR-98-5p and miR-326 (Supplementary 
Table S4), and information on miR-4289 expression was unavailable in the processed TCGA dataset.

miR-152-3p increases proliferation and migration of prostate cancer cells.  We further deter-
mined the role of miR-152-3p in proliferation and migration of prostate cancer cells. Cell line expression analysis 
of a panel of prostate cell lines showed that miR-152-3p is lowly expressed in the LNCaP and PC3 prostate can-
cer cell lines compared to the benign prostatic hyperplasia (BPH) epithelial cell line with highest expression in 
RWPE-2 cells derived from the normal RWPE-1 cell line (Supplementary Figure S3). Our results suggest a signif-
icant (p = 0.0002) increase in the proliferative potential of LNCaP cells upon overexpression of miR-152-3p using 
miRNA mimics (Fig. 5a). We observed a substantial increase in cell confluence and change in cell morphology 
in miR-152-3p mimic treated cells when compared to non-targeting negative control treated cells over a period 

miRNA

Discovery cohort (N = 61) Validation cohort (N = 58)

Regression 
coefficient (B) 95% CI p-value

Regression 
coefficient (B) 95% CI p-value

miR-4289 0.83 0.50–1.16 3.11E − 06 5.71 4.18–7.24 8.80E − 13

miR-326 6.18 4.52–7.83 9.15E − 13 10.42 8.09–12.76 0.00E + 00

miR-152-3p 1.89 0.99–2.79 1.40E − 04 3.38 2.27–4.49 8.94E − 09

miR-98-5p 1.75 0.36–3.14 0.056 1.80 1.20–2.40 1.47E − 08

Table 1.  Univariate logistic regression analysis on the discovery (N = 61) and validation (N = 58) cohorts for each 
of the four miRNAs. The regression coefficient (B) was used to determine the association of the outcome with 
an increase in plasma miRNA expression. The 95% confidence interval (CI) was used as a measure of precision 
of the regression coefficient and to determine the presence of statistical significance as confirmed by the p value. 
miR-4289 (p = 3.11E-06, 95% CI = 0.50–1.16, std. error = 0.17), miR-326 (p = 9.15E-13, 95% CI = 4.52–7.83, 
std. error = 0.84) and miR-152-3p (p = 1.40E-04, 95% CI = 0.99–2.79, std. error = 0.46) were found to be 
significantly associated with disease in the discovery cohort, except for miR-98–5p (p = 0.056, 95% CI = 0.36–3.14, 
std. error = 0.71) which did not reach statistical significance in this cohort. miR-4289 (p = 8.80E-13, 95% 
CI = 4.18–7.24, std. error = 0.78), miR-326 (p = 0.00E + 00, 95% CI = 8.09–12.76, std. error = 1.20) and miR-
152-3p (p = 8.94E-09, 95% CI = 2.27–4.49, std. error = 0.56) and miR-98-5p (p = 1.47E-08, 95% CI = 1.20–2.40, 
std. error = 0.31) were significant predictors of disease in the validation cohort. Adjustments were made for each 
patient and control sample for varying starting concentration of RNA using off-set correction during binary 
logistic regression analysis.

Figure 3.  ROC curve analysis in the discovery, validation and combined cohorts comparing the ability of the 
miRNA signature to identify prostate cancer patients. (a) A combined measure of the sensitivity and specificity 
of the miRNA signature in the discovery cohort (N = 61) is represented by the Area under the curve AUC = 0.82 
(p < 0.0001, 95% CI = 0.72–0.93). (b) A combined measure of the sensitivity and specificity of the miRNA 
signature in the validation cohort (N = 58) is represented by AUC = 0.95 (p < 0.0001, 95% CI = 0.89–1.00). (c) 
A combined measure of the sensitivity and specificity of the miRNA signature in a combined cohort (N = 119) 
is represented by AUC = 0.88 (p < 0.0001, 95% CI = 0.82–0.94). The diagonal reference line reflects the 
performance of the diagnostic test i.e. whether a test yields the positive or negative results by chance or due to a 
relation with the true disease status.



www.nature.com/scientificreports/

5SCIenTIFIC RePortS |  (2018) 8:6653  | DOI:10.1038/s41598-018-24424-w

of 72 hours (Fig. 5b; Supplementary Videos 1–2). Similarly, the rate of migration as indicated by wound closure 
was significantly (p = 0.0084) pronounced with miR-152-3p treatment when compared to the negative control 
(Fig. 5c,d; Supplementary Videos 3–4). We did not observe any significant effects on the proliferation of PC3 cells 
with miR-152-3p treatment over a period of 72 hours (Supplementary Figure S4).

Potential target genes and pathways altered by the identified miRNAs.  Identifying the tar-
get genes of the putative miRNA biomarkers is important in understanding their functions. In silico pathway 

Figure 4.  Analysis of published miRNA transcriptomic data from clinical samples. TCGA data expression 
analysis of miR-152-3p, miR-98-5p and miR-326 in 52 tumour and adjacent non-malignant prostate tissues. 
The expression of miR-152-3p was significantly lower (p = 0.0011) in tumour compared to adjacent non-
malignant prostate tissues, while the expression of miR-98-5p and miR-326 did not reach statistical significance 
(p = 0.6288 and p = 0.4182). TCGA data was not available for miR-4289. The differences between the paired 
samples were assessed using a Wilcoxon test.

Figure 5.  miR-152-3p mediates cell proliferation and migration in LNCaP cells. (a) Overexpression of miR-
152-3p using miRNA mimics in LNCaP cells increased their proliferative capacity (p = 0.0002) measured as an 
increase in percentage confluence by the IncuCyte live-cell imaging system. (b) Overexpression of miR-152-3p 
also increased migration in LNCaP cells (p = 0.0084) measured as an increase in percentage relative wound 
density. (c) An increase in proliferation was accompanied by a change in morphology in miR-152-3p treated 
LNCaP cells when compared to non-targeting negative control treated cells. (d) LNCaP cells were grown to 
form a confluent monolayer before scratches were made and wound healing was measured by the IncuCyte 
system. Both the functional assays were performed for a period of 72 hours and data was collected at every 
2 hour time point throughout the experiments. The differences between the miR-152-3p and negative control 
treated cells were assessed using a Mann-Whitney U test, N = 3.
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analysis using the miRNet web-based platform generated target genes and candidate pathways for the miRNAs 
(Supplementary Figure S5; Supplementary Tables S5 and S6). The miRNet predicted targets are determined exper-
imentally as part of larger experiments such as microarray, RNA-seq, qPCR and PAR-CLIP, an immunoprecipita-
tion method for identifying the binding sites of cellular RNA-binding proteins (RBPs) and microRNA-containing 
ribonucleoprotein complexes (miRNPs) and each identified target gene is supported by the experiment name 
and PubMed literature21. Based on the analysis of miRNA expression in the TCGA dataset and functional assays, 
miR-152-3p targets were used as an input for Ingenuity Pathway Analysis (IPA).

IPA generated 275 canonical pathways for the 131 targets of miR-152-3p (Supplementary Table S7). Prostate 
cancer signalling was among the top ten canonical pathways consisting of 8 deregulated target genes (highlighted 
in purple) i.e. FGFR3, IRS1, SOS2, HSP90AA1, KRAS, CDKN1B, CCND1 and PTEN of miR-152-3p (−log 
p = 5.75) (Fig. 6) where FGFR3 and IRS1 are closely related to PI3K and hence shown as a group. Analysis of the 
molecular function of these genes confirmed their involvement in cellular processes such as cell cycle, cell mor-
phology, cell growth and proliferation and cell movement (Supplementary Table S8). The analysis also generated 
a list of upstream regulators of the 8 target genes (Supplementary Table S9). Of the 8 target genes of miR-152-3p, 
six overlapped with GSEA where prostate cancer was found to be the second most important pathway among 
the top 20 KEGG pathways (Supplementary Figure S6). Furthermore, Oncomine data analysis of these 8 genes 
showed significant upregulation of CCND1 (p = 9.88E-6), FGFR3 (p = 0.002) and PTEN (p = 0.022) in prostate 
carcinoma (N = 65) compared to normal (N = 23) tissues in the Yu Prostate Cancer Dataset (Supplementary 
Figure S7a,b), however, five i.e. HSP90AA1 (p = 7.92E-14), CDKN1B (p = 1.67E-12), CCND1 (p = 4.50E-9), 
PTEN (p = 5.70E-6) and KRAS (p = 0.021) out of 8 target genes were significantly upregulated during prostate 
cancer metastasis (Supplementary Figure S7c).

miR-152-3p modulates IRS1, HSP90AA1 and KRAS expression at the mRNA level.  qRT-PCR 
analyses of six predicted target genes (CCND1, IRS1, PTEN, HSP90AA1, KRAS and CDKN1B) of miR-152-3p 
after treatment with miR-152-3p and non-targeting negative control mimics in LNCaP cells for 72 hours showed 
a significant reduction in IRS1 (p = 0.0014) and HSP90AA1 (p = 0.0007) mRNA, and increased expression of 
KRAS (p < 0.0001) at the mRNA level suggesting these three genes as direct/indirect targets of miR-152-3p 
(Supplementary Figure S8).

Discussion
Circulating miRNAs in body fluids may serve as clinically important biomarkers of various malignancies, includ-
ing prostate cancer. In the present study, we identified an association of elevated plasma levels of four miRNAs 
i.e. miR-4289, miR-326, miR-98-5p and miR-152-3p in prostate cancer patients. Initially, we analysed the plasma 

Figure 6.  Ingenuity pathway analysis (IPA) of miR-152-3p-target interactions in prostate cancer signalling. 
Prostate cancer signalling was among the top ten canonical pathways consisting of eight deregulated miR-
152-3p target genes (highlighted in purple) i.e. FGFR3, IRS1, SOS2, HSP90AA1, KRAS, CDKN1B, CCND1 and 
PTEN where FGFR3 and IRS1 are closely related to PI3K and hence shown as a group. Some of the targets for 
e.g. HSP90, KRAS and SOS exist as a complex or group of genes. The p value was represented as −log p = 5.57 
for the analysis.
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miRNAome in age-matched prostate cancer patients and healthy controls using a miRNA PCR array approach. 
We selected sample pooling for initial screening of miRNAs because it minimised cost, reduced analytical run 
times and compensated for limited amounts of plasma samples enabling us to profile a large number of miRNAs 
in patient and control samples in a cost effective way, and has been employed in previous studies22,23. Many bio-
logical experiments have relied on pooling of biological specimens and the efficiency of this method has also been 
statistically investigated previously24,25. Although sample pooling has its own advantages, it is not the optimum 
approach because while mitigating the loss of information, it does not take into consideration biological variation 
within individual samples. This may lead to the difference observed between miRNA expression in pooled and 
individual samples. Therefore, subsequent qRT-PCR in single samples from the discovery and validation cohorts 
was performed for validation of results and only those miRNAs that were deregulated in the same direction 
in both pooled and individual samples were selected for further analysis by applying a stringent cut-off. The 
majority of previously conducted studies have used a higher CT cut-off to identify multiple miRNAs, however, 
we have applied a strict cut-off to our analysis as our goal was to determine the most obvious candidates for rapid 
identification along the line of clinical translation. Our identified miRNA signature generated ROC curves with 
AUC values better than the previously reported AUC value for PSA26,27. Similarly, other groups have assessed 
the diagnostic performance of plasma or serum miRNAs in patients with localised or metastatic prostate cancer, 
BPH and healthy controls, and in most instances the specificity and sensitivity of the miRNA biomarkers have 
outperformed the accuracy of the PSA test23,28,29. Although early detection and management of prostate cancer 
is a complex ongoing issue, there is insufficient evidence to support the benefits of population-based screening 
for prostate cancer in Australia and in the United States using the PSA test30–32. The Cancer Council Australia 
and U.S. Preventative Services Task Force recommends against the PSA test, partly due to the over-diagnosis and 
over-treatment associated with it33,34. PSA screening in healthy men is uncommon in Australia and thus, we did 
not have the PSA values for our control group which limited our ability to perform the miRNA vs PSA compar-
isons in our study. A pertinent limitation of our study is that some (45% and 42%, respectively) patient samples 
in cohort-1 and 2 were collected after or during primary treatment. Although miRNA levels are affected by the 
treatment regimen of patients, we have tried to mitigate this effect by keeping the timing of sample collection 
consistent between the discovery and validation cohorts, using appropriate statistical methods and relying on the 
stability of miRNAs in body fluids.

Our study has implicated miR-4289 as a prostate cancer diagnostic biomarker for the first time. To date, only 
two studies investigating the role of miR-4289 in congenital obstructive nephropathy as an exosomal biomarker35, 
and Middle East Respiratory Syndrome (MERS) caused by a human coronavirus36 have been published. Hasan 
et al. proposed the use of host miR-4289 as an antiviral therapy for MERS36 which may provide further clues to 
explore its therapeutic potential in prostate cancer.

miR-326 has been identified in a recent study by Kristensen et al. as a member of a new 3-miRNA classifier 
consisting of miR-185-5p, miR-221-3p and miR-326 that predicted biochemical recurrence (BCR) after radical 
prostatectomy in prostate cancer patients37. The study was one of the largest miRNA expression profiling studies 
in tumour tissue samples from 126 patients in the discovery cohort and 209 patients in the validation cohorts37. 
However, an increased level of plasma miR-326 has not been previously reported as an early diagnostic marker 
for prostate cancer. miR-326, as a member of a five miRNA signature has been correlated with the survival of 
patients with hepatocellular carcinoma, and identified as one of three miRNAs applicable for the diagnosis of 
these patients in a more recent study38.

Recent studies have indicated the importance of miR-98 in colon39, lung40, liver41 and prostate42 cancer. 
Meta-analysis of six miRNA datasets revealed up-regulation of 15 miRNAs, miR-98 being one of them, in recur-
rent compared to non-recurrent prostate samples suggesting the predictive ability of miR-98 along with other 
miRNAs42. To the best of our knowledge, we are the first to demonstrate plasma miR-98-5p as a candidate for 
early diagnosis of prostate cancer.

Finally, miR-152 has previously been shown to be substantially decreased in higher Gleason grade prostate 
cancer tissues and its low expression was correlated with advanced pathological stages43,44. The expression pattern 
is in line with our findings in the TCGA dataset where miR-152 is lowly expressed in tumour compared with 
adjacent non-malignant tissues. A possible mechanism for the decreased expression is likely to be methylation 
of the miR-152 host gene promoter which prevents transcription of this miRNA in tumour tissues possibly due 
to its tumour suppressive nature45. Another mechanism could be its release into the circulation to enable tumour 
growth at metastatic sites which may explain our results obtained through functional assays using miR-152-3p 
mimics. Elevated levels of plasma miR-152 have been proposed as a diagnostic biomarker for other cancers such 
as lung, colorectal and breast cancer46, and our findings suggest its potential to detect prostate cancer either alone 
or in combination with the other three identified miRNAs.

Although higher levels of these miRNAs may be indicative of prostate cancer pathogenesis, their mechanism 
of action is difficult to determine. Studies have reported that circulating miRNAs are involved in cell to cell com-
munication and can be taken up by recipient cells to exert functional effects such as proliferation, invasion and 
angiogenesis47. For example, tumour exosomal miRNAs were shown to promote metastasis in other sites of the 
body by modulation of stromal cells in distant organs48. We did not observe any significant effect of miR-152-3p 
overexpression on the proliferative ability of PC3 prostate cancer cells as previously suggested by Zhu et al.43.  
In contrast, we found that overexpression of miR-152-3p significantly increased proliferation and migration 
in LNCaP prostate cancer cells which suggests that regulation by the androgen receptor (AR) may account for 
the observed differences. This is contradictory to the findings from another study by Theodore et al. where low 
expression of miR-152 has been correlated with an increase in prostate cancer metastasis44. However, this may 
provide a clue to the metastatic role of this miRNA at a distant site other than its site of production possibly via 
exosomal escape as miRNAs are known to play a role in metastasis49,50 and miR-152-3p has been previously 
reported as an exosomal miRNA51,52. It is also believed that miRNA secretion is a selective process and therefore, 
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circulatory levels are not a true reflection of intracellular levels53. On the contrary, some miRNAs are released by 
tumour cells as Argonaute (AGO) bound complexes54 or from dead cells in apoptotic bodies55, thus indicating the 
tumour as one of their sources.

Identification of miRNA-target genes and pathways to understand the molecular basis of prostate cancer 
pathogenesis is a major challenge, as there are several risk factors and numerous pathways that drive cancer. Of 
the four miRNAs, miR-152-3p targets were selected for further analysis due to the significant differential expres-
sion of this miRNA in the TCGA dataset, and our findings from the functional assays. In depth analysis of miR-
152-3p targets generated 10 target genes through IPA and GSEA in the prostate cancer signalling pathway with 
six common targets between the two analyses. The six genes were found to be important modulators of cellular 
processes involved in cancer progression.

CCND1 is a well-recognised oncogene involved in the direct phosphorylation of the retinoblastoma (Rb) 
protein and promoting cell cycle transition from the G1 to S phase56. CCND1 is over-expressed in a consider-
able portion of human malignancies such as breast and prostate cancer57,58 and it has been shown as a miRNA 
target in breast cancer cells and primary prostatic epithelial cells56. Similarly, recent studies by Lynch et al. and 
Chakravarthi et al. demonstrated an inverse correlation between CDKN1B and miRNAs in prostate cancer 
cell lines and clinical prostatectomy specimens59,60. However, we did not observe any change in CCND1 and 
CDKN1B mRNA expression in LNCaP cells with miR-152-3p treatment. KRAS is a well-established oncogenic 
GTPase protein playing an important role in cell division, differentiation and apoptosis. miRNA targeting of the 
KRAS 3′UTR in a recent study induced cell apoptosis in vitro and exerted a tumour suppressive effect in vivo in 
xenograft mice models of colorectal cancer61. This suggests the importance of the miRNA-KRAS axis in prostate 
cancer where the miRNA has been found to play a tumour suppressive role62. On the contrary, our results suggest 
the upregulation of KRAS at the mRNA level with miR-152-3p treatment in LNCaP cells which may explain the 
increase in cell proliferation and migration observed during our functional studies. HSP90AA1 is a molecular 
chaperone that promotes regulation of specific proteins involved in signal transduction and cell cycle. A recent 
study by Wilson et al. indicated the importance of histone methylation of AR binding sites of transcriptional 
targets, such as HSP90AA1 in androgen signalling in prostate cancer progression63. This may result in a posi-
tive regulation of HSP90AA1 in metastasis as shown by our Oncomine data analysis, whereas the expression of 
HSP90AA1 possibly remains unchanged in localised cancer due to more stable complex formation between AR 
and HSP90AA1. We observed a decrease in HSP90AA1 mRNA in LNCaP cells after miRNA treatment suggesting 
it as a possible target of miR-152-3p which in turn may play a role in the androgen signalling pathway. SOS2 is a 
guanine nucleotide exchange factor involved in Ras activation which stimulates a series of signal cascades crucial 
for malignant transformation. A recent study by Alles et al. demonstrated that miRNA overexpression in the 
HEK-293T kidney cancer cell line lead to reduced levels of endogenous SOS264. Therefore, targeting of SOS fac-
tors by miRNAs may potentially inactivate Ras signalling, however, many other factors are involved in signalling 
cascades resulting in cancer progression.

PTEN is a lipid and protein phosphatase capable of regulating the PI3K-AKT pathway and suppress tumour 
growth in many cancers. PTEN expression and function is regulated by various mechanisms, including regulation 
by miRNAs65, and its co-inactivation has been reported to increase the neuroendocrine phenotype, a hallmark of 
prostate cancer progression during anti-androgen therapy66. Targeting of PTEN by miR-152-3p may therefore, 
result in increased cell proliferation and migration as observed in our functional assays, however, we did not 
observe any changes at the PTEN mRNA level with miR-152-3p treatment. Contrary to the previously reported 
role of PTEN, we also found that PTEN was up-regulated in both prostate cancer vs normal, and metastasis vs 
primary prostate cancer. The differential expression of PTEN was extracted in particular from the Yu Prostate 
dataset67 in the Oncomine cancer microarray database68. This dataset was selected over other datasets because 
it had the largest number of prostate cancer (primary/metastasis) and normal samples for comparison of all the 
target genes of interest. Although PTEN is generally considered to be a tumour suppressor, it may act as a tumour 
promoter is some instances69. It is also widely known that in addition to gene expression, genomic instabilities, 
mutations and copy number variation in the PTEN gene are often associated with prostate cancer70,71, and it is 
estimated that up to 70 percent of primary prostate tumours have PTEN gene mutations71. The Yu Prostate dataset 
in the Oncomine cancer microarray database did not take these into account during data analysis and as a result, 
PTEN may be shown to be up-regulated. Additional data analysis using other datasets in Oncomine taking PTEN 
deletions and copy number variations into account revealed trends in the opposite direction.

Evidence suggests that the target genes discussed so far play a vital role in prostate cancer and their regula-
tion by miRNAs may be crucial in prostate cancer pathogenesis. Some of these miR-152-3p targets are onco-
genes while some are tumour suppressors and this suggests that miRNA target modulation is dependent on 
various aspects such as genetic alterations, transcriptional/ post-transcriptional regulation, post-translational 
modification, target stabilisation, indirect regulation as well as cell type. Moreover, validation of target genes and 
further functional studies are necessary to understand the mechanistic role of our identified miRNAs in cancer 
progression.

In conclusion, a major strength of our study is that it is one of the largest scale studies conducted on Australian 
men to determine the potential of miRNAs as diagnostic markers of prostate cancer. Although it may have been 
ideal to include similar numbers of patients and controls, several published studies where the control group is 
smaller in number compared to the patient group have been reported previously20. In addition, we have iden-
tified a novel plasma miRNA panel consisting of four miRNAs which have previously not been implicated for 
early diagnosis of prostate cancer. This was achieved by using higher than normal stringency to identify the most 
reliable candidates which is unique compared with many other studies. It was beyond the scope of our study to 
compare miRNA expression levels in BPH patients as analysed in several other studies as discussed in our review 
article20. Developments in the field of biomarker research are ongoing as stipulated by emerging miRNAs and 
current tests that have a specific role in prostate cancer diagnosis and treatment. However, a critical need for 
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robustness and reproducible data to implement such biomarkers in clinical practice still remains. Undoubtedly, 
in the next few decades a substantial number of biomarkers will be available for clinical use in the overall man-
agement of prostate cancer.

Materials and Methods
Patients and blood collection.  This is a retrospective study examining miRNAs as risk/protection fac-
tors in relation to a diagnostic outcome. Prostate cancer patients were recruited as part of the Prostate Cancer 
Supportive Care and Patient Outcomes Project (ProsCan), a randomised controlled trial of a psychological inter-
vention for newly diagnosed prostate cancer patients72,73 for the discovery cohort (N = 42). The validation cohort 
of prostate cancer patients (N = 40) were recruited as part of the Australian Prostate Cancer BioResource (APCB) 
consisting of 3,100 patients including 350 men recruited via collaborations with urologists, 2,000 men from the 
QLD node of APCB, and 750 men recruited in collaboration with The Cancer Council Queensland73. Healthy 
male control participants for both the discovery and validation cohorts (N = 37) were recruited through the 
electoral roll as part of the Queensland Men’s Health Study (QLDMen), a cross-sectional population-based study 
consisting of 1,300 men including 450 age- and postal code- matched controls to complement participants in 
the ProsCan and APCB studies. The patient and control numbers were selected depending on the availability of 
samples from participants with similar clinical characteristics, as well as with reference to previous studies that 
we have discussed in our published review article20. The patient group in each cohort is further divided into met-
astatic (≤5 and >5 years survival) and non-metastatic patients. This subdivision ensured that each category of 
participants i.e. metastatic, non-metastatic and healthy in each cohort consisted of about 20 samples. Follow-up 
data for ~10 years was available for the patients including those who survived for less than 5 years after prostate 
cancer diagnosis. Details of age, PSA levels, clinical grade (Gleason scores), pathologic state (TNM stages) and 
family history have been collected to document clinical characteristics of the disease. ~19–22% of the patients and 
~11–15% of the healthy controls in each cohort had a family history of prostate cancer. 52.4–62.5% patients and 
84.2–88.9% controls in both the cohorts did not have any family history of prostate cancer.

Blood samples were collected within 1–4 months of diagnosis and within 1–2 months of treatment, which 
included radical prostatectomy, androgen deprivation therapy (ADT), brachytherapy and/or radiation therapy, 
from patients in the discovery cohort (N = 61). Similarly, for the validation cohort (N = 58) blood was collected 
within 1–4 months of diagnosis and 1–2 months of any treatment, or at the time of radical prostatectomy for 
most of the patients, and for some collection was done after 4–9 months of hormone deprivation. Although 
miRNA levels are affected by the treatment regimen of patients, we have tried to mitigate this effect by keep-
ing the timing of sample collection consistent between the discovery and validation cohorts, using appropri-
ate statistical methods and relying on the stability of miRNAs in body fluids74. Blood samples were collected 
in ethylene-di-amine-tetra-acetic acid (EDTA) containing tubes and processed within 1 hour of collection. The 
resultant plasma samples were stored at −80 °C until RNA extraction was performed, and transported on dry ice 
to the Institute of Health and Biomedical Innovation (IHBI) for RNA isolation. All clinical samples were obtained 
from patients and controls after their written informed consent. The study was performed in accordance with 
the institutional ethics approval- Approval numbers: 3629H (ProsCan), 1000001165 (APCB), and 0600000216 
(QLDMen) from the Queensland University of Technology (QUT) and the Cancer Council Queensland (CCQ).

Plasma RNA isolation and cDNA synthesis.  Prior to RNA isolation, plasma samples in the discovery 
and validation cohorts were centrifuged for 10 min at 16,000 × g at 4°C and all plasma samples were screened 
for haemolysis using a Nanodrop ND-1000. For miRNA screening (Fig. 7), eight random plasma pools (two 
pools per group) were generated before RNA extraction for the control group and three patient groups in the 
discovery cohort using a randomising web-based tool (https://www.miniwebtool.com/random-picker/). In this 
way 150 µl of plasma required per pool was generated by dividing the total volume required (i.e. 150 µl) by the 
number of samples per pool. For example, the control group consisting of 19 healthy males was divided into two 
plasma pools of 10 and 9 controls. Each of the 10 controls in pool-1 contributed 15 µl of plasma, while each of 
the 9 controls in pool-2 contributed 16.67 µl of plasma. Similarly the three patient groups consisting of 12, 16 
and 14 samples were divided into 6 × 2, 8 × 2 and 7 × 2 samples/pool respectively, and each patient per group 
contributed 25 µl of plasma in pools-3 and 4, 18.75 µl of plasma is pools-5 and 6, and 21.43 µl of plasma in pools-7 
and 8. Therefore, total RNA was extracted from 150 µl of pooled plasma from each of the two pools per patient/
control group in the discovery cohort, and eluted in 14 µl of RNase-free water using the miRNeasy Serum/Plasma 
kit (Qiagen) following the manufacturer’s instructions. 0.5 µg of bacterial ribosomal RNA (Roche) was added to 
each sample for increased RNA recovery, and 3.5 µl of miRNeasy Serum/Plasma Spike-In Control i.e. cel-miR-39 
(at 1.6 × 108 copies/µl) (Qiagen) was added to each sample as an internal control for plasma miRNA expres-
sion profiling and normalisation of qRT-PCR data as previously described19. 5 µl of extracted RNA from pooled 
plasma samples was reverse transcribed using the miScript II RT kit with HiSpec Buffer (Qiagen) according to the 
manufacturer’s instructions (Fig. 7).

miRNA PCR array analysis.  The resultant 20 µl cDNA, diluted in 90 µl of RNase-free water, was applied 
to the 384-well miScript miRNA PCR array (Qiagen) containing forward primers for the detection of 372 
cancer-associated miRNAs and duplicates of 6 internal controls (Fig. 7). The qRT-PCR was run on a ViiA7 system 
(Applied Biosystems) and the data analysed using the GeneGlobe data analysis software (Qiagen). The cel-miR-39 
Spike-In control was used by the program to calibrate the data sets, and the miRNA PCR array data was normal-
ised by the global mean normalisation method75. This method automatically calculated a global CT mean for the 
miRNA targets that were commonly expressed in all the samples being analysed after an initial calibration to 
the exogenous cel-miR-39 Spike-In control. For plasma miRNA expression profiling in individual samples, the 
cel-miR-39 Spike-In control was used as an internal control for normalisation of qRT-PCR data as previously 

https://www.miniwebtool.com/random-picker/
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described19. Fold regulation represents fold change values generated during miRNA expression profiling in a 
biologically meaningful way. The fold change was calculated using the equation 2−∆∆CT. For fold regulation, the 
fold change values less than 1 (meaning that the miRNA is down-regulated) was transformed by calculating the 
negative inverse. Therefore, the values remain the same while their representation is changed only. All CT (num-
ber of cycles required for fluorescent signal to cross the set threshold; inversely proportional to miRNA levels) 
values >30 were considered as a negative call by the software. Therefore, the lower limit of detection was ≤30 CT 
to avoid false positives. The final values of miRNA expression levels were generated in a biologically meaningful 
way as fold regulation i.e. the negative inverse of fold change. A 2.5 fold-regulation cut-off was used to shortlist 
deregulated miRNAs.

One of the challenges of miRNA profiling from plasma samples is the lack of established housekeeping genes 
for data normalisation. In general, miRNA profiling experiments use small noncoding RNAs, such as small 
nuclear or nucleolar RNAs (snRNAs/snoRNAs) for data normalisation76. However, they may not serve as ideal 
reference genes because snoRNAs and snRNAs do not share the same properties as miRNAs in terms of expres-
sion, transcription and processing75. Therefore, normalisation of data was performed using exogenous cel-miR-39 
as an internal control and the global mean normalisation approach16,19.

qRT-PCR validation.  RNA extraction from individual plasma samples (N = 61) and cDNA synthesis were 
performed as described previously and the resultant 20 µl cDNA diluted 11x in 200 µl of RNase-free water. 
qRT-PCR of the shortlisted mature miRNAs was performed using miScript Primer Assays (forward primers) 
(Qiagen), Universal Primer (reverse primer) (Qiagen) and the QuantiTect SYBR Green PCR Master Mix (Qiagen) 
with 1 µl cDNA input for each 5 µl reaction in triplicates. The miRNA reverse transcription control (miRTC) 
primer assay (Qiagen) was used as an internal control to determine the reverse transcription efficiency for each 
sample. The qRT-PCR data was analysed using the externally spiked-in cel-miR-39 (Qiagen) as the housekeeping 

Figure 7.  Study design and discovery and validation cohort study profiles. Flow diagram summarising 
the methodology and statistical approach used to identify diagnostic miRNAs followed by in silico target 
identification and pathway analysis, TCGA data expression analysis and functional assays.
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gene19 with a 2 fold-regulation cut-off used to identify deregulated miRNAs. The results obtained from the dis-
covery cohort were further validated in the validation cohort (N = 58) using the same method as described above.

Statistical analyses.  Unpaired Mann-Whitney U tests were performed to identify differences in miRNA 
expression levels between patients and healthy controls in cohorts 1 and 2. The p-values were adjusted for multi-
ple testing using Bonferroni correction. Univariate logistic regression was performed to determine the ability of 
individual miRNAs to predict disease occurrence in prostate cancer patients. The RNA concentration was set as 
an offset variable to account for the differences in the starting amounts of RNA. The capacity of combined miR-
NAs to distinguish between patients and healthy controls was evaluated by ROC curve analysis in the discovery 
(N = 61), validation (N = 58) and combined (N = 119) cohorts to increase the predictive power of the analysis. 
For ROC analysis of the miRNA panel, binary logistic regression analysis was performed for all four miRNAs at 
the same time enabling calculation of predicted probabilities of the miRNA combination which was further used 
to generate AUC values for the miRNA panel. The AUC is an effective and combined measure of sensitivity and 
specificity that describes the inherent validity of diagnostic tests. The ROC curve corresponding to progressively 
greater discriminant capacity of diagnostic tests is located closer to the upper left-hand corner away from the 
diagonal reference line77. A p-value of ≤0.05 was considered to be significant for all analyses. All statistical analy-
ses were done using GraphPad Prism 7.02, SPSS and RStudio in consultation with qualified statisticians from the 
Queensland Facility for Advanced Bioinformatics (QFAB, UQ) and the Research Methods Group (RMG, QUT). 
An overall summary of the methodology is presented in Fig. 7.

TCGA data and cell line expression analysis.  Prostatic expression of the shortlisted miRNAs was 
assessed in a publicly available cohort comprising of 52 tumour and 52 non-malignant prostate tissues from The 
Cancer Genome Atlas (TCGA). The expression of the significantly deregulated miRNAs in prostate tumour tis-
sues was evaluated in a panel of prostate cancer cell lines by qRT-PCR. RNA was extracted from cell lysates using 
the miRNeasy Micro kit (Qiagen) according to the manufacturer’s instructions followed by cDNA synthesis using 
the miScript II RT kit with HiSpec Buffer (Qiagen). qRT-PCR using the miScript primer assays (Qiagen) and 
QuantiTect SYBR Green PCR Master Mix (Qiagen) was performed as described previously.

Cell growth and transfection.  The LNCaP and PC3 prostate cancer cell lines were obtained from the 
American Type Culture Collection (ATCC, Rockville, MD, USA) and cultured in RPMI-1640 (Gibco) supple-
mented with 5% Fetal Bovine Serum (FBS) (Life Technologies). Cells were maintained in a humidified incubator 
(5% CO2 and 95% O2) at 37 °C and routinely tested for mycoplasma. For miRNA overexpression studies, LNCaP 
(15,000 cells/well) and PC3 (10,000 cells/well) were plated in a 96-well plate and transiently transfected with 5 nM 
and 20 nM of the respective miRVana miRNA Mimics (Life Technologies) of the shortlisted miRNAs in complex 
with Lipofectamine RNAiMAX and Lipofectamine 2000 Reagent (Life Technologies) in a 1:1 ratio according to 
the manufacturer’s instructions. The miRVana miRNA Mimic Negative Control #1 (Life Technologies) was used 
as the non-targeting control.

Cell proliferation and migration assays.  For cell proliferation assays 15,000 LNCaP and 10,000 PC3 
cells were plated per well in a 96 well plate and allowed to grow for 4 hours before transient transfection with 
miRNA complexes as described above. For cell migration assays 96-well ImageLock plates (Essen BioScience) 
were coated with 40 μl Poly-L-ornithine (Sigma) overnight. 50,000 cells/well were plated the next day and allowed 
to form a confluent monolayer for 24 hours. The cells were treated with 10 µg/ml Aphidicolin (Sigma) (an anti-
mitotic reagent) for 1 hour to minimise the effect of cell proliferation on migration. Wounds were created using 
a 96-pin WoundMaker (Essen BioScience) and the growth media was aspirated to remove cell debris. The cells 
were treated with 50 µl of miRNA complexes per well for half an hour before replenishment with 150 µl of RPMI 
containing 5% FBS. Percentage confluence (for proliferation) and relative wound density (for migration) was 
measured every 2 hours for 72 hours using the automated IncuCyte live cell imaging system (Essen BioScience) 
following the manufacturer’s protocol. All treatments were performed with six replicates in three independent 
experiments. Data analysis was performed using the IncuCyte software.

Pathway Analysis.  In silico network-based visual analysis was performed using the miRNet web-based plat-
form to identify target genes and pathways potentially altered by the miRNA signature21. Forward mapping, which 
allows users to map from miRNAs to their targets, was performed by uploading the list of miRNA IDs of interest. 
After data processing, the results were presented as an interaction table with each row corresponding to one miRNA 
and its target. The table also provided hyperlinks to the corresponding databases from where the miRNA-target 
interactions were derived, together with references to PubMed literature. Network visualisation was performed 
through functional annotations based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway data-
base, and the hypergeometric algorithm was used for enrichment analysis of input data to generate a list of miRNA 
target genes. This was further used as an input for in depth analysis using IPA (Qiagen) to determine top canon-
ical pathways, upstream regulators and molecular and cellular functions of the miRNA target genes. The associ-
ation of the deregulated target genes with disease phenotype was also confirmed using the Gene Set Enrichment 
Analysis (GSEA) computational method. The differential expression of the target genes in normal (N = 23) vs pros-
tate carcinoma (N = 65) tissues were determined using the Oncomine cancer microarray database and integrated 
data-mining platform68. A p-value of ≤0.05 was considered to be significant for all the analyses.

Validation of in silico target genes of miR-152-3p.  LNCaP (300,000 cells/well) were plated in a 6 well 
plate for treatment with miR-152-3p and negative control mimics for 72 hours as described above for the collec-
tion of cell lysates (Norgen). This was followed by RNA extraction (Norgen), cDNA synthesis (Life Technologies) 
and qRT-PCR (Life Technologies) to determine the relative fold expression of target genes of miR-152-3p using 
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target-specific primers (Sigma). Data was normalised to the housekeeping gene RPL32 and further normalised 
relative to the non-targeting negative control to determine relative fold expression. The differences in target gene 
expression between the negative control and miR-152-3p treated cells were assessed using an Unpaired t test, 
N = 3 (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 and ****p ≤ 0.0001).

Data availability statement.  The datasets generated during and/or analysed during the current study are 
available from the corresponding author on reasonable request.
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