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Abstract

Objective: Traumatic brain injury (TBI) is a heterogeneous disease with multi-

ple neurological deficits that evolve over time. It is also associated with an

increased incidence of neurodegenerative diseases. Accordingly, clinicians need

better tools to predict a patient’s long-term prognosis. Methods: Diffusion-

weighted and anatomical MRI data were collected from 17 adolescents (mean

age = 15y8mo) with moderate-to-severe TBI and 19 healthy controls. Using a

network diffusion model (NDM), we examined the effect of progressive deaf-

ferentation and gray matter thinning in young TBI patients. Moreover, using a

novel automated inference method, we identified several injury epicenters in

order to determine the neural degenerative patterns in each TBI patient.

Results: We were able to identify the subject-specific patterns of degeneration

in each patient. In particular, the hippocampus, temporal cortices, and striatum

were frequently found to be the epicenters of degeneration across the TBI

patients. Orthogonal transformation of the predicted degeneration, using prin-

cipal component analysis, identified distinct spatial components in the tempo-

ral–hippocampal network and the cortico-striatal network, confirming the

vulnerability of these networks to injury. The NDM model, best predictive of

the degeneration, was significantly correlated with time since injury, indicating

that NDM can potentially capture the pathological progression in the chronic

phase of TBI. Interpretation: These findings suggest that network spread may

help explain patterns of distant gray matter thinning, which would be consis-

tent with Wallerian degeneration of the white matter connections (i.e., “diaschi-

sis”) from diffuse axonal injuries and multifocal contusive injuries, and the

neurodegenerative patterns of abnormal protein aggregation and transmission,

which are hallmarks of brain changes in TBI. NDM approaches could provide

highly subject-specific biomarkers relevant for disease monitoring and personal-

ized therapies in TBI.
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Introduction

The risk of neurodegenerative diseases (e.g., Parkinson’s

disease, Alzheimer’s disease) is increased when traumatic

brain injury (TBI) is sustained at an early age.1,2 This

observation is of particular concern, given the high

annual incidence rates of childhood brain injuries (765

per 100.000 population) resulting from motor vehicle

accidents, falls, sports, and abuse.3 Following the initial

impact, the brain undergoes a series of gradual changes

that often lead to more damage than the primary inju-

ries.4 Among these secondary mechanisms, spread of

pathology via the brain’s white matter network is believed

to play an important role in the pathogenesis of TBI.5

This view is supported by recent studies using graph

theoretical analyses demonstrating alterations in network

measures, such as global efficiency, clustering coefficient,

and betweenness-centrality in TBI patients compared to

healthy controls.6,7 However, these changes in network

metrics are unable to determine the patterns of degenera-

tion within the brain networks.8 It is essential to under-

stand how the initial brain trauma relates to future

patterns of degeneration in TBI patients. Achieving this

understanding will lead to more appropriate head injury

management and reduce the risk of TBI-initiated neu-

rodegenerative diseases.

The present study employed a model of spread of pathol-

ogy via brain networks based on the network diffusion

model (NDM).8,12 A growing number of studies have uti-

lized NDM as a means to model the progression of neu-

rodegenerative pathology on brain networks.9–15 Using

longitudinal data from the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) database, Torok and colleagues

(2018)15 showed that NDM and an inference optimization

algorithm can successfully infer the regions of disease initia-

tion (referred as seed regions) from which Alzheimer’s dis-

ease or Mild Cognitive Impairment tau pathology most

likely originated. Our recent study12 demonstrated that the

spread of mutant huntingtin protein, via the human brain

connectome, accurately predicted the cortico-striatal spatial

pattern of degeneration in patients with Huntington’s dis-

ease. The NDM framework was also recently used for cap-

turing the spatiotemporal progression of Parkinson’s

disease.9,11 These studies revealed that the substantia nigra

was the most likely seed region, highlighting its role as one

of the most atrophied and Lewy-body-rich regions in

Parkinson’s disease. Another interesting finding was that the

temporal sequencing of the regions predicted by the NDM

was in close correspondence with the Braak’s Lewy-body-

based staging scheme. The topography of neurodegenerative

diseases is therefore well characterized by hallmark misfolded

proteins, and NDM has been shown to successfully model

their spread.

In this paper, we propose to extend NDM to understand

the long-term course of TBI. NDM applies to any first-order

diffusive process on a graph. Therefore, NDM may also be

able to model the effect of progressive deafferentation and

atrophy resulting from a traumatic brain injury (likely dri-

ven either by Wallerian degeneration of the white matter

connections or, similar to the neurodegenerative conditions,

via abnormal protein aggregation and transmission as sug-

gested by recent findings).16,17 In the present study, we used

NDM to achieve precisely this in a cohort of TBI patients.

Moreover, we implemented a novel automated inference

method to identify several injury epicenters from which

neurodegenerative pathology most likely originates in each

individual patient. In addition, we employed principal com-

ponent analysis to identify common neurodegenerative pat-

terns predicted by diffusive processes across patients. Finally,

we conducted exploratory correlation analyses to examine

whether patterns of degenerative changes are associated with

clinical measures.

Materials and Methods

Participants

In all, 36 children (17 TBI patients and 19 healthy con-

trols, see Data S1 for demographic data) were recruited

for the present study, which was part of a larger-scale

cognitive training study in pediatric TBI.18 Inclusion cri-

teria for patients were as follows: (1) Age at injury: 10–
17 years; (2) Injuries classified as moderate to severe

using the Mayo Classification System19; and (3) In the

chronic stage of injury at the time of assessment (1–
5 years post injury).20 In total, 19 typically developing

children were recruited via social networks of researchers

to obtain gender- and age-matched (maximum of

�6 months) controls for each TBI patient.

Standard protocol approvals, registrations,
and patient consents

The study was approved by the Ethics Committee of the

Ghent University Hospital (#2014/0540) and written

informed consent was obtained from both parents and par-

ticipants in accordance with the Declaration of Helsinki.

MRI acquisition

Anatomical scans were collected using a MPRAGE

sequence21 (TR/TE = 2250/4.18 msec; TA = 5:14 min;
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flip angle = 9°; FOV = 256 mm; voxel size = 1.0 mm iso-

tropic; slab thickness = 176 mm; BW = 150 Hz/pixel)

and High Angular Resolution Diffusion Imaging

(HARDI) scans22 consisting of a twice-refocused spin

echo sequence23 (60 contiguous transversal slices,

FOV = 240 mm; voxel size = 2.5 mm isotropic, TR/

TE = 10,800/83 msec, 64 noncollinear directions, b

value = 1200 s/mm2, 1 b0, TA = 12:36 min) on a Sie-

mens 3T TrioTim MRI scanner equipped with a 32-chan-

nel head coil at Ghent University Hospital, Belgium.

Connectome reconstruction

Cortical reconstruction and volumetric segmentation were

performed with the Freesurfer image analysis suite

(http://surfer.nmr.mgh.harvard.edu/). The details of the

Freesurfer analysis of the same cohort are described in

prior publications by Vander Linden et al. (2019a,b).24,25

Briefly, this processing includes motion correction,

removal of non-brain tissue using a hybrid watershed/sur-

face deformation procedure, automated Talairach trans-

formation, segmentation of the subcortical white matter

and deep gray matter volumetric structures, intensity nor-

malization, tessellation of the gray matter white matter

boundary, automated topology correction, and surface

deformation following intensity gradients to optimally

place the gray/white and gray/cerebrospinal fluid borders

at the location where the greatest shift in intensity defines

the transition to the other tissue class. Once these cortical

models were complete, a parcellation of the cerebral cor-

tex into units with respect to gyral and sulcal structure

was performed. In the present study, a total of 82 gray

matter brain regions were parcellated using the Desikan-

Killiany atlas.26 Freesurfer morphometric procedures have

been demonstrated to show good test–retest reliability

across scanner manufacturers and across field strengths.

Quality assurance of the registration and segmentation

was undertaken by visual inspection. In case of inaccura-

cies, manual editing was performed either by adding con-

trol points to help FreeSurfer identify the WM voxels or

by removing the skull and dura in case they were consid-

ered to be parts of the brain.

Whole brain white matter networks were extracted

from the HARDI scans, using previously described

methodology.27 Raw diffusion-weighted images were cor-

rected for eddy current, motion, and B1-field inhomo-

geneity using Mrtrix3. The anatomical T1-weighted

images were linearly registered to diffusion space using

FSL. Constrained spherical deconvolution followed by

second-order integration over fiber orientation distribu-

tions (iFOD2) algorithm28 was used to reconstruct the

tractograms. Spherical-deconvolution informed filtering

of tractograms (SIFT) was implemented to decrease

reconstruction biases and improve biological plausibil-

ity.29

For each subject, the whole brain tractography and T1-

based parcellations were combined. The nodes were repre-

sented by 82 distinct regions, and for each possible node

pair, interregional connectivity was defined as the number

of reconstructed streamlines (NOS), representing the

edges of the connectome. This resulted in a weighted

adjacency matrix for each subject. Finally, the healthy

brain connectome was derived by taking the average of all

individual 19 82 9 82 control subjects’ connectomes to

form a single 82 9 82 control white matter connectome.

Modeling network diffusion on the human
brain connectome

We used Raj et al.’s (2012) network diffusion model

(NDM), allowing progressive degenerative changes in TBI

to be modeled as passive diffusion. The human brain

connectome can be represented as a graph G = (v, e), in
which the passive diffusion model treats the edge e as a

conduit of spread in nodes v, such that network spread of

pathology at time t can be modeled as:

f ðtÞ ¼ e�aHf ð0Þ (1)

where f(t) denotes the vector characterizing the volu-

metric loss at node vi at time t, starting from an initial

distribution given by f(0) at time zero. H is the graph

Laplacian (defined as the difference between the degree

matrix and adjacency matrix). Alpha (a) is the diffusion

coefficient.

A method to identify injury epicenters in
each individual with TBI

We applied NDM on the healthy human brain connec-

tome to simulate the effect of spread of pathology in TBI

(Fig. 1). This process was used to identify the brain

regions (here also referred to as injury epicenters) from

where diffusion seeding maximally predicted the neurode-

generation in each TBI individual. The following steps

describe the process in greater detail:

1 Atrophy (i.e., relative volume loss compared to con-

trols) in each patient was measured using z-scores. A z-

score was computed as (X � l)/r, where X is the vol-

ume of the Desikan-Killiany region in a TBI patient,

and l and r are the mean and standard deviation of

the volume of the same region in healthy controls,

respectively. These z-scores represent the current state

of measured degeneration in each TBI patient.

2 The NDM was simulated on the healthy brain connec-

tome. For each Desikan-Killiany region, i (and initial

condition f (0) = 1), the NDM (as per eq. 1) was run
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treating the region as a “seed” node to estimate the

amount of diffusion from that seed to the 82 regions.

This was done for 20 sequential time points, t = 0 to

19. The diffusion coefficient, a, was set to 0.25, as the

TBI cohort were within 5 years since injury. This pro-

cess generated an 82 9 20 matrix for each seed node,

encapsulating diffusion of pathology (predicted atro-

phy) in 82 regions over time.

3 The measured atrophy in a given patient was correlated

with atrophy predicted by NDM (from step 2). This

generated a vector comprised of 82 correlation coeffi-

cient values for each time point, resulting in an

82 9 20 matrix. The highest correlation across the 20

time points for each seed region was determined and

represented as vector Ri. Ri was set to 0 for all regions

i for which ti = 0 or ti = 19. Furthermore, Ri was also

set to 0, if Ri < 0 and Ri < median value of Ri. Finally,

Ri > 0 was set to 1, resulting in the initial configura-

tion of injury epicenters. Next, Ri was set as initial con-

dition (fo) in the NDM, and the time point at which

the correlation between measured and predicted atro-

phy was the highest was determined, such that

tmax = argmaxt R (ft*, y) where R (ft*, y) is a vector of

correlations between measured (y) and predicted atro-

phy (ft). To avoid spurious correlation driven by seed

regions, the data points corresponding to the seed

regions were excluded when running the correlations

between measured and predicted atrophy. This ensured

that inferred seeds were not merely replicating the most

atrophied regions and NDM offered predictive power

above the correlation driven by the seed pattern alone.

4 We then used an algorithm (pseudocode provided in

Supplemental Material) to identify the combination of

seeds which achieve the highest correlation with the

measured atrophy, using the initial condition (Ri and

tmax). Hence, the unique combination of seeds achiev-

ing the highest correlation between the measured and

predicted degeneration was identified to be putative

epicenters of injury. “Of note, early work used linear

correlation between predicted atrophy and measured

atrophy to identify the seed regions.”10,13,14 More

recent work15 used L1-penalized optimization algorithm

in subject-level analysis to identify seed vectors in each

individual subject. Our approach has some similarities

with the recent work by Torok et al. (2018)15 in that it

identifies the initial guess seed regions using similar

heuristics. However, for identifying optimal seed vec-

tor, we use a simple iterative combination technique

with a focus on the combination of seeds that can

achieve the best solution from a finite set of regions.

We chose to use this algorithm for its computational

simplicity, ability to identify combination of multiple

seeds, and prioritize the seeds of higher predictive

value. This approach is more suitable for a clinical

population with multifocal contusive injuries. However,

a limitation with our approach is the risk of overfitting

and the availability of large solution space which can

potentially result in a large seed vector. Further studies

should explore other possibilities in the validation of

our inference method.

Principal component analysis

Principal component analysis (PCA) was conducted as an

exploratory data analysis to identify common orthogonal

patterns on NDM predicted atrophy maps across TBI

Figure 1. Overview of the workflow.
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patients. Specifically, PCA was used to identify a reduced

set of spatial maps that contained most of the informa-

tion in the predicted atrophy matrix. PCA was imple-

mented using the “pca” command available in the

Statistics and Machine Learning Toolbox (Matlab). The

eigenvectors and eigenvalues of the mean-centered input

data covariance matrix were calculated via singular value

decomposition. The relative size of each eigenvalue quan-

tifies the total variance captured by that component, with

the first principal component accounting for the most

variance, and each subsequent component, progressively

less. The anatomical maps corresponding to the first five

components, explaining at least 60% of the variance, were

visualized.

Correlation analyses

Coefficients of determination (square of the maximum

correlation value) between predicted and measured atro-

phy were correlated against the time since injury in TBI,

after controlling for the effect of age. Also, the ability of

model’s peak time to predict individual time since injury

was investigated using correlation analysis. A significance

level of 0.05 was adopted.

Data availability statement

Anonymized data will be shared by request from any

qualified investigator.

Results

Epicenters of injury in TBI inferred using
network diffusion

Figure 2 shows the spatial location of NDM inferred injury

epicenters in each individual. Both numbers and anatomi-

cal distribution of the inferred epicenters were highly

heterogeneous across TBI subjects. For example, the injury

epicenter in subjects 7 and 10 were localized to a single

Figure 2. Visual representation of injury epicenters in 17 TBI individuals, mapped on the Desikan-Killiany atlas (available in FreeSurfer). The red

regions correspond to the brain regions within the injury epicenters. Modeling the network diffusion from these seeds achieved the highest

correlation between measured and predicted atrophy.
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region in the right inferior parietal and left inferior tem-

poral cortex, respectively. In contrast, injury epicenters in

subjects 13, 15, and 17 comprised more than 10 regions

distributed throughout the temporal, parietal, and frontal

cortices and the striatum. The most prevalent brain

regions within the inferred injury epicenters were located

within the vicinity of the temporal cortex and the stria-

tum. The list of brain regions within the inferred injury

epicenters in all TBI patients is provided in Data S2.

Figure 3 depicts the scatterplot of associations between

the predicted and the measured atrophy. We observed

significant positive moderate-to-strong correlations

between the predicted and measured atrophy in all TBI

individuals. However, the R-coefficient values were highly

variable across individuals (mean = 0.46, SD = 0.08,

range = 0.30–0.56).

Principal modes of atrophy maps

PCA revealed five components that accounted for 68%

of the variance in the data (Fig. 4). Loadings on these

five components were associated with distinct anatomi-

cal maps. The primary component, explaining 18% of

the variance, had the highest loadings for the (para)

hippocampal cortices and adjacent temporal pole. The

second component (explaining 16% variance) was asso-

ciated with the bilateral temporal cortices. The third

component (13% variance) was related to the striatum,

with the maximum loadings found for the caudate, pal-

lidum, and thalamus. The fourth and fifth components

(explaining ~10% variance) consisted of the caudate,

insula, and superior temporal cortex (4th), and

postcentral, posterior cingulate, and anterior cingulate

gyri (5th). The remaining 12 components only

explained small proportions of the total variance

(<10%).

Correlation analyses

We observed a positive correlation (R = 0.58, P = 0.015)

between time since injury and the coefficient of determi-

nation (R-squared) of the association between the mea-

sured and predicted injury, after controlling for the effect

of age (Fig. 5). There was no significant correlation

between time since injury and the model’s peak time

(tmax) (R = �0.1).

Figure 3. Scatterplots showing a linear association between predicted and measured atrophy in 17 subjects. Subject-specific (represented by

Subject ID (SID)) Pearson correlation coefficient values (R) and associated P values are provided within each scatterplot.
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Discussion

In the present study, we used, for the first time, passive

diffusion-based spread of pathology via the brain’s struc-

tural connectome to examine the pattern of neural degen-

eration in young TBI patients. The model identified

subject-specific epicenters of injury most liable for the

distribution of pathology across the brain. Notably, the

pattern of degeneration predicted by these injury seeds

across individuals comprised principal modes of atrophy

with distinct anatomical distribution. These findings

demonstrate the potential utility of network spread mod-

els in predicting the progression of neural degeneration in

future longitudinal studies in TBI patients.

After the initial trauma, the brain undergoes a delayed

neurometabolic cascade and white matter degeneration

that unfolds over time. This secondary injury is spatially

heterogeneous across TBI patients, mainly due to the sig-

nificant variability in anatomical location of initial injury

sites. Here, using a novel automated inference method,

we showed that the injury epicenters in the TBI subjects

were distributed throughout the temporal (e.g., left supe-

rior temporal gyrus, right inferior temporal gyrus, right

middle temporal gyrus, left temporal pole), parietal (e.g.,

inferior parietal gyri), and frontal cortices (e.g., pars orbi-

talis of the right inferior frontal gyrus), and the striatum

(e.g., right caudate nucleus). Importantly, qualitative

comparisons of these “epicenter” locations (Data S1) with

the sites of injury, using the radiological evidence at the

time of injury (Data S1), revealed overlap to some degree

in the parietal and temporal regions. In other words, the

identified epicenters in these regions may be partially due

to multifocal contusive injury from the TBI. Future longi-

tudinal studies are needed to distinguish gray matter

Figure 4. Patterns of injury epicenters. The first five principal components, explaining 68% of the variance, in the atrophy maps predicted by

network diffusion modeling. Spatial maps corresponding to the coefficient of the corresponding eigenvectors (first to fifth), sorted from top (first

eigenvector) to bottom (fifth eigenvector) are overlaid on a surface brain.

Figure 5. Scatter plot of the relationship between time since injury

and coefficient of determination (r-squared) between the measured

atrophy and the predicted atrophy. The scatterplot represents the

residuals obtained after controlling for the effect of age.
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thinning from progressive atrophy due to long-range neu-

rodegenerative processes diffusing along the connectome.

In addition, the patterns of degenerative change may be

specific to a cohort of young TBI patients and may not

generalize to an older sample. Therefore, future studies

need to investigate patterns of degenerative change in a

sample of adult TBI patients, to examine whether the

same pattern would occur if age of initial injury were in

adulthood.

Comparison of the predicted patterns with measured

atrophy showed moderate-to-strong positive associations

in all TBI patients. These findings provide support for the

ability of the NDM to predict future atrophy patterns in

TBI patients. Interestingly, we observed a significant posi-

tive correlation between time since injury and the inferred

degeneration pattern. However, weak direct relationships

were found between time since injury and the model’s

peak time. Thus, patients with longer time since injury

showed a better correspondence between measured and

predicted atrophy patterns. This result indicates that the

NDM can capture the pathological progression in the

chronic phase of young TBI patients.

An exploratory PCA revealed a spatial structure within

the atrophy maps predicted by the injury epicenters. In

particular, the hippocampus, parahippocampal gyri, stria-

tum, and temporal cortices were the most prevalent

regions among the inferred seeds in our young TBI

patients. The patterns of injury epicenters were also con-

sistent with the known vulnerable brain regions in TBI

patients. Previous anatomical MRI studies, using either

cortical thickness or volumetric measures from regions of

interest, have revealed that atrophy of the hippocampus is

a widely replicated finding in the chronic phase of mod-

erate-to-severe TBI.30,31 Our results corroborate previous

post-mortem examinations in individuals with TBI. For

example, a post-mortem study of survivors of a single

TBI showed increased neurofibrillary tangle in the cingu-

late gyrus, superior frontal gyrus, and insular cortex.32 In

addition, our findings show partial overlap with the spa-

tial pattern of protein deposition as revealed by PET stud-

ies in TBI patients. These studies provide support for the

accuracy of the proposed inference method. For example,

in Mohamed et al. (2019),33 elevated tau deposition was

found in widespread brain regions, including the cingu-

late, basal ganglia, temporal pole, superior temporal

gyrus, postcentral gyrus, and insula of veterans with TBI

compared with controls. In another PET study, Takahata

and colleagues (2019)17 revealed tau deposits in wide-

spread brain regions, including the temporal gray matter,

compared to age-matched healthy controls. Increased

amyloid deposition has been found in the posterior cin-

gulate cortex and striatum in a PET study of Scott and

colleagues (2016).34 Future studies should correlate the

data obtained from PET scans with the epicenters of

degeneration revealed by the NDM, to investigate whether

regions of toxic protein deposition are consistent with the

regions of neurodegenerative spread.

The NDM has a number of advantages. The model pre-

dictions can be tested using cross-sectional data. The

model is a quantitative and deterministic assessment tool

of spread, moving away from descriptive graph metrics of

network alterations in TBI patients. It can handle the

between-patient heterogeneity in the topography of the

lesions. It is simple and does not require a lot of compu-

tational power. In addition, the method can be applied to

any data (z-scores) that change over time (e.g., white

matter microstructure, mean diffusivity, etc.).

Despite these technical advantages, the validity of the

NDM depends on the accuracy of the volumetric and

tractography processing pipelines. Currently, there is no

consensus regarding which weighting factor in the con-

struction of the graphs is the most representative measure

of structural connectivity. Other definitions of edge

weight, such as fractional anisotropy, mean diffusivity,

level of myelination, might also be used in further work.35

Another important limitation of the present study is the

relatively small sample size. Notwithstanding, the study

provides proof-of-concept to enable the use of similar

modeling techniques in larger groups to confirm and

extend our results. In addition, we recognize that variabil-

ity and heterogeneity are hallmarks of TBI. However, our

main analyses were focused on the prediction of inferred

degeneration patterns at the individual level. It is impor-

tant to note that this proof-of-concept study used cross-

sectional data and is therefore looking at differences in

volume between patients and controls, rather than atro-

phy per se. Under the assumption that prior to TBI, the

brains of all participants were drawn from the same gen-

eral population, it is a reasonable assumption that such

volumetric differences are reflective of atrophy. However,

a direct study of atrophy would require a longitudinal

experimental design, which is the subject of ongoing

work. Specifically, future studies need to identify subject-

specific patterns of neurodegeneration over time using

anatomical (T1-weighted) magnetic resonance imaging

(MRI) scans that relate to future spread of disease in

patients with and without cognitive deficits TBI.

Aside from these limitations, the present modeling

work represents an important contribution to the field of

post-traumatic neurodegeneration because there are few

imaging biomarkers that have been developed to track

and predict neurodegeneration in the TBI populations.

Moreover, using network diffusion modeling, we were

able to predict an individual subject’s atrophy pattern

and time since injury, highlighting its utility as a promis-

ing tool to improve TBI prognosis, including predicting
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future patterns of atrophy based on patients’ current pat-

terns, identifying young patients with risk of developing

an aggressive neurodegenerative disease later in life, and

monitoring atrophy patterns in large-scale clinical trials.
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Supporting Information

Additional supporting information may be found online

in the Supporting Information section at the end of the

article.

Data S1. Overview of demographic and clinical character-

istics of the TBI patients. TSI = Time Since Injury;

GCS = Glasgow Coma Scale; LOC = loss of conscious-

ness, DAI = diffuse axonal injury; FL = frontal lobe;

TL = temporal lobe; PL = parietal lobe; OL = occipital

lobe; C = cerebellum; CC = corpus callosum; GM = gray

matter; WM = white matter.

Data S2. The pseudocode of our novel automated infer-

ence method to identify several injury epicentres in each

individual TBI patient.

Data S3. The inferred injury epicentres for each TBI

patient. Ctx = cortex; lh = left hemisphere; rh = right

hemisphere.
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