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INTRODUCTION
Nonalcoholic fatty liver disease (NAFLD) has become an epi-
demic in the pediatric population and is now one of the most 
common chronic liver diseases in children,1,2 currently affecting 
3–13% of the general pediatric population in Western coun-
tries.3 In large population studies, the prevalence of elevated 
serum levels of alanine aminotransferase (ALT), an established 
biomarker of liver injury and clinical screening tool for pediatric 
NAFLD, has almost tripled,4 coinciding with the childhood obe-
sity epidemic of the past several decades. Children with NAFLD 
may suffer future comorbidities, which can have lifelong effects, 
including low-bone mineral density, type 2 diabetes, an adverse 
cardiometabolic risk profile, and development of cardiovascular 
disease.1,5 In the next decade, liver complications due to NAFLD 
are predicted to become the most frequent indication for liver 
transplantation.5

What This Study Adds

Nonalcoholic fatty liver disease has become an epidemic in chil-
dren and is now one of the most common pediatric chronic liver 
diseases. We used a population-based multicohort study span-
ning six European countries to assess whether prenatal or child-
hood exposure to air pollution or traffic relate to biomarkers 
of liver injury and suspected nonalcoholic fatty liver disease in 
children. Results indicate no evidence of elevated liver enzyme 
levels in association with exposure to air pollution and traffic in 
either prenatal or postnatal periods. Findings from interaction 
analyses, however, suggest PM10 effect estimates may be higher 
in children who are overweight or obese.
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Background: Nonalcoholic fatty liver disease is the most prevalent pediatric chronic liver disease. Experimental studies suggest 
effects of air pollution and traffic exposure on liver injury. We present the first large-scale human study to evaluate associations of 
prenatal and childhood air pollution and traffic exposure with liver injury.
Methods: Study population included 1,102 children from the Human Early Life Exposome project. Established liver injury biomark-
ers, including alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, and cytokeratin-18, were mea-
sured in serum between ages 6–10 years. Air pollutant exposures included nitrogen dioxide, particulate matter <10 μm (PM10), and 
<2.5 μm. Traffic measures included traffic density on nearest road, traffic load in 100-m buffer, and inverse distance to nearest road. 
Exposure assignments were made to residential address during pregnancy (prenatal) and residential and school addresses in year 
preceding follow-up (childhood). Childhood indoor air pollutant exposures were also examined. Generalized additive models were 
fitted adjusting for confounders. Interactions by sex and overweight/obese status were examined.
Results: Prenatal and childhood exposures to air pollution and traffic were not associated with child liver injury biomarkers. There 
was a significant interaction between prenatal ambient PM10 and overweight/obese status for alanine aminotransferase, with stronger 
associations among children who were overweight/obese. There was no evidence of interaction with sex.
Conclusion: This study found no evidence for associations between prenatal or childhood air pollution or traffic exposure with liver 
injury biomarkers in children. Findings suggest PM10 associations maybe higher in children who are overweight/obese, consistent 
with the multiple-hits hypothesis for nonalcoholic fatty liver disease pathogenesis.



Garcia et al.  •  Environmental Epidemiology (2021) 5:e153	 Environmental Epidemiology

2

Emerging experimental evidence indicates that ambient and 
near-roadway pollution causes liver injury and may contribute 
to NAFLD development.6–9 Mice chronically exposed to air-
borne particulate matter with an aerodynamic diameter <2.5 
μm (PM2.5) developed hepatic steatosis, inflammation, and fibro-
sis.8,9 The epidemiologic literature is scant with only two studies 
having examined this relation in children. A small prospective 
study of 74 US children of mean age 14 years recruited from 
an obesity clinic found an association of childhood nitrogen 
dioxide (NO2) exposure and residential traffic volume with 
cytokeratin-18 (CK-18), a biomarker hepatocyte apoptosis.10 
The generalizability of these results is unclear since all study 
participants were overweight or obese. In a cross-sectional study 
of 150 newborns maternal residential exposure to particulate 
matter (PM) was associated with higher levels of liver injury 
biomarkers, including ALT, aspartate aminotransferase (AST), 
and gamma-glutamyltransferase (GGT) in cord blood.11 Thus, 
whether prenatal pollution and traffic exposures relate to liver 
injury later in childhood is uncertain. Given the public health 
importance of the pediatric NAFLD epidemic, the ubiquity of 
air pollution and traffic exposure, and the scarcity of human 
studies, further investigations, including prospective studies, 
are urgently needed to clarify the effect of pollution and traffic 
exposure on liver injury and NAFLD risk in children.

We present the first large-scale population-based human 
study to examine the relationship between early life air pollu-
tion exposure and risk of liver injury in childhood. We used data 
from a well-established population-based multicohort study 
across six European countries, the Human Early Life Exposome 
(HELIX) study, to assess whether prenatal or childhood expo-
sure to air pollution or traffic relate to four noninvasive clin-
ical biomarkers of liver injury and suspected NAFLD: ALT, 
AST, GGT, and CK-18. We examined exposure to outdoor air 
pollutants, indoor pollutants, and traffic. Finally, we examined 
the potential for effect heterogeneity by sex and overweight or 
obesity status, given prior evidence of differential NAFLD prev-
alence by these factors.3

Methods

Study population

The study population was drawn from the HELIX study,12 a 
collaborative project across six established and ongoing longi-
tudinal population-based birth cohort studies in six European 

countries. This includes the Born in Bradford (BiB) study in the 
United Kingdom,13 the Étude des Déterminants pré et postna-
tals du développement et de la santé de l’Enfant (EDEN) study 
in France,14 the INfancia y Medio Ambiente (INMA) cohort 
in Spain,15 the Kaunas cohort (KANC) in Lithuania,16 the 
Norwegian Mother, Father, and Child Cohort Study (MoBa),17 
and the RHEA Mother Child Cohort study in Crete, Greece.18 
The full HELIX protocol and database have been described in 
detail previously.19 Briefly, a subcohort of 1,301 mothers and 
their singleton children across the six cohorts (approximately 
200 children per cohort) was followed up in 2014–2015 for 
clinical examination, interview with the mothers, and collection 
of biologic samples. Data collection was standardized across 
cohorts and performed by trained staff.

The study population comprised 1,102 (85%) mother-child 
pairs from the HELIX subcohort, following inclusion criteria 
regarding availability of data on all four liver enzymes, ALT, 
AST, GGT, and CK-18. All participating families provided 
written informed consent. Approval for the HELIX project 
was obtained from the local ethical committees at each site. 
Additionally, the current study was approved by the University 
of Southern California Institutional Review Board.

Air pollution and traffic exposure assessment

Here, we provide a brief description of the assessment meth-
ods for exposures included in this study. A detailed description 
of methods used to assess air pollution and traffic is provided 
in Tamayo-Uria et al.20 The following ambient air pollutants 
were examined: NO2 and particulate matter with an aerody-
namic diameter <2.5 μm (PM2.5) and <10 µm (PM10). These were 
assessed for the pregnancy period (averages for each trimester 
and across entire pregnancy) and in the year before childhood 
study visit based on both home and school address using land-
use regression (LUR) models developed in the context of the 
European Study of Cohorts for Air Pollution Effects (ESCAPE) 
project21–25 or dispersion models,26 temporally adjusted to mea-
surements made in local background monitoring stations.20 Site-
specific ESCAPE LUR models were used for most cohorts.20–25 
Exposure assessment for PM2.5 and PM10 in the BiB cohort 
(United Kingdom) was conducted using the ESCAPE LUR 
model for London/Oxford, United Kingdom, adjusting for 
background PM concentration based on air monitoring data 
from Bradford.20,27 In the EDEN cohort (France), assessment 
of PM2.5 exposure was conducted based on the European-wide 
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ESCAPE LUR model28 and assessment of NO2 and PM10 (only 
for pregnancy period) exposure was conducted based on disper-
sion models.20,26 Routine background ambient air monitoring 
stations that were active during the whole study period provided 
daily background concentration data used for temporal adjust-
ment.20 The following markers of traffic were examined: inverse 
distance to nearest road, traffic load on all roads within a 100 m 
buffer, and traffic density on nearest road. These were assessed 
for the full pregnancy period and in the year before childhood 
study visit based on both home and school address and were 
calculated from road network maps following the ESCAPE 
protocol,21,23 applying the land-use regression (LUR) methods 
and Geographic Information System (GIS) predictor variables 
used within the ESCAPE project as described in Eeftens et al.23 
We examined the following indoor air pollutants: NO2, PM2.5, 
benzene, and the sum of benzene, toluene, ethylbenzene, and 
xylene (BTEX). These were assessed for the year before child-
hood study visit and were estimated using a prediction model 
that combined measurements in the homes of a subgroup of 
children with questionnaire data from the subcohort.20 As part 
of a child panel study nested within the HELIX subcohort (all 
cohorts except MoBA), indoor NO2, benzene, and TEX (tol-
uene, ethylbenzene, and xylene) were measured in the homes 
of 157 participants. PM2.5 was measured in INMA, BiB, and 
EDEN. Panel study participants were followed for one week in 
two seasons. NO2, benzene, and TEX sampling were conducted 
over 7 days, and PM2.5 sampling was conducted over 24 hours. 
The last day of the first week of measurements was the same day 
as the subcohort examination, which included the main HELIX 
questionnaire.20

Biomarkers of liver injury

Collection and laboratory analysis of liver enzyme levels have 
previously been reported in detail.29 Identical predefined stan-
dardized protocols across all six cohorts were followed to col-
lect and process blood samples. Briefly, at the end of clinical 
examinations as part of the subcohort follow-up visit blood 
samples following a median fasting time of 3.3 hours were col-
lected from children into 4 ml silica plastic tubes. Samples were 
gently inverted 6–7 times, spun down at 2,500 g for 15 minutes 
at 4°C, and then frozen at −80°C under optimized and stan-
dardized procedures. Concentrations (IU/L) of ALT, AST, and 
GGT in serum were assessed by Biochemistry Laboratory of the 
Clínica Universidad de Navarra using homogenous enzymatic 
colorimetric methods on a Colorimetry Cobas 8000 analyzer 
according to the manufacturer’s instructions (Roche Diagnostics 
GmbH Mannheim). CK-18 in serum was measured by ELISA 
(M30 Apoptosense® ELISA, PEVIVA) according to the man-
ufacturer´s instructions. All coefficients of variation were less 
than 3%.

Covariate assessment

Using directed acyclic graph theory,30 a set of variables consid-
ered to be sufficient for confounding adjustment were decided 
upon a priori. The covariates were cohort, maternal age (years), 
maternal prepregnancy BMI (kg/m2), maternal education level 
(low, middle, high), paternal education level (low, middle, 
high), and maternal active smoking during pregnancy (yes, no). 
Additionally, data on child’s sex (male, female) and age (years) 
and BMI (kg/m2) at follow-up visit were assessed. Information 
on maternal age at birth, maternal prepregnancy BMI, mater-
nal education, paternal education, and smoking status during 
pregnancy from each study participant was obtained by each 
cohort during pregnancy or at birth by questionnaire or medi-
cal records. Birthdate and newborn sex were obtained at birth. 
During the follow-up examination, anthropometric data were 
collected using regularly calibrated instruments. Height was 

measured with a stadiometer and weight with a digital weight 
scale, both without shoes and with light clothing. Height and 
weight measurements were converted to BMI for age-and-sex 
z-scores using the international WHO reference curves to allow 
comparison with other studies.31 Overweight and obese children 
were defined as those above the age-and sex-specific 85th and 
95th percentiles, respectively, as recommended by WHO (http://
www.who.int/mediacentre/factsheets/fs311/en/). Maternal alco-
hol consumption during pregnancy (yes, no) obtained in each 
cohort during pregnancy or at birth by questionnaire or medical 
records is used in a sensitivity analysis.

Statistical analyses

Skewed exposure variables were transformed to improve model 
fit. The following were natural log transformed: ambient NO2, 
inverse distance to nearest road, and all indoor pollutants (NO2, 
PM2.5, benzene, and BTEX). The following were cube root trans-
formed: traffic load on all roads within a 100 m buffer and traffic 
density on nearest road. Analyses were conducted on trans-
formed variables, but plots are shown with back-transformed 
values for interpretability. Single imputation of missing data was 
done using a chained equations method,32 as described previously 
in detail.20 The proportion of missing data was minimal, ranging 
from 1.2% for maternal age at birth to 4.9% for paternal edu-
cation. The associations between liver injury biomarkers with 
air pollution exposures and markers of traffic were estimated 
separately based on generalized additive models (GAM) using 
the R package “mgcv.”33 Smooth functions of exposure were fit-
ted using a penalized regression spline33 to allow for possible 
nonlinear exposure-response functions. Covariates included in 
the models were cohort, paternal education level, and mater-
nal age, education level, prepregnancy BMI, and active smoking 
during pregnancy. Maternal age and prepregnancy BMI were 
each fitted with a smooth function using penalized regression 
splines. We also examined associations with categories of expo-
sure based on tertiles using the same modeling approach as 
described above. We conducted a sensitivity analysis further 
adjusting for maternal alcohol consumption during pregnancy 
as a potential confounding variable. We then evaluated possible 
interaction between exposure and child’s sex (male; female) or 
overweight/obese status at follow-up assessment (dichotomous: 
not overweight or obese; overweight or obese). Because GAM 
models indicated linear exposure-response curves for almost all 
exposure-outcomes, interactions were assessed using an inter-
action term in models with exposure included as a continuous 
variable with a linear term. For exposure-outcomes with signif-
icant nonlinearity, interactions were additionally assessed using 
smooth parameterizations that allowed for quantification of 
interactions.

All hypotheses were tested assuming a 0.05 significance level 
and a two-sided alternative hypothesis. P values from GAM 
models with smooth terms for exposure were adjusted for mul-
tiple comparisons for each biomarker using a method of com-
puting P values adjusted for correlated tests (PACT).34 It was not 
possible to use the PACT adjustment for the P values from the 
categorical or interaction models, so we instead used the false 
discovery rate (FDR) procedure to adjust these P values.35 All 
statistical analyses were performed using R 3.5.1.36

Results

Characteristics of the study populations

Distribution of child and parental sociodemographic charac-
teristics among 1,102 study participants are shown in Table 1. 
The median maternal age at participant’s birth was 31 years 
(interquartile range [IQR]: 27.8–34.1 years) with a median age 
at follow-up in childhood of 8.2 years (IQR: 6.6–9.1 years). 
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There were slightly more males than females (596 [54.1%] 
compared with 506 [45.9%], respectively) and most children 
came from parents of middle to high education. Distribution of 
liver enzyme concentrations among participants are shown in 
Table 1. Exposures distribution of ambient (outdoor) air pollut-
ants, markers of traffic, and indoor air pollutants among study 
participants are shown in Table 2. Median exposure concentra-
tions during pregnancy for ambient NO2, PM10, and PM2.5 were 
18.4, 22.5, and 14.9 µg/m3, respectively.

Associations with liver enzymes

Modeled associations between ambient air pollution exposure 
during different age windows and ALT are shown in Figure 1, 
and P values unadjusted for multiple comparisons are in eTable 
1; http://links.lww.com/EE/A139. No results were statistically 
significant after adjustment for multiple comparisons. Null 
associations with ALT were also observed for markers of traffic 
exposure in utero and in childhood and indoor air pollution 
exposure during childhood (eFigures 1; http://links.lww.com/
EE/A139 and 2; http://links.lww.com/EE/A139; eTable 1; http://
links.lww.com/EE/A139). Modeled associations for AST, GGT, 
and CK-18 with ambient air pollution, markers of traffic, and 
indoor air pollution are shown in the supplement (eFigures 2–8; 
http://links.lww.com/EE/A139; http://links.lww.com/EE/A139; 
eTable 1; http://links.lww.com/EE/A139). No results were sta-
tistically significant after adjustment for multiple comparisons. 
AST was borderline statistically significantly associated with 
ambient PM10 exposure in trimester 1 (P = 0.055 after adjust-
ment for multiple comparisons) with a positive association 

observed for PM10 exposures above approximately 30 μg/m3 
(eFigure 3; http://links.lww.com/EE/A139). Null associations 
were similarly observed for models with tertiles of exposure 
(eTables 2–5; http://links.lww.com/EE/A139). Additional adjust-
ment for maternal alcohol consumption during pregnancy did 
not markedly change model results (results not shown).

Interaction with sex and overweight/obese status

Results of interaction models by sex are shown in the supplement 
(eFigures 9–17; http://links.lww.com/EE/A139). No clear differ-
ences by participant’s sex were observed in associations for air 
pollution or traffic exposure with any liver enzyme biomarker. 
Results of interaction models by overweight/obese status are 
shown in Figure 2 for ALT with ambient air pollution and in the 
supplement for the other liver enzyme biomarkers and exposures 
(eFigures 18–25; http://links.lww.com/EE/A139). The associa-
tion between prenatal PM10 exposure and ALT was statistically 
significantly different by whether participants were overweight 
or obese at follow-up assessment (P = 0.045 after adjustment 
for multiple comparisons), with larger positive slopes among 
those who were overweight or obese (β = 0.120 per 1 µg/m3;  
SE = 0.065) compared with a slightly negative slope among those 

Table 2.

Distribution of exposures to ambient air pollutants, markers of 
traffic, and indoor air pollutants in the study population

Ambient air pollutants  

NO
2
, µg/m3  

  Pregnancy 18.4 (13.4, 26.2)
  Trimester 1 19.0 (13.9, 28.2)
  Trimester 2 17.1 (12.5, 26.5)
  Trimester 3 17.1 (13.0, 26.5)
  Childhood, home 19.7 (11.2, 30.2)
  Childhood, school 18.5 (12.0, 29.9)
PM

10
, µg/m3  

  Pregnancy 22.5 (15.9, 27.7)
  Trimester 1 21.9 (16.1, 28.1)
  Trimester 2 22.0 (15.6, 28.3)
  Trimester 3 20.2 (15.1, 27.5)
  Childhood, home 25.2 (18.8, 31.5)
  Childhood, school 24.9 (18.4, 31.7)
PM

2.5
, µg/m3  

  Pregnancy 14.9 (13.0, 17.0)
  Trimester 1 14.5 (12.2, 17.7)
  Trimester 2 14.1 (11.8, 17.2)
  Trimester 3 13.7 (11.6, 16.4)
  Childhood, home 13.7 (11.5, 14.9)
  Childhood, school 13.8 (11.6, 14.9)
Markers of traffic  
Inverse distance, m-1  
  Pregnancy 0.051 (0.019, 0.108)
  Childhood, home 0.019 (0.007, 0.053)
  Childhood, school 0.015 (0.008, 0.03)
Traffic load, vehicles/day-m  
  Pregnancy 212,135 (0, 1,501,124)
  Childhood, home 229,783 (0, 1,514,536)
  Childhood, school 263,992 (0, 1,579,946)
Traffic density, vehicles/day  
  Pregnancy 1,210 (500, 4,302)
  Childhood, home 2,979 (500, 10,898)
  Childhood, school 3,398 (798, 10,000)
Indoor air pollutants  
  NO

2
, µg/m3: childhood, home 1.8 (1.4, 2.4)

  PM
2.5

, µg/m3: childhood, home 29.1 (16.9, 94.3)
  Benzene, µg/m3: childhood, home 9.5 (7.7, 13.8)
  BTEX, µg/m3: childhood, home 21.0 (14.4, 30.6)

Median (interquartile range).
BTEX indicates sum of benzene, toluene, ethylbenzene, and xylene; NO

2
, nitrogen dioxide; PM

10
, 

particulate matter <10 μm; PM
2.5

, particulate matter <2.5 μm.

Table 1.

Distribution of sociodemographic characteristics and liver 
injury biomarkers in the study population

N 1,102

Cohort  
  MoBa, Norway 270 (24.5)
  INMA, Spain 211 (19.1)
  EDEN, France 196 (17.8)
  KANC, Lithuania 166 (15.1)
  RHEA, Greece 165 (15.0)
  BiB, United Kingdom 94 (8.5)
Maternal characteristics  
  Age at birth, years, median (IQR) 31.0 (27.8–34.1)
  Prepregnancy BMI, kg/m2, median (IQR) 23.5 (21.1–26.7)
  Education  
    High 505 (45.8)
    Middle 434 (39.4)
    Low 163 (14.8)
  Active smoking during pregnancy  
    No 945 (85.8)
    Yes 157 (14.2)
Paternal characteristics  
  Education  
    High 596 (54.1)
    Middle 382 (34.7)
    Low 124 (11.3)
Child characteristics  
  Age at follow-up, years, median (IQR) 8.2 (6.6-9.1)
  Sex  
    Male 596 (54.1)
    Female 506 (45.9)
Liver enzyme concentrations, IU/L, median (IQR)
  ALT 14.4 (11.6-18.1)
  AST 28.8 (25.1-34.2)
  GGT 12.0 (10.4-14.3)
  CK-18 71.2 (60.7-88.9)

N (%), unless otherwise noted.
ALT indicates alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; 
CK-18, cytokeratin-18; GGT, gamma-glutamyltransferase; IQR, interquartile range.
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Figure 1.  Model results for ambient air pollution and ALT. Associations between ambient air pollution exposure (NO2, PM10, and PM2.5) during different age 
windows and ALT modeled separately using generalized additive models, adjusting for cohort, maternal age, maternal prepregnancy BMI, maternal education 
level, paternal education level, and maternal active smoking during pregnancy. Null referent line is shown. No results were statistically significant after adjust-
ment for multiple comparisons. ALT indicates alanine aminotransferase; BMI, body mass index; NO2, nitrogen dioxide; PM10, particulate matter <10 μm; PM2.5, 
particulate matter <2.5 μm.
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Figure 2.  Model results for ambient air pollution with overweight or obese status interaction and ALT. Associations between ambient air pollution exposure (NO2, 
PM10, and PM2.5) during different age windows and ALT, stratified by overweight or obese status (orange line represents those who are overweight or obese; pur-
ple line represents those who are not overweight or obese). Modeled separately using generalized additive models, adjusting for cohort, maternal age, maternal 
prepregnancy BMI, maternal education level, paternal education level, and maternal active smoking during pregnancy. *Association for prenatal PM10 exposure 
was statistically significant after adjustment for multiple comparisons. No other results were statistically significant. ALT indicates alanine aminotransferase; BMI, 
body mass index; NO2, nitrogen dioxide; PM10, particulate matter <10 μm; PM2.5, particulate matter <2.5 μm.
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who were not overweight or obese (β = –0.047 per 1 µg/m3;  
SE = 0.052). Overall ambient PM10 exposures associations with 
ALT, slopes appear larger, although not always statistically sig-
nificantly different, among participants who were overweight or 
obese compared with those who were not overweight or obese 
(Figure 2). No other clear differences by participant overweight/
obese status were observed in associations for other air pollu-
tion/traffic exposure with any liver enzyme biomarker. For the 
five exposure-outcomes with significant nonlinearity (eTable 1; 
http://links.lww.com/EE/A139), plots of exposure smooth with 
statistically significant interaction with either sex or overweight/
obese status are shown in eFigure 26; http://links.lww.com/EE/
A139, but these are not adjusted for multiple comparisons and 
should be interpreted with caution.

Discussion
Using data from a well-characterized multi-cohort study across 
several European countries, we examined for the first time in 
a population-based prospective study the associations between 
prenatal and childhood air pollution and traffic exposure with 
biomarkers of child liver enzymes. We found no clear asso-
ciation of air pollution and traffic both in the prenatal and 
postnatal periods with liver enzyme levels in the overall study 
population. Notably, stratified analysis by child obesity status 
revealed a stronger association between prenatal PM10 expo-
sure and ALT among children who were overweight or obese 
compared with children who were not overweight or obese; the 
same pattern was observed in trimester-specific associations and 
for childhood PM10 exposures.

There is emerging evidence that environmental factors may 
play a role in the onset and progression of NAFLD.7,37 Air pollu-
tion exposure is linked with oxidative stress, systemic low-grade 
inflammation, and alterations in insulin/insulin-like growth 
factor and insulin resistance, which are all etiological factors 
related to NAFLD.37 Among the few studies in adult populations, 
associations have been reported for PM2.5 with ALT,38,39 AST,38 
and GGT40; PM10 with ALT41,42 and AST42; NO2 with ALT and 
AST38,41,42; and blood benzene with CK-18.43 Only two studies 
have examined the effect of air pollution or markers of traffic 
exposure on liver injury and NAFLD risk in children. In con-
trast to our findings, a small cross-sectional study on 150 new-
borns from Sabzevar, Iran, reported higher maternal exposure 
to PM <1 μm, PM2.5, and PM10 to be associated with increased 
ALT, AST, and GGT in newborn cord blood.11 Positive associ-
ations were also observed with higher street length in a 100 m 
buffer around the home for ALT, AST, and GGT, and an inverse 
association for distance to major roads with AST. Pollution lev-
els were a lot higher in this newborn study in comparison with 
the present analysis; for example, the median (IQR) PM2.5 was 
46.8 (40.1–73.3) μg/m3 compared with 14.9 (13.0–17.0) μg/m3, 
respectively. It is possible air pollution effects may differ by level 
of pollutant, with larger effects at higher pollutant concentra-
tions and smaller, less detectable effects at lower concentrations, 
such as those in the present study. A prospective study of 74 
children with mean age of 14 years who were overweight or 
obese from the Yale Pediatric Obesity Clinic followed for two 
years reported association for CK-18 at follow-up with NO2 
and traffic volume at baseline residence.10 An IQR increase 
in NO2 (1.91 ppb) was associated with 11 U/L higher CK-18  
(SE = 5.4), and an IQR increase in residential traffic volume 
within a 1-km buffer was associated with 15 U/L higher CK-18 
(SE = 5.2) per 110,000 vehicle-km. No statistically significant 
associations of AST or ALT with NO2 or traffic volume were 
found. This study, however, comprised only overweight and 
obese children recruited from an obesity clinic, whereas our 
study sample is population based. Given their health status, the 
children in the Yale study may have been more susceptible to 
the effects of pollution. Although we did not observe the same 

positive association between CK-18 and NO2 and traffic volume, 
we did find similar stronger associations between PM10 and ALT 
among children who were overweight or obese. These findings 
of higher pollution effects in children who are overweight/obese 
should be more carefully examined in future research.

Our analysis revealed an interaction between prenatal PM10 
exposure and overweight or obese status in childhood for liver 
injury biomarkers and especially for ALT. This suggests that pre-
natal air pollution might make the liver vulnerable to effects of 
increased weight status. This observation is consistent with the 
multiple-hits hypothesis for NAFLD pathogenesis,44 whereby 
prenatal PM10 exposure serves as an initial hit, leaving the liver 
compromised and sensitive to further insults, such as obesity or 
being overweight (possibly a proxy for high-fat/proinflamma-
tory diet), acting as an additional hit promoting disease pro-
gression. Synergistic interaction between air pollutant exposure 
and high-fat diet, a precursor to increased weight status, have 
been reported based on animal experiments. Mice exposed to an 
average of 15 μg/m3 PM2.5 and fed high-fat chow showed signifi-
cantly increased lobular inflammation, hepatocyte ballooning, 
and Mallory bodies compared with either PM2.5 exposure or 
diet alone.8 It has also been reported that PM2.5 acts synergis-
tically with high-fat diet to promote other metabolic outcomes, 
such as adiposity, insulin resistance and type 2 diabetes.45,46 It 
has been posited that environmental exposure—the first hit—
may compromise the liver’s protective responses against overnu-
trition—a subsequent hit—, promoting fatty liver disease from 
high-fat diets.47 The synergistic interaction between prenatal 
PM10 exposure and overweight or obese status merits further 
investigation. If these findings hold, then regulatory effects to 
improve air quality may potentially reduce the hits to the liver 
and lower the risk of NAFLD development.

Several toxicological studies have examined the role of air 
pollution in NAFLD and possible mechanisms, with most focus-
ing on PM. Inhaled PM particles can reach the liver where they 
activate Kupffer cells and induce an inflammatory response 
through the activation of several molecular pathways, such as 
c-Jun N-terminal kinases-activator protein 1, nuclear factor-κB, 
and Toll-like receptor 4.7 In a mouse study, PM2.5 exposure sig-
nificantly increased Kupffer secretion of cell interleukin-6,8 a 
proinflammatory cytokine associated with human NAFLD and 
those with higher steatohepatitis compared with simple fatty 
liver.48 PM particles may also affect peroxisome proliferator-ac-
tivated receptors activity, altering lipid and glucose metabo-
lism in Kupffer cells, hepatocytes, and hepatic stellate cells.7,9 
In mice with 6-month PM2.5 exposure, accelerated upregulation 
of tumor necrosis factor alpha (TNF-α) caused hepatic inflam-
mation and oxidative stress, disrupting the balance of lipid 
metabolism in the liver.9 However, given the species-specific tox-
ico-kinetics of PM, extrapolation from animals to humans is dif-
ficult.49 Although the toxicological literature supports an effect 
of air pollution on NAFLD development, we did not observe 
such associations in our longitudinal epidemiologic study. It 
may be that liver injury biomarkers being examined here in a 
population of apparently healthy children are not sufficiently 
sensitive to detect small perturbations in hepatic inflammation 
and lipid metabolism or that the levels of exposure in our anal-
ysis are below some effect threshold.

The main strength of our study is that it is the first large-scale 
epidemiologic study of the impact of air pollution on child liver 
injury, using data from six European birth cohorts with prospec-
tively collected data. In addition to using the same protocol for 
the outcome assessment, these six cohorts have detailed infor-
mation on air pollution exposure assessed using standardized 
protocols in two critical developmental age periods, in utero 
(including estimates of trimester-specific outdoor air pollution 
exposure) and early childhood. Our study has also a number of 
limitations. First, we used serum liver enzymes as our measure 
of liver injury rather than the current diagnostic gold standard 
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of liver biopsy for NAFLD. Large-scale liver biopsies, however, 
are not feasible in large population studies due to ethical con-
siderations and high costs; any outcome misclassification is not 
expected to have been differential by exposure level. Second, 
although we had detailed exposure assessment regarding par-
ticipants’ residential addresses, we did not have information 
about total exposure, including maternal occupational exposure 
during pregnancy or exposure at other locations such as school 
for indoor pollutants, which might have affected the observed 
results. Third, we were not able to examine other potentially 
informative markers of traffic, such as distance to nearest major 
road or total street length in select buffers since such estimates 
were not available for the HELIX study. It is important to note 
that traffic exposure captures not only near-roadway air pol-
lution but also traffic noise and possibly aspects of the built 
environment, such as green space and opportunity for outdoor 
physical activity. Finally, because of the large number of expo-
sures being tested and our appropriate adjustment for multi-
ple comparisons, the statistical power was limited. A narrower 
list of focused exposures could have partly addressed this issue, 
however, we wanted to take full advantage of the rich air pol-
lution and traffic exposure data available in HELIX. Regardless 
of statistical significance, researchers will be able to examine the 
exposure-response curves reported for the four liver enzymes 
with the pollution and traffic exposures to inform their own 
work. Furthermore, P values not adjusted for multiple com-
parisons are presented in the Supplement for the benefit of the 
reader.

This multicohort study of over 1,100 European children did 
not find prenatal or childhood air pollution or traffic exposure 
to be associated with biomarkers of liver injury in children. 
Findings from interaction analyses suggest PM10 effect estimates 
may be higher in children who are overweight or obese, consis-
tent with the multiple-hits hypothesis for NAFLD pathogenesis. 
Although additional research is needed to confirm these findings, 
this synergistic interaction suggests that reduction of particulate 
air pollution levels may be a possible intervention to lower the 
risk of liver injury and NAFLD development in children.
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