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A B S T R A C T   

An emerging body of work has revealed alterations in structural (SC) and functional (FC) brain connectivity 
following mild TBI (mTBI), with mixed findings. However, these studies seldom integrate complimentary neu
roimaging modalities within a unified framework. Multilayer network analysis is an emerging technique to 
uncover how white matter organization enables functional communication. Using our novel graph metric (SC-FC 
Bandwidth), we quantified the information capacity of synchronous brain regions in 53 mild TBI patients (46 
females; age mean = 40.2 years (y), σ = 16.7 (y), range: 18–79 (y). Diffusion MRI and resting state fMRI were 
administered at the acute and chronic post-injury intervals. Moreover, participants completed a cognitive task to 
measure processing speed (30 Seconds and Counting Task; 30-SACT). Processing speed was significantly 
increased at the chronic, relative to the acute post-injury intervals (p = <0.001). Nonlinear principal components 
of direct (t = -1.84, p = 0.06) and indirect SC-FC Bandwidth (t = 3.86, p = <0.001) predicted processing speed 
with a moderate effect size (R2 = 0.43, p < 0.001), while controlling for age. A subnetwork of interhemispheric 
edges with increased SC-FC Bandwidth was identified at the chronic, relative to the acute mTBI post-injury 
interval (pFDR = 0.05). Increased interhemispheric SC-FC Bandwidth of this network corresponded with 
improved processing speed at the chronic post-injury interval (partial r = 0.32, p = 0.02). Our findings revealed 
that mild TBI results in complex reorganization of brain connectivity optimized for maximum information flow, 
supporting improved cognitive performance as a compensatory mechanism. Moving forward, this measurement 
may complement clinical assessment as an objective marker of mTBI recovery.   

1. Introduction 

The human brain is a complex and dynamic neural network 
comprising structural and functional elements. These elements can be 
mapped in vivo non-invasively using magnetic resonance imaging (MRI) 
techniques. Specifically, by leveraging diffusion MRI (dMRI), we can 
calculate structural connectivity (SC), using measurements such as the 
number of reconstructed streamlines of white matter fibre bundles. Also, 
we can leverage functional MRI (fMRI) to calculate functional connec
tivity (FC) using measurements such as Pearson’s or partial correlation 
coefficients, between the average time series of gray matter regions. In 
addition, we can consider the brain as a graph, comprising nodes and 

edges using graph theoretical analysis (GTA; Bassett et al., 2011). Ample 
GTA studies have revealed a segregation–integration balance of the 
structural and functional connectomes in healthy populations, thought 
to empower the brain to support diverse higher-order cognitive func
tions. For example, stronger integration may support higher general 
cognitive ability and stronger segregation may support more specific 
higher-order cognition (e.g., processing speed; Wang et al., 2021). This 
balance may be impacted by the onset of neurologic disorders or insult 
such as traumatic brain injury (TBI) resulting in several cognitive and 
behavioral deficits (Raizman et al, 2020; Caeyenberghs et al., 2012; 
Matérne, Matérne, Strandberg & Lundqvist, 2018). 

TBI has been termed a “disorder of brain connectivity” (Hayes et al., 
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2016) characterized by topological alterations of the brains structural 
network as measured with GTA metrics (e.g., normalized clustering 
coefficient and characteristic path length), irrespective of injury severity 
and chronicity (for a meta-analysis, see Imms et al., 2019). In mild TBI 
patients, several studies report alterations in structural connectome- 
based GTA measures including increased normalized clustering coeffi
cient (van der Horn et al., 2016; Yuan et al., 2015; Yuan et al., 2017), as 
well as higher modularity, lower global integration, longer character
istic path-length and higher small-worldness compared to healthy con
trols (Yuan et al., 2015; Yuan et al., 2017). Collectively, these findings 
indicate that traumatic insult may distort the structural connectome, 
toward a regular (latticed) network which may contribute to cognitive 
sequelae (Kim et al., 2014; Königs et al., 2017; van der Horn et al., 2017). 
In addition, aberrant measures of the functional connectome have also 
been reported in mTBI patients (Morelli et al., 2021) across several 
large-scale functional networks, such as the default mode and attention 
networks (for reviews, see Sharp et al., 2014; Hayes et al., 2016). 

Over a decade ago, a landmark article reported a moderate correla
tion coefficient between SC and FC in the healthy human brain (r =
~0.5; Honey et al., 2010), suggesting a tight relationship between these 
elements may be vital for this system to give rise to higher-order 
cognitive function in healthy individuals. More recently, mixed evi
dence has emerged in brain-injured populations indicating this rela
tionship may be weakened compared to healthy controls with studies 
reporting SC-FC correlation coefficients ranging from r = -0.3 to r =
-0.68 (Parsons et al., 2020). For example, several studies revealed 
significantly reduced SC-FC correlation in Parkinson’s disease (Rosen
berg-Katz et al., 2013), primary progressive aphasia (Mandelli et al., 
2016), multiple sclerosis (Rocca et al., 2013) and TBI (Sharp et al., 2011) 
while others reported increased SC-FC correlation strength in TBI 
(Costanzo et al., 2014) and mild cognitive impairment (Wang et al., 
2018). 

Despite interesting findings, these studies bear a common limi
tation—they do not compare equidimensional SC and FC metrics of the 
same brain regions within a unified framework. This limitation may 
account for findings of mixed alterations in SC-FC correlation (i.e., both 
higher and lower, relative to controls) due to an oversimplification of 
the mechanism underpinning SC-FC. To overcome this limitation, 
several studies have employed GTA using both SC and FC data, to 
characterize multimodal brain connectivity in moderate-severe TBI pa
tients. For example, Caeyenberghs et al., (2013) compared equidimen
sional GTA metrics (degree) of SC (derived from fiber tractography using 
diffusion MRI data) and task-related FC (event-related) in moderate- 
severe TBI patients. They reported no significant correlations between 
degree, connection strength, regional efficiency, or betweenness cen
trality compared with healthy controls. Others reported a positive cor
relation between SC and FC, with lower diffusivity of the splenium of the 
corpus callosum correlating with increased posterior cingulate cortex FC 
in chronic TBI patients (Sharp et al., 2011). More recently, Kuceyeski 
et al., (2019) leveraged GTA to report increased structural connectome 
segregation, and increased functional connectome integration in mTBI 
patients, coinciding with improved cognitive performance. The authors 
interpreted these findings as two connectome-based post-injury recov
ery mechanisms: (1) neuroplasticity in the form of increased functional 
connectome integration and (2) remote white matter degeneration 
inflicting structural connectome segregation. In addition, although one 
study reported no differences in global GTA metrics (Roine et al., 2022), 
another reported dissimilar structural network organization in mTBI 
patients relative to healthy controls (Osmanlıoğlu et al., 2022). 

Though emerging studies provide unique insights into TBI, none 
have integrated SC and FC metrics into a so-called ‘multiplex’ network 
paradigm, which models the relationship among SC and FC simulta
neously across several levels of organization (for reviews, see Suarez 
et al., 2019; Vaiana & Muldoon, 2020). Specifically, this technique al
lows statistical analyses to be performed between the same nodes both 
within and between 2-dimensional layers (i.e., SC and FC adjacency 

connectivity matrices). We can then draw links between nodes across 
layers, termed “pseudo-edges”, which can be used to represent re
lationships between nodes across layers (i.e., the relationship between 
SC and FC). These relationships can be modeled with a correspondence 
of one-to-one (i.e., multiplex), one-to-many, or many-to-many. Subse
quently, multiplexes offer additional information over traditional GTA, 
allowing the exploration of how functional connectivity between brain 
regions is facilitated or mediated directly by single SC paths, or indi
rectly by multiple structural pathways (multi-paths). Several studies 
have employed multiplex network techniques, albeit in healthy cohorts. 
These studies uncovered different topological properties in fMRI and 
EEG frequency bands (De Domenico et al., 2016a; De Domenico et al., 
2016b; Tewarie et al., 2016) while others uncovered lower assortativity 
of FC (-0.15), and higher assortativity of SC (0.1) which may indicate a 
robustness to acute injury or neurodegeneration (Lim et al., 2019). 
Recently, our lab developed a novel GTA metric to characterize the SC- 
FC Bandwidth (denoting high information transportation capacity) in 
484 healthy subjects from the Human Connectome Project (HCP; htt 
ps://www.humanconnectome.org) using weighted SC and FC matrices 
(Parsons et al., 2022). We found most pairs of FC nodes were connected 
by SC paths of length two and three (SC paths of length > 5 were 
virtually non-existent). We also found higher SC-FC Bandwidth of in
direct connections predominated the somatomotor and default mode 
networks. This technique and subsequent GTA metric offers the capa
bility to reconcile SC and FC of mTBI patients within a unified frame
work, toward understanding how aberrant connectivity gives rise to 
cognitive impairment. 

In the present study, we aim to (1) measure cognitive performance 
on a processing speed task in mTBI patients at the acute, and chronic 
post-injury intervals, (2) map the anatomic (spatial) distribution of 
edges with high SC-FC Bandwidth values in mTBI patients, (3) identify 
subnetworks of altered SC-FC bandwidth at the chronic, relative to the 
acute post-injury interval, (4) examine the relationship between cogni
tive performance on a processing speed task, and SC-FC bandwidth at 
each post-injury interval and (5) examine whether change in SC-FC 
Bandwidth predict change in processing speed. 

We hypothesize that (1) processing speed is increased at the chronic, 
relative to the acute post-injury interval, (2) SC-FC Bandwidth (time 
point 1) predicts performance in processing processing speed at the 
acute post-injury interval (time point 1), (3) increased SC-FC Bandwidth 
(change from time point 1 to timepoint 2) predicts better processing 
speed from the acute-chronic post-injury interval. 

2. Materials and method 

2.1. Participants 

This study is part of a large-scale study monitoring the longitudinal 
effects of mild TBI, published elsewhere (Amgalan et al., 2022b; Robles 
et al., 2021). A total of 53 mild TBI (mTBI) participants were included 
(46 females; age mean = 40.2 years (y), σ = 16.7 y, range: 18–79 (y)). 
mTBI patients were recruited through community outreach (via adver
tisements and flyers) and/or with the assistance of healthcare pro
fessionals who had referred volunteers for neuroimaging and 
neurocognitive assessments. Inclusion criteria included (1) an acute GCS 
score of at least 13 upon initial evaluation (mean ± SD = 14 ± 1), (2) 
both diffusion-weighted and T2*-weighted acquired within ~1 week 
(acute post-injury interval) and ~6 months post-injury (chronic post- 
injury interval), (3) a TBI related to a ground-level fall involving 
direct head trauma, (4) loss of consciousness (LOC) shorter than 30 min 
(mean ± SD ≃ 9 ± 4 min), and (5) post-traumatic amnesia shorter than 
24 h (mean ± SD ≃ 3.6 ± 2.1 h). Exclusion criteria included (1) imaging 
findings other than those related to cerebral microbleeds, or cases of 
larger intracranial hemorrhage identified as susceptibility-weighted 
imaging (SWI) hypointensities, or and (2) a documented clinical his
tory of pre-traumatic neurological disorder, psychiatric disorder, or 
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drug/alcohol abuse. This study was undertaken in accordance with US 
Code of Federal Regulations 45 (CFR 46) and with approval from the 
Institutional Review Board at the University of Southern California, and 
according to the ENIMA working group memorandum of understanding. 

2.2. Cognitive evaluation 

The Brief Test of Adult Cognition by Telephone (BTACT) was 
administered at the subacute (~7 days) and chronic post-injury interval 
(~6 months) of TBI (mean ± SD = 57 ± 2 days between the two time
points) to assess the changes in cognitive performance following re
covery in the mild TBI patients. The BTACT consists of five subscales, 
which measure cognition. These subscales include: (1) episodic verbal 
memory (immediate), (2) episodic verbal memory (delayed), (3) 
working memory (longest span correct), (4) reasoning (proportion cor
rect) and (5) verbal fluency (number of items produced) and (6) pro
cessing speed. Herein, this paper focuses on the processing speed 
subscale only. This construct was operationalized using the 30 Seconds 
and Counting Task (30-SACT) which requires participants to verbally 
count items backward sequentially from 100 as quickly as possible in 30 
s. Scores were computed as 100 minus the number reached, where the 
result represents how many numbers were counted (lower scores indi
cate better performance). Errors due to skipping or repeating numbers 
were tallied and subtracted from the total score (Lachman et al., 2014). 
Concurrent validity and test–retest reliability of the BTACT were 
examined by Lachman et al., (2014) showing good concurrent validity 
with corresponding Boston Cognitive Battery factors (Soederberg Miller 
& Lachman, 2000; Short-term Memory, Verbal ability, Reasoning, and 
Speed, respectively) ranging from r = 0.42 to 0.54 (p < 0.001). Test- 
retest reliability was also found to be high (between r = 0.55 and 
0.94) apart from the verbal fluency subscale (r = 0.28), likely due to the 
category change (animals vs. foods; Strauss, Sherman, & Spreen, 1998). 

2.3. MRI data acquisition 

Neuroimaging data used in this study were part of a large-scale 
longitudinal study examining the longitudinal effects of mild TBI, pub
lished elsewhere (see papers: Amgalan et al., 2022b; Robles et al., 2021). 
MRI data were acquired at two timepoints, at ~ 1 week and ~ 6 months 
post-injury using a 3 T Siemens Skyra scanner with a 32-channel head 
coil. T2*-weighted resting-state fMRI data in an eyes-open condition 
were collected for approximately 7 min (140 volumes) with repetition 
time (TR) = 3000 ms, echo time (TE) = 30 ms, flip angle (FA) = 80, 
voxel size = 3.3125 mm × 3.3125 mm × 3 mm, field of view (FOV) =
208 × 180 mm2 and 72 slices with anterior-posterior phase encoding 
direction (A≫P). In addition, T1-weighted MRIs were acquired using a 
3D magnetization-prepared rapid acquisition gradient echo sequence 
(MPRAGE); TR = 1950 ms; TE = 2.98 ms; inversion time (TI) = 900 ms; 
voxel size = 1.0 mm × 1.0 mm × 1.0 mm. Diffusion-weighted images 
(DWI) were acquired with 64 gradient directions (TR = 8,300 ms; TE =
72 ms; voxel size = 2.73 mm × 2.73 mm × 2.7 mm) FA = 90◦, FOV =
128 × 84 with 59 slices, b = 1300, b0 = 1). 

2.4. Diffusion and functional MRI data Pre-processing 

fMRI data was preprocessed using the FreeSurfer Functional Analysis 
Stream (FS-FAST, https://surfer.nmr.mgh.harvard.edu/fswiki/fsfast) 
with default parameters set to the defaults. Nuisance regression was 
included at the stage of FS-FAST analysis specification using the -nuisreg 
flag with ventricular/CSF (vcsf.dat) and WM (wm.dat) signals as re
gressor. No global signal regression was conducted. Motion correction, 
frame censoring, intensity normalization, co-registration of fMRI to T1 
image, FreeSurfer surface sampling, spatial smoothing and resampling 
to the Montreal Neurological institute (MNI) space was performed. DWI 
preprocessing was done using a standard pipeline in the FMRIB Software 
Library (FSL) as described elsewhere (Rostowski & Irimia, 2021). 

2.5. Node definition 

An overview of the data processing pipeline is shown in Fig. 1. We 
chose the Destrieux cortical atlas as a parcellation scheme (150 ROI 
excluding sub-cortical areas and medial wall) in line with previous 
network studies (Amico and Goñi, 2018; Koch et al., 2021; King et al., 
2016). This atlas has been shown to reliably capture inter-subject vari
ability of SC-FC, compared to other atlases (Zimmerman et al., 2018). 
The number of nodes in this atlas (150) balances SC path resolution, 
without oversampling FC edge weights, resulting in sparser, weaker FC 
graphs (Zalesky et al., 2010). A full description of each region and visual 
representation of each region can be found in Destrieux et al., (2010). As 
a conservative approach, we excluded subcortical regions from our 
connectome analysis, due to low signal-to-noise ratio, which may 
compromise accurate segmentation of subcortical regions and affect 
white matter microstructural connections with cortical regions. 

2.6. Edge definition 

Edge weights of SC adjacency matrices were defined as the number of 
reconstructed streamlines between any two ROI of the atlas, in accor
dance with previous structural connectome studies (Basser et al., 2000; 
Mori et al., 1999; Conturo et al., 1999; Kuceyeski et al., 2016, Kuceyeski 
et al., 2019). This number of reconstructed streamlines was derived from 
the diffusion tensor model and deterministic tractography (See Fig. 3, 
Panel A). Moreover, we thresholded these SC matrices, by excluding 
cells with number of streamlines values lower than one, in accordance 
with recommendations for reliable tractography (Reid et al., 2020). The 
edge weight of the FC adjacency matrix (See Fig. 3, Panel C) consisted of 
partial correlations between any two pairs of gray matter regions of the 
parcellation scheme (r > 0.2). Important to note, we chose to focus on 
positive FC correlations only, as the current understanding of negative 
correlations/negative edge weights in the context of brain connectivity 
is limited (Zhan et al., 2017). At the individual level, weighted SC-FC 
(See Fig. 2, Fig. 3, Panel B) were constructed for each individual sub
ject, resulting in 53 weighted FC, 53 weighted SC and 53 weighted SC-FC 
Bandwidth connectomes which were used for subsequent analyses. 
Moreover, a group-average weighted SC-FC matrix was computed for 
visualization purposes using the sum of all matrix values across in
dividuals divided by the number of subjects. Post-processing of adja
cency matrices was completed using Matlab 2018a (https://www.math 
works.com) and Python (version 3.0). Our full weighted multiplex 
connectivity python code can be found here: https://github.com/parso 
nsn/SC-FC-Multiplex-Bandwidth. Full mathematical details of our 
method are provided in supplementary material. 

2.7. SC-FC Bandwidth 

We quantify the bandwidth between two synchronous regions ac
cording to their minimum SC edge weight (“max–min method”; Parsons 
et al., 2022). These paths may support higher signal capacity and ve
locity (Hursch, 1939; Rushton, 1951; Paus et al., 2014; Avena- 
Koenigsberger et al., 2019) relative to other paths incident to a given 
FC edge. That is, the SC throughput of an SC-FC edge (direct = 1 SC edge; 
triangle = 2 SC edges; quad = 3 SC edges) is equal to its least restrictive 
bottleneck (See Fig. 2). Effectively, this measurement reflects the 
communication bandwidth of each FC edge. Higher bandwidth values 
incident to a given FC edge therefore reflect throughput of synchronous 
brain regions. 

2.8. Nonlinear principal component analysis 

As shown in Fig. 1, we applied nonlinear PCA on the SC-FC Band
width composite matrix to reduce high dimensionality data without loss 
of important information (Scholz et al., 2005; Scholz, 2012; Pearson, 
1901; Hotelling, 1933). We utilized PCA to represent rich whole-brain 
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SC-FC Bandwidth data as a singular input value for each subject within a 
multiple linear regression. That is, each input value for each subject is a 
beta weight (representing the explained variance) of each subject’s SC- 
FC Bandwidth matrix principal component. However, a growing body of 
literature suggests that brain connectivity metrics exhibit nonlinear 
characteristics (particularly FC) which cannot be accurately modeled 
using a linear statistical assumption (Bassett et al., 2013; Battiston et al., 
2018; De Domenico et al., 2016a; De Domenico et al., 2016b). Therefore, 
we used nonlinear PCA (NLPCA) to allow a more sensitive polynomial fit 
to each maximally orthogonal component. 

NLPCA operates by training a feedforward neural network to 
perform identity mapping (Kramer, 1991). Here, network inputs are 
reproduced at the output layer. The neural network contains a bottle
neck layer (i.e., fewer nodes than either input or output layers), to force 
the network to (i) develop a compact representation of input data, and 
(ii) create two additional hidden layers. Importantly, this approach 
inherently limits overfitting of data, where principal components are 
still modeled using a linear (i.e., not curved) fitting assumption where 
possible. Similar to linear PCA, a series of weights containing the 
explained variance of each maximally orthogonal principal component 

is created, where the user can choose to include one or more components 
for further analysis. Here, the output is a matrix of eigenvectors and a 
corresponding vector of eigenvalues, where the largest eigenvalue and 
the eigenvector belong to a component that explains the most variance 
in the data. We included one principal component vector for both direct 
and indirect SC-FC Bandwidth. Each component was selected based on 
the maximal explained variance identified in a scree plot (Supplemen
tary data). Due to the relatively low sample size, each nonlinear prin
cipal component was derived using the entire dataset, without cross- 
validation (train-validation-test splits). 

2.9. Statistical analyses 

To address our first hypothesis, we conducted one-sample t-tests 
between normalized processing speed scores at the acute, and chronic 
post-injury intervals for each subject. To address our second hypothesis, 
we conducted a series of multiple linear regression models to examine 
whether SC-FC Bandwidth predicts processing speed. Our independent 
variables included nonlinear principal components of FC, direct SC-FC, 
indirect SC-FC and age as a covariate (Amgalan et al., 2022b). To 

Fig. 1. The Destrieux cortical atlas, showing parcellations of the cortex in the lateral view (Left) and medial view (Right).  

Fig. 2. SC-FC Bandwidth Schematic Diagram. Panel A shows functionally synchronous cortical nodes i and j connected by intermediary nodes k and l. Panel B 
shows the number of reconstructed streamlines connecting nodes i and j where the SC-FC Bandwidth of these regions is equal to 500 streamlines (the minimum, 
maximum (i.e., least restrictive path) enabling communication between nodes i and j. 
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Fig. 3. Overview of SC-FC Bandwidth Pipeline. SC-FC Bandwidth is calculated using dMRI (Panel A) and fMRI (Panel C) connectivity data. These data are reconciled 
within a multiplex framework (Panel B). Panel D shows how SC-FC Bandwidth data are fed into a general linear model to predict processing speed. In chronological 
order, Panel A shows raw diffusion MRI data (1) are parcellated into the Destreiux Atlas (2) before deterministic tractography (3) is performed to calculate the 
number of reconstructed streamlines (SC) between every region of interest (4). SC adjacency matrices are then computed for each subject (5). Panel C shows 
preprocessed fMRI EPI data (1) are processed using FS-FAST (2) to compute a time series for each cortical vertex (3) before parcellation in the Destreiux atlas (4). 
Adjacency FC connectivity matrices are computed, comprising Pearson’s correlation coefficients as each edge weight. Panel B shows SC and FC matrices are inte
grated into a multiplex framework (1) before SC-FC Bandwidth is calculated for each FC node (2) pair using the max–min method (Parsons et al., 2022). SC-FC 
Bandwidth adjacency matrices are then calculated for each subject (3). Panel D shows individual subject SC-FC Bandwidth matrices (1) are converted into vec
tors (2) and compiled into a composite matrix (3). Nonlinear PCA is then performed on this matrix (4) to calculate input weights in combination with cognition score 
vectors (5) for inclusion within a general linear model (6). 
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address our third hypothesis, we conducted a correlational analysis, 
using change in SC-FC Bandwidth and change in processing speed as the 
independent and dependent variables, respectively. 

2.10. Network based statistics (NBS) 

We performed statistical analysis to identify pairs of brain regions 
with altered SC-FC Bandwidth over time in mTBI patients. To test the 
null hypothesis of equality in the mean values of SC-FC Bandwidth be
tween injury intervals, we used the Network Based Statistics Toolbox 
(NBS; Zalesky, Fornito & Bullmore, 2010). Herein, one-sample (repeated 
measures) t-statistics were calculated independently for each edge, 
using SC-FC Bandwidth matrices as inputs for each subject at the acute 
(Time 1) and chronic (Time 2) post-injury intervals in a Time 1 < Time 2 
contrast. Any SC-FC connection with a t-statistic exceeding a set 
threshold of 2.5 (reflecting a p-value of 0.01) was included within a 
topological cluster (i.e., a network of edges/structural connections). 
Two networks were identified based on positive t-statistic values (i.e., 
increased over time) or negative t-statistic values (i.e., decreased over 
time). Finally, a False Discovery Rate (FDR)-corrected p value was then 
ascribed to each network using permutation testing. For each permu
tation, participants were randomly exchanged between Time 1 and Time 
2 data. NBS was then applied to the randomized data, and the size of the 
largest connected component was recorded. A total of 5000 permuta
tions were generated in this manner to yield an empirical null distri
bution for the size of the largest connected component. 

3. Results 

Using a general linear model, we found processing speed at the acute 
post-injury interval is predicted by nonlinear principal components of 
SC-FC Bandwidth, controlling for age with a moderate effect size (R2 =

0.33, p < 0.001). Specifically, we found indirect SC-FC Bandwidth (t =
-2.32, p = 0.02) contributed significant explained variance, however 
direct SC-FC Bandwidth did not contribute significant variance. At the 
chronic post-injury interval, we again found processing speed can be 
predicted by nonlinear principal components of SC-FC Bandwidth while 
controlling for age with a weaker effect size (R2 = 0.26, p < 0.001). 
Significant predictor variables include indirect SC-FC Bandwidth (t =
-2.37, p = 0.02) which contributed significant explained variance, 
however direct SC-FC Bandwidth also contributed significant variance 
(t = -1.94, p = 0.05). 

We also conducted a post-hoc analysis to determine if principal 
components of FC alone predict processing speed, compared to the 
previous general linear models (i.e., direct and indirect SC-FC Band
width at each post-injury interval). We found that principal components 
of FC did not significantly predict processing speed at the acute post- 
injury interval (t = -0.16, p = >0.05), or the chronic post-injury inter
val (t = -1.9, p = >0.05), though adjusted whole models (which include 
age as a covariate) did significantly predict processing speed at both the 
acute (R2 = 0.17, p = 0.001) and the chronic post-injury intervals (R2 =

0.23, p = 0.002). Taken together, these findings suggest principal 
components of direct and indirect SC-FC Bandwidth are stronger pre
dictors of processing speed than FC alone. 

Using the NBS toolbox (Zalesky, Fornito & Bullmore, 2010) we 
conducted repeated measures, one-sample t-tests to reveal a fronto- 
parietal subnetwork of increased SC-FC Bandwidth (A) after False Dis
covery Rate (FDR) correction (A; p-FDR = 0.05). This subnetwork 
encompassing the LH fronto-marginal gyrus (of Wernicke) and sulcus 
with the left orbital gyri, the right orbital gyri with the opercular part of 
the RH inferior frontal gyrus, and the left medial orbital sulcus (olfactory 
sulcus) with RH supramarginal gyrus, RH angular gyrus and RH intra
parietal sulcus and transverse parietal sulci (See Fig. 6). Each edge 
within this subnetwork exhibited increased SC-FC Bandwidth at the 
chronic post-injury interval relative to the acute post-injury interval. We 
also found significantly decreased SC-FC Bandwidth between the RH 

marginal branch of the cingulate sulcus and the RH middle occipital and 
lunatus sulcus at the chronic, relative to the acute post-injury interval (B; 
p-FDR = 0.05). 

To examine identified subnetworks, we performed partial correla
tions between the change in SC-FC Bandwidth (values at time point 2 - 
time point 1) of each edge in the increased and decreased SC-FC Band
width subnetwork (shown in Fig. 5, above) and change in normalized 
processing speed (values at time point 2 - time point 1) scores for each 
subject while controlling for age. Here, positive change in processing 
speed scores corresponds with better performance, and positive change 
in SC-FC Bandwidth corresponds with improved SC-FC Bandwidth over 
time). We found a significant partial correlation whereby increased SC- 
FC Bandwidth of the medial orbital sulcus (olfactory sulcus) and RH 
angular gyrus was associated with decreased processing speed (partial r 
= 0.32, p = 0.02). In other words, increased SC-FC Bandwidth values 
over time, coincided with better performance on the processing speed 
task over time. 

4. Discussion 

Applying our novel graph metric (SC-FC Bandwidth; Parsons et al., 
2022), we uncovered reorganization of SC-FC network connectivity 
following mTBI, corresponding with changes to processing speed. Our 
findings highlight the utility of reconciling multimodal connectivity 
data within a unified framework to characterize brain connectivity 
changes with recovery. Hereafter, we discuss our main findings with 
respect to our key aims, raise key methodological considerations, 
identify study limitations and provide suggestions moving forward. 

4.1. Improvements in processing speed with recovery 

As expected, we found that patients exhibited improved processing 
speed at the chronic (6-months) relative to the acute injury post-injury 
interval (3-weeks) operationalized with the 30 Seconds and Counting 
Task within the BTACT battery. Our findings are in line with previous 
studies examining cognitive recovery in mTBI. For example, previous 
work has reported spontaneous resolution of cognitive impairment 
ranging from weeks (Vanderploeg et al., 2005) to months (Schretlen & 
Shapiro, 2003; Flynn, 2010; Karr, Areshenkoff & Garcia-Barrera, 2014) 
to years (Heitger et al., 2006; Caroll et al., 2020). Here, our finding of 

Fig. 4. Improved Processing Speed From Acute to Chronic Injury Post-injury 
Interval. Fig. 4shows the result of a repeated measures one-sample t-test per
formed to compare normalized processing speed scores in mTBI patients (using 
the 30 Seconds and Counting Task where lower scores indicate better perfor
mance) at the acute and chronic post-injury intervals. We found that normal
ized processing speed scores were significantly increased at the the chronic (M 
= -0.57, SD = 1.16) compared to the acute (M = -1.36, SD = 1.04) post-injury 
intervals t(48) = -8.60, p = <0.001). Black bars represent standard error. 

N. Parsons et al.                                                                                                                                                                                                                                



NeuroImage: Clinical 38 (2023) 103428

7

improved processing speed at the chronic post-injury interval contrast 
those of a recent longitudinal study reporting improved processing 
speed over a 2-year trajectory using a selection of computerized tasks 
from the Cambridge Neuropsychological Test Automated Battery 
(CANTAB; Caroll et al., 2020). However, this test measured rapid visual 
information processing which although linked with response latency, is 
primarily a measure of sustained visual attention. In the context of 
training studies, our finding of increased processing speed coincides 
with Cooper et al., (2017) which examined the Paced Auditory Serial 
Addition Test (PASAT) as a dependent variable, with several treatment 
arms (psychoeducation, computer-based cognitive rehabilitation; CR), 
therapist-directed manualized CR, and integrated therapist-directed CR 
combined with cognitive-behavioral psychotherapy) as independent 
variables in military mTBI patients at 3-week, 6-week, 12-week, and 18- 
week follow-ups. All 4 treatment groups showed a significant 
improvement over time in PASAT scores, including psychoeducation 
which was used as a control treatment. However, the lack of a true non- 
treatment control group precludes identification of spontaneous 
improvement in PASAT scores. In addition, our methodological design 
was limited to only two timepoints. That is, although we can model a 
linear trajectory using data at each time point for each subject, we 
cannot model a more sensitive (i.e., polynomial) trajectory to detect a 
recovery plateau in this sample (i.e., more than two time points for each 
subject). This notwithstanding, the cognitive trajectory of each patient is 

thought to be highly dependent on the injury mechanism and severity, 
where even homogenous samples (i.e., similar injury severity, GCS 
score, chronicity) still present with high inter-subject variability (Ware 
et al., 2017). Moving forward, this field must consider (a) collecting 
samples in the order of thousands, and (b) developing subject-specific 
trajectory predictions if we are to develop clinically valuable research 
outcomes. Finally, we focused on processing speed as a core function 
underpinning higher-order cognition. However, additional tests of pro
cessing speed may complement the BTACT, to measure features such as 
drift rate (Imms et al., 2020). 

4.2. Alterations in SC-FC Bandwidth of mTBI patients with recovery 

Our general linear model indicated the statistical influence of direct, 
and indirect SC-FC Bandwidth was similar at both the acute and chronic 
post-injury intervals, though indirect SC-FC Bandwidth exerted higher 
influence at both injury intervals. It can be conjectured that the rela
tively low frequency of direct SC-FC polygons in the brain (~10% of all 
SC-FC polygons in the healthy brain; Parsons et al., 2022) may explain 
less variance in the statistical model, as they mediate far fewer syn
chronous gray matter regions. That is, the likelihood of directly con
nected synchronous gray matter regions playing a critical role in 
processing speed performance, is inherently lower. The contribution of 
age was also stronger than both direct and indirect SC-FC Bandwidth at 

Fig. 5. Linear Model to Predict Processing Speed at Acute and Chronic Post-Injury Intervals. Panel A shows a general linear model (processing speed) at the 
acute post-injury interval, using predictor (input) variables of direct SC-FC Bandwidth, indirect SC-FC Bandwidth and Age as a control variable. Panel B shows a 
general linear model (Processing speed) at the chronic post-injury interval, using predictor (input) variables of direct SC-FC Bandwidth, indirect SC-FC Bandwidth 
and Age as a control variable. 
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both post-injury interval, though this finding is unsurprising, given that 
white matter microstructure underpinning direct and indirect SC is 
known to change significantly across the lifespan and is associated with 
cognitive status (Yeatman, Wandell & Mezer, 2014; Cox et al., 2016; 
Coelho et al., 2022). 

For the first time, our findings revealed a subnetwork of increased 
SC-FC Bandwidth edges over the course of mTBI recovery, irrespective 
of how direct these connections were. Overall, we found maximum SC- 
FC Bandwidth was increased at the chronic, relative to the acute post- 
injury interval. Firstly, our findings can be compared to those derived 
from whole-brain unimodal MRI studies (SC; using probabilistic 
streamline tractography and FC; using Pearson’s or partial correlation 
coefficient) within using longitudinal designs in mTBI patients. Here, 
our findings contrast those of a recent study (Roine et al., 2022) 
reporting no global differences in structural network properties (i.e., 
clustering coefficient, global efficiency, characteristic path length, small 
worldness, betweenness centrality) between mTBI patients and controls 
at 4-weeks and 8-months post-injury. Secondly, our findings can be 
compared to the few existing multimodal MRI studies that leverage SC 
and FC, without drawing direct statistical comparisons between each 
measure. For example, Kuceyeski et al., (2016) quantified the SC-FC 
using network diffusion model (NDM) propagation time which can be 
interpreted as how much of the SC connectome is utilized for the spread 
(i.e., diffusion) of functional activation, captured via the FC connectome. 
This propagation time is thought to be slower in TBI patients, where 
functional communication may be rerouted through alternate, less 
efficient pathways. Indeed, severe TBI patients demonstrated longer 
NDM propagation time than HC, though this effect was not significant (t 

= 1.36, p = 0.31). Kuceyeski et al., (2018) used a similar approach in 
mild TBI patients, reporting increased network diffusion propagation 
time from 3 to 6 months after TBI was related to better cognitive re
covery (improved cognition scores over time). These findings speak to 
the impact of inefficient alternate SC pathways upon cognition and 
converge with the present findings regarding the relationship between 
efficient network communication (i.e., SC-FC Bandwidth) and cognition 
(i.e., processing speed). In the context of these findings, another 
reasonable conclusion may be that the application of our novel method 
uncovers changes in connectivity of mTBI patients, not ordinarily 
detectable with unimodal MRI connectivity alone. That is, given most 
brain regions are connected by two or more SC edges, yet these edges are 
not considered within direct SC analyses. 

4.3. SC-FC Bandwidth and processing speed at the Acute-Chronic Post- 
Injury intervals 

As hypothesized, we found increased SC-FC Bandwidth predicts 
improved processing speed albeit between the LH medial orbital sulcus 
(olfactory sulcus) and RH angular gyrus. This finding is interesting, 
given the RH angular gyrus is strongly implicated in language and 
number processing (Seghier, 2012) which were tested directly using the 
30 Seconds and Counting Task. On the other hand, the role of the RH 
medial orbital sulcus is counterintuitive, with no discernible influence 
on cognitive processes underlying the 30 Seconds and Counting Task. A 
simple explanation for this finding, may be that the role of RH medial 
orbital sulcus in facilitating processing speed, cannot be appreciated 
without a more complex brain-behavior model. That is, cognitive 

Fig. 6. SC-FC Bandwidth Subnetworks. Increased (A) and decreased (B) indirect SC-FC Bandwidth subnetworks. Each subnetwork edge is weighted by T-statistic 
(chronic > acute post-injury interval contrast, p < 0.001). 
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measurements are indirect (i.e., latent) estimates of an underlying 
behavioral construct, which are abstractions from direct brain function 
or neurobiological information (i.e., connectivity measures; Tiego & 
Fornito, 2022). Therefore, it is unlikely that the structure or function of 
any brain region relates strongly to a complex measure of cognition (i.e., 
processing speed). Another possible explanation for this counterintui
tive finding relates to the nature of SC-FC polygons. That is, by limiting 
SC-FC polygons to SC lengths of no more than three, we remove false 
positive paths by virtue of the assumption that longer SC-FC polygons 
are spurious. However, we may also exclude false negatives, where in
formation may be sent further than the medial orbital sulcus. For 
example, information relating to numerical processing may be propa
gated to a proximal region such as Broca’s area for speed production to 
facilitate the 30 Seconds and Counting Task requirement. Furthermore, 
given this edge represents an indirect, interhemispheric connection, we 
posit that this finding coincides with previous studies, showing signifi
cant associations between lower values of white matter organization in 
the corpus callosum and slower processing speed in TBI patients (Levin 
et al., 2008; Wilde et al., 2006) which has interesting implications in the 
context of our findings. That is, we found increased interhemispheric SC- 
FC Bandwidth predicts decreased processing speed at the chronic, 
relative to the acute mTBI post-injury interval. As mentioned already, 
given SC-FC polygons were restricted to SC paths of length 3 (i.e., three 
connected white matter pathways), increased SC-FC Bandwidth be
tween source and target nodes necessarily includes SC of the corpus 
callosum within the SC-FC Bandwidth equation calculation. Here, our 
findings support the link between white matter and processing speed, 
with respect to unimodal SC studies. Specifically, when considering our 
finding in the context of the corpus callosum (i.e., Levin et al., 2008; 
Wilde et al., 2006) a reasonable interpretation may be that interhemi
spheric communication is restricted by weaker SC sub-paths (lower 
number of reconstructed streamlines) linked as an extension with the 
corpus callosum. Indeed, Bai et al., (2020) reported damage to frontal 
interhemispheric projections may inhibit frontal-subcortical neuronal 

circuits–ultimately predicting Processing speed as measured by the Trail 
Making Task (Arnett & Labovitz, 1995) in mTBI patients. Our post-hoc 
finding that FC alone did not significantly predict processing speed 
(unless coupled with age as a covariate) is unsurprising, since age has a 
negative linear relationship with processing speed (Amgalan et al., 
2022a). Given this whole model was a weaker predictor of processing 
speed than our direct and indirect SC-FC Bandwidth model, it is 
reasonable to posit that SC-FC Bandwidth may have more utility in 
predicting processing speed than FC alone. Indeed, studies are beginning 
to relate multilayer network metrics with cognition. For example, Breedt 
et al., (2023) recently reported that higher multilayer centrality of the 
frontoparietal network, but not single-layer centrality, was related to 
improved executive function, albeit in healthy individuals. More 
broadly, our findings mark the importance of considering multilayer 
network connectivity metrics moving forward. 

4.4. Study limitations and suggestions moving forward 

The first important study limitation pertains to our sample, which 
comprised mostly female patients which may have implications when 
generalizing our findings to male patients. Although no direct evidence 
has been reported that changes in whole-brain white matter micro
structure following mTBI varies as a function of gender, there is evi
dence of altered functional connectivity of large-scale resting-state 
networks between males (increased FC) and females (both increased and 
decreased FC; Amgalan et al., 2022) likely driven by a greater neuro
protective immune response in females, as well as differences in sex- 
hormone levels and endocrine function (Stein, 2008). In addition to 
gender differences, our sample was homogeneous with respect to injury 
mechanism (ground-level falls only) which limits generalizability to 
other causes of TBI (i.e., blast-, traffic- or violence-related). Beyond al
terations in SC and FC at the chronic post-injury interval, brain aging 
profiles (i.e., widening of the cortical sulci, ventricular enlargement, and 
thinning of the cortex) also differ between males and females. For 

Fig. 7. Change in SC-FC Bandwidth with Change in Processing Speed. Fig. 7 shows a scatterplot comparing the change in indirect SC-FC Bandwidth values (x axis) to 
the change in processing speed values (y axis) of each subject and the partial correlation coefficient between these variables. Positive values indicate better recovery 
of processing speed and increased SC-FC Bandwidth. 
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example, a recent paper used machine learning to estimate “brain-age” 
(Cole et al., 2015; Cole et al., 2018) relative to chronological age. This 
paper reported stronger feature weights of males pertaining to temporal 
and dorsolateral frontal lobes, whereas female feature weights pertained 
to bilateral posterior and medial occipital regions, medial aspects of the 
parietal lobes, supramarginal gyri and callosal sulcus, among other re
gions (Yin et al., 2023). Taken together, preliminary evidence supports 
the notion that mTBI recovery may be influenced by subtle, gender- 
driven neurobiology, warranting further research. In our study, gender 
was controlled for as a covariate, though a small male sub-sample pre
cluded a statistically appropriate group-level contrast of SC-FC 
Bandwidth. 

Another important limitation of this study pertains to a lack of 
healthy control group, precluding a group by time interaction analysis to 
control for alterations in processing speed and SC-FC Bandwidth in 
otherwise healthy individuals. Secondly, though our measure of pro
cessing speed offers good concurrent validity and test–retest reliability 
with corresponding Boston Cognitive Battery factors (Lachman et al., 
2014; Miller & Lachman, 2000) there is an important limitation 
regarding the difficulty of this test in mTBI patients. That is, processing 
speed task difficulty (i.e., cognitive load) is not manipulated as part of 
the BTACT assessment. This has important implications for predicting 
processing speed using SC-FC Bandwidth, because this graph metric is an 
apparent measure of total information transportation capacity (i.e., the 
full capacity is reached when signal traffic accumulates at nodal junc
tions or bottlenecks; Mǐsić et al., 2014; Tombu et al., 2011). As a result, 
the explained variance of SC-FC Bandwidth within our general linear 
model may be underrepresented. That is, patients may not have reached 
a difficulty threshold associated with maximum SC-FC Bandwidth. Mild 
TBI patients may also be particularly susceptible to this threshold effect 
as evidence suggests moderate-severe TBI patients exhibit lower accu
racy on cognitive assessments when given less time to respond, relative 
to healthy controls (Capruso & Levin, 1992; Gronwall et al., 1974). 
Therefore, future studies may wish to examine the association between 
SC-FC Bandwidth and processing speed in a cognitive test that offers 
variation in difficulty such as the trail-making test (Salthouse et al., 
2000; Arnett & Labovitz, 1995) or the n-back task (Kirchner, 1958). 

As hypothesized, we found processing speed can be predicted when 
using nonlinear components (i.e., subnetworks of edges) relating to 
direct and indirect SC-FC Bandwidth, while controlling for age. These 
findings uncover the relative variance in Processing speed explained 
when considering several global (i.e., direct and indirect) input data. 
This notwithstanding, there are several important considerations 
regarding the use of PCA in our analysis. First, although nonlinear PCA is 
arguably a superior method to capture complex relationships in brain 
connectivity data compared to linear PCA (Scholz et al., 2005; Scholz, 
2012), the subnetwork of edges that each component represents cannot 
be mapped back into 3-dimensional brain space without reverting to 
linear PCA. Therefore, nonlinear principal components are inherently 
difficult to interpret. For this reason, we use these components only to 
(a) reduce highly dimensional data for inclusion in a regression model, 
and (b) quantify the relative importance of SC-FC Bandwidth values, 
justifying our subsequent analyses. 

It is important to note that brain-behavior relationships cannot be 
explained entirely using behavioral and macroscopic brain connectivity 
data alone, within any single SC-FC model. For example, communication 
models (Graham & Rockmore, 2011; Goñi et al., 2014; Crofts and 
Higham, 2009) consider one or more signaling mechanisms ranging 
from fully centralized (i.e., routing model) to fully decentralized (i.e., 
diffusion of signals throughout the connectome). On the other hand, 
biophysical models (Honey et al., 2007; Breakspear, 2017; Sanz-Leon 
et al., 2015) are able to simulate spontaneous or stimulation-induced 
neural activity, constrained to physical infrastructure (i.e., SC con
nectomes). Indeed, alternate SC-FC models leverage different assump
tions, and require different input data (i.e., transcription profiles, 
cytoarchitecture, receptor densities, laminar differentiation, temporal 

dynamics and gene expression) yet these models still do not account for 
sociocultural, phylogenetic, genetic and ontogenetic variables that in
fluence brain-behavior relationships at an individual level (Suárez et al., 
2020; Fornito & Tiego, 2022). Moving forward, a more unified frame
work must be considered if we are to harness the power of each SC-FC 
model, toward explaining behavior and cognition. For example, “neu
romaps” (Markello et al., 2022) allows users to access, transform and 
analyze structural and functional brain annotations. Herein, curated 
reference maps and biological brain ontology maps are provided (mo
lecular, microstructural, electrophysiological, developmental and func
tional) to facilitate standardization and comparison of brain maps. 

From a clinical standpoint, the utility and feasibility of our measure 
remains to be explored. 

This notwithstanding, SC-FC Bandwidth could be calculated at the 
individual subject level, and benchmarked against an appropriate 
comparative sample (i.e., similar injury location, severity, chronicity) to 
more sensitively track the trajectory of each patient throughout their 
recovery. Indeed, several studies have recently applied advanced anal
ysis of structural MRI at the single-subject level to characterize struc
tural connectomes (Imms et al., 2022) and white-matter organization 
using fixel-based analysis (Clemente et al., 2023) in moderate-severe TBI 
patients. These studies provide ample evidence that injuries in each 
subject cannot be properly characterized without more advanced anal
ysis of MRI data. However, these analyses are notoriously time- and 
resource-intensive, which calls for teamwork between clinicians and 
neuroscientists, to translate cutting-edge technology into clinical set
tings moving forward. In the context of patient management, this novel 
metric may provide the foundation for a more direct (i.e., neurobio
logical) measurement underpinning processing speed, such that lower 
values identified in individuals who do not yet show lower processing 
speed scores on neuropsychological testing, may indicate a future pre
disposition to challenges with daily functioning. 

5. Conclusion 

Applying our novel GTA metric SC-FC Bandwidth, we show for the 
first time that mTBI triggers complex reorganization of brain connec
tivity from the acute-chronic post-injury intervals, optimized for 
maximum information flow—ultimately driving improved processing 
speed. Our findings highlight the importance of considering indirect SC- 
FC to characterize neuroplasticity following trauma. Specifically, SC-FC 
Bandwidth in mTBI may be used to flag patients with impaired recovery 
trajectory to provide early therapeutic intervention. 
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