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Purpose: The analysis of diffusion data obtained under large gradient nonlin-
earities necessitates corrections during data reconstruction and analysis. While 
two such preprocessing pipelines have been proposed, no comparative studies 
assessing their performance exist. Furthermore, both pipelines neglect the impact 
of subject motion during acquisition, which, in the presence of gradient non-
linearities, induces spatio-temporal B-matrix variations. Here, spatio-temporal 
B-matrix tracking (STB) is proposed and its performance compared to estab-
lished pipelines.
Methods: Diffusion tensor MRI (DT-MRI) was performed using a 300 mT/m gra-
dient system. Data were acquired with volunteers positioned in regions with pro-
nounced gradient nonlinearities, and used to compare the performance of six different 
processing pipelines, including STB.
Results: Up to 30% errors were observed in DT-MRI parameter estimates when 
neglecting gradient nonlinearities. Moreover, the order in which B

0
 inhomogene-

ity, eddy current and gradient nonlinearity corrections were performed was found to 
impact the consistency of parameter estimates significantly. Although, no pipeline 
emerged as a clear winner, the STB approach seemed to yield the most consistent 
parameter estimates under large gradient nonlinearities.
Conclusions: Under large gradient nonlinearities, the choice of preprocessing pipe-
line significantly impacts the estimated diffusion parameters. Motion-induced spatio-
temporal B-matrix variations can lead to systematic bias in the parameter estimates, 
that can be ameliorated using the proposed STB framework.
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1  |   INTRODUCTION

Recent developments in gradient technology have opened up 
immense opportunities to further our understanding of brain 
microstructure.1-3 However, ultra-strong gradient systems 
often have compromised gradient linearity.1,2 Figure 1 illus-
trates the typical gradient nonlinearities observed with the 
300 mT/m gradient Connectom scanner used in this study. 

Even with careful head positioning, parts of the brain furthest 
from the isocenter can experience significant differences in 
gradient amplitude (>5%), leading to image distortion and 
deviations from the prescribed b-values (which scale with 
gradient amplitude squared). To utilize the full benefits of-
fered by these gradients, beyond careful head-positioning, 
attention has to be given to this often-neglected confound in 
the diffusion data processing pipeline.

F I G U R E  1   Volunteers were scanned using a diffusion MRI protocol on a 300 mT/m Connectom scanner with different bed translations. X, Y 
and Z gradient nonlinearities from one of the subjects is presented here for a subset of bed translations. As the volunteers were moved further into 
the scanner, the gradient nonlinearity effects became more severe and reached nearly −30% of nominal value. The mean of the square of gradient 
scaling factors (MSSF) due to gradient nonlinearity from the same volunteer is provided at the bottom of the figure and shows significant MSSF 
variations across bed positions
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Aside from gradient nonlinearity, B0 inhomogeneity and 
eddy-currents also distort the diffusion images, and subject 
motion compounds their interaction even further. Currently 
there is no preprocessing pipeline to disentangle their com-
bined influence on image distortion.4  Though there are 
effective tools to address each of these distortion sources sep-
arately,5-8  the optimal order in which to apply them during 
preprocessing is unclear. Two preprocessing pipelines have 
been proposed by the Human Connectome Project (HCP) 
consortium,4,9  with the first advising B0 and eddy-current 
and motion correction first, followed by gradient nonlinearity 
distortion correction. The second suggests the opposite order, 
beginning with gradient nonlinearity distortion correction. 
Our first objective was to determine which of these pipelines 
is better suited for processing diffusion MRI data from the 
300 mT/m Siemens Connectom scanner.1,3  We denote these 
two pipelines with prefixes WU and MGH, to recognize that 
the recommendations come from the WASHU-UMINN HCP 
project and the MGH-USC HCP project, respectively. Even 
if an ideal preprocessing pipeline that addresses all the con-
founds listed above were to be developed, as noted above, gra-
dient nonlinearities also lead to spatial variations in diffusion 
weighting. While this is benign for head scanning with most 
clinical scanners, where spatial uniformity of gradient ampli-
tude is more achievable, the strong gradient nonlinearities in 
bespoke ultra-strong gradient systems has prompted the devel-
opment of dedicated diffusion data analysis pipelines10  that 
account for gradient-nonlinearity-induced spatial variations 
in B-matrices.8,11-15  Here, we consider for the first time, the 
interaction of subject motion with gradient nonuniformity on 
diffusion measurements, as the effect of diffusion-weighting  
cannot be captured using spatially varying B-matrices alone. 
Under such circumstances, spatio-temporal tracking of 
B-matrix at each voxel location is essential.

The second objective of this work was, therefore, to 
develop a pipeline that also corrects for these temporal 
B-matrix changes, and to compare its performance to the cur-
rent state-of-the-art.

2  |   METHODS

Diffusion MRI datasets were collected from six healthy vol-
unteers (23-39 years, 2 female) on a 3T, 300 mT/m Siemens 
Connectom scanner. The study was approved by the Cardiff 
University School of Psychology Ethics Committee. A 
32-channel head coil was used for all the experiments. The 
scan settings were- Field of view: Transversal 220 × 220 ×  
140 mm3, 2 × 2 × 2 mm3 resolution, TR: 2700 ms, TE: 45 
ms, GRAPPA and multi-band factor 2, b = 1200 s/mm2,  
61 spherically distributed B-matrix.16  Four volunteers 
(Subjects 2-5) were scanned five times, with the mid-
sagittal corpus callosum positioned at the isocenter (best 

estimate) and then, at −3, −4, −5 and −6  cm from iso-
center (into the scanner bore). One volunteer (Subject 1) 
was scanned at −8 cm offset instead of −5 cm. For Subject 
6, scanning was skipped at −5 cm offset. At each posi-
tion, an additional b = 0 s/mm2 scan was performed with 
reversed phase encoding for B0-inhomogeneity-induced 
distortion correction.6  B0 shimming was performed at each 
bed translation separately before starting the diffusion 
scan. The volunteer’s heads were padded in the receiver 
coil to restrain movement. However, subjects 5 and 6 were 
instructed to deliberately move their head continuously 
during the off-isocenter scans. The gradient nonlinearities 
at each bed translation were calculated using the vendor-
provided spherical harmonic coefficients.

Figure 1 shows the nonlinearities of the three gradient 
coils and the Mean of the squared values of gradient Scaling 
Factors (MSSF) observed in brain regions at a subset of 
bed translations in one of the subjects. MSSF is defined as 
((1+�Gx)2+ (1+�Gy)2+ (1+�Gz)

2)∕3, where �Gx, �Gy and 
�Gz are signed relative gradient deviations from ideal, expressed 
as a fraction of unity, and are obtained from the spherical har-
monic coefficients that represent the gradient nonlinearities. An 
offset as little as 3 cm from the isocenter can result in more than 
5% deviation in X or Y gradient amplitudes, highlighting the 
importance of careful head positioning. With bed translations 
of 5 and 6 cm, the superior brain regions experience more than 
30% deviation from their prescribed values.

DT-MRI parameter estimates were obtained with six dif-
ferent preprocessing pipelines, all of which included B0 inho-
mogeneity correction,6  motion and eddy current correction, 7  
gradient nonlinearity distortion correction (GDC)5  and either 
B-matrix rotation (BR),17  which is also included in the FSL 
eddy tool7  with or without spatial B-matrix correction (SB),8  
or spatio-temporal B-matrix tracking (STB) proposed here.18  

The six preprocessing pipelines are summarized below:

1.	 MGH-BR: GDC ⇒ FSL topup, eddy ⇒ DT-MRI fit 
with BR.

2.	 CUBRIC-STB1 (Proposed): GDC ⇒ FSL topup, eddy ⇒ 
DT-MRI fit with STB.

3.	 WU-BR: FSL topup, eddy ⇒ GDC ⇒ DT-MRI fit with 
BR.

4.	 CUBRIC-STB2 (Proposed): FSL topup, eddy ⇒ GDC ⇒ 
DT-MRI fit with STB.

5.	 MGH-SB9: MGH-BR and SB.
6.	 WU-SB4: WU-BR and SB.

The most commonly used processing pipeline for diffu-
sion datasets is MGH-BR. When correcting for motion that 
includes head rotation, it is important that any rotations of the 
image are also applied to the encoding matrix (B-matrix), to 
preserve the relationship between encoding direction and sig-
nal intensity. The so-called “B-matrix” rotation17 is the most 
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commonly used technique. However, this approach implicitly 
assumes that the gradients are all linear over the field of view 
of interest. The spatial B-matrix correction (SB)8 rectifies 
this assumption by accounting for spatial variations in b-val-
ues due to gradient nonlinearities. When a subject moves, 
the gradient amplitudes experienced by different parts of the 
brain also change over time, leading to different diffusion 
weightings. We hypothesize that our proposed spatio-tempo-
ral B-matrix tracking (STB) captures and uses such B-matrix 
variations to quantify diffusion metrics more accurately, and 
we attempt to verify this hypothesis in this work.

The proposed pipelines (CUBRIC-STB1 and CUBRIC-
STB2) use the motion parameters estimated by FSL eddy for 
STB. Given that gradient nonlinearity is stationary in time, 
the motion parameters provided by the eddy tool can be used 
to map the temporal evolution of gradient amplitudes for 
every voxel location. From this, a specific B-matrix is calcu-
lated for each voxel, at each diffusion-weighting volume and 
used to estimate voxel-wise diffusion metrics.

For each pipeline, the FA (fractional anisotropy), MD 
(mean diffusivity), AD (axial diffusivity) and RD (radial 
diffusivity) parameters obtained from DT-MRI fitting at dif-
ferent bed translations were co-registered to the reference is-
ocenter maps using ANTS(Syn).19 The underlying gradient 

nonlinearities were also transformed to the reference space. 
The resulting co-registered data were used to assess per-
centage change in DT-MRI parameters with respect to the 
parameters obtained from data acquired at the isocenter. 
Finally, to determine which preprocessing pipeline was most 
robust, that is, least sensitive to gradient nonlinearities in-
duced through bed translations and/or subject motion, statis-
tical analyses were performed on the coefficient of variation 
(COV) of DTI indices computed voxel-wise across different 
bed translations.

3  |   RESULTS

Figure 2 shows MD values estimated from data obtained at 
various bed translations using different pipelines and the cor-
responding COV maps. Pipelines that ignore the impact of 
gradient nonlinearities on the B-matrix (MGH-BR and WU-
BR) fail to replicate MD estimates, while pipelines that ac-
count for spatial B-matrix changes are relatively immune to 
such discrepancies.

To assess the impact of different preprocessing and DT-
MRI fitting strategies, we calculated the MD values at dif-
ferent bed translations. Only those voxels with gradient 

F I G U R E  2   Grayscale image: Representative MD values in a volunteer estimated using different processing pipelines with data acquired 
at different bed translations. This volunteer (Subject 6) moved significantly during data acquisition. Please refer to Supporting Information 
Figs. S4, S5 for motion-related information of all subjects. Pipelines MGH-BR and WU-BR, which do not take into account gradient 
nonlinearities in parameter estimation, severely under-estimated MD in the frontal and superior-cortical regions (marked with yellow ellipses), 
where gradient nonlinearity effects were most severe. Color image block in the middle: % Error in MD estimates relative to isocenter values. 
Even at 3 cm offset from isocenter, MGH-BR and WU-BR underestimate MD by up to 30% and progressively worsen as gradient nonlinearity 
increases. CUBRIC-STB1 and MGH-SB maintain near-identical performance despite severe gradient nonlinearities. This is also endorsed by the 
last color image block which shows COV calculated over different bed translations for each pipeline, after ignoring CSF voxels  
(MD >0.9 × 10−3 mm2/s)
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deviation >10% in at least one of the gradient axes at any bed 
position were considered for this analysis, and we excluded 
voxels representing CSF by thresholding the MD values that 
exceeded 0.9 × 10−3 mm2/s. This left around 20% of all brain 
voxels for further analysis in every subject. Even at just 3 cm 
offset from isocenter, MGH-BR and WU-BR underestimate 
MD by up to 30% in some parts of the brain.

We estimated the median MD value from all the selected 
voxels for each subject and each pipeline and plotted them 
against the median MSSF values calculated from the same 

voxels (Figure 3). Pipelines that ignore the impact of gradi-
ent nonlinearities on the b-values (MGH-BR and WU-BR) 
showed a nearly linear trend between the MD values and 
MSSF. This is expected, since b-value scales with squared 
gradient amplitude, and thus, an assumed higher/lower 
b-value will lead to an underestimation/overestimation of 
MD values compared to the ground truth. Pipelines which 
correct for gradient nonlinearities should show consistent es-
timates of MD values irrespective of the gradient nonlineari-
ties, and thus bed translations. Thus, an ideal pipeline would 

F I G U R E  3   Voxels where at least one of the gradients deviated by more than 10% during bed translations were selected and the median MD 
value of all such voxels is plotted here against the median MSSF values. Around 20% of brain volume excluding CSF were available in each 
subject for this analysis. MGH-BR and WU-BR which do not take into account gradient nonlinearities in parameter estimation show a near linear 
trend with MSSF, while other techniques are fairly robust against it. Linear regression tests showed that MGH-BR and WU-BR showed significant 
(P<.05) linear trends with MSSF. Results from the analysis of Axial Diffusivity (AD), Radial Diffusivity (RD), and Fractional Anisotropy (FA) 
from the same voxels are provided in Supporting Information Figures S1-S3, respectively
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give a constant MD value over the whole range of median 
MSSF values in Figure 3.

For the same voxels, we calculated the COV in MD val-
ues obtained from different bed translations. Table 1 lists 
the mean COV for each of the six pipelines for each sub-
ject. Furthermore, to understand the behavior of the different 
pipelines, we plotted the variation of COV across different 
MD values for the four pipelines that include a correction for 
gradient nonlinearities (Figure 4).

To assess the impact of motion on various pipelines, we 
collected the average voxel-wise root-mean-square motion 
for each diffusion volume as output by the FSL eddy tool7 
(Supporting Information Figures S4 and S5).

4  |   DISCUSSION

4.1  |  On the performance of MGH-BR and 
WU-BR

Despite HCP recommending the MGH-SB and WU-SB 
processing pipelines, in our observation, some users who 
download the HCP datasets use commonly available diffu-
sion preprocessing tools which do not account for gradient 
nonlinearities. Our results (Figures 2 and 3) clearly demon-
strate that generic preprocessing pipelines like MGH-BR and 
WU-BR can have an adverse impact on the diffusion metrics 
obtained. This study re-emphasizes the need to use MGH-SB 
or WU-SB pipelines at least, as confirmed recently by Mesri 

T A B L E  1   Summary of the mean COV of DT-MRI metrics calculated across different bed translations for all the subjects and pipelines

Subject Voxels MGH-BR CUBRIC-STB1 WU-BR CUBRIC-STB2 MGH-SB WU-SB

MD

1 1031170 0.1030 0.0435 0.1100 0.0511 0.0433 0.0506

2 196770 0.0794 0.0450 0.0740 0.0410 0.0452 0.0402

3 280085 0.0854 0.0472 0.0780 0.0373 0.0463 0.0369

4 1059655 0.1040 0.0369 0.102 0.0418 0.0375 0.0430

5 440245 0.0867 0.0396 0.0797 0.0478 0.0406 0.0464

6 538168 0.0717 0.0485 0.0838 0.0513 0.0503 0.0477

All 0.0916 0.0424 0.0938 0.0465 0.0429 0.0459

AD

1 0.1020 0.0575 0.1081 0.0633 0.0573 0.0635

2 0.0851 0.0533 0.0788 0.0492 0.0536 0.0485

3 0.0929 0.0572 0.0840 0.0485 0.0567 0.0481

4 0.1071 0.0490 0.1067 0.0555 0.0487 0.0562

5 0.0933 0.0502 0.0878 0.0575 0.0508 0.0562

6 0.0863 0.0649 0.0962 0.0670 0.0665 0.0642

RD

1 0.1008 0.0556 0.1091 0.0628 0.0550 0.0624

2 0.0787 0.0507 0.0735 0.0464 0.0508 0.0460

3 0.0833 0.0538 0.0754 0.0430 0.0526 0.0430

4 0.1034 0.0449 0.1026 0.0517 0.0452 0.0526

5 0.0840 0.0457 0.0771 0.0571 0.0461 0.0551

6 0.0713 0.0633 0.0826 0.0623 0.0651 0.0612

FA

1 0.1220 0.1389 0.1264 0.1389 0.1379 0.1402

2 0.1131 0.1277 0.1043 0.1210 0.1286 0.1213

3 0.1159 0.1302 0.1091 0.1252 0.1310 0.1254

4 0.1153 0.1313 0.1281 0.1412 0.1289 0.1399

5 0.1131 0.1276 0.1210 0.1377 0.1258 0.1351

6 0.1572 0.1695 0.1518 0.1618 0.1702 0.1632

Notes: The MD table was obtained from the same data used for generating Figure 4. The column “Voxels” in the MD table indicates the actual number of voxels in 
each subject over which the COV statistics were obtained. The same is valid for other tables as well. For each subject, we have highlighted the two pipelines that 
yielded the lowest mean COV. The last row in MD table listed as “All,” used the combined data from all the subjects. In red, we have highlighted the pipeline with the 
overall minimum COV for MD.
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et al,15 who also showed that ignoring gradient nonlinearity in 
diffusion measurements can alter significance and effect size 
in group studies, and thus the conclusions drawn from such 
studies.

4.2  |  Comparisons between MGH-SB and 
WU-SB

We also observe from Figure 4 and Table 1 that among 
the HCP recommended pipelines (MGH-SB and WU-SB), 
there is no clear overall winner, with MGH-SB outperform-
ing WU-SB in Subjects 1, 4, and 5 and WU-SB outper-
forming MGH-SB in subjects 2, 3, and 6. Moreover, we see 
that the performances are drastically different in each case. 
While we cannot clearly elucidate the underlying reasons 
for this behavior, it seems that performance depends on the 
amount of gradient nonlinearity and/or motion present in 
the data. Table 1 shows the number of voxels that met the 
voxel recruitment criterion (>10% gradient nonlinearity in 
at least one axis at any bed position). This is clearly larger 
for Subjects 1 and 4 compared to other subjects, possibly 
indicating that Subjects 1 and 4 were less-optimally po-
sitioned and experienced greater deviations from the pre-
scribed gradient amplitudes. The lower average MD and 
RD values and higher AD and FA values in Subjects 1 and 
4 compared to other subjects (from Figure 3, Supporting 
Information Figures S1-S3, respectively), also supports 
this observation, as it indicates that significant gradient 
nonlinearity was also present in WM voxels apart from 

GM voxels in these subjects. In such cases, it makes sense 
that MGH-SB which corrects for gradient nonlinearities 
first outperforms WU-SB. Since, WU-SB first corrects for 
distortions induced by eddy currents and B0, it may mistak-
enly attribute distortions caused by gradient nonlinearities 
to these other sources. In contrast, WU-SB may outperform 
MGH-SB when the gradient nonlinearities are relatively 
benign, as perhaps indicated by the fewer voxels listed 
against Subjects 2 and 3. For Subject 6, because of large 
motion, distortions due to B0 inhomogeneity would have 
been greater, compared to other subjects, as the B0 shims 
are calculated and fixed based on the initial condition. 
MGH-SB could have been adversely impacted by the con-
founds caused by B0 inhomogeneity. However, by virtue of 
correcting for motion along with B0 inhomogeneity first, 
WU-SB perhaps outperforms MGH-SB in Subject 6. These 
observations naturally lead us to the comparisons between 
the STB pipelines and their corresponding SB pipelines.

4.3  |  Comparisons between SB and 
STB pipelines

From Supporting Information Figures S4 and S5, we ob-
serve that Subjects 1-4 showed benign motion during the 
scans compared to Subject 6. Although both Subject 5 
and 6 were instructed to move during the scans, the same 
figures show that Subject 5 had motion of comparable 
magnitude to that of Subjects 1-4. Although it is hard to 
unequivocally conclude that the amount of motion detected 

F I G U R E  4   Coefficient of Variation (COV) in MD values for four different pipelines (across bed translations) for all the six subjects. Only 
four pipelines have been compared here, as the performance of MGH-BR and WU-BR were clearly inferior compared to these pipelines, as 
observed from Figures 2, 3 and Table 1. The plots represent the smoothed conditional means obtained using R package ggplot2,20 with the gray 
bands indicating the 95% confidence interval in the estimated mean values
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by retrospective image-based subject motion detection 
truly represents the actual motion in diffusion scans, taking 
these image-derived estimates along with visual inspection 
of datasets, we feel safe to cluster subjects 1-5 together as 
a group with benign motion.

In these subjects with benign motion, we see a clear cor-
relation between the performance of MGH-SB and CUBRIC-
STB1 and WU-SB and CUBRIC-STB2. This is expected, as 
the STB pipelines are extensions of their corresponding SB 
pipelines. However, both Figure 4 and Table 1 indicate that 
while CUBRIC-STB1 could perform better than MGH-SB, 
CUBRIC-STB2 may marginally underperform compared to 
WU-SB. WU-SB uses the FSL eddy tool to try to correct for 
motion and eddy currents with images distorted by gradient 
nonlinearity. However, since this tool does not have knowledge 
about gradient nonlinearity-induced distortions, the estimates 
of motion, eddy currents and/or B0 inhomogeneity could be 
compromised. Subsequently, inaccurate motion estimates will 
impact the accuracy of STB , which may explain the observed 
underperformance of CUBRIC-STB2 compared to MGH-SB. 
In contrast, MGH-SB performs motion estimation after cor-
rection for distortions arising from gradient nonlinearity. Thus, 
the motion estimates resulting from eddy that runs after gradi-
ent distortion correction could provide more reliable inputs to 
STB. This perhaps also explains why CUBRIC-STB1 seems 
to perform better than MGH-SB in the case of Subject 6 with 
large motion, while CUBRIC-STB2 seems to underperform 
compared to WU-SB under the same conditions.

4.4  |  About the benefits of STB pipelines

One of our objectives was to introduce STB to handle inter-
actions between subject motion and gradient nonlinearities. 
This brings us to the question of whether there are advantages 
to choosing STB over SB pipelines. As our results show, 
with significant gradient nonlinearities at play, CUBRIC-
STB1 seems to show a small improvement over MGH-SB. 
Furthermore, although a first glance at Table 1 indicates that 
in case of severe motion (Subject 6), WU-SB outperforms 
CUBRIC-STB1, a closer look at Figure 4 reveals a more 
complex picture. For every subject, all the pipelines display 
a particular COV trend, with a dip in COV values between 
0.65 × 10−3 and 0.75 × 10−3 mm2/s, which corresponds to 
roughly the MD range of white matter and gray matter. In 
Subject 6, 50% of all analyzed voxels had MD values within 
this range. The MD values above this range could indicate 
CSF or GM/CSF boundaries (20% of all voxels in Subject 6).  
As seen in Figure 4, MD values below 0.6 × 10−3 mm2/s 
have large confidence intervals and could represent very few 
voxels (10% in case of Subject 6). Thus, we should be able 
to safely evaluate the performance of the different pipelines 
within the window of 0.65 × 10−3 and 0.75 × 10−3 mm2/s. In 

this window, from Figure 4, with substantive subject motion 
(Subject 6), CUBRIC-STB1 seems to perform better than 
other pipelines. Moreover, this trend continued when data 
from all the subjects were pooled together as well (Table 1, 
MD section). These observations indicate that further inves-
tigations on CUBRIC-STB1 pipeline could yield valuable in-
sights and results. The better performance of CUBRIC-STB1 
on pooled data could perhaps also be due to the greater num-
ber of voxels listed against Subjects 1 and 4. Despite these 
observations, we would like to re-emphasize that in case of 
benign gradient nonlinearities and benign motion, WU-SB 
could still be the preferred preprocessing pipeline.

4.5  |  Correcting FA values

Table 1 and Supporting Information Figure S3 make it abun-
dantly clear that mitigating the influence of gradient nonlineari-
ties on FA values is much more difficult than addressing MD 
values. In fact, all additional processing beyond B-matrix rotation 
worsened the COV of FA values (Table 1). However, we clearly 
observe that all the techniques that accounted for gradient non-
linearity in FA calculations showed higher FA values compared 
to MGH-BR and WU-BR (Supporting Information Figure S3),  
especially in subjects where significant white matter voxels 
were analyzed (subjects 1, 4, and 6). The difference between the 
methods was less obvious in subjects where predominantly gray 
matter voxels were analyzed (subjects 2, 3, and 5). These obser-
vations clearly align with those from Mesri et al,15 who reported 
that scalar parameters could be corrected better than angular pa-
rameters and that the effect of gradient nonlinearity correction 
on FA depended on the tissue type. Clearly, further research is 
needed to address the large COV observed in FA values.

4.6  |  Limitations of the study

As mentioned in the introduction, one of our objectives was to 
assess the impact of the order in which preprocessing steps are 
performed on the final DT-MRI parameters. This also opens 
the question of whether it is in fact possible to completely 
disentangle the effects of B0 inhomogeneity, eddy currents, 
gradient nonlinearity-induced distortions, B1 inhomogeneity 
and motion using tools that address these confounds sequen-
tially, as a composition of different processing steps. From 
the image formation perspective, all these non-idealities act 
simultaneously. With the exception of subject motion, the 
remaining non-idealities can be measured and corrected for, 
during image reconstruction. The same approach may have 
to be adopted during preprocessing if not addressed during 
reconstruction. Currently there are no tools to do this and thus 
we have restricted our preprocessing options to those that 
combined widely available and popular choices.
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Among the system imperfections, we have tried to min-
imize the effect of B0 inhomogeneity on bed translations 
through image-based shimming and by acquiring opposite 
PE-encoded images for EPI distortion correction (FSL topup 
tool). Similarly, the FSL eddy tool would have mitigated most 
eddy current effects. To the best of our knowledge, B1 vari-
ations at different bed positions are relatively benign com-
pared to gradient nonlinearity variations. Specifically, the 
Connectom scanner’s transmit body coil has a larger cov-
erage than the gradients and thus the variation of transmit 
efficiency over 8 cm translation, as used here, is, from our 
experience, relatively minor compared to the gradient nonlin-
earity variations. Nonetheless, it is possible that the effective-
ness of each of these corrections could have been different at 
different bed positions. Hence, we restricted our comparisons 
to different processing pipelines and not bed-positions per se. 
Using the same acquired data for all analyses has allowed for 
a fair comparison.

In this study, we have used vendor-provided spherical 
harmonic coefficients as true gradient nonlinearity mea-
surements in all our analysis. Further methodological im-
provements can perhaps be obtained by direct empirical 
measurement of gradient nonlinearity as performed by Lee 
et al,14 which avoids approximations that may result from 
spherical harmonic expansion.

4.7  |  Conclusions

In this work, our aim was to highlight the need for further 
research into the impact of the choice of data preprocessing 
pipeline in diffusion MRI in the presence of significant gradi-
ent nonlinearities. We have shown that the optimal choice of 
processing pipeline is not straightforward and may be condi-
tional on the degree of gradient nonlinearity over the region 
of interest. Furthermore, we have shown that the interaction 
between motion and gradient nonlinearities can have sig-
nificant impact on diffusion metrics and we have introduced 
the concept of STB to address this issue. Although no sin-
gle pipeline emerged as the best under all circumstances, our 
preliminary results seem to indicate that under the circum-
stances of high gradient nonlinearities and/or high motion, 
the CUBRIC-STB1 pipeline could yield more consistent pa-
rameter estimates than others.

While we have demonstrated the importance of account-
ing for gradient nonlinearities using neuroimaging exam-
ples in this work, the ideas introduced and discussed here 
are equally applicable to other anatomical regions and other 
scanners. For example, large field of view abdominal scans 
typically suffer from significant gradient nonlinearities in the 
outermost regions, even in clinical scanners. Accurate diffu-
sion measurements in those regions could also benefit from 
the STB approach proposed here.
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SUPPORTING INFORMATION
Additional Supporting Information may be found online in 
the Supporting Information section.

FIGURE S1 Same as Figure 3, but with axial diffusivity 
(AD)
FIGURE S2 Same as Figure 3, but with radial diffusivity 
(RD)
FIGURE S3 Same as Figure 3, but with fractional anisotropy 
(FA)
FIGURE S4 Time series of RMS motion per voxel as re-
ported by FSL eddy tool over different diffusion volumes. 
Subject 6 showed significant movement compared to all 
other subjects. However, varying degrees of motion can be 
observed in different subjects at different bed translations
FIGURE S5 Box plots of RMS motion calculated from the 
time series shown in Supporting Information Figure S4
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