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SUMMARY

This article focuses attention on the pressing need to think carefully and deeply about the current state of 
the art in using measurements of tissue microstructure derived from MRI to explain individual differences 
in brain function, electrophysiology and or cognitive function1. Although initial effort in the application of 
microstructural imaging was on voxel-based metrics derived from diffusion tensor magnetic resonance imaging 
(DT-MRI), such as fractional anisotropy (FA) and the mean diffusivity (MD), there is increasing realisation 
of the limitations of this approach both in terms of biological specificity and in terms of interpretability of any 
results that emerge. This has led to the development of alternative approaches that are (i) looking at topologies 
of networks derived from diffusion-MRI-based fibre-tracking approaches, (ii) adopting “advanced” diffusion 
MRI metrics that go beyond the tensor model, or (iii) looking at data from non-diffusion-based MRI contrasts, 
such as those based on magnetization transfer, multi-component relaxometry, or susceptibility-weighted 
imaging. With the increasing availability of methods to extract such metrics, and ease of access, it should be 
stressed that our application of such methods is outpacing our understanding of what aspect of biology the 
metrics are actually capturing. As such, there is a danger of operating in an unprincipled and unstructured 
fashion. This article argues that the “missing link” is a non-invasive neuroimaging metric that is not only well 
understood, but which also can reasonably be expected to explain variance in brain function from a biological 
perspective, rather than a metric that is used purely as a matter of convenience.

Keywords: axons, connectivity, DTI, graph theory, microstructure, myelin, networks, tractography, 
tractometry, white matter

INTRODUCTION

The UK national rail network

The United Kingdom is served by a “national rail network” that comprises mainline and local train services that 
link small villages to large cities. An internet search for images of the “UK rail network” yields multiple schematic 
depictions of the available routes and connections between different stations distributed throughout the UK. Any of 
these schematic diagrams would lead an alien visitor to believe that all lines in the network are largely equivalent. 
In other words, the ability to travel from one station to another station is the same no matter where you are in the 
network. In other words, all train lines are created equally. However, anyone who has attempted to use this network 
on a regular basis knows that the ability to use the trainline is variable, with “leaves on the line” being a perennial 
problem, now part of humour in UK train-users (see http://www.networkrail.co.uk/timetables-and-travel/delays-
explained/leaves/).

What this tells us is that while it is necessary to have a schematic map of the network connections in order to 
understand possible routes that one may take to visit different parts of the network, the information is insufficient 
to determine a priori how effectively one may use any particular parts of the network, and therefore the efficiency 
of using the network as a whole. Thus, while the designer of a rail network may be gratified to have minimized the 
travel distance between any two train stations, in terms of time or number of train changes required, and perhaps at 
the amount of steel needed to make that network, suggesting that the layout of the network is efficient, the passenger’s 
perspective is very different. If the condition of the track is such that the passenger is unable to travel efficiently, 
incurs unacceptable delays, misses a vital interchange, or does not arrive at the same station at the same time as a 
friend travelling on another route, frustration is ensured. As far as the passenger is concerned, there is a dysfunction of 
the network.

1	 Henceforth, we will use the term “function” as a generic term to include measurements of activity as observed by neuroimaging, 
measurements of electrophysiology and/or performance on a task, unless we specify a specific aspect of  “function.”
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Brain networks

Networks are studied increasingly in neuroscience (Sporns, 2010), whether these are derived from mapping statistical 
relationships between time-varying “functional” signals (Biswal et al., 1995; Schoffelen and Gross, 2009; Friston, 
2011), correlation of structural attributes such as cortical thickness (He et al., 2007; Chen et al., 2008), or by 
inferring continuous white matter pathways between cortical nodes using white matter tractography. Here we focus 
on the latter. In most cases, the researcher employs an algorithm that will use diffusion MRI data to derive discrete 
estimates of a continuous white matter pathway, either in a deterministic or probabilistic fashion, to infer a continuous 
trajectory, which is then asserted as a “tract” or a “connection” (Jones, 2008; Behrens and Sporns, 2012).

If a deterministic algorithm is used, then one obtains something akin to a national rail network map, with each 
connection being represented “democratically.” With a sufficient number of pathways thus reconstructed, the data 
can be subjected to a graph theory analysis (Iturria-Medina et al., 2007; Hagmann et al., 2008; Bullmore and Sporns, 
2009; Kaiser, 2011), allowing one to compute measures of network integration and segregation, including measures 
such as clustering coefficient, minimum path length, “small-worldness” and efficiency (Hagmann et al., 2008; 
Bullmore and Sporns, 2009; Kaiser, 2011). Using this approach, researchers have found differences in graph theory 
metrics in disease (Petrella, 2011; Griffa et al., 2013) and associations between graph theory metrics and cognition, for 
example (e.g., van den Heuvel et al., 2009; Ajilore et al., 2014).

When such analyses are performed purely on the connections themselves by considering “binary” edges (present or 
not), one might be surprised by these results since they implicitly assume that the only difference between individuals 
is in the layout of the wiring, and that any individual differences in the make up of the white matter fibres is less 
interesting/irrelevant/non-existent (or, implicitly, correlates strongly with the presence of an edge in the graph). 
They implicitly disregard as uninteresting any individual differences in the make up of the fibres. Of course, such a 
supposition makes no sense whatsoever when considering single pathways between two nodes, or a single fascicle, 
such as the arcuate fasciculus when studied in a language paradigm. Discarding the microstructural information (and 
even that on shape/length) and reducing the information to “there is a connection” leaves no variance in information. 
In addition, the criteria by which the binary edges are determined are often arbitrary and can have a huge effect on 
graph theory analysis results (Langer et al., 2013; Drakesmith et al., 2014).

In practice, of course, researchers have adopted several approaches to “weight” the edges of a graph. The first class 
of approach is a “frequency” approach. Some apply information obtained from a probabilistic tracking algorithm, and 
use the variance in the number of successfully reconstructed pathways between two nodes to explore covariance with 
“function” (e.g., Parker et al., 2005; Broser et al., 2012). The “probabilistic tractography score” is often interpreted 
as a quantitative marker of “connectivity” in this context. This approach to obtaining inter-individual or inter-tract 
variances has also been employed in graph theory analyses to “weight” the edges of the graph (Vorburger et al., 
2013; Weiler et al., 2014). A closely related approach to probabilistic tracking is simply to use cortical nodes with an 
extended area, i.e., containing multiple voxels, and count how many “streamlines” can be reconstructed successfully 
between the nodes, often referred to as “streamline count” (Wang et al., 2012; Hecht et al., 2013). This is, however, a 
challenging parameter to work with due to sources of bias such as length and curvature (e.g., Jones, 2010).

The second class of approach is to sample localised quantitative metrics of tissue microstructure (and thus obtain a 
distribution of the metric) along a particular pathway or fascicle, i.e., graph edge (e.g., Jones et al., 2005a,b). To this 
end, the most commonly used metrics are those derived from the tensor model, i.e., fractional anisotropy (Basser and 
Pierpaoli, 1996; Pierpaoli and Basser, 1997), mean diffusivity, “longitudinal” and “radial” diffusivities. For critical 
perspectives on these metrics see Wheeler-Kingshott and Cercignani (2009) and Szczepankiewicz et al. (2015).  
A small number studies have used other indices such myelination as estimated by magnetization transfer imaging 
(e.g. van den Heuvel et al., 2010). Looking at individual fasciculi, this approach is termed “tract-specific” analysis 
(Kanaan et al., 2006), while in graph-based analyses it is referred to as a “weighted graph” approach.

Network usage

At this stage, we should return to our analogy of the passenger on the train network and the importance of being able 
to predict our ability to travel along the train track as intended, so that we might arrive at the right place at the right 
time, and synchronise with others travelling on the same network. It is this aspect that will explain a large amount 
of variance in differences in efficiency between rail networks or in brain function between individuals. The question 
is this: to what extent does the probabilistic score, streamline count or tensor-based metric, either on a tract-specific 
basis, or in a graph analysis, give us relevant information?

The probabilistic score is simply how many times one can reconstruct a pathway between two points (Jones, 2010). 
While microstructural information may be used in the derivation of those pathways (e.g., low anisotropy used to 
terminate the propagation of a particular instance of a streamline), the probabilistic score does not provide a measure 
of the microstructural make up per se. DT-MRI-based metrics are heavily influenced by the microstructural make up 
of the tissue, and so perhaps take us one step closer to ascertaining the quality of the connection. However, as has 
been discussed many times in the past, the shape of the tensor is influenced by many factors including “interesting” 
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sources of variances, such as axonal density, diameter, myelination (Beaulieu, 2002), but one “uninteresting” source 
of variance dominates, i.e., the intra-voxel orientational dispersion or “architectural paradigm” (Beaulieu, 2002; 
Szczepankiewicz et al., 2015). To the best of our knowledge, the relative orientation of one axon to its neighbours in 
a voxel has no impact on its ability to carry an action potential. Thus, as previously noted, we should not be surprised 
when a DT-MRI-based metric does not explain variance in brain function. Rather, we might be more surprised when it 
does! It is, perhaps, in these instances that individual differences in “uninteresting” sources of variance are small, e.g., 
the function under assessment is reliant on information along a fibre pathway that is relatively invariant in intra-voxel 
orientational dispersion. It is in these situations that the DT-MRI metrics may be biased more towards the interesting 
sources of variance, such as myelin and axon morphometrics, explaining our previous proposal that “diffusion tensor 
MRI does well only some of the time” (De Santis et al., 2014).

A consequence of this argument would be that DT-MRI is probably more informative when comparing groups that 
have similar overall brain structure than when comparing widely different brains. For example, interpreting DT-MRI 
when comparing brains of Alzheimer’s disease patients to healthy controls is less informative than comparing the 
brains of a strictly defined control group (e.g., males, 25 years old, minimal variation in intracranial volume) before 
and after intervention such as cognitive training.

Tractometry and going beyond the tensor

Several DT-MRI studies have demonstrated a significant group difference or within-group microstructure-function 
correlation when taking the average parameter along a specific pathway (reconstructed with tractography) when a 
voxel-based search of the same data reveals nothing significant (Keedwell et al., 2012; Postans et al., 2014; Bracht 
et al., 2015). While only conjecture, this is likely to be attributable to the increased statistical power derived from 
averaging along the tract, effectively grouping the estimates from multiple noisy voxel-wise estimates, rather than 
considering each voxel in isolation. This then motivates the need for “tractometry” (Bells et al., 2011), which is the 
derivation of microstructural metrics along specific white matter pathways, whether it is averaging the parameter 
across the whole tract, or just a segment thereof.

The missing link: current status

So, what of the “Missing Link”? The provocative title refers to the fact that we have yet to come up with a principled 
white matter metric to explain variance in brain function. More specifically, to the best of our knowledge, there is a 
marked absence of any formal theoretical link between individual differences in any MRI-derived measure of tissue 
microstructure and individual differences in brain function. Thus, for example, while DT-MRI does indeed do well “some 
of the time” (De Santis et al., 2014) in that, for example, there are numerous reports of correlations between DT-MRI 
metrics and cognition (Johansen-Berg, 2010; Kanai and Rees, 2011; Roberts et al., 2013a), but doubtless there are at least 
an equal number of studies that have been conducted that have NOT found any correlation or group difference which 
have not been reported in the literature. Further, only a small number of studies with “counter-intuitive” results have 
appeared in the literature (e.g., choice reaction time correlating positively with FA in the visual pathway (Tuch et al., 
2005), or negative correlation between years of training in karate and FA (Roberts et al., 2013b). While not specific to 
diffusion MRI, or even neuroimaging more broadly this positive reporting bias (Fanelli, 2010; Ioannidis, 2011; Francis, 
2014; http://www.badscience.net/2011/08/brain-imaging-studies-report-more-positive-findings-than-their-numbers-can-
support-this-is-fishy/) and subsequent plethora of positive results in the literature clearly has an impact on researchers 
coming into the field looking for a structural substrate. When coupled with the modest data acquisition requirements for 
a DT-MRI experiment, increasing availability of easy-to-use and push-button analysis packages, the increasing ubiquity 
of DT-MRI based studies is understandable. The exquisite sensitivity of diffusion-based metrics, and thus their tendency 
to yield some form of difference or correlation in many instances, makes them particularly attractive. Granted, in cases 
where a correlation or group difference is found, they yield some insight in that they show that something in the white 
matter explains differences, but can go no further. Given the degenerate nature of the metrics, one is simply unable to say 
whether this “something” relates to axonal morphometrics, myelin morphometrics, some combination of the two or even, 
perhaps, something entirely unrelated such as subject motion (Yendiki et al., 2013).

Thus, while DT-MRI yields sensitivity, it comes at a price of lack of biological specificity. It is this degeneracy that 
has partly motivated the gradual adoption of neuroimaging approaches to offer increased biological specificity, 
attempting to hone in and capture variance in just one particular attribute of neural microstructure (Alexander et 
al., 2011; Assaf et al., 2013), e.g., “axonal” markers (Assaf et al., 2004, 2008; Alexander et al., 2010; Nilsson et al., 
2013a), or “myelin” markers (MacKay et al., 1994; Henkelman et al., 2001; Laule et al., 2007; Deoni et al., 2008; 
Wharton and Bowtell, 2012, 2014; Liu et al., 2014; Haacke et al., 2015), summarised below. Ultimately, the hope is 
that by increasing the biological specificity, one might also increase the sensitivity by being able to invest scan-time 
resources in the most informative metrics.

Summary of microstructural imaging approaches and what they offer

Diffusion MRI utilizes diffusing water molecules as a probe of tissue microstructure. Diffusion tensor MRI, 
diffusional kurtosis imaging (DKI) (Jensen and Helpern, 2010; Wu and Cheung, 2010), and q-space diffusion MRI 
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(King et al., 1994; Assaf et al., 2002; Cohen and Assaf, 2002) are techniques that use statistical tools to model and 
extract features of the molecular displacement probability distribution, or diffusion propagator. DT-MRI yields the 
average diffusion tensor, while DKI and related methods yield the intra-voxel variance of diffusion coefficients 
or tensors, in addition to the average. In q-space MRI, features such as the width of the diffusion propagator are 
extracted, which can be associated with axon diameters (Assaf et al., 2008; Alexander et al., 2010). While these 
techniques are highly sensitive, they cannot tell which specific feature is responsible for a certain level of change, 
because they provide single metrics that cannot disentangle the contributions of features of the tissue such as axonal 
orientation, density, myelination et cetera (Cohen and Assaf, 2002; Szczepankiewicz et al., 2015).

Biophysical models hold the potential to at least partly provide the missing link. The CHARMED model  
(Yendiki et al., 2013) predicts the diffusion-weighted MRI signal in terms of axon density and average diameter, 
while extensions such as AxCaliber (Assaf et al., 2004) extend the average diameter with a distribution described 
by its mean and variance. The NODDI model (Zhang et al., 2012) assumes an effective axonal diameter of zero, but 
includes axonal (or “neurite”) orientation dispersion. Estimation of the axon diameter is demanding in terms of MRI 
hardware performance (Dyrby et al., 2012; Setsompop et al., 2013; McNab et al., 2014; Huang et al., 2015). Just as 
in light microscopy, diffusion MRI has a resolution limit below which axon diameters cannot be reliably quantified 
(Nilsson et al., 2013a). Although the resolution limit does depend on the analysis model, protocol and the design of 
the gradient waveforms, it is ultimately determined by the maximal amplitude of the magnetic field gradient that the 
scanner can produce. Current clinical scanners and present analysis models do not permit accurate quantification of 
axon diameters below 2–4 mm; below this limit axon diameters are inseparable from zero. This is why the effective 
diameter is assumed as zero in the NODDI model, given that most axons are smaller than the limit. All of these three 
models (CHARMED) (Assaf et al., 2004), AxCaliber (Assaf et al., 2008) assume slow exchange between the intra-
axonal and the extracellular spaces, but inter-compartmental exchange can under limited circumstances be modelled 
and estimated using the modified Kärger model (Nilsson et al., 2013a) and extensions such as filter-exchange imaging 
(FEXI) (Lasič et al., 2011; Nilsson et al., 2013b). From a more general perspective, the diffusion MRI signal can be 
modelled using multiple components, each described by a scalar or a distribution on the anisotropy, orientation and 
the size or diffusivity of the component. When testing a multitude of different models with different compositions on 
in vivo or ex vivo data, three tissue components are typically required (extracellular, intracellular, and water confined 
in spherical cells or freely diffusing cerebrospinal fluid), but it is not entirely clear that the data supports reliable 
estimation of the axon diameter (Ferizi et al., 2014). Parameters such as axon density, the amount of extracellular 
“free” water, and orientation dispersion, have higher explanatory power and can be reliably quantified using optimized 
protocols (Zhang et al., 2012). These parameters can be beneficial for localizing brain regions impacted by diseases, 
but improved models and hardware (e.g. Nilsson et al., 2013a,b; McNab et al., 2014; Huang et al., 2015) will be 
needed to provide accurate estimates of axon diameters below the current resolution limit.

Methods other than diffusion MRI can also contribute to the “missing link”. Such methods take advantage of 
relaxometry (MacKay et al., 1994; Laule et al., 2007; Deoni et al., 2008), magnetization transfer (Wolff and Balaban, 
1989; Henkelman et al., 1993, 2001; Sled and Pike, 2001; Xu et al., 2014) and magnetic susceptibility (Wharton 
and Bowtell, 2012, 2014; Haacke et al., 2015). In their basic implementation, these techniques yield voxel-averaged 
metrics that are sensitive to changes in the tissue structure, but that lack specificity in the same manner as FA from 
DT-MRI does. Relaxometry is sensitive to the proton density (PD) and the longitudinal and transverse relaxation rates 
(T1 and T2, respectively), which reflect on the chemical environment of water molecules. Multi-echo experiments 
demonstrate a distribution of these values within the voxels (MacKay et al., 1994), where different T1 and T2 values 
can be associated to myelin water, intracellular water, and extracellular water. Methods such as multi-component 
driven equilibrium single pulse observation of T1 and T2 [mcDESPOT (Deoni et al., 2008)] provide a means to 
estimate these compartment-specific values in clinically realistic times. The water fraction with short T2 has been 
designated as the myelin water fraction (MWF) (MacKay et al., 1994). Since brain function may be modulated by the 
myelin content but not the white matter T2-value, the MWF is one step closer to contributing to the “missing link” than 
T2. However, the MWF is blind to whether a change in myelin content occurs in small or large axons, and may thus 
not be sufficient to predict individual differences in brain function. Another approach to quantify white matter content 
is to utilize magnetization transfer (Wolff and Balaban, 1989; Henkelman et al., 1993, 2001; Sled and Pike, 2001; 
Ramani et al., 2002), where the MR signal is sensitized to macromolecular content, i.e., myelin density, by a process 
where macromolecular protons (such as those found in myelin) are saturated by an off-resonance [“magnetisation-
transfer” (MT) pulse] while in constant exchange with free water. By comparing the MR signal with and without the 
application of the MT pulse, the magnetization transfer ratio (MTR) can be obtained (Wolff and Balaban, 1989). High 
MTR in WM is believed to be associated with the proteins and lipids in myelin. However, the MTR value depends 
on many aspects of the protocol in use, including the RF pulses, B0 and B1 homogeneity (particularly at higher field 
strengths) as well as intrinsic MR properties such as the T1. This led to the development of several approaches to 
model out these additional sources of variance, to move toward a quantitative parameter (the macromolecular proton 
fraction) that gets closer to a physiological property of tissue, and therefore one step closer to the assembling the 
missing link. Finally, quantitative susceptibility mapping (e.g., Wharton and Bowtell, 2012, 2014; Liu et al., 2014; 
Haacke et al., 2015) shows promise to add another dimension to imaging of brain structure and function, especially 
at ultra-high field strengths. Due to the geometrical arrangement of myelinated axons, and the differential in magnetic 
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susceptibility between white matter components and surrounding tissue, they distort the surrounding magnetic field in 
a characteristic way, which may be utilized to estimate properties such as axonal orientations (Wharton and Bowtell, 
2012) and potentially also axonal morphometrics such as myelin thickness (Wharton and Bowtell, 2014). Remarkably, 
few attempts have been made to provide a joint model of white matter that predicts the outcome of diffusion, 
relaxation, magnetization transfer and susceptibility mapping experiments simultaneously.

In contrast to DT-MRI, these approaches have not yet found widespread adoption in neuroscience, which is likely 
attributable to several reasons. Firstly, the neuroscience community has wholesale adopted diffusion tensor MRI. 
Consequently, in any study reporting on white matter microstructure, reporting the fractional anisotropy, for example, 
is expected. Moreover, as previously noted, given the likely “success” in getting a positive result with DT-MRI, 
any reluctance to relinquish a grip on DT-MRI would be completely understandable. Additional metrics require 
additional acquisition time, invoking additional scan costs, resource contention, and participant tolerance. Secondly, 
many of these approaches are still under active development. Thus, while for DT-MRI there are commonly found 
strategies for data acquisition (e.g., b = 1000 s/mm2, 30–60 uniformly distributed directions) (Jones et al., 1999) and 
standardized protocols (Jones and Leemans, 2011), metrics of anisotropy (FA being the most prevalent), and data 
analysis (e.g., Smith et al., 2006; Leemans et al., 2009), the same cannot be said of the other metrics. Third, even if 
there was consensus, there is relatively limited availability of user-friendly interfaces. Fourth, while DT-MRI is widely 
used despite us not really having an understanding of what the metrics are telling us from a biologically specific 
perspective, it seems that the community developing these alternative approaches is more hesitant in releasing them 
for general use, while efforts to understand and interpret what they are telling us are on-going.

Quantitative, interpretable metrics – now what?

Consider a Utopian world, in which we have developed fully robust non-invasive methods to quantify axonal 
morphometrics (including axon diameter, axon density, membrane permeability), myelin metrics (including myelin 
thickness), g-ratio (Stikov et al., 2011; Melbourne et al., 2014; Stikov et al., 2014; Campbell et al., 2014) and so 
forth. Moreover, each metric has been validated using more invasive methods, and finally there is a consensus on 
the optimal way to acquire, pre-process and analyse the data. What then? We would then be equipped with a set of 
tools to quantify disparate attributes of white matter microstructure and would be in the position of being able to 
repeat the exercise of looking for correlations between these new metrics and aspects of brain function. We may, 
for example, find a positive association between a myelin metric and task performance, or between coherence in 
electrophysiological recordings between two cortical regions and the mean axon diameter in the pathway connecting 
them. This gives us yet further insights into associations between microstructure and function – but remains 
unprincipled. In other words, to the best of our knowledge, there is no theory that links task performance to axon 
diameter or myelin thickness. Granted, we understand that action potentials are conducted more quickly in axons 
with larger diameters (Hursh, 1939), which has recently been explored with diffusion MRI and EEG by Horowitz 
et al. (2014), and that myelin further increases the conduction velocity (Waxman and Bennett, 1972; Waxman, 
1980). Moreover, we understand that there is a theoretical optimal ratio of the outer diameter of the axon (axon + 
myelin) to the inner axon diameter, characterized by the “g-ratio” (Rushton, 1951), in that the conduction velocity is 
optimised when the g-ratio is 0.6. However, consider a thought experiment in which all axons happened to be of the 
same diameter across our cohort. In this special case, one may reasonably anticipate that deviations from the optimal 
g-ratio, and therefore (in our Gedanken that all axon diameters are the same), variance in our myelin metric might 
be expected to explain variance in conduction velocity, albeit non-linearly since both more and less myelin results 
in a departure from the optimal g-ratio. However, the likelihood of there being no intra- or inter-individual variance 
in axon diameter seems particularly low, especially in light of histological evidence (e.g. Aboitiz et al., 1992). If, as 
is more likely, there is variance in axon diameter, then the impact of any additional variance in myelin metrics may 
be less significant. It is, of course, important to consider the distance between nodes of Ranvier, which also impacts 
on conduction through the axon. To the best of our knowledge, there has been no MR-based approach that allows 
quantification of the inter-nodal distance, although it has been shown that inter-nodal distance correlates with axon 
diameter, at least in healthy rabbits (Hess and Young, 1952). Moreover, it is not just the mean but also the distribution 
of axon diameters that is likely important to consider. In myelinated axons, a diameter of 0.7 mm appears to optimize 
the energy per transmitted bit of information (Perge et al., 2009). The presence of large axons, whose diameter 
correlates with brain size between species in contrast to mean diameters of myelinated and unmyelinated axons 
(Wang, 2008; Wang et al., 2008) indicates they must support another type of function than small axons that motivate 
the extra energy required to use them.

This one example presupposes that conduction velocity is the primary target of interest. However, the conduction 
time, in other words, the time to propagate a signal from one region to another will also be a function of the 
length of the connection between them. This, alone, argues against a voxel-wise search for correlations between 
these microstructural metrics and function. Now, suppose that we have a forward model [e.g., based on cable 
theory (Tasaki and Matsumoto, 2002)] that allows us to predict conduction velocities from tractometry of relevant 
quantities and, through robust tractography, the length of a pathway, to enable prediction of conduction delays. 
What then? Is there a theory that indicates that the conduction delay should always be minimised? And if so, are 



Microstructures of Learning, May 23, 2014 – Lund, Sweden	 43

D.K. Jones and M. Nilsson	 Tractometry and the hunt for the missing link

conduction delays “absolute” (so that one might expect correlation between conduction delay and task performance 
across a cohort), or “relative” (i.e., different individuals operate at overall different “rates” – so that we should 
not anticipate correlations across a cohort). Fields argues that what is important for optimal brain function is 
not that the conduction velocity is as high as possible, or that conduction delays are minimized, but that signals 
arriving from different parts of the brain arrive in synchrony (Stanford, 1987; Sugihara et al., 1993; Pajevic et al., 
2014). Extrapolating, one might expect that deviations from synchrony may lead to deviations from optimality 
and therefore reduction in performance/function. However, deviation from synchrony does not necessarily mean 
deviation from optimality. Many EEG/MEG task elicit reductions in synchrony as well as increases, with the best 
known example being an increase in alpha synchrony when eyes are closed compared to open. More synchronous 
signals have lower entropy and suggest that increase in synchrony reflect less information processing  
(e.g. Anderson and Jakobsson, 2004; Qi et al., 2004). One possibility is that the conduction velocities of different 
fibre populations coming into an area of cortex should be tailored to maximise the amount of information received 
by the cortex, rather than synchrony per se.

The complexity of the problem of deriving the missing link in the “Tractometry” framework is further exacerbated 
by evidence for conduction velocity varying along white matter pathways (Baker and Stryker, 1990; Traub and 
Mendell, 1988); thus the tissue should be characterised at each point of every axon and used in the forward model. 
Recently, Tomassy et al. (1988) have also reported evidence for wide variation in myelin content along single axons, 
further exacerbating the problem of establishing the missing link between measurements of microstructure at the voxel 
scale to function. Thus, the ability to use microstructural data in a forward model to predict accurately individual 
differences in function in terms of differences in white matter structure seems a long way off.

CONCLUSION

In conclusion, while diffusion tensor imaging is a sensitive technique, and therefore yields useful information that 
something in the white matter might be different, it lacks the biological specificity needed to gain any further insight. 
This is acknowledged and many groups are developing complementary approaches to provide higher biological 
specificity. While promising, these have not yet enjoyed widespread dissemination nor, therefore, widespread 
adoption. There would be considerable change of behaviour needed for these metrics to REPLACE diffusion tensor 
imaging.

However, even if adopted into widespread practice, we would be only be able to relate individual differences in 
function to differences in specific white matter attributes in a phenomenological manner at best. A more principled 
approach that generates forward models, predicting function from structure, and states a priori exactly how and why a 
particular imaging metric (or combination thereof) will explain variance in a particular aspect of brain function, would 
fashion the deployment of advanced microstructural imaging in neuroscience into a more rigorous science. However, 
before this can happen, much more work is needed on the “hunt for the missing link.”
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