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Abstract. Magnetic resonance imaging (MRI) is the primary method for noninvasive investigations of the
human brain in health, disease, and development but yields data that are difficult to interpret whenever the
millimeter-scale voxels contain multiple microscopic tissue environments with different chemical and struc-
tural properties. We propose a novel MRI framework to quantify the microscopic heterogeneity of the living
human brain as spatially resolved five-dimensional relaxation–diffusion distributions by augmenting a conven-
tional diffusion-weighted imaging sequence with signal encoding principles from multidimensional solid-state
nuclear magnetic resonance (NMR) spectroscopy, relaxation–diffusion correlation methods from Laplace NMR
of porous media, and Monte Carlo data inversion. The high dimensionality of the distribution space allows
resolution of multiple microscopic environments within each heterogeneous voxel as well as their individual
characterization with novel statistical measures that combine the chemical sensitivity of the relaxation rates
with the link between microstructure and the anisotropic diffusivity of tissue water. The proposed framework is
demonstrated on a healthy volunteer using both exhaustive and clinically viable acquisition protocols.

1 Introduction

The structure of the brain is affected by both disease and nor-
mal development over a wide range of length scales. To mea-
sure and map the cellular architecture and molecular com-
position of the living human brain is a challenging experi-
mental endeavor that promises far-reaching implications for
both clinical diagnosis and our understanding of normal brain
function. Over recent decades, magnetic resonance imaging
(MRI) methods have been crucial for the progress of neu-
roanatomical studies (Lerch et al., 2017). Most clinical MRI
applications rely on detecting 1H nuclei of water molecules
to produce three-dimensional images with a spatial resolu-
tion on the millimeter scale. Even though the attainable res-
olution is clearly insufficient for direct observation of indi-

vidual cells, chemical and microstructural features can be
investigated by probing their effect on magnetic resonance
observables such as nuclear relaxation rates (Halle, 2006)
and the translational diffusivity (Le Bihan, 1995) of water.
Relaxation and diffusion parameters can thus indirectly re-
port on various microscopic properties, including cell den-
sity (Padhani et al., 2009), orientation of nerve fibers (Basser
and Pierpaoli, 1996), and the presence of nutrients (Daoust
et al., 2017). Current quantitative relaxation (Tofts, 2003)
and diffusion (Jones, 2010) MRI observables are exquisitely
sensitive to the cellular processes associated with knowledge
acquisition (Zatorre et al., 2012), neuropsychiatric disorders
(Kubicki et al., 2007), and different tumor types (Nilsson et
al., 2018a), but suffer from poor specificity, and the same ex-
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perimental data may support several distinct biological sce-
narios (Zatorre et al., 2012).

More detailed information can be obtained by taking into
account that each MRI voxel comprises hundreds of thou-
sands of cells with potentially different properties, implying
that the per-voxel signal may include contributions from mul-
tiple microenvironments with distinct values of the MRI ob-
servables. To resolve the various microenvironments within
a single voxel remains a highly challenging problem of vi-
tal importance for the progression of quantitative MRI stud-
ies. The signals from heterogeneous materials are often ap-
proximated as integral transformations of nonparametric dis-
tributions of relaxation rates or diffusivities (Istratov and
Vyvenko, 1999), which may be estimated by Laplace inver-
sion of data acquired as a function of the relevant experimen-
tal variable (Whittall and MacKay, 1989). Within the con-
text of human brain MRI, the components of the distributions
have been assigned to water populations residing in specific
tissue microenvironments such as myelin (Mackay et al.,
1994) and tumors (Laule et al., 2017). The power to resolve
and individually characterize the different components can
be boosted by combining multiple relaxation- and diffusion-
encoding blocks and analyzing the data as joint probabil-
ity distributions of the relevant observables (English et al.,
1991). These ideas follow the principles of multidimensional
nuclear magnetic resonance (NMR) spectroscopy and form
the basis for multidimensional Laplace NMR which has be-
come routine in the field of porous media (Galvosas and
Callaghan, 2010; Song, 2013) and is now being combined
with MRI (Zhang and Blumich, 2014; Benjamini and Basser,
2017). Recently, similar relaxation–diffusion correlation pro-
tocols have been translated to in vivo studies using model-
based rather than nonparametric data inversion (De Santis et
al., 2016; Veraart et al., 2017). So far, relaxation–diffusion
correlation studies have relied on the Stejskal–Tanner exper-
iment (Stejskal and Tanner, 1965), a pulsed gradient spin-
echo (PGSE) sequence that has been in use for more than
50 years and where the signal is encoded for diffusion along
a single axis using a pair of collinear gradient pulses. The
limitations of the conventional experimental design become
apparent when considering a white matter voxel comprising
anisotropic domains with multiple orientations. When pro-
jected onto the measurement axis defined by the magnetic
field gradients, the combination of diffusion anisotropy and
orientation dispersion gives rise to a broad distribution of
effective diffusivities (Topgaard and Söderman, 2002) that
is challenging to retrieve with nonparametric Laplace in-
version and, most importantly, impossible to differentiate
from a spread of isotropic diffusivities (Mitra, 1995). Con-
sequently, despite the fact that the relaxation–diffusion cor-
relation yields more detailed information than conventional
quantitative MRI, the inherent limitations of the Stejskal–
Tanner experiment prevent unambiguous discrimination be-
tween isotropic and anisotropic contributions to the diffusiv-
ity distributions as well as model-free resolution of tissue

microenvironments for heterogeneous anisotropic materials
such as brain tissue.

We have recently shown that data acquisition and pro-
cessing schemes for correlating isotropic and anisotropic nu-
clear interactions in multidimensional solid-state NMR spec-
troscopy (Schmidt-Rohr and Spiess, 1994) can be trans-
lated to diffusion NMR (de Almeida Martins and Topgaard,
2016), relaxation–diffusion correlation NMR (de Almeida
Martins and Topgaard, 2018), and diffusion MRI (Topgaard,
2019), yielding nonparametric diffusion tensor distributions
(Jian et al., 2007) with resolution of multiple isotropic and
anisotropic diffusion components. These “multidimensional
diffusion MRI” methods (Topgaard, 2017) rely on varying
both the amplitude and orientation of the magnetic field gra-
dients within a single encoding block in order to mimic the
effects of sample reorientation (Frydman et al., 1992) and
rotor-synchronized radio frequency pulse sequences (Gan,
1992) in multidimensional solid-state NMR to target specific
aspects of the tensorial property being investigated. Here, we
incorporate these ideas into a clinically feasible relaxation–
diffusion correlation MRI protocol to quantify the micro-
scopic heterogeneity of the living human brain. The sug-
gested acquisition and analysis protocols resolve tissue het-
erogeneity on a five-dimensional space of transverse relax-
ation rates and axisymmetric diffusion tensors that report on
the underlying chemical composition and microscopic ge-
ometry. Nonparametric relaxation–diffusion distributions are
obtained for each voxel in the three-dimensional image using
Monte Carlo data inversion to deal with the nonuniqueness of
the Laplace inversion and estimate the uncertainty of quan-
titative parameters derived from the distributions (Prange
and Song, 2009). Subvoxel tissue environments are resolved
without limiting assumptions on the number or properties of
the individual components and are characterized with statis-
tical measures that have intuitive relations with the local mi-
crostructure.

2 Methods

2.1 Multidimensional relaxation–diffusion encoding

Figure 1a displays a pulse sequence wherein the signal
S(τE,b) from a given voxel is encoded for information about
the transverse relaxation rate R2 (R2 = 1/T2 where T2 is the
transverse relaxation time) and diffusion tensor D by the
experimental variables echo time τE and diffusion encod-
ing tensor b according to de Almeida Martins and Topgaard
(2018):

S (τE,b)
S0

=

+∞∫
0

∫
D∈Sym+3

P (R2,D) K(τE,b,R2,D)dDdR2, (1)
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Figure 1. Acquisition protocol for 5D relaxation–diffusion MRI.
(a) Pulse sequence for acquiring images encoded for relaxation
and diffusion in a 5D space defined by the echo time τE, and b-
tensor trace b, normalized anisotropy b1, and orientation (2, 8).
An EPI image readout block acquires the spin echo produced by
slice-selective 90 and 180◦ radio-frequency pulses. The 180◦ pulse
is encased by a pair of gradient waveforms allowing for diffusion
encoding according to principles from multidimensional solid-state
NMR (Topgaard, 2017) (red, green, and blue lines). The signal is
encoded for the transverse relaxation rate R2 by varying the value
of τE. (b) Numerically optimized gradient waveforms (Sjölund et
al., 2015) yielding four distinct b-tensor shapes (b1 =−0.5, 0.0,
0.5, and 1) (Eriksson et al., 2015).

where P (R2,D) is a joint probability distribution of R2 and
D, the kernelK(τE,b,R2,D) links the analysis space (R2,D)
to the acquisition space (τE, b), S0 denotes the signal ampli-
tude at (τE = 0, b= 0), and Sym+3 represents the mathemati-
cal space containing all 3×3 symmetric positive-definite ma-
trices. The magnetic field gradient waveforms define an axi-
ally symmetric b-tensor that is parameterized by its trace (b),
orientation (2, 8), and normalized anisotropy (b1) (Eriks-
son et al., 2015), the latter controlling the influence of dif-
fusion anisotropy on the detected signal in a manner corre-
sponding to the effect of the angle between the main mag-
netic field and the rotor spinning axis in solid-state NMR
(Frydman et al., 1992). While diffusion encoding performed
by a conventional PGSE sequence is limited to a single b-
tensor “shape” (b1 = 1), we have shown that variation of
b1 enables model-free separation and quantification of the
isotropic and anisotropic contributions to the diffusion ten-

sors (de Almeida Martins and Topgaard, 2016). In this work,
we used the numerically optimized gradient waveforms dis-
played in Fig. 1b (Sjölund et al., 2015) to generate b-tensors
at four distinct values of b1. In common with conventional
diffusion MRI, our method requires a minimum echo time
of ∼ 50 ms to accommodate diffusion encoding, causing the
signal contributions from components with R2 > 60 s−1 to be
reduced to less than 5 % of their initial amplitude. This means
that the proposed protocol would require substantial signal
averaging in order to quantify the fractions of fast relax-
ing components, thus precluding a mapping of myelin water
(R2 ≈ 70 s−1) – one of the primary focuses of early multi-
echo MRI methods (Mackay et al., 1994) – within a time
compatible with either clinical practice or research.

Throughout the signal encoding process, the relaxation
and diffusion of water are both affected by molecular ex-
change between chemically different sites and interactions
with cell membranes. Averaging all these complex effects
into sets of effective relaxation rates and apparent diffusion
tensors, subvoxel composition can be reported as a collec-
tion of independent tissue microenvironments, each of which
is characterized by a set of (R2, D) coordinates (de Almeida
Martins and Topgaard, 2018). Assuming axial symmetry, the
various microscopic diffusion tensors are parameterized by
four independent dimensions: two eigenvalues correspond-
ing to the axial and radial diffusivities, D|| and D⊥, and the
polar and azimuthal angles, θ and ϕ, describing the orienta-
tion of D relative to the laboratory frame of reference. The
D|| andD⊥ diffusivities can be combined to define measures
of isotropic diffusivity, Diso = (D||+ 2D⊥)/3, and normal-
ized diffusion anisotropy, D1 = (D||−D⊥)/3Diso (Eriks-
son et al., 2015), which report on the “size” and “shape” of
the corresponding microscopic diffusion patterns (Topgaard,
2017). Tissue microscopic heterogeneity is therefore charac-
terized with P (R2, Diso, D1, θ , ϕ) distributions, whose di-
mensions directly correspond to those of the 5D acquisition
space (τE, b, b1, 2, 8):

S (τE,b ,b1,2,8)
S0

=

∞∫
0

∞∫
0

1∫
−1/2

π∫
0

2π∫
0

K(τE,b ,b1,2,8,R2,Diso,D1,θ,φ)

×P (R2,Diso,D1,θ,φ)dφ sinθdθdD1dDisodR2. (2)

The relaxation–diffusion encoding kernel is defined as

K(. . .)= exp(−τER2)exp
(
−bDiso

[
1+ 2b1D1P2 (cosβ)

])
, (3)

where P2(x)= (3x2
− 1)/2 denotes the second Legendre

polynomial, and β is the arc angle between the major sym-
metry axes of b and D, given by cosβ = coscosθ + cos(8−
ϕ) sin2sinθ . According to Eq. (3), each (τE, b, b1,2,8) co-
ordinate establishes correlations across the separate dimen-
sions of the R2–D space. Consequently, sampling various
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combinations of echo times and b-tensor parameters facili-
tates a comprehensive mapping of tissue-specific relaxation
and diffusion properties.

2.2 MRI measurements

A healthy volunteer (female, 31 years) was scanned on
a Siemens Magnetom Prisma 3T system equipped with
a 20-channel-receiver head coil, and capable of deliver-
ing gradients of 80 mT m−1 at the maximum slew rate of
200 T m−1 s−1. The measurements were approved by a lo-
cal Institutional Review Board (Partners Healthcare System),
and the research subject provided written informed consent
prior to participation.

Experimental data were acquired using the prototype spin-
echo sequence (Lasič et al., 2014) and gradient waveforms
shown in Fig. 1. The depicted waveforms give four distinct b-
tensor anisotropies (b1 = {−0.5,0.0,0.5,1.0}), which were
probed at varying combinations of echo times, b values,
and b-tensor orientations. The waveforms giving b1 =−0.5,
0.0, and 0.5 (see Fig. 1b) were calculated with a numer-
ical optimization package (Sjölund et al., 2015) (https://
github.com/jsjol/NOW, last access: 1 November 2019), in-
cluding compensation for the effects of concomitant gradi-
ents (Szczepankiewicz et al., 2019). This procedure yielded
a pair of asymmetric gradient waveforms lasting 30.8 and
25.0 ms, separated by approximately 8.0 ms. Linear encod-
ing (b1 = 1) was implemented with two separate gradient
waveforms: a symmetric bipolar gradient waveform whose
encoding blocks lasted τ = 25.1 ms and were separated by
8.0 ms (see Fig. 1b), and a pair of τ = 15.1 ms single-pulsed
gradients bracketing a time period of 13.7 ms. The spectral
profile of the bipolar gradient waveform was tuned to that
of the asymmetric gradient waveforms in order to reduce
the influence of time-dependent diffusion (Woessner, 1963;
Callaghan and Stepišnik, 1996).

A total of 852 individual images were recorded at differ-
ent combinations of (τE, b, b1, 2, 8) throughout the en-
tire scan time of 45 min. The acquisition protocol is summa-
rized in Fig. 2a. Briefly, b1 = 1 was acquired over 72 di-
rections distributed over four b values (6, 10, 16, and 40 di-
rections at b = 0.1, 0.7, 1.4, and 2×109 sm−2, respectively),
both b1 =−0.5, and 0.5 were collected across 64 directions
spread out over four b values (6, 10, 16, and 32 directions
at, respectively, b = 0.1, 0.7, 1.4, and 2× 109 sm−2), and
b1 = 0 was acquired for a single gradient waveform orien-
tation, repeated 6 times over six b values (b = 0.1, 0.3, 0.7,
1, 1.4, and 2×109 sm−2). For each (b, b1) coordinate, the set
of directions was optimized using an electrostatic repulsion
scheme (Bak and Nielsen, 1997; Jones et al., 1999). The var-
ious (b,b1,2,8) sets were then repeatedly acquired at three
different echo times (τE = 80, 110, and 150 ms) using the
spectrally tuned waveforms. The nontuned Stejskal–Tanner
waveform was used to acquire b1 = 1 data at τE = 60 and
80 ms. Comparison between data acquired with the bipolar

and the Stejskal–Tanner gradient waveforms at τE = 80 ms
allowed us to assess the validity of the Gaussian diffusion
approximation (Callaghan and Stepišnik, 1996).

All images were recorded using a repetition time of 3 s,
and an echo-planar readout with a 220× 220× 66 mm3 field
of view, spatial resolution of 2× 2× 6 mm3, and a partial
Fourier factor of 6/8. Spatial resolution was sacrificed in fa-
vor of high signal-to-noise ratios (SNRs). The 2×2×6 mm3

anisotropic voxel configuration enables a large coverage with
a minimal number of slices and yields axial maps with a high
spatial resolution wherein anatomical features of interest can
be easily identified. The acquired images were corrected for
subject motion in ElastiX (Klein et al., 2009), using the ex-
trapolated reference method detailed in Nilsson et al. (2015).
Motion-corrected and non-motion-corrected data were then
inverted using a quick 12-bootstrap procedure (see the fol-
lowing subsection for more details on the inversion), and
the resulting parameter maps were subsequently compared.
As no substantial differences were found between the results
from the corrected and noncorrected datasets, we opted to
not use motion correction in our final analysis. No denoising
approaches were used prior to data inversion.

2.3 Nonparametric Monte Carlo inversion

Algorithms designed to solve Eq. (2) have been reviewed
in both general (Istratov and Vyvenko, 1999) and magnetic
resonance (Mitchell et al., 2012) literature. While classical
inversion methods can be successfully used to estimate the
5D P (R2, Diso, D1, θ , ϕ) distribution, they become costly
in terms of memory at the high dimensionality of our pro-
tocol. To circumvent this difficulty, we introduced an in-
version approach wherein our correlation space is explored
through a directed iterative algorithm, as explained in de
Almeida Martins and Topgaard (2018). The algorithm starts
by randomly selecting 200 points from the (0 < log(R2/s−1)
< 1.5, −10 < log(D||/m2s−1) <−8.5, −10 < log(D⊥/m2s−1)
<−8.5, 0 < cosθ < 1, 0 <ϕ < 2π ) space. A discrete P (R2,D)
distribution is then estimated by solving a discretized version
of Eq. (2) via a standard non-negative least squares (NNLS)
algorithm (Lawson and Hanson, 1974). Points with nonzero
weights are stored and merged with a new randomly gener-
ated set of 200 (R2, D||, D⊥, θ , ϕ) points, and the weights
of the merged set of points are found through a NNLS fit
(Lawson and Hanson, 1974). The process of selecting points
with nonzero weights, subsequently merging them with a
random (R2, D||, D⊥, θ , ϕ) configuration, and finally fitting
the merged set is repeated a total of 20 times in order to find
a P (R2, D||, D⊥, θ , ϕ) distribution yielding a low residual
sum of squares. Following 20 rounds, the resulting (R2, D||,
D⊥, θ , ϕ) configuration is selected, split, and subjected to a
small random mutation. The original and mutated configura-
tions are merged and a new P (R2, D||, D⊥, θ , ϕ) distribu-
tion is determined by fitting the merged set to the data using
the NNLS algorithm (Lawson and Hanson, 1974). The mu-

Magn. Reson., 1, 27–43, 2020 www.magn-reson.net/1/27/2020/

https://github.com/jsjol/NOW
https://github.com/jsjol/NOW


J. P. de Almeida Martins et al.: Transferring principles of solid state 31

Figure 2. Representative 5D relaxation–diffusion encoded signals S(τE,b) and distributions P (R2,D) for selected voxels in a living human
brain. (a) Acquisition scheme showing τE, b, b1,2, and8 as a function of acquisition point. (b) Experimental (gray circles) and fitted (black
points) S(τE,b) signals from three representative voxels containing white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The
presented signal data were acquired according to the scheme shown in panel (a) and is drawn with the same horizontal axis. (c) Nonparametric
R2-D distributions obtained for both pure (WM, GM, CSF) and mixed (WM+GM, WM+CSF, GM+CSF) voxels. The discrete distributions
are reported as scatter plots in a 3D space of the logarithms of the transverse relaxation rate R2, isotropic diffusivity Diso, and axial–radial
diffusivity ratio D||/D⊥. An auxiliary relaxation time T2 scale was included along the log(R2) axis to aid the inspection of the P (R2,D)
plots. The diffusion tensor orientation (θ , ϕ) is color-coded as [R,G,B] = [cosϕ sinθ,sinϕ sinθ,cosθ ] · |D||−D⊥|/max(D||,D⊥), and the
circle area is proportional to the statistical weight of the corresponding component. The contour lines on the sides of the plots represent
projections of the 5D P (R2,D) distribution onto the respective 2D planes. Panels (b) and (c) display the signals S(τE,b) and corresponding
P (R2,D), respectively, for the same WM, GM, and CSF voxels.

tation and fitting procedure is repeated 20 times to find the
local (R2, D||, D⊥, θ , ϕ) configuration corresponding to the
lowest sum of squared residuals. A final plausible P (R2,D||,
D⊥, θ , ϕ) solution is subsequently estimated at the end of the
mutation cycle by selecting the 10 (R2, D||, D⊥, θ , ϕ) points
with the highest weights and performing a final NNLS fit.

The procedure described above is performed voxel-wise,
resulting in an array of spatially resolved P (R2, D||, D⊥,
θ , ϕ) discrete distributions. Owing to the stochastic nature
of the inversion protocol, we may fail at retrieving a non-
trivial solution, which produces a small number of randomly

located black voxels in the parameter maps. To correct for
this, we combine the points from each voxel with the ones
from its six nearest neighbors, subsequently fitting the set of
7× 10 points to the underlying signal in order to find the 10
most likely points. The new (R2, D||, D⊥, θ , ϕ) set is fitted
to the signal, and the resulting P (R2,D) is taken as the solu-
tion of the analyzed voxel. Finally, the P (R2, D||, D⊥, θ , ϕ)
distribution is mapped onto the (R2, Diso, D1, θ , ϕ) space.

Following the works of Prange and Song (Prange and
Song, 2009), we replace traditional regularization constraints
(Whittall and MacKay, 1989) with an unconstrained Monte
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Carlo approach that estimates voxel-wise ensembles of N
distinct P (R2, D) solutions consistent with the primary data
(de Almeida Martins and Topgaard, 2018). In this study,
we estimated ensembles of N = 96 solutions per voxel. The
level of dispersion within a given solution set characterizes
the uncertainty of the inversion procedure and can thus be
used to estimate the uncertainty of any quantities derived
from P (R2,D) (Prange and Song, 2009; de Almeida Martins
and Topgaard, 2018).

The nonparametric Monte Carlo inversion procedure was
implemented in MATLAB and is publicly available in
our GitHub repository: https://github.com/JoaoPdAMartins/
md-dmri (last access: 25 February 2020) (Nilsson et al.,
2018b). Inversion of the 45 min dataset took ∼ 72 h on a 12-
Core Intel Xeon E5 2.7 GHz CPU, with a 64 GB DDR3 mem-
ory.

3 Results

3.1 Spatially resolved 5D relaxation–diffusion
distributions

The proposed acquisition protocol translates into distinctive
signal decay curves for each of the main components of the
human brain. Indeed, voxels encompassing either white mat-
ter (WM), gray matter (GM), or cerebrospinal fluid (CSF)
are all characterized by clearly distinct signal patterns (see
Fig. 2b). The observed differences can be used to infer the
gross R2–D properties of the various cerebral constituents:
WM signals are highly sensitive to both b1 and (2, 8), in-
dicative of anisotropic diffusion along coherently aligned mi-
croscopic domains; GM signal patterns are rather insensitive
to b1 and (2, 8), consistent with isotropic diffusion; and
CSF data decays quickly with increasing b while remaining
mostly unaffected by the other acquisition variables, features
that suggest an isotropic medium characterized by relatively
low R2 values. Voxels comprising mixtures of WM, GM,
and/or CSF generate patterns that can be interpreted as a su-
perposition of the signal data from the pure components.

Spatially resolved 5D R2-D nonparametric distributions
are retrieved from the experimental data using the model-free
inversion approach described in the Methods section. Fig-
ure 2c displays the solution ensembles for voxels contain-
ing WM, GM, and CSF, as well as combinations of those
components: WM+GM, WM+CSF, and GM+CSF. Brain
tissue possesses various microscopic components, whose re-
laxation and diffusion properties differ over various orders
of magnitude. Therefore, tissue heterogeneity is more suit-
ably described with logarithmic distributions, where pore
anisotropy is parameterized with log(D||/D⊥) instead ofD1.
The distinctive characters of the raw signal patterns in Fig. 2b
result in unique voxel-wise distributions that capture the
gross microscopic features of the main cerebral components.
Namely, CSF is characterized by high Diso, low R2, and D||
∼D⊥; in contrast, GM and WM both exhibit lower Diso and

higherR2, with WM being differentiated by its highD||/D⊥.
As expected, voxels comprising mixtures of WM, GM, and
CSF yield a linear combination of the distributions from the
individual components.

Voxels containing pure GM or WM are characterized by
clusters of P (R2,D) components covering a significant range
of the R2–D space. Because both tissue types comprise a
plethora of cells with varying geometries or chemical com-
positions (e.g. axons with various amounts of myelin, den-
drites, or glial cells), the observed spread may be interpreted
as a direct consequence of the underlying cellular hetero-
geneity. However, similar broad distributions were also ob-
served in spectroscopic multidimensional diffusion corre-
lation measurements of discrete-component phantoms (de
Almeida Martins and Topgaard, 2016, 2018), hinting that the
solution spread additionally reflects the measurement and in-
version uncertainty. This intrinsic uncertainty masks the ef-
fects of finer cellular details like the intra- and extra-axonal
components modeled in previous diffusion-relaxation corre-
lation MRI methods (Veraart et al., 2017).

As evidenced by Fig. 2c, pure GM voxels yield bimodal
distributions that feature a nearly symmetric spread of com-
ponents around the log(D||/D⊥)= 0 plane. The bimodal-
ity of the GM distributions is an artifact attributed to the
fact that prolate (D1 > 0, D||/D⊥>1) and oblate (D1 < 0,
D||/D⊥ < 1) diffusion tensors with similar Diso yield signal
patterns that are only clearly discerned when D1 > 0.5 or,
equivalently, D||/D⊥ > 4 (Eriksson et al., 2015). Diffusion
tensor imaging (DTI) studies of the human cortex have re-
vealed a low, yet non-negligible, diffusion anisotropy in cor-
tical GM tissue (Assaf, 2018). The observation of both oblate
and prolate components in the pure GM voxel is consis-
tent with those findings, with the intrinsically low anisotropy
preventing an unambiguous distinction between D1 > 0 or
D1 < 0 solutions. The artifactual spread of anisotropic com-
ponents is expected to worsen with the increase in experi-
mental noise. Random signal fluctuations create small differ-
ences between data acquired at different b1 values and con-
sequently introduce a preference for anisotropic components
with arbitrary D1 sign. This effect is similar to the “eigen-
value repulsion” artifact in conventional DTI, where noise
introduces a discrepancy in the eigenvalues of the voxel-
averaged diffusion tensor that in turn gives rise to a posi-
tive bias in anisotropy (Pierpaoli and Basser, 1996; Jones and
Cercignani, 2010).

3.2 Statistical measures of tissue heterogeneity

The R2–D distribution ensembles provide a wealth of infor-
mation that is challenging to visualize in spatially resolved
datasets with large image matrices. Drawing inspiration from
the field of porous media, where ensembles of distributions
have been converted into ensembles of scalar parameters
such as total porosity or a fraction of bound fluid (Prange
and Song, 2009), we extract statistical measures from the
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Figure 3. Statistical measures derived from the relaxation–diffusion distributions. The ensemble of 96 distinct P (R2,D) solutions was used
to calculate means E[x], variances Var[x], and covariances Cov[x,y] of all combinations of transverse relaxation rate R2, isotropic diffusivity
Diso, and squared anisotropy D12. The statistical measures were all derived from the entire R2-D distribution space on a voxel-by-voxel
basis. Histograms are used to represent the parameter sets calculated for three voxels containing binary mixtures of white matter (WM),
gray matter (GM), and cerebrospinal fluid (CSF). Each histogram comprises 96 estimates of a single statistical measure. The averages of
statistical measures, 〈E[x]〉, 〈Var[x]〉 and 〈Cov[x,y]〉, are displayed as parameter maps whose color scales are given by the bars along the
abscissas of the histograms. The crosses and arrows identify the heterogeneous voxels analyzed in the histograms; notice that the signaled
points correspond to the average (as measured by the median) of the ensembles of plausible solutions shown in the histograms.

R2–D distributions. A multitude of statistical functionals can
be computed from the same distribution, meaning that the
per-voxel P (R2,D) ensembles generate a comprehensive set
of distinct voxel-wise parameters. As shown in Fig. 3, the
Monte Carlo realizations of P (R2,D) are translated into en-
sembles of statistical measures, with 96 individual estimates
being extracted for each measure. For compactness, the en-
sembles of statistical parameters are reduced to an average 〈·〉
and a dispersion measure σ [·] that is interpreted as the uncer-
tainty of the estimated functional (Prange and Song, 2009).
To render the results more robust to outliers, we report 〈·〉 as
the ensemble median and estimate σ [·] as a median absolute
deviation. The calculation of averages (as measured by the
median) reduces the underlying ensemble of solutions into a
single scalar and allows us to convey intra-voxel composition
with parameter maps of average mean values 〈E[x]〉, average
variances 〈Var[x]〉, and average covariances 〈Cov[x,y]〉 of
all the relevant dimensions of the 5DR2–D space (see Fig. 3).
All of the statistical measures derived in this work parame-
terize diffusion tensor anisotropy with D12 rather than D1;

this is motivated by the intrinsic difficulty of distinguishing
between prolate and oblate tensors (Eriksson et al., 2015).

The three maps in the first column of Fig. 3 provide a
rough spatial overview of the principal tissue types: 〈E[R2]〉

and 〈E[Diso]〉 clearly identify CSF-rich areas (low 〈E[R2]〉

and high 〈E[Diso]〉), while high 〈E[D12
]〉 values separate

WM from the two other main cerebral tissues. However,
mean parameter maps alone cannot identify or character-
ize intra-voxel heterogeneity, and their use should be com-
plemented with dispersion measures including, but not lim-
ited to, the (co)variance elements displayed in columns 2
and 3 of Fig. 3. For example, voxels surrounding the ven-
tricles do not show a truly distinctive feature in maps of
mean values but are characterized by nonzero covariance
matrix elements. To understand the origin of the nonzero
values, let us focus on the WM+CSF and GM+CSF vox-
els indicated in Fig. 3. The corresponding P (R2,D) distri-
butions (displayed in Fig. 2c) comprise two populations at
distant (R2,Diso) coordinates, and both voxels are thus char-
acterized by high values of Var[R2] and Var[Diso] (see his-
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tograms of Fig. 3). As CSF and GM are both character-
ized by a low anisotropy, GM+CSF exhibits low values of
Var[D12]; in contrast, WM+CSF displays a significant dis-
persion along D12, which results in high Var[D12] values.
Covariance measures provide information about the correla-
tions across the various dimensions of the R2–D space. In
WM+CSF distributions, for instance, higher values of dif-
fusion anisotropy are correlated with higher R2 and lower
Diso, which results in positive Cov[R2,D12] and negative
Cov[Diso,D12]. The elevated 〈Var[R2]〉 and 〈Var[Diso]〉, and
negative 〈Cov[R2,Diso]〉 values found in the ventricular re-
gions are thus interpreted as a product of subvoxel com-
binations of CSF with other components. A combination
of high 〈Var[D12]〉, positive 〈Cov[R2,D12]〉, and negative
〈Cov[Diso,D12]〉 locate WM+CSF voxels in those same re-
gions, while low values of 〈Var[D12]〉 indicate the existence
of deep gray matter in the vicinity of the ventricles.

The maps displayed in Fig. 3 can also be used to iden-
tify voxels containing WM+GM mixtures. Because WM
and GM distributions are characterized by similar values of
R2 and Diso, WM+GM voxels result in nearly zero val-
ues of Var[R2], Var[Diso], Cov[Diso,y], and Cov[R2,y]. In-
stead, WM+GM voxels are signaled by finite values of
〈Var[D12]〉, originated by the log(D||/D⊥) spread observed
in the underlying R2–D distribution (see the WM+GM dis-
tribution in Fig. 3c).

3.3 Bin-resolved metrics of tissue heterogeneity

A more detailed picture of intra-voxel heterogeneity is ob-
tained by dividing the distribution space into smaller sub-
spaces (“bins”). In line with early diffusion MRI works (Pier-
paoli et al., 1996), we define three bins that loosely capture
the diffusion properties of the P (R2,D) distributions from
the main brain components (see Table 1 and Fig. 4a). The
big bin contains CSF contributions, whereas the “thin” and
“thick” bins capture the signal fractions from WM and GM,
respectively. The names big, thin, and thick are inspired by
the geometric properties of the microscopic diffusion tensors
that are captured by each individual bin. Visual inspection of
Fig. 4b reveals that the spatial distributions of the three bins
are consistent with the expected distributions of the corre-
sponding tissues, providing more evidence that the coarsely
defined bins allow a separation of the main cerebral con-
stituents. Parameter maps of the per-bin means of the relax-
ation and diffusion properties are more straightforwardly in-
terpreted than the heterogeneity measures derived from the
entire distribution space: for example, the deep gray matter
inferred in the previous paragraph is easily identifiable at the
center (white arrows) of the thick maps of Fig. 4b. Further,
the correlations across the various dimensions of the diffu-
sion space allow the resolution of subtle differences in re-
laxation rates. Focusing on the first column of Fig. 4b, we
notice that the thick fraction exhibits a slightly lower R2 rate
than that of the thin fraction. This behavior is in accordance

with the previous literature (Tofts, 2003) and is consistently
observed across the entire slice.

Global and bin-resolved averages for all the analyzed
voxels of the entire 3D image matrix are compiled in
Fig. 5, where per-voxel average means of R2, Diso, and D12

are plotted against their respective uncertainties, σ [E[R2]],
σ [E[Diso]], and σ [E[D12

]], and average signal amplitudes
〈S0〉. Although the displayed statistical analysis is restricted
to mean values, similar calculations can be done using any
other scalar measure derived from the 5D R2–D distribu-
tions. Examination of the scatter plots in Fig. 5 shows that
microscopic populations with low signal fractions gener-
ate statistical measures with significantly higher uncertain-
ties. While no immediate correlation is discerned between
the estimated mean values and their corresponding uncer-
tainty, the negative correlation between uncertainty and sig-
nal fractions introduces a significant dispersion of 〈E[x]〉
at 〈S0〉/max(〈S0〉) < 0.1 (see, for example, the Diso scat-
terplots for the thin and thick populations). Despite the
lower precision at low 〈S0〉, the various average mean
values are observed to be nearly constant throughout the
〈S0〉/max(〈S0〉) > 0.1 region; the only exception is 〈E[D12

]〉

for the thin fraction, which shows a higher susceptibility to
noise as evidenced by its positive correlation with 〈S0〉.

The minor differences between the relaxation rates of the
thin and thick components are also observed in the scatter
plots of Fig. 5. A more detailed analysis shows that distinct
R2 rates can be consistently detected in voxels containing
GM+WM mixtures (see Fig. 6a), where conventional 1D R2
distributions fail to resolve the subtle differences between
components (Whittall et al., 1997). The second and third
columns of Fig. 6a display mixed voxels, where the thin and
thick populations each account for at least 30 % of the total
measured signal. Approximately 75 % of the mixed voxels
exhibit R2 differences greater than the estimated uncertain-
ties, thus providing evidence that the differentiation between
the R2 rates of the two bins is indeed a meaningful result.

All bin-resolved 〈E[R2]〉 plots in Fig. 5 display a sec-
ondary cluster at high R2 values. Inspection of Fig. 6b re-
veals that the fast relaxing cluster corresponds to the non-
masked extra-meningeal tissues and, for the thin fraction, to
the pallidum (region 1 in Fig. 6b), a major component of the
basal ganglia structures located deep in the brain. The con-
tributions from the high-R2 components are observed to be
concentrated aroundR2 = 30 s−1 (see Fig. 6a), the upperR2-
limit of the Monte Carlo inversion procedure. The “pile-up”
of fast-relaxing contributions around the maximum allowed
R2 value is a well-known artifact of Laplace inversions (Saab
et al., 1999).

The 〈E[R2]〉 map of the thick bin features three main
R2 populations: high R2 in the skull region (red voxels),
low R2 in peripheral brain regions (green voxels), and
intermediate R2 values in the inner brain regions (yellow
voxels). To more easily inspect the spatial distribution of the
various populations within the thick bin we delimited the
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Table 1. R2-D limits of the “big”, “thin”, and “thick” bins.

Limits Diso D||/D⊥ R2 R2

log(x/m2 s−1) x/10−9 m2 s−1 log(x) x log(x/s−1) x/s−1 log(x/s) x/s

Big Max –8 10 3.5 3× 103 2 100 0.5 3.3
Min –8.7 2 –3.5 3× 10−4 –0.5 0.3 –2 0.01

Thin Max –8.7 2 3.5 3× 103 2 100 0.5 3.3
Min –10 0.1 0.6 4 –0.5 0.3 –2 0.01

Thick Max –8.7 2 0.6 4 2 100 0.5 3.3
Min –10 0.1 –3.5 3× 10−4 –0.5 0.3 –2 0.01

Figure 4. Parameter maps with bin-resolved means of the relaxation–diffusion distributions. (a) Division of the R2-D distribution space into
different bins. The distribution space was separated into three bins (gray volumes) named “big”, “thin”, and “thick” that loosely capture the
diffusion features of cerebrospinal fluid CSF, white matter WM, and gray matter GM, respectively. The 3D scatter plots display the nonpara-
metric R2-D distributions corresponding to the CSF (top), WM (middle), and GM (bottom) voxels selected in Fig. 2. Superquadric tensor
glyphs are used to illustrate the representative D captured by each bin. (b) Parameter maps of average per-bin means (color) of transverse
relaxation rate 〈E[R2]〉, isotropic diffusivity 〈E[Diso]〉, squared anisotropy 〈E[D12

]〉, and diffusion tensor orientation 〈E[Orientation]〉. The
orientation maps (column 4) are color-coded as [R,G,B] = [Dxx ,Dyy ,Dzz]/max(Dxx ,Dyy ,Dzz), where Dii are the diagonal elements
of laboratory-framed average diffusion tensors estimated from the various distribution bins. Brightness indicates the signal fractions corre-
sponding to the big (row 1), thin (row 2), and thick (row 3) bins. The white arrows identify deep gray-matter structures.

(−3.5 < log(D||/D⊥) < 0.6, −10 < log(Diso/m2 s−1) <−8.7)
subspace in three separate R2 regions, and de-
fined the “low” (−0.5 < log(R2/s−1) < 1.2), “medium”
(1.2 < log(R2/s−1) < 1.4), and “high” (1.4 < log(R2/s−1) < 2)
sub-bins of Fig. 6c. In T2 units, the low, medium, and high
bins correspond to 63 ms to 3.16 s, 40 to 63 ms, and 10 to

40 ms. Note that the true upper boundary of the high bin is
set by the limits of the Monte Carlo inversion and is equal to
R2 = 30 s−1; the R2 = 100 s−1 boundary is defined simply
to render a more aesthetically pleasing plot (see Fig. 6c).
The bin-resolved signal fraction maps were then compared
with a high-resolution longitudinal relaxation-weighted
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Figure 5. Uncertainty estimation of the statistical measures derived from the relaxation–diffusion distributions. 3D density (color) scat-
ter plots show the relationship between average initial signal intensity 〈S0〉, the average of mean values derived from the R2-D distribu-
tions 〈E[x]〉, and their corresponding uncertainties σ [E[x]]. For display purposes, signal intensity values were normalized to the maximum
recorded 〈S0〉, max(〈S0〉). The contour lines on the side planes show 2D projections of the point density function defining the distribution
of data points. The average mean values of transverse relaxation rate 〈E[R2]〉 (row 1), isotropic diffusivity 〈E[Diso]〉 (row 2), and squared
anisotropy 〈E[D12

]〉 (row 3) were computed from all voxels whose 〈S0〉 was greater than 5 % of max(〈S0〉). The resulting dataset comprises
55 327 voxels spread throughout all slices of the acquired 3D volume. The uncertainties of 〈E[R2]〉, 〈E[Diso]〉, and 〈E[D12

]〉 correspond
to the median absolute deviation between measures extracted from 96 independent solutions of Equation (2): σ [E[R2]], σ [E[Diso]), and
σ [E[D12

]], respectively. All displayed data were derived from both the entire R2-D space (column 1), and the “big” (column 2), “thin”
(column 3), and “thick” (column 4) bins defined in Fig. 4a.

(R1-weighted) image segmented in four tissue classes: WM,
cortical GM, deep GM, and CSF. Figure 6c shows that the
spatial distributions of the low and medium subfractions
roughly correspond to the expected distributions of cortical
GM and deep GM structures, respectively. Despite the sim-
ilarities between bin-resolved and segmentation maps, the
former possesses a grainier appearance and seems to miss
a significant portion of deep GM tissue at the center of the
slice. While the grainier aspect is caused by the higher noise
of the R2–D correlation dataset, the absence of central GM is
explained by the presence of anisotropic tissues in structures
such as the pallidum (region 1 in Fig. 6b) and the thalamus
(region 2 in Fig. 6b). Those two deep GM structures are

then contained within the thin bin, and not within the thick
bin from which we defined the R2 subspaces. Joining the
contributions of cortical and deep GM within a single tissue
class offers further insight into the link between microscopic
tissue composition and binning (see Fig. 6d). Comparing
the three-tissue segmentation with maps of the big, thin, and
thick fractions confirms that the pallidum and part of the
thalamus are captured by the thin bin.

3.4 Clinical feasibility of the R2–D correlation approach

The acquisition protocol discussed thus far can be inserted
without further alterations in research studies of brain dis-
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Figure 6. Per-bin relaxation properties and tissue composition. (a) Transverse relaxation properties specific to each of the “thin” (red) and
“thick” (green) bins defined in Fig. 4a. The color-coded composite images (top) and histograms (bottom) display the fractional populations
and average mean transverse relaxation values 〈E[R2]〉 of the two bins. The first column displays all of the thin and thick voxels, while
the two other columns focus on thin+thick mixtures wherein the bin-specific 〈E[R2]〉 values exhibit either significant (second column)
or nonsignificant (third column) differences. (b) Bin-resolved signal fractions (brightness) and average per-bin means (color) of R2, and
squared anisotropy D12. Regions 1 and 2 identify microstructural properties singled-out in the Results section. (c) Subdivision of the thick
bin into three different R2 subspaces. The contributions from different sub-bins are compared with a high-resolution R1-weighted image
segmented into four different tissues: white matter WM, cortical gray matter (GM), deep GM, and cerebrospinal fluid (CSF). Additive color
maps display the spatial distribution of sub-bin fractions (from low to high R2: green, red, blue), and of cortical (green) and deep (red) GM.
(d) Color-coded composite images showing the contributions of different bins (red = thin, green = thick, blue = big) and conventional
R1-based segmentation labels (red =WM, green = cortical + deep GM, blue = CSF).

ease, where subjects are recruited for long scan sessions.
However, the associated 45 min scan time impedes its use
outside of a clinic-research setting. To assess the potential for
clinical translation of the proposed framework, we compare
the performance of the exhaustive 45 min protocol with that
of an abbreviated protocol, compatible with the time frame
of most clinical applications. To this end, we included two
different 5D relaxation–diffusion MRI protocols in a single
imaging session: the 45 min protocol described in the Meth-
ods section, and an abbreviated 15 min protocol whose de-
tails are contained in the Supplement. The two acquisition
protocols were consecutively used without repositioning the
volunteer.

The abbreviated dataset was inverted with the Monte Carlo
algorithm described above. The resulting 5D R2–D distribu-
tions and parameter maps are compiled in the Supplement.
Figure 7 shows the bin-resolved parameter maps obtained
with the 15 min acquisition protocol. Overall, the parame-
ter maps derived from the abbreviated data resemble slightly
noisier reproductions of the maps computed from the exhaus-
tive protocol and provide the same conclusions. Namely, the
big, thin, and thick bins demarcate the signal contributions
from CSF, WM, and GM, respectively, and the main R2–
D properties of those same tissue types are accurately cap-
tured by the per-bin mean parameter maps. The most obvi-
ous difference between the two datasets is the lower quality
of the R2 metrics derived from the abbreviated data. This
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Figure 7. 15 min protocol – bin-resolved signal contributions and mean parameter maps. (a) Map of average initial signal intensity 〈S0〉
(top); subdivision of the diffusion space into the “big”, “thin”, and “thick” bins (middle); color-coded composite map of per-bin signal
contributions (bottom). The colors in the bottom identify the fractions from different bins: [R,G,B] = [thin,thick,big]. (b) Parameter maps
of average per-bin means (color) of transverse relaxation rate 〈E[R2]〉, isotropic diffusivity 〈E[Diso]〉, squared anisotropy 〈E[D12

]〉, and
diffusion tensor orientation 〈E[Orientation]〉. The color and brightness of the various maps follows the same convention as Fig. 4b.

is evidenced by unreasonably high R2 rates in the ventri-
cles (see the 〈E[R2]〉 maps in Fig. 7b), and a higher diffi-
culty in separating between the mean R2 rates of the thin and
thick bins. Only 65 % of mixed voxels from the abbreviated
dataset show a meaningful R2 separation, as opposed to the
75 % determined in the previous subsection. The lower res-
olution along the R2 dimension is most likely explained by
the fact that the abbreviated protocol concentrates 85 % of its
measurements within two unique values of τE, an acquisition
scheme that is quite unspecific to dispersion along R2. In fu-
ture experiments, we plan to address this issue by enforcing
a more uniform distribution of data points along the various
echo times.

4 Discussion and conclusions

The proposed framework resolves intra-voxel heterogeneity
on a 5D space of transverse relaxation rates R2 and dif-
fusion tensor parameters (Diso, D1, θ , ϕ). Per-voxel brain
composition is broken down into a non-predefined number
of microscopic environments with clearly distinct relaxation
and diffusion properties. The heterogeneity within a voxel
is thus resolved as linear combinations of independent mi-

croscopic components that can be assigned to local tissue
environments; on a global scale, the subvoxel environments
can be grouped into more general tissue classes. For healthy
brain tissue, the detected microenvironments were classified
into three broad bins whose diffusion properties respectively
match those of the main constituents of the brain: WM, GM,
and CSF. The separation between contributions from the
three bins was observed to provide a clean 3D mapping of
WM, GM, and CSF that agrees well with a conventional R1-
based tissue segmentation. This demonstrates that the pro-
posed protocol can indeed separate subvoxel tissue environ-
ments with different relaxation and diffusion properties; in
the healthy human brain, the resolved environments can be
coarsely assigned to contributions from CSF, WM, and GM
(see Fig. 6d). The distinction between microscopic tissue en-
vironments with different R2–D properties provides comple-
mentary information to R1-weighted segmentation and en-
ables the resolution of tissue heterogeneity within a single
anatomical structure, e.g. resolving anisotropic and isotropic
regions within the thalamus.

The protocol presented in this work shows promise for
neuroanatomy studies dealing with the resolution of specific
microscopic features such as nerve fiber-tracking through
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heterogeneous voxels (Jeurissen et al., 2014) or free water
mapping (Pasternak et al., 2009). Within a clinical setting,
disentangling different tissue signals is expected to be use-
ful for pathological conditions associated with intra-voxel
tissue heterogeneity, e.g. tumor infiltration in surrounding
brain tissue, inflammation of cerebral tissue, or replacement
of myelin with free water. In the latter example, the proposed
echo times lead to an almost complete decay of the signal
contributions from myelin domains, meaning that the effects
of axonal demyelination would have to be probed indirectly
by tracking a reduction of the signal fraction from anisotropic
subvoxel components.

Several approaches have been introduced in the diffusion
MRI literature where subvoxel composition is investigated
by devising signal models with increasingly complex pri-
ors and constraints (Wang et al., 2011; Zhang et al., 2012;
Scherrer et al., 2016). While such models can be used to in-
vestigate the conditions mentioned in the above paragraph,
the attained conclusions will be heavily dependent on the as-
sumptions used to construct the model (Novikov et al., 2018).
Hence, erroneous conclusions may be derived whenever the
presupposed MR properties differ from the underlying mi-
crostructure (Lampinen et al., 2019). This limitation is alle-
viated in the present framework where subvoxel heterogene-
ity is quantified with nonparametric distributions that are re-
trieved from the data with minimal assumptions on the under-
lying tissue properties. Moreover, the vast majority of diffu-
sion MRI models has been so far implemented with conven-
tional Stejskal–Tanner sequences, which are known to con-
volve the signal contributions from D1 and D orientation.
Acquiring data at various b1 has been shown to disentan-
gle the effects of anisotropy and dispersion in D orientations
(Eriksson et al., 2013, 2015), meaning that our 5D (τE, b)
acquisition space is expected to provide a more clear compo-
nent resolution whenever orientation dispersion is present.

Besides resolving the various microscopic domains within
a voxel, we were also capable of observing subtle differences
in component-specific relaxation rates. As mentioned before,
this information is unattainable with classical multi-echo R2
distribution protocols (Whittall et al., 1997), and its extrac-
tion is facilitated by the vast correlations across the full (Diso,
D1, θ , ϕ) space (de Almeida Martins and Topgaard, 2018).
We would like to reinforce that small R2 differences can
be observed despite the limited number and range of echo
times sampled in this work; here, the separation between R2
components is mostly driven by the excellent resolution in
the diffusion dimensions. The measurement of D-resolved
transverse relaxation rates may complement previous work
on tract-specific R1 rates (De Santis et al., 2016).

At the cellular level, the translational motion of wa-
ter inside the human brain is influenced by interactions
with macromolecules and partially permeable membranes
forming compartments with barrier spacings ranging from
nanometers for synaptic vesicles and myelin sheaths to mi-
crometers for the plasma membranes of the axons. The diffu-

sion of water during the 0.1 s timescale of MRI signal encod-
ing is thus affected by a myriad of complex phenomena that
are not explicitly accounted for in Eq. (2). Instead, we use the
well-established approach of approximating the micrometer-
scale water displacements as a distribution of anisotropic
Gaussian contributions (Jian et al., 2007). The measured dif-
fusivities may depend on the exact choice of experimental
variables if the timing parameters of the gradient waveforms
match the characteristic timescales of displacements between
cellular barriers (Woessner, 1963) or molecular exchange be-
tween tissue environments with distinctly different diffusion
properties (Kärger, 1969). By augmenting our acquisition
protocol with an experimental dimension in which the spec-
tral profiles of the gradient waveforms are comprehensively
varied (Callaghan and Stepišnik, 1996; Lundell et al., 2019),
microscopic barrier spacings could in principle be estimated
by explicitly including the effects of restricted diffusion in
the kernel of Eq. (2). Here we chose to minimize the influ-
ence of time dependence by designing waveforms with sim-
ilar gradient-modulation spectra.

In the previous section, we mentioned that prolate
(D1 > 0) and oblate (D1 < 0) diffusion tensors with
|D1|< 0.5 result in similar signal decays (Eriksson et al.,
2015). In the absence of orientational order, diffusion ten-
sor anisotropy is detected as a deviation from a mono-
exponential signal decay, which, to first order, is proportional
to D12 (Eriksson et al., 2015). Consequently, the magni-
tude of D1 can be easily determined at moderate b values
while the sign may require data acquired with b values up to
4× 109 sm−2 (Eriksson et al., 2015) and echo times compa-
rable to the ones registered in this work; currently, such ac-
quisition parameters can only be achieved with a specialized
scanner (Setsompop et al., 2013; Jones et al., 2018).

Resolving and separately characterizing intra- and extra-
axonal compartments in brain tissue has been of long-
standing interest in the MRI field (Does, 2018). Recently,
Veraart et al. (2017) estimated subtle differences in R2 and
diffusivity parameters for the intra- and extra-axonal com-
ponents of human brain white matter by applying a con-
strained two-component model to data acquired with a con-
ventional relaxation–diffusion correlation protocol relying
on the Stejskal–Tanner experiment. The obtained R2 values
differ by less than a factor of 2 while the Diso values are
nearly identical and the D1 values are 1 (by constraint) and
approximately 0.5 for the intra- and extra-cellular compart-
ments, respectively. Comparing with the nonparametric dis-
tributions in Fig. 2, we note that components with such simi-
lar properties would be virtually impossible to resolve in our
minimally constrained approach despite the additional infor-
mation added by the b-tensor shape dimension. The limited
resolution is consistent with the fact that Eq. (2) states an ill-
posed inverse problem accommodating multiple nonunique
solutions – probably also including the one with two thin
components as assumed by Veraart et al. We suggest that
the unconstrained inversion could be used as a first analysis
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tool to define the boundaries of a more ambitious model in-
corporating additional information, e.g. from microanatomy
studies that is not directly observable in the MRI data.

This work introduces and demonstrates a novel MRI
framework, in which the microscopic heterogeneity of the
living human brain is characterized via 5D correlations be-
tween the transverse relaxation rate R2, isotropic diffusiv-
ities Diso, normalized diffusion anisotropy D1, and diffu-
sion tensor orientation (θ , ϕ). The correlations allow model-
free estimation of per-voxel relaxation–diffusion distribu-
tions P (R2,D) that combine the chemical sensitivity of R2
with the link between microstructure and the diffusion met-
rics. The rich information content of P (R2,D) is reported
through a set of 21 unique maps obtained by binning and pa-
rameter calculation in the 5D distribution space. Being spe-
cific to different tissue types while relying on few assump-
tions, the presented protocol shows promise for explorative
neuroscience and clinical studies in which microscopic tis-
sue composition cannot be presumed a priori. While the spa-
tial resolution of the data acquired in this work was rela-
tively limited, sacrificing resolution for SNR, there are sev-
eral avenues to explore in the future, in hardware, acquisition,
and analysis that will boost the SNR per unit time, thereby
increasing the potential for improved resolution. From the
hardware perspective, the use of ultra-high fields (7T and
above), and ultra-strong field gradients (Setsompop et al.,
2013; Jones et al., 2018), can boost SNR and reduce echo-
time-per-unit-b value, respectively. For example, as noted
in Jones et al. (2018), for b1 = 0 encoding, the shorter τE
afforded by stronger gradients such as those available on
a Connectom scanner (300 mT m−1) results in an improve-
ment in SNR of approximately 50 % compared to that achiev-
able on the system used in this study (80 mT m−1 gradi-
ents). From the acquisition perspective, multi-band acquisi-
tion schemes (Barth et al., 2016) can speed up overall acqui-
sition times and facilitate a wide brain coverage with smaller
voxel sizes. Moreover, replacing the rectilinear echo-planar
readout (Turner et al., 1991) with a spiral readout (Wilm et
al., 2017) can help to further reduce the echo time, boost-
ing SNR which could be traded for higher spatial resolu-
tion. From the analysis side, as noted in the Methods sec-
tion, no denoising approaches were applied here. Recent ad-
vances in denoising and/or joint reconstruction (Veraart et
al., 2016; Bazin et al., 2019; Wang et al., 2019; Haldar et al.,
2020) could further enhance the SNR, allowing resolution
to be pushed higher. Finally, the presented framework can
be merged with MRI fingerprinting methodology (Ma et al.,
2013), whose pattern-matching algorithms may considerably
boost the data inversion speed.

Code and data availability. The software analysis tools dis-
cussed in this paper are available for download from a public
GitHub repository: https://github.com/JoaoPdAMartins/md-dmri

(last access: 25 February 2020) (Nilsson et al., 2018b). The pre-
sented in vivo data may be directly requested from the authors.
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