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Abstract
For Knox, ‘spacetime’ is to be defined functionally, as that which picks out a structure
of local inertial frames. Assuming that Knox is motivated to construct this functional
definition of spacetime on the grounds that it appears to identify that structure which
plays the operational role of spacetime—i.e., that structure which is actually surveyed
by physical rods and clocks built from matter fields—we identify in this paper impor-
tant limitations of her approach: these limitations are based upon the fact that there is
a gap between inertial frame structure and that which is operationally significant in the
above sense. We present five concrete cases in which these two notions come apart,
before considering various ways in which Knox’s spacetime functionalism might be
amended in light of these issues.
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1 Introduction

The attempt to lift all of geometry out of the murky sphere of the empirical now
led imperceptibly to a mental reorientation that is somewhat analogous to the
promotion of revered heroes of antiquity to gods.—(Einstein 2015, pp. 16–17)

The view that spacetime just is a Lorentizan manifold 〈M, gab〉 is no longer in
vogue. Rather, in recent times philosophers have espoused amore nuanced approach to
spacetime—LamandWüthrich put the idea succinctly, when they state that “spacetime
is as spacetime does” (Lam andWüthrich 2018). The idea is not to primitively identify
some object in the mathematics of one’s theories as being spatiotemporal, but rather
to identify the structures in one’s theories which play a certain, antecedently-specified
functional role of spacetime. This approach to spacetime is now known as spacetime
functionalism.

One of the best-known functional approaches to spacetime is due to Eleanor Knox,
who states the following: (Knox 2011, p. 9)

I propose that the spacetime role is played by whatever defines a structure of
local inertial frames.

Call this approach inertial frame spacetime functionalism. Knox motivates her brand
of functionalism by appeal to Harvey Brown’s views on the operational significance
of putatively spatiotemporal structures in our theories of physics (see Knox 2011). In
particular (as we read her), she takes it that spacetime just is that structure which is
surveyed by physical rods and clocks, built from matter fields. That such a reading is
reasonable is evident in passages such as the following (and her ensuing endorsement
of the content thereof):

Much of Brown’s work is directly relevant to the question of defining a role
for spacetime structure. In particular, two key themes emerge from his book
[Physical Relativity (Brown 2005)] that can serve as desiderata when seeking a
concise way of expressing the spacetime role. First, Brown is concerned with
the operational significance of the spacetime metric; the spacetime role had
better ensure that the behaviour of rods, clocks, light rays and test particles
appropriately (if not exactly) reflects the metric structure. Second, and related,
he notes that ensuring such operational significance is a matter of dynamics.
(Knox 2011, p. 5)

As we will discuss in more detail below, the implicit motivation for inertial frame
spacetime functionalism is that it identifies structure which satisfies these criteria.

It is, however, on exactly this front that in the present paper we identify Knox’s
programme as lacking. We do so by demonstrating that the structure which “defines
a structure of local inertial frames”—what we dub theoretical spacetime—need not
coincidewith that structurewhich is actually surveyed by physical rods and clocks built
from matter fields—what we dub operational spacetime. In addition, in this paper we
seek to clarify other matters—for example, the connections between Knox’s inertial
frame spacetime functionalism, and the dynamical approach to spacetime theories,
developed in Brown (2005), Brown and Pooley (2001, 2006).
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The structure of this paper is as follows. In Sect. 2, we present Knox’s inertial
frame spacetime functionalism. In Sect. 3, we draw the above-mentioned distinction
between theoretical and operational spacetime. In Sect. 4, we present five cases in
which theoretical spacetime comes apart from operational spacetime—while it turns
out that Knox has the resources to argue that one of these five cases is unproblematic,
the remaining four do seem to pose genuine problems forKnox’s account (on the above
reading). In Sect. 5, we consider means via which Knox might revise her spacetime
functionalist approach, in order to overcome the gap between theoretical and opera-
tional spacetime. In Sect. 6, we compareKnox’s spacetime functionalist approachwith
a different spacetime functionalist view, due to Baker (2018a). In Sect. 7, we consider
how inertial frame spacetime functionalism relates to the dynamical and geometrical
approaches to spacetime theories.

2 Spacetime functionalism

There is a range of motivations that one might have for embracing a functionalist
approach to spacetime.1 For example, one might be concerned with the semantic
project of giving a systematic account of the usage of the term ‘spacetime’. Alterna-
tively, one might be interested in identifying some significant universal properties of
dynamical systems that allows one to abstract away from particular intrinsic features
of the systems under consideration (such as their microphysical composition), and to
make generic claims about the behaviour of those systems.2 It is this latter motiva-
tion which we impute to Knox—a reading made plausible by passages such as the
following:

[M]y argument here is more concerned with the identification of empirical or
phenomenological spacetime geometry, that is the geometrical structure that is
reflected by our measuring instruments, operationalized coordinate systems and
the like. (Knox 2013, p. 347)

ForKnox, ‘spacetime’ should be associatedwith this codifying structure. The slogan of
her own brand of spacetime functionalism—inertial frame spacetime functionalism—
is the following: “the spacetime role is played by whatever defines a structure of local
inertial frames” (Knox 2011, p. 9). The idea is to functionally define ‘spacetime’ as
any structure which itself picks out a structure of local inertial frames—the thought

1 We ought to mention that the Knoxian functionalist project is distinct from the Lewisian project of
theoretical reduction, the latter also sometimes discussed under the banner of ‘functionalism’ (see Lewis
1970). The Lewisian project regards the reduction of so-called t-terms (‘troublesome’ terms that are not
well understood in some domain of discourse) to o-terms (‘old’ or antecedently sufficiently well-understood
terms from a different domain of discourse). In the context of spacetime theories, Gomes and Butterfield
(2019) are interested in the reduction of the troublesome notion of ‘time’ in, for example, general relativity
to non-temporal, dynamical structures defined on the theory’s phase space. Call this a form of formal
reductionism. The Knoxian project, on the other hand, is not a form of formal reductionism. It is more
akin to the Bridgmannian project of defining, operationally, a certain theoretically salient structure, using
the same procedure across distinct theories. Investigation of the extent to which these two projects’ aims
diverge presents an interesting avenue for future research.
2 Thisway of putting things strengthens the connection (in our view still under-explored)with functionalism
in the philosophy of mind—cf. (Levin 2018).
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being that, in turn, it is this structure which can play the above-mentioned codifying
role:

[C]onsidering the inertial structure provides a shortcut that allows us to glean
the empirical consequences of a theory without going into the messy details of
our various measuring devices. (Knox 2013, p. 347)

Now, of course, if Knox’s proposal is to have content, the meaning of an ‘inertial
frame’must be articulated.Knoxgives the following (itself functional) characterisation
of inertial frames:

In Newtonian theories, and in special relativity, inertial frames have at least the
following three features:

1. Inertial frames are frames with respect to which force free bodies move with
constant velocities.

2. The laws of physics take the same form (a particularly simple one) in all
inertial frames.

3. All bodies and physical laws pick out the same equivalence class of inertial
frames (universality). (Knox 2013, p. 348)

Any structure which picks out a “structure of local inertial frames”, i.e. a structure
of local frames which satisfy these properties (initially identified as significant in the
Newtonian/special relativistic context) qualifies, for Knox, as ‘spacetime’.

It is illustrative to consider what Knox has in mind here in the particular, well-
known case of general relativity. In order to do so, one further piece of machinery
needs to be introduced: the foundational principle known as the strong equivalence
principle (SEP). Here is how Knox puts the SEP:3

To any required degree of approximation, given a sufficiently small region of
spacetime, it is possible to find a reference framewith respect towhose associated
coordinates the metric field takes Minkowskian form, and the connection and
its derivatives do not appear in any of the fundamental field equations of matter.
(Knox 2013, p. 352)

In general relativity, satisfaction of the SEP guarantees that the metric field qualify
as spatiotemporal, in Knox’s sense. The reason is that, locally, the symmetries of
the dynamical metric field coincide with those of the dynamical equations governing
all of the matter fields; in any frame in which these dynamical equations take their
simplest form, the metric field itself takes the form diag (−1, 1, 1, 1). (In this paper,
following e.g. (Pooley 2013, Section 3.1), we take dynamical symmetries to be those
transformations which leave invariant the form of the dynamical equations in the
theory under consideration, and we take metric symmetries to be transformations
which leave invariant themetric field under consideration.) Thus, themetric field picks
out a structure of local inertial frames for all of the matter fields, and so qualifies as
spatiotemporal.4 This verdict seems correct, insofar as one thinks that it is the metric

3 Knox’s version of the SEP draws on that presented by Brown at (Brown 2005, p. 169).
4 There are significant complications here regarding whether the SEP should be understood to hold at a
point in the manifold of general relativity, or to hold in the neighbourhood of a point. Moreover, there are
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field gab of general relativity which codifies important aspects of the dynamics—
e.g., intervals of distance and proper time as read off by physical rods and clocks built
from matter fields.

At this point, however, onemight ask the following question: how is it that in general
such inertial frame structure captures—without recourse to the details—dynamical
facts? It is clear that inertial frame structure does capture the common symmetries
of the dynamical equations governing matter fields. However, there certainly remains
a conceptual gap to be bridged between such symmetries, and the full dynamics of
matter, in particular the behaviour of physical systems built from matter fields. In this
paper, we argue that the prima facie success of Knox’s programme is a consequence
of contingent facts about the relationship between symmetries and full dynamics.
When this relationship breaks down, we discover that Knox’s prescription falters in
its attempt to pick out an operationally significant structure.5

3 Theoretical and operational spacetime

In this section, we argue that Knox’s prescription correctly identifies a structure which
we refer to as theoretical spacetime. But the promise of determining an operationally
significant structure—i.e., onewhich is surveyedbyphysicalmeasurement apparatuses
such as rods and clocks—is achieved only via the identification of a (possibly) different
structure—one which we refer to as operational spacetime. Knox’s prescription does
not invariably deliver operational spacetime.

We begin, in Sect. 3.1, by introducing the concept of theoretical spacetime. In
Sect. 3.2, we discuss the distinct notion of operational spacetime. This sets up the
discussion in Sect. 4, in which we present five cases in which theoretical spacetime
comes apart from operational spacetime.

3.1 Theoretical spacetime

If (local) dynamical symmetries coincide with (local) symmetries of a given metric
field,6 then we say that that metric field qualifies as theoretical spacetime. However,
within this notion of theoretical spacetime, a more fine-grained distinction is possible:

1. Symmetry-coincident theoretical spacetime That geometrical structure the (local)
symmetries of which coincide with the (local) symmetries of the dynamical equa-

subtleties regarding approximations which must be assumed in order to deliver such local coincidence of
symmetries. For detailed discussion of these issues, see Read et al. (2018); we set them aside in this paper.
It should also be mentioned that we are in full agreement with Lehmkuhl when he describes the SEP as a
“bridge principle” between general relativity and special relativity—see (Lehmkuhl 2019, Section 4).
5 It is worth drawing attention en passant to another tension in Knox’s approach. In canonical applications
of her inertial frame spacetime functionalism (such as to Newtonian gravity—see Knox (2014)), Knox
applies the programme to theories in which the notion of operational content is problematic from the outset.
In particular, because Newtonian gravity lacks stable bulk matter, the notion of a physical rod or clock in
that theory is not just idealised, but requires denying the truth (or at least the completeness) of the theory’s
laws in order to be taken seriously. Many thanks to an anonymous referee for this astute observation.
6 Or, more generally should we wish to accommodate Newtonian theories, a given piece of geometrical
structure—not necessarily a metric field.
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Fig. 1 Lightcone structures
associated with two different
Lorentzian metrics, for which
the invariant speeds do not
coincide

tions governing matter fields, up to the invariant quantities associated with these
transformations.

2. Cone-coincident theoretical spacetime That geometrical structure the (local) sym-
metries of which coincide with the (local) symmetries of the dynamical equations
governing matter fields, and which (where applicable) agrees on the invariant
quantities associated with those dynamical symmetries.7

In the case of symmetry-coincident theoretical spacetime, although the symme-
tries of the geometrical structure under consideration coincide (modulo a choice of
parameter value of the invariant quantity, call it c8) with the (antecedently-coincident)
symmetries of the dynamical equations governing matter fields, the associated iner-
tial frames need not coincide. Here is another way to put the issue. Consider two
Lorentzian metrics ηab and η̃ab, related by

η̃ab = ηab − ξaξb, (1)

for a particular, suitable choice of 1-form ξa . The addition of the second term alters the
shape of the cone structures associated with ηab versus η̃ab—thus, the situation is as
in Fig. 1, in which (say) ηab is associated with the outer (blue) cones, and η̃ab with the
inner (red) cones. In turn, one can demonstrate that the isometries of ηab correspond

7 For dialectical reasons, our focus in this paper is on the lightcone structure in the tangent spaces of
the manifold. This does not mean that we are claiming that conformal structure on its own determines
spacetime structure. Implicit in our discussion is the moral from Weyl (1921, 1923) and Ehlers et al.
(1972), that conformal and projective structure together determine (up to an overall volume factor) the
metric structure of spacetime. When we speak of cone-coincidence, we therefore also assume coincidence
of projective structure.
8 This constant is, of course, the one-way speed of light. Nothing that we say in this paper turns on the
choice of synchrony convention used to arrive at this constant. However, for dialectical clarity, we assume
spatial isotropy, and the Einstein-Poincaré synchrony convention.
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to Lorentz transformations with one particular invariant speed, and the isometries of
η̃ab correspond to Lorentz transformations with a different invariant speed. It follows
that the frames in which ηab takes its diagonal form are different to the frames in
which η̃ab takes its diagonal form—the former are related by the first class of Lorentz
transformations, the latter by the second.9

Now consider a situation in which the fundamental metric field in one’s theory
is ηab, but the metric field to which the matter fields are coupled in their dynamical
equations is η̃ab. In such a case, ηab would qualify as symmetry-coincident theoret-
ical spacetime (for both it and the dynamical equations governing matter fields have
Lorentz transformations with distinct invariant speed parameters as their symmetries),
but not cone-coincident theoretical spacetime (for the specific Lorentz transformations
which are symmetries of these objects are different—they feature different invariant
speeds).

3.2 Operational spacetime

Cone-coincidence is a stronger condition than symmetry-coincidence. Anticipat-
ing, however, that cone-coincidence between a given geometrical structure (viz., a
Lorentzian metric field) and the metric field codifying the symmetries of the dynam-
ical equations governing matter fields might nevertheless not be sufficient for that
geometrical structure to be surveyed by physical measuring apparatuses built from
matter fields, we introduce at this juncture a third species of spacetime, which we dub
operational spacetime:

3. Operational spacetime That geometrical structure which is correctly surveyed by
appropriate configurations of all dynamical fields.

Appropriate configurations of dynamical fields (in particular, rods and clocks—
i.e., measurement devices with putative sensitivity to metric and affine structure)
‘correctly survey’ ametric just in case they (approximately) correctly read off intervals
of distance, or of proper time along their worldlines, as given by that metric field.

As we read her, Knox’s motivation in advancing her inertial frame spacetime func-
tionalism is to provide a shortcut to identifying operational spacetime by identifying
cone-coincident theoretical spacetime. When the metric structure is non-dynamical,
and even in a large class of dynamical metric models, theoretical spacetime is indeed
the same as operational spacetime, assuming stable matter configurations can be built.
In the next section, however, we discuss five cases in which, even assuming that stable
matter configurations exist, theoretical spacetime does not appear to coincide with
operational spacetime.

9 In other words, the outer (blue) cone is one for which our coordinates are normalised, and c = 1; which
makes the invariant speed corresponding to the inner (red) cone, c′ < 1. The first set of matter fields will
be Lorentz invariant under Lorentz transformations where the parameter is c (i.e. the γ parameter is of the
form γ = 1√

1− v2

c2

); the second set will be invariant under Lorentz transformations where the parameter is

c′ (i.e. the γ parameter is of the form γ = 1√
1− v2

c′2
).
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4 Theoretical/operational mismatches

In this section, we present five apparent problem cases for Knox’s inertial frame
spacetime functionalism, in which theoretical spacetime comes apart from opera-
tional spacetime. We will see that, while instructive, the first example is not genuinely
problematic for Knox. By contrast, we take it that the subsequent four examples are
genuine problem cases.

4.1 TeVeS

Our first example concerns Bekenstein’s bimetric TeVeS (‘Tensor-Vector-Scalar’)
theory—a relativistic generalisation of the ‘modified Newtonian dynamics’ (MOND)
programme in cosmology (Milgrom 1983)—as presented in Bekenstein (2004, 2005),
[6]. As discussed in Brown (2005, §9.5.2), in this theory the metric field which is
surveyed by rods and clocks, the conformal structure of which is traced by light
rays, and the geodesics of which correspond to the motion of free bodies, is not
the ‘fundamental’ metric field gab, but rather a less ‘fundamental’ metric field g̃ab,
constructed from the other matter fields in the theory (Brown 2005, p. 174). In this
case, both gab and g̃ab are Lorentzian metric fields; moreover, the matter fields in
this theory obey (in the relevant regime) locally Poincaré invariant dynamical laws.
Thus, one might think that, on Knox’s inertial frame spacetime functionalism, both
gab and g̃ab have local (Poincaré) symmetries coinciding with the local symmetries
of the dynamical laws governing matter fields, so that both fields would qualify as
spatiotemporal—an apparent problem.

To claim as much would be too fast—a defence of inertial frame spacetime func-
tionalism can bemustered by drawing on the distinction between symmetry-coincident
theoretical spacetime, and cone-coincident theoretical spacetime. In TeVeS, it is the
metric field g̃ab, and not the metric field gab, which takes a diagonal form in the
frames in which the dynamical equations governing matter fields take their simplest
form (cf. Read et al. 2018, §6). Thus, while gab qualifies as symmetry-coincident the-
oretical spacetime, it does not qualify as cone-coincident theoretical spacetime. If one
takes “picking out a structure of local inertial frames” to require cone coincidence,
then there is room for a Knoxian spacetime functionalist to make the claim that, in
TeVeS, the metric field gab is not spatiotemporal—rather, only g̃ab is spatiotemporal.
For Knox, this is the correct verdict, since it is g̃ab which is to be regarded as opera-
tionally significant, in TeVeS. Thus, this example should not be taken to be a genuine
problem case for Knox.

4.2 Universally coupledmassive scalar gravity

Pitts (2017) presents a family of examples in order to support the claim that (putting
things in our language) a given piece of geometrical structuremayqualify as theoretical
spacetime, but not operational spacetime. In this section, we consider Pitts’ example of
universally coupled massive scalar gravity—a variant of Nordström’s massless scalar
gravity theory (Norton 1992; Renn and Sauer 2007), discussed in more detail by Pitts
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himself in Pitts (2010, 2011, 2016), which is one of the principal examples which
Pitts introduces in order to motivate the above claim.

In universally coupled massive scalar gravity, there exist two Lorentizan met-
ric fields: the field surveyed by matter gab, and a Minkowski metric field ηab; the
Lagrangian includes the following graviton mass piece:

Lmass = m2

64πG

[ √−g

w − 1
+

√−gw√−η
1−w

w (1 − w)
−

√−η

w

]
. (2)

(Here, w is a free parameter, which may be fixed to yield specific theories.) In these
theories, allmatter couples to the samemetric, gab.However, theMinkowskimetricηab
nevertheless plays an ineliminable role in defining the massive graviton Lagrangian.
From our point of view, the important point to note about such theories is put clearly
by Pitts as follows:

Massive scalar gravity lacks Minkowskian behavior of rods and clocks, though
it has the Minkowski metric (among other things) and the Poincaré sym-
metry group. ... [T]he chronometrically observable conformally flat metric
gμν = η̂μν(−g)1/4 isn’t clearly the One True Geometry. (Pitts 2017, p. 6)

That such theories present a prima facie problem for Knox’s spacetime functional-
ism (as we understand it) should be clear, for in such theories it would appear that the
metric field ηab picks out the symmetries of the dynamical equations governing matter
fields. One might, however, question whether this example is genuinely problematic
for Knox, by (as in the TeVeS case) denying that metric field ηab in such theories qual-
ifies as not just symmetry-coincident theoretical spacetime, but also cone-coincident
theoretical spacetime. Since Knox declares that only the latter is spacetime tout court,
it is only if she identifies ηab as cone-coincident theoretical spacetime that she faces
a problem here.

Such a responsewill notwork in this case.10 Since themetric fieldηab is conformally
related to the ‘chronometrically observable’ metric field gab, the two diagonalise in
the same frames—the volume element is just a proportionality factor between the two
metrics at each point. Thus, ηab does qualify as cone-coincident theoretical spacetime
in this case (unlike g̃ab in TeVeS)—in spite of not being operational spacetime. So
Knox’s inertial frame spacetime functionalism misidentifies ηab as being spatiotem-
poral in universally coupled massive scalar gravity—worse, the account identifies
both ηab and gab as being spatiotemporal, despite their having observably different
consequences on large-scale measurements.11

4.3 T-duality

An ubiquitous feature of a prominent class of quantum theories of gravity—that is, the-
ories which seek to reconcile classical general relativity with quantum mechanics—is

10 Thanks to Brian Pitts for discussion on this point.
11 Of course, Knox could just accept multiple realisability here—our thanks to Jeremy Butterfield for
pointing this out.
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duality. For the purposes of this paper, we can take a duality to be an isomorphism of
the spaces of solutions of two theories (up to equivalence classes of gauge-related solu-
tions), such that solutions related by that mapping are empirically equivalent (in turn,
the empirical equivalence of two models can be cashed out in terms of their agreeing
on all empirical substructures, in the sense of van Fraassen (1980, pp. 67ff.)). In this
sense, dualities present prima facie a concrete case of underdetermination of theory
by evidence, for they exemplify our having to hand two different theories—which
make prima facie distinct ontological claims about the world—which are nonetheless
empirically equivalent. (For more on dualities and underdetermination, seeMatsubara
(2013), Read (2016b), Le Bihan and Read (2018)).

Our concern in the present subsection is with T-duality—one particular duality,
which appears in perturbative string theory. According to the naïve ontological pic-
ture presented by perturbative string theory, reality is constituted by one-dimensional
strings in some background ‘target space’, as well as by other higher-dimensional enti-
ties called ‘branes’. Moreover, reality is not made up of four spacetime dimensions
(three spatial and one temporal), but rather of ten. Various classical fields are defined
on target space—ultimately, these are also understood to be composed of strings; for
consistency reasons, these background fields must obey the Einstein equation, plus
higher-order corrections [for philosophical discussion of this, see e.g. (Huggett and
Vistarini 2015; Read 2016a, 2019a)]. In the case of T-duality, models of perturbative
string theory on a target space product manifold M × S1 with radius of the compact-
ified dimension R are found to be dual to models of perturbative string theory on
the target space product manifold M × S1 with radius of the compactified dimension
proportional to 1/R (see e.g. Becker et al. 2007, ch. 6).

To be more specific, in the case of T-duality, one of the T-dual models reads
M = 〈M × S1, gab,�〉; the other reads M̃ = 〈M × S1, g̃ab, �̃〉. While M (say)
has target space metric field gab of ‘large’ radius (proportional to R), M̃ has target
space metric field g̃ab of ‘small’ radius (proportional to 1/R). In bothM and M̃, the
Lorentzian metric field in those models satisfies the Einstein equation (plus higher-
order corrections), and thematter fields satisfy their own dynamical equations.12 What
can one say about the nature of spacetime in each of these models? [For more dis-
cussion on these matters, see Read (2019a)]. InM, the metric field gab is Lorenzian,
and satisfies the Einstein equation; moreover, the dynamical equations governing the
behaviour of the� fields are locally Poincaré invariant. Similarly for g̃ab and �̃ in M̃.
Thus, on aKnoxian analysis, gab picks out a structure of local inertial frames inM, and
g̃ab picks out a structure of local inertial frames in M̃. Note, indeed, that gab qualifies
as cone-coincident theoretical spacetime in M, and g̃ab qualifies as cone-coincident
theoretical spacetime in M̃.

So far, so good. But should gab qualify as operational spacetime inM, and should
g̃ab qualify asoperational spacetime inM̃?Some recent considerations due toHuggett
(2017), in turn drawing upon the work of Brandenberger and Vafa (1989), might lead

12 Unlike e.g. the case of general relativity, however, in perturbative string theory there is no freedom to
choose the dynamical equations governing matter fields independently of the Einstein equation—see Read
(2019a).
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one to question this.13 Brandenberger and Vafa ask us to consider the following situ-
ation: imagine ourselves to be an observer ‘embedded’ in one of these T-dual models.
Then, consider firing a test photon in order to measure the radius of the compactified
dimension, in bothM and M̃. Brandenberger and Vafa argue that, in bothM and M̃,
it is the metric field of larger compactified dimension that will be measured—that is,
in both cases, it will be gab that is measured.14 Huggett draws from these considera-
tions the following lesson: target space cannot (as we might naïvely expect) qualify as
“phenomenal space”—the classical spacetime than an agent ‘embedded’ in the model
under consideration would experience—for in M̃, intervals of the target space metric
field g̃ab are not read off by our measurement apparatuses (rather, the thought exper-
iment of Brandenberger and Vafa indicates that it is the target space metric field gab
which is surveyed in this case). To put the matter in our own terminology: while the
target spacemetric field in T-dual models of perturbative string theorymight qualify as
theoretical spacetime (even cone-coincident theoretical spacetime), for its symmetries
coincide with the symmetries of the dynamical equations governing matter fields (that
is, the Poincaré symmetries of the dynamical equations governing the matter fields �

inM coincide with the Poincaré symmetries of the metric field gab inM, so that gab
qualifies as theoretical spacetime in this case, and similarly for �̃ and g̃ab in M̃), the
target space metric field does not invariably qualify as operational spacetime, for its
intervals are not invariably read off by physical measurement apparatuses (as is the
case for g̃ab in M̃).

Given the above-mentioned operationalist tendencies which we find in Knox,15

one might regard this as being problematic: Knox’s spacetime functionalist account
appears to identify objects in perturbative string theory which qualify as theoretical
spacetime, but which do not qualify as operational spacetime. And thus, again, it seems
that Knox’s account does not afford her all that she is after.

4.4 Specific general relativity solutions

Although a valuable tool in the quest to identify spatiotemporal degrees of freedom in
theories of quantum gravity, Knox’s spacetime functionalism was developed initially
with the goal of ascertaining the structurewhich plays the spacetime role in established
physical theories, such as Newtonian gravitation theory and general relativity. It is,
therefore, especially interesting to discover a failure of Knox’s programme within the

13 The remainder of this subsection proceeds on the assumption that the Huggett–Brandenberger–Vafa
analysis is correct.
14 Presumably, the thought here is that one fires a photon around the compactified dimension, then uses a
clock to record the interval of time taken for the photon to return; in the world associated with bothM and
M̃, this will be the interval of time associated with the target space manifold of ‘large’ radius.
15 To be clear: we take Knox to be an operationalist only with respect to the spacetime concept: for Knox (as
we read her), spacetime is essentially related tomeasurability via physicalmeasurement apparatuses, such as
rods and clocks. We do not attribute to Knox the stronger thesis of Bridgmanian operationalism, according
to which “we mean by any concept nothing more than a set of operations; the concept is synonymous with
the corresponding set of operations” (Bridgman 1927, p. 5). (For an illuminating recent survey of this form
of operationalism, see Chang (2009).)We do, however, agree that it would be useful for Knox to clarify why
her operationalism ismore defensible in the spacetime context than in general—our thanks to an anonymous
referee for raising this concern.
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context of general relativity itself. In this subsection, we demonstrate that a class of
rotating general relativistic spacetimes presents a problem for Knox’s programme—
one in which her criteria for cone-coincident theoretical spacetime are met, but in
which the metric field nonetheless does not have operational significance. (So, in
this case, the metric field qualifies as cone-coincident theoretical spacetime, but not
operational spacetime.)16

In order for the metric field to have operational significance, it must be possible for
certain matter field agglomerations—clocks—to be able to read off intervals of proper
time (as given by that metric field) along their trajectories. The degree of operational
significance depends, among other things, on the degree to which these matter field
agglomerations can maintain their structural integrity. A matter field agglomeration
satisfies the clock hypothesis if it can be used to read off intervals of proper time
along its worldline—whatever that worldline may be (see e.g. (Brown and Read 2016;
Maudlin 2012) for some recent philosophical discussion of the clock hypothesis).
Clearly this is an unphysical requirement; all physical clocks have a breaking point.
But modulo such concerns, approximate satisfaction of the clock hypothesis suffices
for approximate operational significance of the metric field under consideration, in
terms of clock readings.

Light clocks—simple constructions consisting of two perfectly reflecting mirrors
with a photon bouncing back-and-forth between them—are often regarded as being
ideal clocks, i.e. are regarded as being candidates for satisfaction of the clock hypoth-
esis. Therefore, a scenario in which such clocks can be constructed is usually taken to
be one in which the metric field has operational significance. Fletcher (2013) offers a
mathematical precisification of this intuition, purporting to demonstrate how it is, in
principle, possible to construct a light clock that ticks arbitrarily accurately and regu-
larly in an arbitrary general relativity solution. If correct, Fletcher’s argument would
underwrite the success of Knox’s programme in general relativity—for the metric
field, which Knox identifies as spatiotemporal, could always be regarded as having
operational significance, via the readings of light clocks. However, as demonstrated
explicitly inMenon et al. (2018), Fletcher’s result in not universally valid. It fails in the
Gödel and Kerr solutions to general relativity, for example. As we demonstrate in the
remainder of this subsection, this failure is not down to a failure of cone-coincidence.

Fletcher’s proof represents a differential-geometric generalisation of a heuristic
argument for the clock hypothesis in Minkowski spacetime due to Maudlin (2012,
pp. 106–114). Maudlin’s argument proceeds as follows. The path traversed by a pho-
ton (more precisely, the classical analogue of a photon; a wave-packet state of the
electromagnetic field) between two mirrors is a null geodesic. This is easily demon-
strated by solvingMaxwell’s equations. Consider a light clock at rest. The proper time
elapsed along the worldline of onemirror can be calculated by using the generalisation
of Pythagoras’ theorem to pseudo-Riemannian flat space. Since the distance covered
by a light ray is zero (as it propagates on null geodesics), the proper time elapsed
between two successive bounces of the photon off the same mirror is just twice the
spatial distance between the two mirrors.

16 The results upon which this section are based were first presented in the physics literature in Asenjo and
Hojman (2017); see Menon et al. (2018) for discussion of some of the philosophical implications.
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A similar argument holds for a clock in a boosted frame. For an ideal clock, the
description of the clock in the boosted frame with respect to the boosted coordinates
is the same as the original description with respect to the original coordinates; this
is just the relativity principle. If the clock were to be a good clock, and one were
to regard the boosted clock from the original unboosted frame, the mirrors would
appear to have moved closer together. So we can ensure the clock is good by joining
the two mirrors using a rod built out of matter governed by Lorentz-covariant laws.
The natural contraction of the rod ensures the appropriate distance between the mir-
rors is maintained even after a boost. This takes care of the clock hypothesis for a
boosted clock. Finally, to the extent that any boost can be modelled as being approxi-
mated by inertial motions separated by instantaneous impulses, the clock hypothesis
is approximately satisfied by a light clock so constructed in Minkowski spacetime.
Fletcher’s result is similar in spirit; although it does away with the rigid rod, it just
requires that the light clock be confined to an appropriately small region of the man-
ifold. Relying on particular features of Lorentzian manifolds, Fletcher demonstrates
that such a region always exists, and with it, demonstrates that Maudlin’s result can be
generalised.

Mathematically, all is well with the proof. However, like Maudlin, Fletcher relies
on the assumption that light traverses null geodesics on its path between the mirrors.
But this is not true in all solutions to the Einstein equation. As Asenjo and Hojman
demonstrate (Asenjo and Hojman 2017), in solutions with global rotation such as
Gödel and Kerr (cf. Malament 2012, ch. 3), to the extent that one can have a persisting
wave packet that represents light, this packet does not traverse null geodesics; indeed
it does not even traverse a path of constant velocity, but instead its velocity manifests
spacetime position dependence.17 This means that light clocks, if constructable, do
not accurately read off intervals of the general relativistic metric field. The metric
field, therefore, cannot be afforded operational significance via light clocks. Since
light clocks are one of the simplest kinds of clock which one could imagine, in such
spacetimes, the metric field does not, it appears, qualify as operational spacetime—for
if even light clocks do not read off intervals of proper time along their worldlines, there
is no a priori reason to expect this to be true of more complicated clocks either.

To repeat: it is interesting to note that locally, the cone structure of the metric field
gab and that of the dynamical equations governing the Maxwell fields do coincide.
Thus, we have in these examples an apparent case of cone-coincident theoretical
spacetime, but not operational spacetime.

17 We wish to register here a prima facie tension between the Asenjo-Hojman result, and a recent, distinct
result of Geroch andWeatherall (2018), according to which ‘small bodies’ built fromMaxwell fields ‘track’
null geodesics of the Levi-Civita connection. If it turns out that the Geroch–Weatherall result is correct,
and the Asenjo-Hojman result incorrect, then this would render the examples presented in this subsection
impotent. Our belief here, however, is that the tension between these results is only apparent—for the
Geroch–Weatherall result assumes global hyperbolicity, which is violated in the spacetimes which Asenjo
and Hojman consider. To fully address the interplay between these two works is likely to constitute a
fascinating avenue for future pursuit.
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4.5 Supersymmetry and superspace

Our final example of a theoretical/operational spacetime mismatch derives from a
subject which goes beyond the Standard Model of particle physics—namely, super-
symmetry (SUSY). SUSY is a proposed (and as-yet experimentally unverified)
symmetry between bosons (quantum particles which mediate forces) and fermions
(quantum particles which constitute matter which feels those forces). Supersymmetric
field theories are, therefore, field theories whose empirical predictions are invari-
ant under the exchange of bosons and their fermionic supersymmetric partners, and
vice versa. Note that SUSY transformations are defined between specific bosons and
fermions—no particle as-yet discovered, bosonic or fermionic, is a supersymmetric
partner of any other known particle. If SUSY is a symmetry of nature, then the energy
regime in which we live is one significantly below the symmetry-breaking scale. In the
rest of this section, we concern ourselves only with the realm of unbroken SUSY.18

SUSYfield theoriesmake for an interesting testing ground for various philosophical
claims related to spacetime, because they can be expressed in a setting that is a gener-
alisation of Minkowski spacetime, known as superspace.19 The simplest superspace
is constructed by augmenting Minkowski spacetime with four additional dimensions.
The twist is that, unlike the familiar spatial and temporal dimensions of Minkowski
spacetime, these dimensions are not coordinatised by real numbers. Instead, in order
to reflect the fermionic character of some of the components of a superfield—the
superspace generalisation of a field, thought of as a function from superspace to some
field-value space—the four extra dimensions are coordinatised by objects known as
anticommuting supernumbers. A supernumber is, technically, an element of an infinite
Grassmann algebra. Intuitively, an anticommuting supernumber is an object χ such
that if χ and ξ are two anticommuting supernumbers, then χ · ξ + ξ · χ = 0. In other
words, the order of multiplication matters—these numbers have non-trivial commuta-
tion properties. The set of complex supernumbers consists of all such anticommuting
supernumbers, together with all commuting supernumbers (objects constructed out of
anticommuting supernumbers such that the order of multiplication is irrelevant) and
all the complex numbers.

The set of dynamical symmetry transformations common to all superfields is, by
construction, the super-Poincaré group—this is an example of a ‘super-Lie group’.
Super-Lie groups are a generalisation of Lie groups; whereas the latter are groups
which are also smooth manifolds, the former are groups which are also superspaces
(i.e., generalisations of manifolds with anti-commuting supernumber-valued coordi-
nates). Recall that a theoretical spacetime is a geometrical structure determined by
constructing geometrical objects that are invariant under transformations from the

18 For a recent, philosophically-oriented introduction to SUSY, see Menon (2018); for a different philo-
sophical take, see Baker (2018b).
19 Note that this use of ‘superspace’, to refer to the spacetime setting of a SUSY field theory, is distinct
from the homonymous term used in the context of canonical geometrodynamics (see e.g. (Giulini 2009) for
a review) to refer to a space of spatial 3-metrics.
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dynamical symmetry group common to all fields in question. By construction, there-
fore, superspace is a theoretical spacetime.20

The Poincaré group is a subgroup of the super-Poincaré group, a fortiori, any
Poincaré transformation is a dynamical symmetry of a supersymmetric theory. We
therefore have a symmetry-coincident theoretical spacetime. If, in addition, we assume
the light postulate, or some equivalent statement of an invariant quantity for the tangent
spaces to the (ordinary) manifold subspace of superspace, we can construct a cone-
coincident theoretical spacetime. Cone-coincidence is only a claim about tangent
spaces to manifolds, so applies perfectly sensibly to superspace insofar as superspace
is an ordinary manifold together with some other structure.

Knox’s prescription identifies as inertial those frames in which the dynamical equa-
tions governing matter fields take their simplest form. In the case under consideration
here, these are those frames in which the dynamical equations governing the super-
fields are expressed in coordinates in which an object referred to (perhaps predictably)
as the super-Minkowski interval, determined by the super-Minkowski metric [for an
explicit definition of these terms, see e.g. (Buchbinder and Kuzenko 1998)], is invari-
ant. Thus, the super-Minkowski metric plays the role of picking out ‘inertial’ frames
[these frames are sometimes referred to as ‘super-inertial frames’; see e.g. (Buchbinder
and Kuzenko 1998)]—it therefore qualifies as cone-coincident theoretical spacetime.

To see if the super-Minkowski metric qualifies as an operational spacetime, how-
ever, we need to assume that one can construct the appropriate generalisation of rods
and clocks. Let us call these objects super-surveyors. An example of a super-surveyor
would be the analogue of a light clock, but one in which the oscillating material is
governed by the supersymmetric version of Maxwell’s equations, the so-called super-
Maxwell equations. But, as is discussed in more detail in Menon (2018), there are
good reasons to believe that the extra SUSY dimensions will not be be surveyed by
such matter field configurations.

To seewhy this is the case, let us beginwith a familiar example: deriving the Lorentz
transformations in special relativity. If one begins with the relativity principle (and the
assumption that spacetime is homogeneous and space is isotropic), then the Lorentz
transformations follow from the further assumption of the light postulate. This latter
postulate is an empirical principle that asserts two things: (1) that the invariant quantity
associated with the transformations between inertial frames is a speed, and (2) that
this speed has a particular numerical value. In light of the discussion in Sect. 3.1, we
can conclude that a different value for this speed would lead to a different group of
transformations between inertial frames. Thus, the light postulate and the relativity
principle together determine the cone structure of the tangent spaces.

The problem with attempting to generalise this move to superspace is that, in
that context, there exists no empirical principle analogous to the light postulate. It
is possible to define the tangent space at a point in superspace, in effect by specify-
ing algebraically the space of tangent vectors along anticommuting dimensions—for
details, see (Buchbinder and Kuzenko 1998, p. 406). In postulating that the transfor-

20 Baker argues in Baker (2018b) that Knox’s inertial frame spacetime functionalism cannot actually
establish the result that superspace is (in our terminology) theoretical spacetime, forKnox’s account depends
on a prior specification of frames of reference as either frames on Minkowski spacetime or frames on
superspace. In this paper, we set this issue aside.
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mations between super-inertial frames are super-Poincaré transformations, and not
saying anything further, the parameter that determines the tangent space cone (i.e. the
null direction) for the anticommuting dimensions is left unspecified.

If we believe that our surveying devices have to be built out of SUSY-matter (and
that seems reasonable; how else could they survey the superspace geometry?) then
it is possible that this matter will not read off intervals of the super-interval, even if,
with respect to the Minkowski subspace of superspace, we have cone coincidence.
The reason is the following: all our superfields are (by construction) super-Poincaré
invariant—but they might, nonetheless, still survey distinct supermetrics because they
do not agree on the cone structure of the anticommuting component of the tangent
space to superspace.

Thus, super-surveyors constructed in this way will not be guaranteed to give us
operational access to spacetime; they might fail to pick out operational spacetime
even if they unequivocally pick out (via the symmetries of their dynamical equations)
a cone-coincident theoretical spacetime.

5 Proposed revisions

We have seen that some apparent problem cases for inertial frame spacetime
functionalism—in particular, that presented in Sect. 4.1—do not find their mark,
for they fail to appreciate the distinction between symmetry-coincident and cone-
coincident theoretical spacetime. If one takes it that it is the latter notion of theoretical
spacetime in which Knox is interested when she proposes her functional characteri-
sation of spacetime in terms of picking out a structure of local inertial frames, then
Knox’s approach does deliver the intuitively correct verdict on what counts as spa-
tiotemporal in the TeVeS case. On the other hand, other apparent problem cases for
inertial frame spacetime functionalism—in particular, those presented in Sects. 4.2–
4.5—do find their mark, for in these cases cone-coincident theoretical spacetime does
not qualify as operational spacetime—which, forKnox, is the intuitively correct notion
of spatiotemporality.

These problem cases lead one to enquire how Knox’s spacetime functionalist pro-
posal could be modified in order to deliver the intuitively correct verdict on what
counts as spatiotemporal in all cases. The natural revision to propose is the following:

Spacetime is that structure which has chronometric significance.

Making this move would mean that the correct verdict on spatiotemporality would
be delivered in all the cases presented in Sect. 4. However, arguably such amovewould
have the disadvantage that it would deprive Knox’s characterisation of spacetime of
easy applicability to new cases.21 For example, consider the case of Gödel/Kerr space-
time presented in Sect. 4.4. When one considers Maxwell fields in such a spacetime,
it is easy to note that the metric field of general relativity qualifies as cone-coincident
theoretical spacetime—and so spacetime for Knox tout court. However, it is very

21 Though one can, of course, ask: “Why should it be easy to find the realiser of the functional role in
question?” Our thanks to Jeremy Butterfield and an anonymous reviewer for this comment—with which
we have some sympathies.
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difficult—and involves substantial, non-trivial calculations—to ascertain whether this
structure does or does not qualify as operational spacetime. Thus, to define spacetime
in terms of operational spacetime would, arguably, diminish the ready applicability of
Knox’s programme.22 Indeed, Knox says as much herself, when she writes:

We would ideally like a formulation that entails appropriate phenomenological
behaviour without requiring us to model the behaviour of complex systems.
(Knox 2011, p. 5)

In light of this, one might instead wonder whether there is any way in which Knox’s
original proposal could be defended. Ideally, what Knox would need to argue here is
that (cone-coincident) theoretical spacetime is in general a good—albeit defeasible, in
light of the cases presented in Sect. 4—guide to operational spacetime. If such a link
can be rendered explicit, then there is room for Knox to retain her original functional
definition of spacetime, in terms of picking out a structure of local inertial frames.
What the examples presented in Sect. 4 of this paper demonstrate, however, is that
such a link is not inevitable—and therefore, that there is a burden on Knox to spell
out in more detail the connection between theoretical and operational spacetime, if
her account (on our preferred operationalist reading) is to be compelling.

6 Baker’s proposal

When it comes to spacetime functionalism, Knox’s approach is not the only game
in town. One distinct but noteworthy spacetime functionalist approach is due to
Baker (2018a)—not sharing Knox’s above-mentioned operationalist leanings, Baker
advances a very different functional conception of spacetime. He begins (Baker 2018a,
pp. 11–12) by noting that many different factors seem to contribute to the spacetime
concept:

I won’t make any attempt to give an exhaustive list of candidates here, but the
following are examples of criteria which are logically independent of Knox’s
inertial criteria and which seem to also count toward a structure’s satisfying our
spacetime concept:

• The structure is non-dynamical, at least with respect to non-gravitational
interactions.

• The structure is (in some sense) located everywhere in all states of the theory.
• The structure does not carry energy or momentum.
• “Vacuum” solutions exist which describe the (putatively) spatiotemporal
structure in the absence of other structures.

• There are no other structures in the theory which can exist without the (puta-
tive) spacetime structure.

22 It is also interesting to note that making this move would compel one to identify spacetime at the level
of solutions, rather than theories.
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• The structure grounds or explains a family of modal facts about which states
are geometrically possible, where geometric possibility does not reduce to
physical possibility (Belot 2013, pp. 50–51).

• It is a (higher-order) law of nature that the geometric symmetries of the
structure are dynamical symmetries of the theory (Janssen 2009; Skow2006).

• Forces propagate across the spatial distances defined by the metric charac-
terizing the structure (so that long-range forces like electromagnetism fall
off proportionately to the inverse square of this distance, and so on).

• The structure is fundamental.

Again, this is not meant to be an exhaustive list. Rather it is meant to illustrate
that a vast number of different criteria could plausibly figure into our ascription
of the name ‘spacetime’ to a given theoretical structure, depending on the details
of the laws that define that structure. And indeed, Knox’s own criterion,

• The structure determines the difference between inertial and non-inertial
frames of reference,

belongs high on this list, perhaps even at the top. She has certainly shown that
it’s a very important criterion. My only disagreement is with her claim that it is
the sole criterion.

On the basis of these apparently myriad factors which contribute to the spacetime
concept, Baker draws the natural conclusion that, ultimately, there is no unequivocal
notion of spatiotemporality; rather, spacetime is a cluster concept: (Baker 2018a, p. 2)

[O]ur spacetime concept has the structure of a cluster concept. Rather than
possessing a single set of necessary and sufficient conditions, cluster concepts
can be satisfied in a variety of different ways by different entities falling under
them.

What to make of this proposal, especially as compared with Knox’s own? On the
one hand, Baker is likely correct that our pre-theoretic concept of spacetime (insofar as
we have such a pre-theoretic concept!) cannot be analysed via one unequivocal set of
necessary and sufficient conditions. (This, of course, is part of a broader lesson against
conceptual analysis familiar from the latter half of the 20th century in all branches of
analytic philosophy.) On the other hand, in light of its heterogeneity, Baker’s analysis
lacks practical applicability. For example, consider the cases presented in Sect. 4—
on Baker’s cluster concept approach to spacetime, which structure in each of these
theories is to be regarded as spatiotemporal? In light of the complexity of the analysis,
it is difficult to give any definitive answer to this question. Thus, while Baker ismorally
right on the nature of spacetime, his analysis has limited practical value.

Such is not the case for Knox’s proposal: Knox gives a simple, functional char-
acterisation of spatiotemporality, which is readily applied to new spacetime theories
(consider, for example, the novel work to which Knox puts her programme in, Knox
(2011, 2014)). It might be the case that Knox’s criterion does not fully capture our
notion of spatiotemporality (including Knox’s own—this is, of course, the central
point of Sects. 4–5 above); nevertheless, the claim is that this account of spacetime
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can deliver intuitively correct verdicts on spatiotemporality, and so should feature as
a (defeasible!) guide to spatiotemporality in new cases also. While, as argued above,
Knox should be more explicit that inertial frame structure need not always constitute
the sine qua non of spatiotemporality (whether (i) because one has Knox’s opera-
tionalist leanings—in which case there is a gap between theoretical and operational
spacetime, or (ii) because one embraces Baker’s notion of spacetime as a cluster con-
cept), her approach has the capacity to be put to novel interpretative work, in a manner
in which Baker’s approach does not.

Thus, the final verdict on Knox’s inertial frame spacetime functionalism versus
Baker’s cluster concept spacetime functionalism is the following: while Baker’s anal-
ysis is likely closer to our overall conception of spatiotemporality, Knox’s analysis has
the virtue of readily applicability to new cases. Insofar as one takes inertial frame struc-
ture to be a guide to the other qualities which feature in the spacetime concept (perhaps
those on Baker’s list), one may continue to be justified in following Knox’s approach.
Of course, however, one should ideally make explicit the link between inertial frame
structure, and those other factors featuring in the spacetime concept.

7 Dynamical and geometrical approaches

It is sometimes claimed (see e.g. Lam andWüthrich 2018; Myrvold 2017) that Knox’s
inertial frame spacetime functionalism “extends” previous work on the so-called
dynamical approach to spacetime theories, first developed in Brown (2005), Brown
and Pooley (2001, 2006). Roughly speaking, this ‘dynamical approach’ involves two
claims:23

1. Fixed fields [i.e., fields fixed identically in all kinematical possibilities of a given
theory—cf. (Pooley et al. 2017, p. 115)], such as the Minkowski metric field
ηab of special relativity, are to be ontologically reduced to the symmetries of the
dynamical equations governing matter fields [the dynamical view is, therefore, a
modern form of relationalism—cf. (Pooley 2013, Section 6.3.2)].

2. Ontologically autonomous metric fields, such as gab in general relativity, do not
have their chronogeometic significance—i.e., are not surveyed by physical mea-
surement apparatuses—of necessity (i.e., in all solutions of any theory in which
they appear).24

Focussing on (2), advocates of one version of the opposing geometrical approach to
spacetime theorieswould state that ontologically autonomousmetric fields, such as gab
in general relativity, do have their chronogeometic significance necessarily. However,
in Read (2019b), Read et al. (2018), it was argued that this particular version of the
geometrical approach is not viable—precisely because there exist problem cases for
such a view, in which one has a metric field gab in one’s theory, but that structure is

23 The following explication of the dynamical approach is based upon two more-recent publications on
this view—viz., (Brown and Read 2019; Read 2019b).
24 This latter point is what Butterfield calls in Butterfield (2007) ‘Brown’s moral.’
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not surveyed by physical rods and clocks (some of the examples presented in Sect. 4
of this paper would count as problem cases of this kind for the geometrical view).25

In any case, regardless of the particular view which one espouses in the dynami-
cal/geometrical debate, one can ask: is it true that Knox’s spacetime functionalism is
an “extension” of the dynamical view? In our view, this claim is not correct; rather,
we see one’s having a particular set of commitments in this debate as being orthog-
onal to whether one endorses Knox’s spacetime functionalism. Our reasons are the
following: whether one thinks that a given metric field is ontologically reducible to
dynamical symmetries, or does or does not have its chronogeometric significance nec-
essarily, is distinct from the question of whether one should regard this object as being
spatiotemporal, on Knox’s functional analysis of spacetime. Suppose, for example,
that one endorses the dynamical approach to spacetime theories—then on Knox’s
programme one will, in light of (2) above, deny that e.g. a Lorentzian metric field gab
always qualifies as spatiotemporal—for whether this is so will depend upon particular
facts about the matter sector of the theory under consideration. On the other hand, if
one denies (2) (à la the strong version of the geometrical approach above), then one
will think that a generic Lorentizanmetric field gab always qualifies as spatiotemporal.
Not only are both of these dynamical and geometrical views perfectly compatible with
Knox’s spacetime functionalism, but, moreover, they would also be compatible with a
different functional conception of spacetime—or, indeed, with certain non-functional
approaches to spacetime.

Though the above is, essentially, our final take on this matter, two further remarks
are in order in this vicinity. First, one way to understand the geometrical approach
in contrast with the dynamical approach is that the former is willing to make certain
‘riskier’ assumptions about the chronogeometric status of a given field (e.g. gab) than
the dynamical approach is willing to countenance. We have seen in Sect. 5 above,
however, that an underlying assumption of Knox’s approach is that theoretical space-
time is a good guide to operational spacetime. In this sense, Knox too is (arguably)
making an a priori assumption about the nature of certain fields which appear in our
physical theories. In this very particular sense, one might argue that such assumptions
place Knox closer to the geometrical rather than the dynamical view. This should be
surprising, since, as noted above, several authors tie Knox’s spacetime functionalism
more closely to the dynamical approach, than to the geometrical approach.

A final word on the dynamical approach, in light of the distinctions which have
been drawn in this paper. As mentioned above, in the context of theories with fixed
metric structure, such as special relativity, advocates of the dynamical approach state
that such structure just is a codification of the symmetries of the dynamical equa-
tions governing matter fields in the theory; in this way, they seek to reduce metric
structure to dynamical symmetries [for more on this, see Brown and Read (2019),
Myrvold (2017)]. For example, if the dynamical equations governing matter fields
are invariant under Poincaré transformations, then one just has a Minkowski metric
in one’s theory. In Stevens (2015), it is argued that the dynamical approach should,

25 While in this paper we do assume that this particular version of the geometrical approach is untenable,
we are otherwise agnostic on the dynamical/geometrical debate. Indeed, in Read (2019b), it was argued that
there exist other, perfectly viable versions of the geometrical approach—roughly speaking, these versions
of the geometrical approach accept (2), but continue to reject (1).
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therefore, be understood as a means of identifying spacetime structure with what Ein-
stein dubbed in 1921 practical geometry (Einstein 1921)—that is, that geometrical
structure which is actually surveyed by physical measurement apparatuses. In light of
our distinction between theoretical and operational spacetime, however, we can see
that this claim is in general too fast—while it might be true for theories such as special
relativity, it is not in general correct to state that what we have called in this paper
‘operational spacetime’—Einstein’s ‘practical geometry’—is the same as that struc-
turewhich codifies the symmetries of the dynamical equations governingmatter fields.
A certain degree of caution is, therefore, apposite when approaching such claims.

8 Conclusions

The central aim of this paper has been to identify and diagnose problems for inertial
frame spacetime functionalism. The diagnosis made it clear that more needs to be
done than Knox might have initially anticipated in identifying the chronogeometric
structure of dynamical fields—Knox’s shortcut from universal symmetries to generic
field behaviour is not universally valid.

While Baker’s approach might preferable to that of Knox vis-à-vis identification
of all aspects of the spacetime concept, from the point of view of practical utility and
applicability, Knox’s approach is to be preferred. If one shares Knox’s operationalist
point of view, then one faces an urgent burden to bridge the gap between theoretical
and operational spacetime. In our view, this is not indicative of the failure of Knox’s
approach—but rather simply that there remains much more work to be done in fully
elaborating this position.
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