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Abstract 28 

To better manage water environment in highly polluted rivers, the impacts of 29 

land use, sewage outfalls and seasons on water quality should be investigated. When 30 

considering the effects of oxygen-demanding contaminants, the complex 31 

interdependencies were hard to describe by conventional methods. The Bayesian 32 

Networks (BNs), in which each variable only depends on its immediate parent 33 

variables, can solve this problem. In this study, the BNs were developed to assess the 34 

impacts of land use and sewage outfalls on Ammonia Nitrogen (AN) and Dissolved 35 

Oxygen (DO) concentration in the Huaihe River Basin (HRB) for different seasons 36 

and spatial scales, where AN was selected as a typical oxygen-demanding 37 

contaminant. The BNs made good agreements between observed and predicted values. 38 

AN negatively affected DO concentration, which was more significant in dry seasons. 39 

Land use and sewage outfalls data at local scale (less than 20km radii around monitor 40 

stations) gave the best explanations to variations in AN and DO concentration, which 41 

reveals that controlling water contaminants sources at the local scale can improve 42 

water quality efficiently. Wastewater from sewage outfalls was the strongest 43 

contributor to AN pollution in dry seasons, which was weakened in wet seasons by 44 

intensive dilution process. Farmland acted as “sink” for its storage capacity of 45 

contaminants in dry seasons and as “source” in wet seasons. The transformations 46 

between two processes were caused by the huge variations between surface runoff in 47 

dry and wet seasons. Woodland and grassland positively influenced water quality, 48 

therefore, these could be used as pollution buffers around rivers to protect the water 49 

environment. Urban made a disproportionately strong contribution to water pollution, 50 

which revealed that intensive anthropogenic activities exacerbate water quality 51 
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degradation. These results can enhance understanding in influence factors on water 52 

quality and contribute to effective water environment management.  53 

Keywords 54 

Land use, Sewage outfalls, Ammonia nitrogen, Dissolved oxygen, Bayesian Networks, 55 

Spatial scales 56 
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1 Introduction 89 

The degradation of surface water quality has become a global environment issue, 90 

which can be affected by many factors, such as vegetation characteristics, climate 91 

change, rivers topography and land use in catchments (Ai et al., 2015; Wang et al., 92 

2015; Williams et al., 2015; Bocaniov and Scavia, 2016; Chen et al., 2016; Julian et 93 

al., 2016; Zieliński et al., 2016; Rodrigues et al., 2018; Shukla et al., 2018). Due to 94 

huge amount of influence factors and complex processes involved (Carey et al., 2013; 95 

Selle et al., 2013), it is a challenge to assess the relationship between land use, sewage 96 

outfalls and water quality as contaminants come from both point (discharged into 97 

rivers by sewage outfalls) and non-point sources (transported by surface runoff from 98 

land). However, scientific assessments of influence factors on water quality are 99 

essential to implement effective strategies for better water environment. 100 

Many previous studies analyzed the influence of land use on water quality. Some 101 

of them focused on the catchment scale (Keesstra et al., 2014; Ai et al., 2015; 102 

Meneses et al., 2015; Julian et al., 2016; Van Eck et al., 2016; Rodrigues et al., 2018), 103 

while other researches compared the multiple spatial scales from local to catchment 104 

(Dodds and Oakes, 2008; Tran et al., 2010; Monteagudo et al., 2012; Tudesque et al., 105 

2014; Ward and Kaczan, 2014; Wang et al., 2015; Martin et al., 2017; Vrebos et al., 106 

2017; Shukla et al., 2018). Some researches pointed out that land use at the catchment 107 

scale had the most significant correlation to water quality while others found land use 108 

at local scales could give better explanations to variations in water quality indicators. 109 

Moreover, other studies reported that different kinds of water quality indicators tend 110 

to be affected by land use at different spatial scales (Chang, 2008; Hurley and 111 

Mazumder, 2013; Delpla and Rodriguez, 2014; Chen et al., 2016; Ding et al., 2016). 112 
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Therefore, in order to get scientific evaluations of land use impacts on water quality, it 113 

is necessary to take different spatial scales from local to catchment into consideration.  114 

Dissolved oxygen (DO) is one of the most important parameters in assessing 115 

water quality and sustainability of ecosystems (Khan and Valeo, 2016; Heddam and 116 

Kisi, 2018). It reflects the balance between oxygen-producing processes and 117 

oxygen-consuming processes in rivers (e.g., chemical oxidation) (Fijani et al., 2019), 118 

while a certain level of DO is essential for aquatic life to survive (Singh et al., 2009). 119 

DO concentration could be affected by many factors, such as land use, water 120 

temperature and some water quality variables, which had been analyzed by many 121 

previous researches (Tran et al., 2010; Liu et al., 2012; Ai et al., 2015; Wang et al., 122 

2015; Ding et al., 2016; McGrane et al., 2017; Vrebos et al., 2017; Missaghi et al., 123 

2018; Shukla et al., 2018). Previous researches had revealed that Ammonia Nitrogen 124 

(AN) is an important oxygen-demanding contaminant that had significant negative 125 

influence on DO concentration through redox process and nitrification process (Singh 126 

et al., 2009; Najah et al., 2011; Antanasijević et al., 2014; Zabed et al., 2014; 127 

Rosecrans et al., 2017). Chen et al. (2016) also pointed out that nitrogen pollution, 128 

especially ammonium, contributed to low DO concentration in rivers. However, the 129 

potential effects of oxygen-demanding contaminants on DO level were neglected in 130 

previous researches when analyzing the influence factors on DO. 131 

Both of AN and DO can be affected by land use and seasons, besides, AN has 132 

effects on DO level as an oxygen-demanding contaminant. Moreover, point sources 133 

(sewage outfalls) also make strong contributions to AN pollution in receiving water, 134 

thus, they also should be taken into account. Describing these complex 135 

interdependencies between influence factors and water quality is a challenge, however, 136 

it is essential in better river basin management (Ward and Kaczan, 2014; Ai et al., 137 
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2015). The conventional regression models, such as linear or non-linear models, are 138 

hard to describe these complicated dependencies. The Bayesian Networks (BNs), 139 

which haven’t been fully understood and extensively applied in water environment 140 

researches (Korb K, 2004; Aguilera et al., 2011; Li et al., 2018; Wijesiri et al., 2018b), 141 

can solve the problem by factorizing global probability distribution into local 142 

probability distribution for each variable by the directed acyclic graph (DAG). In this 143 

way, the particular variable can be modeled only depending on the information from 144 

its direct influence variables (parents variables). Moreover, the BN can provide an 145 

approach to incorporate both effects of quantitative and qualitative variables into one 146 

model, and the season scenario (wet and dry seasons) is a qualitative variable in our 147 

study.  148 

In this paper, we analyzed the impacts of land use and sewage outfalls on water 149 

quality in the Huaihe River Basin (HRB) in different seasons (dry and wet) and spatial 150 

scales (from local to catchment). The HRB is a highly polluted river basin, where 151 

many large-scale water pollution incidents occurred as a result of rapid social and 152 

economic development and intensively anthropogenic activities. It affected the safety 153 

of drinking water for about 10 million local residents (Zhao et al., 2012; Wang et al., 154 

2014; Zhai et al., 2017; Xu et al., 2018). Based on the former researches, AN is the 155 

most serious contaminant in this area (Zhai et al., 2014; Xu et al., 2018). Therefore, 156 

AN and DO were selected as two typical water quality indicators to analyze in this 157 

paper and AN is the typical oxygen-demanding contaminant which has a significant 158 

influence on DO level in rivers. Moreover, as longitudinal data (data collected over a 159 

period in time), which includes information in changed influence factors and water 160 

quality, can increase the reliability in model results when comparing to cross-sectional 161 

data (data collected at a single point in time) (Wijesiri et al., 2018a), the longitudinal 162 
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datasets (from 2000 to 2013) in the HRB were applied in our study.  163 

The main objectives of this paper are to (1) develop BNs model to describe 164 

complex interdependencies between influence factors and water quality in the HRB; 165 

(2) find out the spatial scale that land use and sewage outfalls can explain the 166 

variations in water quality indicators best in the HRB; (3) assess the influence factors 167 

on water quality considering the oxygen-demanding contaminant (AN) in both dry 168 

and wet seasons. This study will enhance understanding of the effects of land use, 169 

sewage outfalls and seasons on water quality, which is essential and meaningful for 170 

effective water environment management. 171 

2 Material and methods 172 

2.1 Study area and monitor stations 173 

The Huaihe River Basin (HRB) is one of the most important basins in eastern 174 

China (Fig. 1 (a)), with a drainage area of 270,000 km2. It locates between latitudes 175 

30°~36°N and longitudes 111°~121°E. The Main Reaches of Huaihe River (MRHR) 176 

originates from the Tongbai Mountain in the Henan province, and runs through the 177 

Anhui and Jiangsu province from west to east before flowing into the Hongze Lake 178 

(Fig. 1 (b)) (Zhai et al., 2017; Xu et al., 2018). The population density in the HRB is 179 

614 persons per square kilometer (Zhai et al., 2014), which is 5 times higher than the 180 

national average population density. The HRB is intensively influenced by 181 

anthropogenic activities (Zhai et al., 2017), especially in the MRHR and main 182 

tributaries, such as the Sha Ying River (SYR) and Guo River (GR).  183 

Twenty monitor stations were in the study area (Table 1), six of them (S1-S6) in 184 

the MRHR, eight of them (S9-S16) in the SYR, and three of them (S18-S20) in the 185 
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GR. The other three stations (S7, S8, S17) lie in the Shi River (SR), Hong River (HR) 186 

and Jia Lu River (JLR), respectively. Water quality samples were collected weekly or 187 

monthly, while discharge data were measured daily at all monitor stations.  188 

Table 1 189 
Details of twenty monitor stations in the HRB. 190 
Station code Station name Location Longitude (°E) Latitude(°N) 

S1 Changtaiguan MRHR 114.07 32.32 
S2 Xixian MRHR 114.73 32.33 
S3 Huaibin MRHR 115.42 32.43 
S4 Wangjiaba MRHR 115.60 32.43 
S5 Wujiadu MRHR 117.37 32.95 
S6 Xiaoliuxiang MRHR 118.13 33.17 
S7 Tanjiahe SR 113.97 31.90 
S8 Bantai HR 115.07 32.72 
S9 Gaocheng SYR 113.13 34.40 
S10 Huaxing SYR 113.67 33.92 
S11 Huangqiao SYR 114.45 33.77 
S12 Zhoukou SYR 114.65 33.63 
S13 Huaidian SYR 115.08 33.38 
S14 Jieshou SYR 115.35 33.27 
S15 Fuyang SYR 115.83 32.90 
S16 Yingshang SYR 116.28 32.65 
S17 Fugou JLR 114.40 34.07 
S18 Boxian GR 115.87 33.80 
S19 Guoyang GR 116.22 33.52 
S20 Mengcheng GR 116.55 33.28 

 191 

  192 
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 193 
 194 

Fig. 1. (a) The map of China. (b) The map of the Huaihe River Basin (HRB) with locations of twenty monitor stations. 195 
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2.2 Data sources and processing 196 

The water quality datasets (including AN concentration, DO concentration and 197 

water temperature) and amount of AN contaminants from sewage outfalls from 2000 198 

to 2013 were provided by the Monitoring Center of Huai River Water Resource 199 

Protection Bureau. All water quality variables were measured following the national 200 

standard methods of water quality testing (Water quality-Determination of 201 

ammonia-Distillation and titration method, 1987; Water quality-Determination of 202 

dissolved oxygen-Electrochemical probe method, 1987; Water quality-Determination 203 

of water temperature-Thermometer or reversing thermometer method, 1991; Water 204 

quality-Determination of ammonia nitrogen-Distillation-neutralization titration, 2010; 205 

Water quality-Determination of dissolved oxygen-Electrochemical probe method, 206 

2010). The discharge dataset was collected from the hydrographic office of Huaihe 207 

River Commission of the Ministry of Water Resources, P. R. C. In order to assess 208 

influences of land use and sewage outfalls on water quality in different seasons, the 209 

dataset from October to next March were set to be the dry season and from April to 210 

September were set to be the wet season according to climate conditions in the HRB 211 

(Chen et al., 2016). Subsequently, average AN concentration, DO concentration, water 212 

temperature and amount of AN contaminant from sewage outfalls in dry and wet 213 

seasons were calculated over the research period.  214 

The digital elevation model (DEM) at 90 m × 90 m  resolution and land use 215 

map in 2000, 2005 and 2010 were collected from the Data Centre for Resources and 216 

Environmental Science, Chinese Academy of Sciences (RESDC, 217 

http://www.resdc.cn/). The locations of monitor stations, land use, stream networks 218 

and DEM data were transformed to GIS layers by ArcGIS 10.5 (ESRI Company, 219 

http://www.resdc.cn/
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Redlands, California, USA) for the HRB under the Gauss-Kruger projected coordinate 220 

system. Based on stream networks and topographical features extracted from the 221 

DEM, the HRB was delineated into twenty sub-catchments. Each monitor station is 222 

outlet point in the corresponding sub-catchment.  223 

To obtain the spatial scales at which land use and sewage outfalls data could give 224 

the best explanations to variations in AN and DO concentration, we took seven spatial 225 

scales (from local to catchment) into consideration. The six local scales are 10km, 226 

15km, 20km, 30km, 40km and 50km radii around each monitor station in 227 

corresponding sub-catchment, and the catchment scale is entire upstream catchment 228 

(EUC) for each station. The demonstration of EUC, 50km and 20km scale were 229 

shown in Fig. 2 (a), (b) and (c), respectively (Hurley and Mazumder, 2013; Delpla and 230 

Rodriguez, 2014). Six categories of land use were considered in our study: woodland, 231 

grassland, water, urban, rural resident land and farmland (Fig. 2). The land use types 232 

and inclusions were shown in Table S1. The percentage of land use area in 2000, 2005 233 

and 2010 and the amount of AN contaminants from sewage outfalls were extracted in 234 

a cumulative manner at seven spatial scales (Bostanmaneshrad et al., 2018). As few 235 

changes in the percentage of land use had happened in all spatial scales and land use 236 

data were available in only three years, land use in 2000, 2005 and 2010 are used to 237 

match the dataset from 2000 to 2003, from 2004 to 2008 and from 2009 to 2013, 238 

respectively. Because the data used were from different sources and had a huge 239 

difference in ranges and magnitudes, we scaled all dataset before feeding into the 240 

models following the standardized method recommended by Fijani et al. (2019). 241 

  242 
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 243 

Fig. 2. Three spatial scales, (a) the entire upstream catchment (EUC), (b) 50 km radii around monitor stations and (c) 20km radii around monitor stations, used for 244 

land use and sewage outfalls data extraction. Different colors represent different land use types. The data in 10km, 15km, 30km and 40km radii scales were extracted 245 

similarly.  246 

 247 

 248 
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2.3 Methods 250 

The Bayesian Network (BN) is a graphical approach including nodes and arrows 251 

which represent random variables (continuous and/or discrete) and probabilistically 252 

conditional dependencies between variables, respectively. The structure of the BN can 253 

be revealed by a directed acyclic graph (DAG) which defines a factorization of global 254 

probability distribution into a set of local probability distributions for each variable 255 

following the Markov Property. Therefore, each variable only depends on its 256 

immediate parent variables, which could describe the complex system in a simple way. 257 

The BN model is a two-step approach, which first learns the model structure using 258 

Structure Learning Algorithms. Then based on local conditional dependencies, it 259 

estimates the conditional regression coefficients or conditional probabilities for 260 

continuous variables or discrete variables, respectively. The advantage of BN is that 261 

each local conditional function could be considered without explicit information in 262 

global probability distribution (Korb K, 2004; Scutari, 2010; Li et al., 2018; Wijesiri 263 

et al., 2018a).  264 

In this study, the BNs were developed to describe the complex interdependencies 265 

between land use, sewage outfalls and water quality indicators considering effects of 266 

oxygen-demanding contaminants at seven spatial scales in the HRB (Fig. 3). 267 

Accordingly, six land use categories, seasons and sewage outfalls were factors that 268 

influenced AN concentration, while land use, water temperature, seasons and AN (a 269 

typical oxygen-demanding contaminant) concentration were factors that affected DO 270 

concentration.  271 

In order to conform the conditional Gaussian distribution, the two water quality 272 

indicators (AN and DO) were taken by log-transformation. The log-transformed 273 

concentration of AN and DO, water temperature, the proportion of six land use and 274 
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AN amount from sewage outfalls were fed into the BNs as quantitative (continuous) 275 

data, while seasons were fed as qualitative (discrete) data, namely, “dry season” and 276 

“wet season” scenarios. Then, conditional regression coefficients can be estimated 277 

from the BNs and then impacts of all factors can be evaluated. The BNs were 278 

developed by “bnlearn” package (Scutari, 2010) in the R statistical computing 279 

platform (Team, 2016), which is a common program in statistical analysis. 280 

In order to find the spatial scales that at which land use and sewage outfalls can 281 

give the best explanations to variations in AN and DO concentration, the 282 

goodness-of-fit of models were evaluated at seven spatial scales by Pearson’s 283 

correlation coefficients (Cor, Eq. 1) and Nash-Sutcliffe efficiency coefficients (NSE, 284 

Eq. 2) (Nash and Sutcliffe, 1970). According to the recommendation from Moriasi et 285 

al. (2007), when the NSE of a model is higher than 0.5, the model can be viewed as 286 

acceptable. Accordingly, the best fitted BN model and the most correlated spatial 287 

scale can be selected with the highest Cor and NSE.  288 

1

2 2
1 1

[( ) ( )]

( ) ( )

N
i ii

N N
i ii i

obs pred pred pred
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=
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−

−
∑
∑                                        (2) 291 

where N is the number of data points; obsi and predi are the ith observed and predicted 292 

value; obs  and pred  are the mean of observed and predicted value, respectively. 293 
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  294 
Fig. 3. Structure of the Bayesian Network (BN) for modelling AN concentration as a function of land use, seasons and sewage outfalls, while modelling DO 295 

concentration as a function of land use, seasons, water temperature and AN concentration, where AN is a typical oxygen-demanding contaminant.  296 
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3 Results and discussion 297 

3.1 Spatial patterns of AN and DO concentration in dry and wet seasons 298 

The two water quality indicators had different patterns in different seasons in the 299 

HRB (Table S2). AN concentration at all stations were higher in dry seasons than in 300 

wet seasons, because increasing discharge in wet seasons contributed to dilute AN 301 

pollution. The lowest AN concentration was observed at S1, which is the headwater 302 

station in the MRHR. AN concentration at the stations in the MRHR (S1-S6) and the 303 

HR (S8) was relatively lower than stations in other tributaries, and JLR (S17) station 304 

had the highest AN concentration in both dry and wet seasons. It is corresponding to 305 

results from Xu et al. (2018) that water quality in the MRHR was better than that in 306 

tributaries.  307 

DO concentration at all stations were higher in dry seasons than in wet seasons. 308 

As higher DO level means healthier ecosystem, this result implies that there are more 309 

challenges existing in managing water environments in wet seasons in the HRB. DO 310 

concentration at the headwater station (S1) was the highest in both dry and wet 311 

seasons, while at S11 in the SYR was the lowest among all stations. Stations in the 312 

MRHR had slightly higher DO concentration than the other stations. Based on these 313 

two water quality indicators, monitor stations in the MRHR, especially the headwater 314 

station, had the best water environment condition in the HBR.  315 

3.2 Model performances at different spatial scales 316 

The Cor and NSE of BNs at seven spatial scales were used to select the most 317 

significantly influenced spatial scales (Fig. 4). Proportions of land use types (Table S3) 318 

and amounts of AN pollution from sewage outfalls (Table S4) were different across 319 
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the seven spatial scales from local to catchment. Land use and sewage outfalls in 320 

relatively small local scales (10km, 15km, 20km radii around monitor stations) can 321 

give better explanations to variations in AN concentration than in relatively larger 322 

scales (30km, 40km, 50km radii around monitor stations and EUC), while the best 323 

fitness of observed AN concentration is in 20km scale with the highest Cor and NSE. 324 

Similar results had been reported by several previous studies. Dosskey et al. (2010) 325 

pointed out that the river buffer zone is the most effective scale in reducing water 326 

contaminants from point and non-point sources. Tran et al. (2010) found that land use 327 

in long distance from receiving water had low possibility to make strong effects on 328 

water quality than in shorter distance. Ding et al. (2016) reported that most of the 329 

water quality parameters were explained better by land use in the catchment scale, 330 

however, nutrients tend to achieve the best explanations in riparian scale. Besides, the 331 

long residence time of groundwater associated with nitrification and denitrification 332 

processes in riparian zone is also a potential reason for why land use and sewage 333 

outfalls at small scales were more correlated to AN concentration (Meynendonckx et 334 

al., 2006). 335 

Land use in small local scales can better explain DO concentration than in 336 

relatively larger spatial scales in the HRB, which is similar to AN concentration. The 337 

reason is that hydrological distances in relatively larger spatial scales (more than 338 

20km radii around stations) provide enough contact time for reoxygenation processes, 339 

then the water body obtains oxygen equilibrium again at normal conditions. This 340 

result is consistent with Ding et al. (2016) that the best explanation to DO level was 341 

land use at the catchment scale in mountain catchments and at local riparian scale in 342 

plain catchments. As the two most mountainous sub-catchments in the HRB are S7 343 

and S9 (Table S5), which are headwater stations in the SR and SYR, the areas in 344 
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20km scale of these two stations (157 km2 and 447 km2) approximate to the areas of 345 

the EUC (catchment scale) (157 km2 and 625 km2). Therefore, the land use and 346 

sewage outfalls of these two stations in 20km scale are similar to that in the catchment 347 

scale.  348 

Land use and sewage outfalls data at 20km scale gave the best explanation to 349 

variations in AN and DO concentration, thus, all subsequent analyses in this paper are 350 

based on this spatial scale. Our result indicates that the direction to improve water 351 

quality more efficiently in the HRB is to pay more attention to pollution at the local 352 

scale (less than 20km radii around monitor stations). Moreover, in order to analyze 353 

influence factors on water quality comprehensively and scientifically in a river basin, 354 

both of local and catchment scales should be taken into account.  355 

 356 
Fig. 4. Pearson’s correlation coefficients (Cor) and Nash-Sutcliffe efficiency coefficients (NSE) 357 

between observed and predicted AN and DO concentration from BNs at seven spatial scales. The 358 

black lines are Cor and red lines are NSE.  359 

The comparisons between observed and predicted values from the BN model at 360 

20km, 50km and EUC scales are shown in Fig. 5. It is evident that the performances 361 

of BNs model in AN prediction (Cor=0.91, NSE=0.80) and DO prediction considering 362 

AN (Cor=0.88 NSE=0.72) are satisfactory in 20km radii around monitor stations, 363 
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which are better than that in larger spatial scales. When comparing DO prediction 364 

with or without AN (Cor=0.60, NSE=0.36), it shows that AN, as an 365 

oxygen-demanding contaminant, had significant influence on DO concentration. AN 366 

could explain more than 30% variations in DO concentration, therefore, AN can’t be 367 

ignored in assessments of influence factors to water quality.  368 

 369 

 370 

 371 
(a)                    (b)                    (c) 372 

Fig. 5. (a) Observed against predicted AN concentration from BN models at 20km, 50km and 373 

EUC scale. (b) Observed against predicted DO concentration from BN models at 20km, 50km and 374 

EUC scale without AN influence. (c) Observed against predicted DO concentration from BN 375 

models at 20km, 50km and EUC scale with AN influence. 376 
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3.3 Influence factors on AN and DO in dry and wet seasons 377 

 The contribution of each influence factor was calculated by parameters estimation 378 

from the BN model at the 20km scale for both dry seasons and wet seasons (Fig.6). 379 

The amount of AN from sewage outfalls (point sources) had the strongest contribution 380 

(26.2%) in AN concentration in dry seasons. Based on management strategies of 381 

sewage outfalls in the HRB, the wastewater was discharged continuously and 382 

relatively stable at normal condition, therefore, the effects of sewage outfalls were 383 

weakened by dilution process with increasing flows in wet seasons.  384 

As an oxygen-demanding contaminant, AN was the most effective factor in 385 

lowering DO level in dry seasons. The negative contribution had declined from 21.1% 386 

in dry seasons to 4.1% in wet seasons, which was caused by sever AN pollution in dry 387 

seasons and relative lower AN concentration by dilution processes in wet seasons. 388 

This is consistent with the former researches that AN/nutrients had the significant 389 

negative influence on DO concentration from both nutrient-rich and organic 390 

agriculture flows (Jalali and Kolahchi, 2009; Tran et al., 2010; Antanasijević et al., 391 

2014).  392 

Water temperature had significant negative influence on DO concentration with 393 

the similar contribution in both dry (-19.8%) and wet (-17.5%) seasons, which is 394 

consistent to previous researches (Mahler and Bourgeais, 2013; Zabed et al., 2014; 395 

Diamantini et al., 2018; Du et al., 2018; Heddam and Kisi, 2018). Accordingly, higher 396 

water temperature at all stations in wet seasons (Table S2) could be a potential reason 397 

for relatively lower DO level over that period. 398 

Farmland had negative and positive relationship to AN concentration in dry 399 

seasons and wet seasons, respectively. It implies that farmland experienced different 400 

processes in different seasons. As flows were three times lower in dry seasons than 401 
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that in wet seasons (Table S2), AN contaminant coming from nitrogen fertilizers 402 

possibly can’t be transported into receiving water in dry seasons. Accordingly, it 403 

would be stored in farmland or even infiltrated into groundwater, therefore, farmland 404 

acts as “sink” in dry seasons. It had been reported by Martin et al. (2017) that the 405 

legacy effects of land use which caused by groundwater could delay the arrival time 406 

of nutrients to the receiving water. Increasing surface runoff in wet seasons had larger 407 

transportation capacity, therefore, AN contaminant that was reserved in farmland in 408 

the former dry seasons and newly applied in wet seasons from nitrogen fertilizers 409 

were both transported into receiving water. Thus, farmland becomes an important 410 

“source” of AN pollution in wet seasons. As the proportion of farmland in the HRB 411 

was more than 70%, it had huge storage capacity of AN contaminants in dry seasons 412 

and then exported a large amount of contaminants to rivers in wet seasons. 413 

Accordingly, 21.7% negative and 23.7% positive contribution to AN concentration 414 

was made by farmland in dry and wet seasons, respectively. Similarly, farmland had 415 

only 3.7% negative contribution to DO concentration in dry seasons and increased to 416 

17.6% in wet seasons. This result is different to the results from many previous 417 

studies, while they reported that agricultural land/farmland had negative effects on 418 

water quality, which only played a role of “source” to water contaminants 419 

(Seeboonruang, 2012; Wan et al., 2014; Wang et al., 2015). However, Wijesiri et al. 420 

(2018a) found the negative relationship between dryland/irrigated agriculture and 421 

nitrates, which reflected the “sink” processes of farmland. All of these previous 422 

researches failed to reveal the transformations between “sink” and “source” processes 423 

in dry and wet seasons. Some research found that agricultural land influenced 424 

nutrients level in rivers and degraded water quality mainly by agricultural surface 425 

runoff (Chen et al., 2016), which usually happened over storms or rainy seasons 426 
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(Miller et al., 2011; Bu et al., 2014). Thus, the potential reason for why previous 427 

researches only found the unilateral relationship between farmland and water quality 428 

could be that they failed to take seasonal influence (wet/dry) into consideration. 429 

Accordingly, meteorological and hydrological conditions have significant differences 430 

between different seasons, particularly rainfall and discharge, which often affect water 431 

quality strongly (Korb K, 2004; Shrestha and Kazama, 2007). As farmland is the most 432 

extensive land use type in the HRB and made great contributions to water pollution in 433 

wet seasons, it is important for governments to implement strategies in controlling 434 

contaminants from farmland, such as cut down on the usage of nitrogen fertilizers and 435 

encourage farmers to plant crops in more environmental-friendly ways.  436 

The rural resident land had positive influence on AN concentration and negative 437 

influence on DO concentration in both dry and wet seasons. It is consistent to the 438 

results from previous studies that rural resident land was positively correlated with 439 

deteriorations in water quality, therefore, it decreased DO concentration in rivers (Cui 440 

et al., 2016; Kändler et al., 2017; Shukla et al., 2018). The influences of rural resident 441 

land on AN and DO were similar to point source, which were weakened in wet 442 

seasons by the dilution process. It was possibly caused by that the contaminants from 443 

human living and livestock in rural resident land were discharged directly into rivers 444 

by wastewater. It is consistent with results found by Julian et al. (2016) that cattle 445 

density, which was correlated to wastewater from livestock, was the primary predictor 446 

for nutrients in rivers.  447 

The influence of urban on AN and DO concentration both became stronger in wet 448 

seasons than that in dry seasons, which had the similar pattern with non-point sources. 449 

This result corresponds to the previous study which pointed out that urban land use 450 

was identified as a primary factor in nitrogen pollution during wet seasons (Chen et al., 451 
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2016). Although urban only covered less than 3% area in the HRB, it was the most 452 

significant factor on AN and DO concentration in wet seasons. These results are 453 

consistent with Ai et al. (2015) and Wang et al. (2015) who reported that urban land 454 

use was small in the percentage of all land use, however, it was identified to make the 455 

most significant contribution to water pollution and exerted a significant effect on 456 

water quality. The disproportionately strong influence was caused by the high 457 

percentage of impervious surface coverage in urban, which was related to the human 458 

activities in this area. The impervious surface interrupts contaminants infiltrating into 459 

soil and then mitigates soil retention process. With increasing surface runoff in wet 460 

seasons, more contaminants could be transported into receiving water (Cunningham et 461 

al., 2010; Tu, 2011; Seo and Schmidt, 2012; Wang et al., 2015; Chen et al., 2016; 462 

Meierdiercks et al., 2017). Therefore, the intensive anthropogenic activities in urban 463 

could further exacerbate its role in water degradation. Wijesiri et al. (2018a) and 464 

Shukla et al. (2018) also pointed out that human activities in specific land use had 465 

stronger influence on water quality rather than changes in land use area and natural 466 

drivers such as rainfall.  467 

Water and woodland had positive influences on water quality in both dry and wet 468 

seasons. As grassland didn’t have a significant correlation with AN concentration 469 

(α=0.05), it was removed from the influence factors on AN concentration. Many 470 

previous studies had found similar results (Bu et al., 2014; Cui et al., 2016; Ding et al., 471 

2016; Kändler et al., 2017). The increasing percentage of water area means increasing 472 

discharge that can dilute contaminants, thus, it had positive effects on water quality. In 473 

addition, the self-purification function of rivers could make contributions to decrease 474 

contaminants concentration (Khorsandi, 2015). Woodland and grassland had positive 475 

influence on water quality due to its buffer capacity from vegetation for diffuse 476 
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pollution (Connolly et al., 2015). Therefore, the increasing percentage of woodland 477 

and grassland around rivers could help to further improve water quality in the HRB.  478 

  479 

 480 
Fig.6. Response of AN and DO to influence factors under different seasons. 481 

4 Conclusions 482 

To analyze impacts of land use and sewage outfalls on water quality considering 483 

oxygen-demanding contaminants in dry and wet seasons from local scale to catchment 484 

scale in the HRB, we developed BNs model to describe these complex 485 

interdependencies. The results showed that land use and sewage outfalls at local scales 486 

(less than 20km radii around monitor stations) explained the variations in AN and DO 487 

concentration best, which revealed that paying more attention to controlling water 488 
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pollution from point and non-point sources within 20km scales can improve water 489 

quality more efficiently. Key results/findings are summarized as follows: 490 

(1) Wastewater from sewage outfalls was the strongest contributor to AN 491 

pollution in dry seasons, whose influence was weakened in wet seasons because of 492 

intensive dilution process by increasing discharge. 493 

(2) Farmland acted as “sink” for its storage capacity of contaminants in dry 494 

seasons and as “source” in wet seasons. The transformations between “sink” and 495 

“source” processes were caused by huge variations between surface runoff in dry and 496 

wet seasons. 497 

(3) Woodland and Grassland have positive effects on water quality in both dry 498 

and wet seasons, which could be used as pollution buffers around rivers to protect the 499 

water environment. 500 

(4) Urban and rural resident land played important roles in water quality 501 

degradation, especially, urban made a disproportionately strong contribution to water 502 

contaminants although it only covers less than 3% area in the HRB. It revealed that 503 

intensive anthropogenic activities would exacerbate the negative impacts of urban on 504 

water quality.  505 

These results/findings highlight the importance to consider both local and 506 

catchment scales in analyzing the impacts of land use comprehensively. Considering 507 

interactions between water contaminants is also important to analyze influence factors 508 

on water quality, which was rarely studied before. In order to better manage water 509 

environment, governments should pay more attention to controlling contaminants 510 

from farmland and urban, especially in wet seasons. Moreover, as woodland and 511 

grassland could be used as pollution buffers, the percentage of these two kinds of land 512 

use should be increased around rivers. Although the study presented here was based 513 
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on the HRB, the BN model and approaches can also be applied in other polluted river 514 

basins around the world. 515 
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